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Abstract

This thesis deals with machine learning techniques for the extraction of
structure and the analysis of the vertebrate olfactory pathway based on
related methods. Some of its main contributions are summarized below.

We have performed a systematic investigation for classification in biomed-
ical images with the goal of recognizing a material in these images by its
texture. This investigation included (i) different measures for evaluating
the importance of image descriptors (features), (ii) methods to select a
feature set based on these evaluations, and (iii) classification algorithms.
Image features were evaluated according to their estimated relevance for
the classification task and their redundancy with other features. For
this purpose, we proposed a framework for relevance and redundancy
measures and, within this framework, we proposed two new measures.
These were the value difference metric and the fit criterion. Both mea-
sures performed well in comparison with other previously used ones for
evaluating features. We also proposed a Hopfield network as a method
for feature selection, which in experiments gave one of the best results
relative to other previously used approaches.

We proposed a genetic algorithm for clustering and tested it on sev-
eral real–world datasets. This genetic algorithm was novel in several
ways, including (i) the use of intra–cluster distance as additional opti-
mization criterion, (ii) an annealing procedure, and (iii) adaptation of
mutation rates. As opposed to many conventional clustering algorithms,
our optimization framework allowed us to use different cluster validation
measures including those which do not rely on cluster centroids. We
demonstrated the use of the clustering algorithm experimentally with



several cluster validity measures as optimization criteria. We compared
the performance of our clustering algorithm to that of the often–used
fuzzy c–means algorithm on several standard machine learning datasets
from the University of California/Urvine (UCI) and obtained good re-
sults.

The organization of representations in the brain has been observed at
several stages of processing to spatially decompose input from the en-
vironment into features that are somehow relevant from a behavioral
or perceptual standpoint. For the perception of smells, the analysis of
such an organization, however, is not as straightforward because of the
missing metric. Some studies report spatial clusters for several combi-
nations of physico–chemical properties in the olfactory bulb at the level
of the glomeruli. We performed a systematic study of representations
based on a dataset of activity–related images comprising more than 350
odorants and covering the whole spatial array of the first synaptic level
in the olfactory system. We found clustered representations for several
physico–chemical properties. We compared the relevance of these prop-
erties to activations and estimated the size of the coding zones. The
results confirmed and extended previous studies on olfactory coding for
physico–chemical properties. Particularly of interest was the spatial pro-
gression by carbon chain that we found. We discussed our estimates of
relevance and coding size in the context of processing strategies. We
think that the results obtained in this study could guide the search into
olfactory coding primitives and the understanding of the stimulus space.

In a second study on representations in the olfactory bulb, we grouped
odorants together by perceptual categories, such as floral and fruity. By
the application of the same statistical methods as in the previous study,
we found clustered zones for these categories. Furthermore, we found
that distances between spatial representations were related to percep-
tual differences in humans as reported in literature. This was possibly
the first time such an analysis had been done. Apart from pointing to-
wards a spatial decomposition by perceptual dimensions, results indicate



iii

that distance relationships between representations could be perceptu-
ally meaningful.

In a third study, we modeled axon convergence from olfactory receptor
neurons to the olfactory bulb. Sensory neurons were stimulated by a set
of biologically–relevant odors, which were described by a set of physico–
chemical properties that co–varied with the neural and glomerular pop-
ulation activity in the olfactory bulb. Convergence was mediated by
the covariance between olfactory neurons. In our model, we could repli-
cate the formation of glomeruli and concentration coding as reported in
the literature, and further we found that the spatial relationships be-
tween representational zones resulting from our model correlated with
reported perceptual differences between odor categories. This shows that
natural statistics, including similarity of physico–chemical structure of
odorants, can give rise to an ordered arrangement of representations at
the olfactory bulb level where the distances between representations are
perceptually relevant.

Keywords: feature selection, image features, pattern classification, relevance, re-
dundancy, distributional similarity, divergence measure, genetic algorithms, clus-
tering algorithms, annealing, olfactory coding, olfactory bulb, odorants, glomeruli,
property–activity relationship, olfaction, plasticity, axonal guidance, odor category,
perception, spatial coding, population coding, memory organization, odor quality.
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Chapter 1

General introduction

A basic problem that humans and other animals face when moving through the
environment is to find structure in the world. This implies several issues includ-
ing (i) detection of stimuli, (ii) discrimination of certain stimulus patterns from
others, and (iii) assigning meaning to stimuli in order to generate an appropriate re-
sponse and ultimately help surviving. This last point particularly implies to derive
interpretations or representations of the environment and the behavioral context.
In perception, peripheral systems or front–ends first filter out information. This
information is continuously filtered and transmitted within a complex network ar-
chitecture. How these processes work in biological systems, how they relate and fit
together, is a principal question in systems neuroscience and computational neu-
roscience. How these processes should or can work is a question about machine
learning. In this treatise, the general problem of finding structure in the world is
approached from the point of view of machine learning and systems neuroscience.

From an evolutionary perspective, the sensors should extract information from
the world which is relevant for the organism. Relevance can be understood in terms
of the emotional valence, the hedonic value, or the afforded behavioral importance
of the stimulus. In classification tasks as performed by statistical or algorithmic
approaches by machines, relevance can be understood in terms of helping to disam-
biguate between objects.

Some parts of the world are more important than others and need more resolu-
tion. Sensors therefore should focus the attention on particular objects that match



2 General introduction

these relevance criteria or transform the representations in a way as to emphasize
informational structure.

Machine learning techniques can be seen from different perspectives:

• They can be seen in an explanatory framework , where they are applied in order
to establish relationships. In our context, they can help to elucidate workings
in biological organisms.

• They help to understand learning and principles of information processing.
This is the computational framework . This can be done empirically and math-
ematically.

• They can be applied within a modeling framework to predict the behavior of
a system.

In the work that led to this thesis, we took all three aforementioned approaches.
Generally, more and more datasets become available in neuroscience, and this

offers great opportunities to researchers — especially those without access to a
wetlab, or those in their early career stages — to come up with interesting and
meaningful ways to analyze them.

This chapter briefly summarizes work and contributions of the author. A more
thorough summary will follow in dedicated chapters. A list of papers on which this
thesis is based is given in section 1.3. The different papers will be referred to by
numbers according to chronological order.

1.1 Brief summary of work

In brief, papers I, II, and III are empirical studies of machine learning algorithms
with some theoretical parts. First, several methods of analysis are developed and
evaluated. Informational filters are proposed with the purpose of the extraction
and selection of information. Then, a clustering algorithm is discussed. In papers
IV, V, and VI we applied statistical and machine learning techniques to a dataset
of rat physiological responses for definitions of a neuroscience problem within the
aforementioned explanatory framework. This helped us to draw conclusions about
representations of smell in the olfactory bulb of the rat. In paper VI, we formulated



1.1 Brief summary of work 3

a model of a biological system, an early part of the vertebrate olfactory system,
and generated predictions that give plausibility to certain hypotheses about the
organization of the nervous system.

Machine learning techniques for classification and feature selection were inves-
tigated in papers I and II. The idea was to improve a classification of tissue in
computer–tomography images. For this purpose, we worked on increasing the qual-
ity of the feature set for the classification, which as we showed could help a lot.
This was done within the minimum redundancy–maximum relevance framework
where the goal is to optimize the trade–off between redundancy and relevance of
your selected feature set. The contribution of paper I was (i) to compare several
algorithms for feature selection and (ii) to develop a new one which used a Hopfield
network. In paper II we developed, tested, and compared measures for evaluating
redundancy and relevance. We proposed two new measures which were shown in
the comparison to work well in the evaluation of relevance and redundancy.

A clustering technique based on genetic algorithms was introduced in paper III.
It used annealing and a local fitness and offered the possibility to use many different
distance measures. The algorithm makes use of cluster validity functions to create
permutations as well as cross-overs of partitions with best single clusters, and it
maintains gene expression likelihoods based on survival rates. We applied the algo-
rithm to real–world data sets and used several objective criterion functions based on
entropy, and inter–cluster and intra–cluster distances. The main contributions were
(i) to present a genetic algorithm that is fast and able to converge on meaningful
clusters, and (ii) to define several multi-variate cluster validity criteria, one based
on entropy, and two based on the Mahalanobis distance and cluster–compactness.

The early vertebrate olfactory system was analyzed in the other three papers.
Analyses in papers IV and V was performed on a publicly available dataset of
physiological responses in rats to a set of several hundred odorants. The topic of
these papers are the representations of odorant properties in the rat brain. In pa-
per IV, representations of physico–chemical properties were investigated using a
machine–learning strategy. To our knowledge, this was the first reported study on
a large dataset (362 odorants), as opposed to many studies on odorant subgroups
(typically about ten different). We could replicate results from the literature, which
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were mostly based on restricted datasets, and we could extend these results. In this
paper, we showed representational areas for different physico–chemical properties
including different molecular bonds and functional groups. Further, we confirmed
zones of chemical progression for molecular length and carbon number. Our defi-
nition and computation of relevance of physico–chemical properties was novel and
permitted us to systematically compare several molecular properties by their the im-
portance for glomerular coding. We also compared the size of the representational
zones and we are also not aware of other studies that systematically evaluated sizes
of coding zones for molecular properties.

In paper V, we performed another analysis on the dataset of rat physiological
responses to odorants. By statistical analysis, we found and continuous zones of
representations for perceptual odor categories. This was a novel result and we
compare related articles in section 6.5 of this thesis. Furthermore, in this article,
we investigated hypotheses about coding at the olfactory bulb level. We found
that distances between spatial codes were more meaningful in terms of perceptual
differences, than were differences between population codes.

Axon guidance in the early vertebrate olfactory system was modeled in the
study leading to paper VI. The model predicted the formation of glomeruli, a
concentration–dependent spatial increase of glomerular recruitment of coding zones,
and principles of spatial relationships between the perceptual representations. This
model helped us to draw conclusions about the organization and the statistics of
the stimulus space and the organization of olfactory representations. The basic re-
sult is that the described spatial arrangement could partly be explained by stimulus
statistics. This had not been shown before in such a form.

1.2 Summary of author’s contributions

For papers I and II (Auffarth et al., 2008, 2010), the idea was to build a classifi-
cation pipeline for CT images. This pipeline consisted of feature selection, classi-
fication, and refinement. I felt that some of the methods could be improved, so I
started researching different filters, and feature selection schemes with respect to
their effectiveness within a classification task. I implemented the methods, did the
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programming for the different experiments, and then I monitored their execution,
which took several weeks to compute on a desktop PC. I analyzed the results and
wrote the papers. Maite Lopez–Sanchez was coordinating and streamlining these
efforts and helped a lot to improve the writing. Jesus Cerquides brought in ideas
for analyses and filters.

As for paper III (Auffarth, 2010), I had several ideas for a method on clustering.
I developed the method, implemented it in MATLAB, conducted the experiments,
and wrote the paper.

Work that led to paper IV (Auffarth et al., 2011b) started out from results of
different statistical analyses, which I had performed during 2008. Agustin Gutierrez
and I defined the scope of the paper together based on collected results. We agreed
to use a support–vector machine as a way to do complex correlation analysis. Com-
putations were done on a linux cluster (beowulf), which I had assembled during
the summer of 2008, consisting of thirty–two processors. I compiled the results
and wrote the paper. Agustin Gutierrez commented on drafts during the writing
of the original conference paper that the journal paper was based on. Santiago
Marco approved the final draft version that was submitted to Frontiers of Systems
Neuroscience.

For paper V (Auffarth et al., 2011a), I conceived the ideas, performed the anal-
ysis, and wrote the paper. Santiago Marco approved a preliminary version of the
article.

For paper VI (Auffarth et al., 2011c), Anders Lansner had a model of organiz-
ing neuronal connections based on correlations of activities. We reframed this into
a mechanism of synaptic convergence and axonal growth. Together, we came to
understand that this could lead to the formation of glomerular structures. I had
the idea of using this framework for a model of topographical memory organiza-
tion. I programmed a workflow for modeling within an MPI–based C++ neural
network library, which was written by Simon Benjaminsson, and which I extended.
I wrote MATLAB scripts for the analysis of results. I later re–implemented the
model and performed analysis in MATLAB. I wrote the paper with feedback from
Bernhard Kaplan and Anders Lansner. Bernhard Kaplan helped writing some parts
and created several figures which show results and illustrate the model.
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Part I

Finding structure in the world





Chapter 2

Brief introduction to machine
learning techniques

The term machine learning is applied to algorithms that allow computers to acquire
knowledge or behaviors based on data. The first part of this thesis deals with ma-
chine learning techniques and the aim of the present chapter is to give background
for the first three papers. Papers I and II deal with feature selection and classi-
fication. Paper III deals with a clustering method based on a genetic algorithm.
Readers unacquainted with the topic should find enough information in this chapter
to be able to understand important concepts in the field. For in–depth treatment
the reader is referred to textbooks, such as Duda et al. (2000) or Han et al. (2011).

With the evolution of information technology and the permeation of open re-
search, many datasets have become available and amenable to systematic analysis.
Data mining (sometimes also knowledge discovery from data or KDD) generally
refers to the discovery of patterns in large datasets and is therefore, next to ma-
chine learning, the term, we will use in the present treatment to refer collectively to
techniques used to computationally analyze data. Data mining algorithms can be
applied in many fields and for many different kinds of data. Patterns that can be
searched for include relationships between items in datasets and finding classes or
concepts.

Two important methodologies in machine learning are classification and clus-
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tering . Both are related in the way that they detect patterns in data (pattern
recognition). Clustering refers to an unsupervised procedure, i.e. without training
with labels, of grouping data items into classes (clusters) based on a measure of sim-
ilarity between instances. Classification is a supervised procedure, in the sense that
during a training phase category labels are provided. Generally speaking, classifica-
tion involves building a model to assign instances into categories based on training
set with known categories (labels) and then to apply this model to assign labels to
new instances.

One way to understand an item (alternatively called instance) is to see it as
a geometric object, a point, embedded in space, often a multi–dimensional space.
Each of the dimensions in this space are described by what in this thesis will be
variably referred to as an attribute, a feature, or a variable, so that you can describe
an item by a vector, where each entry stands for a value along a dimension.

An attribute can be of the following nature:

• ordinal (e.g. {small, large})
• categorical/nominal (e.g. {male, female}),
• numerical:

– discrete (e.g. {1, 20}, N),
– continuous (e.g. [1, 20], R),

A special case of discretely valued attributes and one which is quite frequent is when
two values exist (often written {0, 1} or {−1, 1}). This is called a binary attribute.

In case of high–dimensional datasets it can be advantageous to reduce the dataset
to fewer dimensions. This dimensionality reduction can proceed either by choosing
among the set of dimensions or features, called feature selection, or by transform-
ing the original data to a lower dimensional space. This latter case can referred
to as feature extraction. In combination with clustering specifically, the combined
procedure of dimensionality reduction and clustering is sometimes called subspace
clustering .

There are many technical issues related to machine learning. The rest of this
chapter will be dedicated to a brief overview of the literature in both clustering and
classification. Feature selection will be introduced in the context of classification.
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2.1 Clustering

Let us start with an intuition, then some basic algorithms, and then come to some
problems typically encountered in clustering .

Intuitively, given a set of data points, which can be for example images, pixels or
voxels in image stacks, or results from chemical analysis, the goal is to find groups
of data points that belong together. In general, a cluster is a collection of data items
which are similar to each other and are dissimilar to items in other clusters. The
relation between points is given by a similarity or distance function.

A partition (or partitioning) is the separation of a set of items into clusters.
Clustering algorithms try to find partitions that make the most sense in terms of
given similarity measures. They are mainly unsupervised techniques1. The purpose
of clustering is to discover and visualize structures in data sets.

In the following, some of the most prominent approaches to clustering will be
outlined.

The k–means algorithm (Lloyd, 1982; MacQueen, 1967) is one of the most
popular clustering algorithms. Given a set of points in a d–dimensional space
𝑥1, . . . 𝑥𝑛 ∈ 𝑋 the aim is to find 𝑘 sets, 𝑆 = 𝑆1, . . . 𝑆𝑘, where 𝑘 ≤ 𝑛, so that
the following objective function, the within–cluster sum of squares is minimized:

argmin𝑆
𝑘∑︁

𝑖=1

∑︁
𝑥𝑗∈𝑆𝑖

‖𝑥𝑗 − 𝜇𝑖‖2 (2.1)

where 𝜇𝑖 is the center of cluster 𝑆𝑖.
After initialization of clusters, the algorithm proceeds over iteration of two steps,

(i) an assignment step, where points are assigned to clusters, and (ii) an update
step, where cluster centers are shifted to correspond to the centroids of their points.
Because this algorithm uses centroids, it can be called prototype–based clustering .

K–means is a hard clustering method which means that its result are crisp par-
titions, in the sense that each point belongs exclusively to one cluster. In fuzzy
clustering, which produces soft partitions, each point has a degree of membership,

1With few exceptions, e.g. biclustering
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𝑢𝑖,𝑗 ∈ [0, 1], where 𝑖 = 1, . . . 𝑛 and 𝑗 = 1, . . . 𝑘 to each cluster, such as in fuzzy
c–means (Bezdek, 1981)2:

𝑢𝑘(𝑥) =
1∑︀

𝑗

(︁
𝑑(𝜇𝑘,𝑥)
𝑑(𝜇𝑗 ,𝑥)

)︁2/(𝑚−1)
(2.2)

where 𝜇𝑘 is the cluster center 𝑘 and 𝑑( · , · ) is the Euclidean distance function,
which means that the membership of each point to a cluster is inversely related to
its distance from the cluster center.

The parametrization with 𝑘 and the distance metric, the Euclidean distance from
cluster centroids, as criterion function is sometimes problematic. Both the k–means
and the fuzzy c–means algorithm detect spherical structural clusters. They employ
a parametric distance measure and centroids which makes assumptions about the
shape of the clusters and do not work well with skewed or non-parametric data
distributions. Fuzzy c–means introduces an additional parameter, 𝑚 ≥ 1, called
fuzzifier, which controls the cluster tightness or — inversely — how fuzzy the cluster
partitions can be. Generally, the fuzzy c–means algorithm is more robust to outliers
and overlap than k–means (e.g. Mingoti and Lima, 2006).

Clustering can be also be done based on graphs or connectivity. Given a distance
matrix 𝐷 with elements 𝑑𝑖𝑗 we could iteratively connect or merge points or clusters
to a common cluster that have least distances until some stop criterion is reached,
which could be, for example, the desired number of clusters, 𝑘, or the maximum
distance that we want to use to connect points. Such a clustering approach is
called agglomerative, because in the described step–wise fashion, it heaps points
together. In the case, where the distance between two clusters is defined as the
distance on the closest points from each other (minimum distance), this is called
single–linkage clustering (also nearest neighbor clustering). It is also possible to
take the maximum point distance between two clusters, in which case the linkage
criterion is called complete linkage), or the average (mean) distance between points
of the two clusters, which is called average linkage).

2For notational consistency, I switched 𝑘 for the more conventional 𝑐
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Importantly, the just mentioned single linkage or complete linkage clustering
methods do not use centroids, such as fuzzy c–means or k–means do, and they also
do not impose spherical cluster shapes. An added advantage is that they leave
the choice of which distance function to apply, a fact that can be very important
depending on the distribution of data.

Other distance measures have been proposed, however, they have not found a
wide application for reasons of computational efficiency or robustness. For example,
it has been proposed to apply the Mahalanobis distance for clustering (e.g. Liu
et al., 2008). However, the Mahalanobis distance may bring with it some difficulties
with regard to the computation of the inverse of the covariance matrix.

Some examples for commonly used distance functions in clustering between two
points or pairs of points (𝑥𝑖 and 𝑥𝑗) are the following:

• Euclidean distance:
√︂∑︀

𝑙

(︁
𝑥𝑙𝑖 − 𝑥𝑙𝑗

)︁2

• Manhattan distance:
∑︀

𝑙

⃒⃒⃒
𝑥𝑙𝑖 − 𝑥𝑙𝑗

⃒⃒⃒
• Mahalanobis distance:

√︀
(𝑥𝑖 − 𝑥𝑗)𝑇𝑆−1(𝑥𝑖 − 𝑥𝑗), where S is the covariance

matrix.

The application of these measures depends on the structure of the data and may
sometimes require preprocessing, for example normalization.

Other solutions to produce nonlinear separating hyper-surfaces between clusters
involve kernel density estimation, non-parametric regression, and spectral methods
(Filippone et al., 2008). For example, Gaffney and Smyth (1999) proposed a clus-
tering method for univariate data based on probability estimates from a mixture of
non-parametric regression models. Wang (2003) presented a small simulation study
with clustering using non-parametric kernel regression. These solutions however,
are sensitive to the choice of bandwidth parameters and lack robustness for a broad
set of problems.

In spectral clustering (e.g. Luxburg, 2007; Auffarth, 2007), data are pre-processed
to extract eigenvalues of the Laplacian of the distance matrix before clustering is
performed. These methods find little application to real-world data because of their
high computational costs.
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Information entropy is a measure of the uncertainty associated with a distri-
bution. Liu et al. present a fuzzy c-means clustering approach based on Maha-
lanobis distances (Liu et al., 2008). The maximum entropy principle (Beni, 1994)
and Renyi’s entropy (Jenssen et al., 2003) have also been proposed as a distance
measure between centroids and data points. Butte and Kohane (2000) compute
entropy between gene pairs and used thresholding to build clusters. Jenssen et al.
(2003) applied mutual information for clustering of gene data. The estimation of
probability density underlying the computation of entropy is difficult, especially in
high-dimensional spaces.

Most clustering algorithms rely on distances from centroids because of the sim-
pler optimization as compared to measures that take into account complete linkage
of points. In paper III, we proposed a genetic algorithm for optimization of clusters.
Our algorithm is capable of optimizing any criterion function with respect to any
criterion fitness function. It is fast and — depending on the criterion function —
robust enough for application to real-world data.

2.1.1 Cluster validation

The objective of clustering algorithms is that data points within clusters are similar,
while points between clusters are different. Clustering algorithms are unsupervised,
which means that real assignments a-priori are unknown. Assignment to clusters
relies on a distance measure; in the case of genetic algorithms, the criterion function
of the optimization is called the fitness function.

As a general guideline, these measures should favor minimal differences be-
tween points within clusters (intra-cluster distance) and maximal differences be-
tween points of different clusters (inter-cluster distance).

The distance measure can in principle be any distance function or goodness-of-fit
function. A function that measures validity of partitions based on the structure of
data in the clusters is called an internal cluster validity measure. An overview over
some measures especially proposed for internal cluster validation can be found in the
review by Pfitzner et al. (2009). They define desiderata for internal cluster validity
functions, which include

• being able to work with different distributions,
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• being robust to outliers, and

• being robust or invariant to scaling.

Internal validity measures that received special mention in their article include
information-theoretic measures such as Lopez and Rajski’s measures (Mántaras,
1991; Rajski, 1961), and several normalized mutual information measures (Malves-
tuto, 1986; Strehl and Ghosh, 2003; Fred and Jain, 2003; Kvalseth, 1987).

Other popular validity measures include Davies–Bouldin (Davies and Bouldin,
1979), Calinski–Harabasz (Calinski and Harabasz, 1974), Hartigan (Hartigan, 1973),
Krzanowski–Lai (Krzanowski and Lai, 1988), and Silhouette (Rousseeuw, 1987).

For validation of our clustering method we used an external validity measure that
compares the coincidence of clusters found with our method to the correct cluster
assignments. We used the Jaccard index which measure similarity of partitions. It
is based on the Rand index (Rand, 1971) which compares two hard partitions 𝑅 and
𝑄 of some data.

Rand =
𝑎+ 𝑑

𝑎+ 𝑏+ 𝑐+ 𝑑
(2.3)

where,

𝑎 denotes the number of point pairs belonging to same partition in 𝑅 as well as
in 𝑄.

𝑏 the number of point pairs belonging to the same cluster in 𝑅 but to different
in 𝑄.

𝑐 the number of point pairs belonging to different clusters in 𝑅 but to same
clusters in 𝑄.

𝑑 the number of point pairs belonging to different clusters in 𝑅 and different
clusters in 𝑄.

The term 𝑑 can cause problems by becoming big and thereby bias the index.
The Jaccard coefficient (Jain and Dubes, 1988) leaves out 𝑑 with the motivation
that point pairs which are neither in the same cluster in 𝑅 nor in 𝑄 are insignificant
for consistency between 𝑅 and 𝑄. Denoeud et al. (Denoeud et al., 2005) showed
experimentally that the Jaccard index is approximately equally efficient to other



18 Brief introduction to machine learning techniques

measures based on the Rand index, while showing lower variance. Formally, the
Jaccard index is defined as:

Jaccard =
𝑎

𝑎+ 𝑏+ 𝑐
(2.4)

2.1.2 Genetic algorithms for clustering

Evolutionary algorithms (Fogel, 1995) are optimization algorithms that use mecha-
nisms inspired by biological evolution such as inheritance, mutation, selection, and
crossover. At each iteration, the fitness of a population of candidate solutions is
computed.

Genetic algorithms (GA), proposed by John Holland (Holland, 1992), are search
heuristics which mimick the process of natural evolution. They are used for opti-
mization and search problems. Genetic algorithms belong to the class of evolutionary
algorithms in that they make use of operations that come from evolutionary algo-
rithms. They extend evolutionary algorithms by encoding candidate solutions as
strings, called chromosomes). GAs have the following phases:

• Initialization: Generate an initial population of 𝐾 candidates and compute
fitness.

• Selection: For each generation, select 𝜇𝐾 candidates based on fitness to serve
as parents.

• Crossover: Pair parents randomly and perform crossover to generate offspring.

• Mutation: Mutate offspring.

• Replacement: Replace parents by offspring and start over with selection.

Genetic algorithms have found broad application to a variety of optimization prob-
lems. A theoretical characterization has been difficult (however, c.f. Rabinovich and
Wigderson, 1999; Doerr and Auger, 2011). For a recent survey on the application
of genetic algorithms to clustering problems, see Sheikh et al. (2008).

To name a few examples, Scheunders (1997) argued, based on their experiments,
that a hybrid of k–means and a genetic algorithm depends less on initial conditions.
Krishna et al. (1999) used the k–means clustering algorithm as a cross-over opera-
tion. Lu et al. (2004); Maulik and Bandyopadhyay (2000) applied genetic algorithms
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for selection of cluster centers and evaluated fitness by Euclidean distances to these
centers. Laszlo and Mukherjee (2007) also based their algorithm on cluster centers.

2.2 Classification

As mentioned before, in the context of machine learning, classification designates
the process or result of a method for assigning categories to data points. Generally,
given a data point 𝑥, classification refers to a function, also called model

ℎ(𝑥) = 𝑦 (2.5)

where 𝑦 is category predicted by ℎ(). It is desirable that predicted values are close
to correct values (called targets or labels) over a range of points. A classifier function
ℎ() should further generalize, i.e. give reasonable results even for unseen points, i.e.
points that were not used in constructing the classifier.

In order to ensure generalization of the model, cross–validation can be used
when optimizing parameters of the model. In cross–validation, model parameters
are optimized for a subset of the available data and then the model performance
is tested on a different subset. In 𝑘–fold cross–validation, points are split into 𝑘
subsets (folds) and at each iteration, one fold is held back for testing (test set), while
the rest of the points (training set) are used for optimizing parameters (training or
learning). In this way, overfitting can be avoided, where the model describes specific
noise rather than general relationships of the data.

Classification, as opposed to regression, implies a finite number of values that
𝑦 can take. Problem classes for classification can be categorized in multiclass and
binary problems, depending on the domain of 𝑦. In papers I and II, we dealt with
problems that have two target classes, so–called binary problems.

There are many different methods for classification. In the following some clas-
sification methods relevant to explaining papers I and II will be introduced, then
the issue of performance measures is discussed.



20 Brief introduction to machine learning techniques

2.2.1 Boosting

Boosting (Schapire, 1990) refers to machine learning methods that construct a single
so–called strong learner from an ensemble of so–called weak learners. Adaboost and
GentleBoost are incremental algorithms that adapt weak learners to the data at
each iteration.

In papers I and II, we applied a boosting classifier as one of the classification
methods. This choice was motivated by three considerations which are true for both
GentleBoost (Friedman et al., 2000) and Adaboost:

• Boosting techniques, depending on the number of iterations, can approach any
training set.3

• Boosting is fast (depending on number of iterations and the choice of weak
learner).

• Boosting can be used off–the–shelf without tweaking of hyper–parameters, it
is well-known and broadly available in different implementations. This makes
boosting techniques better understandable and applicable to a larger range of
problems.

Boosting algorithms often use linear decision criteria, decision stumps, as weak
learners.

2.2.1.1 Adaboost

Adaboost is probably the best known boosting algorithm. Adaboost was first pro-
posed for binary classification (but extended to multi-classes) and we used it in
papers I and II. You can find a description of Adaboost.M1 for binary data in Fig-
ure 2.1.

Adaboost iteratively applies weak classifiers (or one particular classifier) to data.
It adapts at each iteration logarithmically the importance (weight) of each pattern
depending on the classification of the pattern (correct/incorrect) in the current
iteration, creating an additive model from weak classifiers.

3See section on Adaboost for more detail.
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Figure 2.1: Adaboost. This is adapted from Friedman et al. (2000) and Freund et al.
(1996).

Input: 𝑋 =
{︀
𝑥𝑖|𝑖 = 1, . . . 𝑛

}︀
: data

𝑌 =
{︀
𝑦𝑖|𝑖 = 1, . . . 𝑛

}︀
⊂ {−1, 1}: binary class labels

𝑇 : number of rounds (iterations)
Data: 𝑊 =

{︀
𝑤𝑖|𝑖 = 1, . . . 𝑛

}︀
:Weights

𝑓𝑡: classifiers (could be the same for all rounds)
for 𝑖 = 1, . . . 𝑛 do

𝑤𝑖 ← 1/𝑛 (initialize weights)
end
for 𝑡 = 1, . . . 𝑇 do

Train classifier 𝑓𝑡 maximizing error function 𝑒𝑡 = 1𝑦𝑖 ̸=𝑓𝑡(𝑥𝑖) ·𝑊
Adjustment factor: 𝑐𝑡 ← log 1−𝑒𝑡

𝑒𝑡

Weight adjustment: 𝑤𝑖 ← 𝑤𝑖 exp 𝑐𝑡 · 1𝑦𝑖 ̸=𝑓𝑡(𝑥𝑖)

Normalize 𝑤: 𝑤𝑖 ← 𝑤𝑖∑︀𝑛
𝑘=1 𝑤𝑘

end
Output: Classification ℎ : 𝑋 → 𝑌 is given by sign

∑︀𝑇
𝑡=1 𝑐𝑡 · 𝑓𝑡(𝑥)

Adaboost’s meta routine is most appropriate using a classifier which is fast to
compute but is not necessarily very good. This classifier, a “weak classifier” or “base
classifier”, is characterized as a “rough rule of thumb” (Schapire et al., 2001). The
weak learners we used were decision stumps.

Adaboost is very robust to noise and Friedman noted “[Adaboost] seems immune
to overfitting” (Friedman et al., 2000), however, this last point has been refuted later
(cf. Rätsch et al., 2001).

2.2.1.2 GentleBoost

In paper I and II we used GentleBoost (also: Gentle Adaboost) (Friedman et al.,
2000), which gives real-valued confidences instead of only {−1, 1}. The description
follows in algorithm 2.2.
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Figure 2.2: GentleBoost after Friedman et al. (2000).

Input: 𝑋 =
{︀
𝑥𝑖|𝑖 = 1, . . . 𝑛

}︀
: data

𝑌 =
{︀
𝑦𝑖|𝑖 = 1, . . . 𝑛

}︀
⊂ {−1, 1}: binary class labels

𝑇 : number of rounds (iterations)
Data: weights 𝑤𝑖 (corresponding to each point 𝑥𝑖)
𝑓𝑡: classifiers (could be the same for all rounds)
for 𝑖 = 1, . . . 𝑛 do

𝑤𝑖 ← 1/𝑛 (initialize weights)
end
for 𝑡 = 1, . . . 𝑇 do

Estimate 𝑓𝑡(𝑥) by 𝑤-weighted least square fitting
𝐹 (𝑥)← 𝐹 (𝑥) + 𝑓𝑡(𝑥)
Weight adjustment: 𝑤𝑖 ← 𝑤𝑖 exp−𝑦𝑖𝑓𝑡(𝑥𝑖)
Normalize 𝑤: 𝑤𝑖 ← 𝑤𝑖∑︀𝑛

𝑘=1 𝑤
𝑘

end
Output: Classification is sign𝐹 (𝑥). The confidence is 𝐹 (𝑥).

2.2.2 Performance measures

There exist many performance scores for classification results and many performance
scores are highly correlated. See Caruana and Niculescu-Mizil (2004); Ferri et al.
(2009) for more discussion and experimental comparisons.

A confusion matrix (as in table 2.1) allows us to cross–tabulate occurrence fre-
quencies of data points, for example image voxels, that are classified correctly and
incorrectly for a given class assignment by a particular learning method. Its analysis
can help to determine the “goodness” of our learning method. In signal detection
theory, true positives (TP) are equivalent to the number of hits, true negatives (TN)
is the number of correct rejections, false positives (FP) equivalent to the number of
false alarms, and false negatives (FN) to misses (Fawcett, 2004).

To begin with the most common measure, accuracy is determined as the propor-
tion of correctly classified examples to all classified examples, i. e. TN+TP

TN+FP+FN+TP .
Precision is the ratio of the correctly predicted positive (negative) cases to all pre-
dicted as positives (negatives), i. e. TP

TP+FP ( TN
TN+FN).
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Table 2.1: Confusion matrix in signal processing. Visualization of results from a
binary classification task. TN stands for true negative, FP for false positive, FN for false
negative, TP for true positive.

predicted
negative positive

actual negative TN FP
positive FN TP

A measure which takes into account false negatives is recall (also hit rate or
sensitivity), defined as TP

TP+FN . A measure which takes into account false positives,
the false positive rate, is given as FP

FP+TN .
The f-measure combines recall and precision in a weighted harmonic mean, writ-

ten as
(1 + 𝛼) precision×recall

𝛼×precision+recall ,

where 𝛼 is real and non-negative4 (Fawcett, 2004).
More complex combinations are the receiver operating characteristics (ROC)

which is a two-dimensional depiction of classifier performance in terms of hit rates
and false alarms and the area under the ROC curve (called AUC). ROC curves have
proved to be especially useful for domains with skewed class distributions. AUC is
a portion of the area under the unit square and therefore its values will always be
between 0 and 1, though — reasonably — no classifier should have an AUC less
than 0.5 which is random guessing (Fawcett, 2004).

In papers I and II, we used AUC as the measure of choice for the evaluation
of feature selection methods on our data. For the same dataset, Cerquides et al.
(2005) had used the overlap metric, (OM) as the ratio of true positives (TP) to the
sum of true positives, false positives, and false negatives of the respective class, i.e.

TP
TP+FP+FN . The overlap metric will reach one when all points are correctly classified
and will go to zero with high numbers of false positives or false negatives.

As a convention to avoid the false impression of precision, we generally round to

4Traditionally 𝛼 = 1 and the corresponding f-measure is called 𝐹1
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two digits after the decimal point.

2.3 Feature selection

Feature selection is still often done manually by experts. However, due to great
quantities of data it is becoming increasingly automatized. A comparison of the
methods over articles by different authors is difficult, because of incompatible per-
formance indicators, often unknown significance, and the different data sets methods
are applied to. Saeys et al. (2007) reviewed research in feature selection with appli-
cation to biological data.

Sets of features can be evaluated by either filters, which measure statistical prop-
erties or information content, or a performance score of a classifier (“wrapper ap-
proach“). There exist many heuristics for choosing subsets of features. Two standard
iterative search strategies are forward selection and backward selection. Forward se-
lection starts from the empty set and adds at each step a feature, which gives the
most performance improvement. Backward selection starts from all features, elimi-
nating at each iteration one or several features. Forward-backward algorithms make
an initial guess of a useful feature set and then refine the guess by eliminating vari-
ables and adding new ones. Filter–based feature selection schemes can be very fast
and give good results that other more search–heavy methods are not guaranteed to
achieve (c.f. Guyon et al., 2004).

In the context of this work, we define the feature selection task as follows: given a
selection criterion (error function) 𝜀( · ) and an initial feature set 𝑋 with 𝑚 features
we want to find a subset 𝑋* ⊆ 𝑋 such that |𝑋*| = 𝑠 (𝑠 for number of selected
features) and 𝑋* = argmin𝑋̄⊆𝑋,|𝑋̄|=𝑠 𝜀(𝑋̄).

Many approaches to feature selection are either based on ranks (“univariate filter
paradigm“) and thereby do not take into account relationships between features, or
are wrapper approaches which require high computational costs. In the context of
the classification scenario in papers I and II, we chose a filter–based method for
being fast and giving good results, which other computation-heavy methods are not
guaranteed to achieve (c.f. Guyon and Elisseeff 2003). Filter–based approaches have
the additional advantage of providing a clearer picture of why a certain feature subset
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is chosen through the use of scoring methods in which inherent characteristics of the
selected set of variables is optimized. This is contrary to wrapper-based approaches
which treat selection as a “black-box“ optimizing the prediction ability according to
a chosen classifier.

Multivariate filter-based feature selection has enjoyed increased popularity (Saeys
et al., 2007). It has been shown that the best subset of features may not be the set
of the best individual features (e. g. Cover, 1974; Toussaint, 1971; Vapnik, 1995).
The idea behind combining redundancy and relevance information is simple: one
should use the features that taken together have the highest value for prediction
and not the ones which have highest prediction value on their own.

Zhou and Peng (2007); Peng et al. (2005); Ding and Peng (2005) selected features
in a framework they call “min-redundancy max-relevance“ (henceforth abbreviated:
mRmR) that integrates relevance and redundancy information of each variable into a
single scoring mechanism. Knijnenburg (2004) compared two different approaches.
In a cluster–based approach where variables are first hierarchically clustered and
then, from each cluster, the most relevant feature is selected. The second method
was a greedy ranking–based selection, where relevance and redundancy, measured
by Pearson correlation coefficients, was integrated into a single score. Biesiada and
Duch (2005) presented an algorithm that includes at each step variables starting
from highest relevance and excluding variables that are redundant.

In chapter 3, we will describe feature selection, including the mRmR approach
in more detail. Also, the greedy heuristic with threshold as presented in Biesiada
and Duch (2005) will be explained.

In the following two chapters, methods described in this chapter will be used
and combined with extensions. These extensions concern measures for evaluating
the relevance and redundancy of features and methods for feature selection that were
presented in paper I and paper II. This will be presented in chapter 3. Chapter 4 will
summarize paper III, which describes an algorithm for clustering written to address
problems with traditional clustering algorithms.
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Chapter 3

Feature selection by relevance and
redundancy

This chapter describes work done on feature selection, published in papers I and
II. These papers proposed and evaluated several measures of estimating the quality
of features and methods for feature selection. In chapter 2, feature selection and
the concepts of redundancy and relevance were briefly introduced. In this chapter,
work on feature selection using the framework of maximum relevance and minimum
redundancy will be summarized. An experimental evaluation was performed within
the context of tissue classification in a biomedical dataset.

In the beginning of this chapter, several filters for computing redundancy and
relevance will be presented, where the emphasis is put on non–parametric filters that
are low on computational costs. More specifically, we will summarize two measures
for the evaluation of relevance and redundancy that were presented as novelties in
paper II. After this, several algorithmic methods are explained for making use of the
relevance and redundancy information. A Hopfield network is explained that was
proposed and presented in paper I as one such method. In the end, the results from
both papers I and II will be summarized together concerning comparison of feature
selection methods and feature evaluation measures.

As stated before, this treatment focuses on filter–based feature selection where
relevance and redundancy measures are integrated. To recapitulate from chapter 2,
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relevance is the measure of “goodness“ of the projection from individual features to
labels, and redundancy is a measure of how similar features are between themselves.
As such, both redundancy and relevance measures fall into the class of measures
for statistical dependence or distributional similarity. The idea behind combining
redundancy and relevance information is simple: you should take the features that
together have the highest value for prediction and not the ones which alone have
highest prediction value. It has been shown that the best subset of features may
not be the set of the best individual features (compare Toussaint, 1971; Cover, 1974;
Vapnik, 1995).

Several criteria for relevance and redundancy that were used in both papers will
be summarized in the following. Two measures are based on mutual information,
others are based on statistical tests and probability distributions. We also used
correlation coefficients. Due to the uncertainty of the true distribution underlying
data, we preferred non–parametric measures. Generally, non–parametric tests have
less statistical power (i.e. the probability that they reject the null hypothesis is
smaller) but are more robust to outliers than parametric tests. Of these measures,
the value difference metric and the fit criterion were presented in paper II as measures
for relevance and redundancy evaluation.

After looking at different measures for evaluating relevance and redundancy of a
feature set, the next question is how to combine these two measures for each feature
and how to rank features, and then — in the next step — how to select features
based on combined information. For this purpose, different selection schemes will
be discussed and — as mentioned before — a selection scheme for feature selection,
based on a Hopfield network, will be explained. In the end, experimental compar-
isons of feature selection based on the different measures and selection schemes will
be summarized.

3.1 Relevance criteria

Relevance criteria determine how well a variable discriminates between target classes.
They are a measure between a feature and the class, i.e.

𝑅𝑒𝑙(𝑋,𝑌 ) ≡ how useful is 𝑋 for predicting 𝑌. (3.1)
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The relevance criteria that we used in experiments and will discuss in this chapter
are:

• symmetric uncertainty (SU)

• Spearman’s rank correlation coefficient (CC)

• value difference metric (VDM)

• fit criterion (FC)

Of these, symmetric uncertainty was used before as a relevance criterion (for exam-
ple by Biesiada and Duch, 2005). As for Spearman correlations, we did not find a
prior publication that refers to it as a relevance criterion. However, we thought it
might be better to use a non–parametric measure instead of relying on linear corre-
lations (specifically Pearson correlation), which have been used before as relevance
measure (e.g. Yu and Liu, 2003). In paper II, we showed how a measure of proba-
bility difference, presented before as the value difference metric (Stanfill and Waltz,
1986), can be adapted as a relevance criterion. In the same paper, we proposed
another measure, which we called fit criterion, with which we tried to find a simple
generalization from the margin concept.

3.1.1 Symmetric uncertainty

Symmetric uncertainty (henceforth abbreviated SU ) is a symmetric information-
theoretic measure of similarity between two distributions 𝑋1 and 𝑋2. SU is defined
as:

𝑆𝑈(𝑋1, 𝑋2) = 2
𝐼(𝑋1;𝑋2)

𝐻(𝑋1) +𝐻(𝑋2)
, (3.2)

where 𝐻(𝑋) is the Shannon entropy defined as

𝐻(𝑋) = −
𝑛∑︁

𝑖=1

𝑝(𝑥𝑖) log 𝑝(𝑥𝑖) (3.3)

and 𝐼(𝑋1, 𝑋2) is the mutual information (sometimes also: mutual dependence,
henceforth abbreviated MU ):

𝐼(𝑋1;𝑋2) = 𝐻(𝑋1) +𝐻(𝑋2)−𝐻(𝑋1, 𝑋2) (3.4)
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The joint entropy 𝐻(𝑋1, 𝑋2) between two distributions 𝑋1 and 𝑋2 is

𝐻(𝑋1, 𝑋2) = −
∑︁
𝑥,𝑦

𝑝𝑥∈𝑋1,𝑦∈𝑋2 log2(𝑝𝑥,𝑦). (3.5)

Mutual information intuitively means the amount of information that knowing
either variables provides about the other. SU is a symmetric and scaled variant.
It obtains a minimum of zero when the variable are independent and a maximum
value of

𝑆𝑈max = 2
min (𝐻(𝑋), 𝐻(𝑌 ))

𝐻(𝑋) +𝐻(𝑌 )
, (3.6)

when the two variables are completely mutually redundant.
We computed 𝑆𝑈(𝑋,𝑌 ), where 𝑋 is a feature and 𝑌 is a label, normalized to

range [0, 1] by equation 3.6.
Since 𝑋 is a continuous random variable, computing SU requires the estimation

of its density distribution, which is notoriously difficult. Many simplifications of MU
have been proposed (e.g. Torkkola, 2003). After some preliminary studies of density
estimation, some of which are explained in section 3.3, we decided eventually to
apply histogram discretization with 100 equally–spaced bins.

3.1.2 Spearman’s rank correlation coefficient

Spearman’s rank correlation coefficient (henceforth abbreviated CC ), denoted as 𝜌,
is a non–parametric test of correlation, assessing how well an arbitrary monotonic
function could approximate the relationship of two variables. Unlike the Pearson
product–moment correlation coefficient, it does neither make assumptions of a linear
relationship between two variables nor about the frequency distribution of variables
(Noether, 1991).

In the calculation of the Spearman rank correlation coefficient, variables (given
as vectors) are first converted to ranks. Ranking means that values are sorted in
descending order and the ranks are the positions of each value in this ordering. In
the case of tied ranks, each tied value shares a rank average. In a simple example,
having three values 95, 13.3, 1912, we sort starting from the highest value, which
gives an ordering of 1912, 95, 13.3 and the ranks are 2, 3, 1.
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Given the differences of ranks 𝑑 between two features, the correlation coefficient
𝜌, is given by

𝜌 = 1− 6
∑︀
𝑑2𝑖

𝑛(𝑛2 − 1)
, (3.7)

where 𝑑𝑖 is the difference between each rank of corresponding values of the two
vectors, and 𝑛 is the number of value pairs.

Continuing our simple example from above, given a second variable with values
1, 2, 9, ranked as 3, 2, 1, we compute

𝜌 = 1−
6×

(︀
(2− 3)2 + (3− 2)2 + (1− 1)2

)︀
3(32 − 1)

= 1− 12

3(9− 1)
=

1

2
. (3.8)

As a relevance criterion, we are interested in the strength of correlation rather than
in the direction of the correlation, so we take absolute values of 𝜌. As our relevance
criterion CC we write:

CC(𝑋,𝑌 ) =

⃒⃒⃒⃒
1− 6

∑︀
𝑑2𝑖

𝑛(𝑛2 − 1)

⃒⃒⃒⃒
, (3.9)

where 𝑑 is the vector of rank differences between 𝑋 and 𝑌 .
We used an open–source MATLAB implementation (c.f. Schloegl, 2002) for

computing the Spearman rank correlation coefficients.

3.1.3 Value difference metric

We also wanted to find a criterion that would determine overlaps of probability
distributions of classes and features. This was presented in paper II as a new measure
for both relevance and redundancy.

We will refer to Pr(𝑋) as the probability function of variable 𝑋, Pr(𝑋
⃒⃒
𝑌 ) as the

probability function of 𝑋 given 𝑌 , and Pr(𝑋 = 𝑥) as the probability density of 𝑋
at point 𝑥. We define a simple, continuous, monotonic function that measures the
overlap between two variables 𝑋1 and 𝑋2:(︂∫︁

|Pr(𝑋1 = 𝑥)− Pr(𝑋2 = 𝑥)|𝑝 d𝑥
)︂1/𝑝

, (3.10)
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where 𝑝 is a parameter. Given that
∫︀
Pr(𝑥) d𝑥 = 1, total divergence would give the

sum ∫︁
Pr(𝑋1 = 𝑥) d𝑥+

∫︁
Pr(𝑋2 = 𝑥) d𝑥 = 2. (3.11)

In order to have a range between 0 and 1 we subtracted 1. We chose 𝑝 = 1, which
has been used earlier (Stanfill and Waltz, 1986; Wilson and Martinez, 1997; Payne
and Edwards, 1998) under the name value difference metric as distance measure.
This gives a very intuitive, vertical distance between the probability mass functions.

VDM(𝑋1, 𝑋2) =

∫︁
|Pr(𝑋1 = 𝑥)− Pr(𝑋2 = 𝑥)| d𝑥− 1. (3.12)

For discrete values this is easier to compute: we write B𝑖(𝑋) = ♯(𝑒𝑖≤𝑋<𝑒𝑖+1)
|𝑋| as the

bin count at bin 𝑖 given edges {𝑒1, . . . 𝑒𝑘}. An estimation of the probability density
at bin 𝑖 is then given by P̂r𝑖(𝑋) = 𝐵𝑖+1∑︀𝑘 𝐵𝑖+𝑘

1.
Given bins spaced equally for 𝑋1 and 𝑋2, subtracting normalized bin counts

P̂r()2, summing over 𝑘, and subtracting 1, we obtain:∑︁
𝑘

⃒⃒⃒
P̂r𝑘(𝑋1)− P̂r𝑘(𝑋2)

⃒⃒⃒
− 1 (3.13)

Our VDM relevance measure is based on the idea that conditional distributions of
variable 𝑋 with respect to different classes 𝑐,

Pr(𝑋1 = 𝑥|𝑌 = 𝑐1),Pr(𝑋1 = 𝑥|𝑌 = 𝑐2), . . .Pr(𝑋1 = 𝑥|𝑌 = 𝑐𝑑)

should be distinct from each other. We define VDM relevance of a feature 𝑋 and
matched target label 𝑌 with two classes 𝑐1 and 𝑐2 as:

VDM(𝑋,𝑌 ) =

∫︁
|Pr(𝑋 = 𝑥|𝑌 = 𝑐1)− Pr(𝑋 = 𝑥|𝑌 = 𝑐2)|d𝑥− 1. (3.14)

This measures the distinctness of feature 𝑋 with respect to the two classes.
An extension of VDM to more than two classes is possible, however, was not

used in the reported studies. One possibility is to compare the difference of the

1Compare section 3.3.
2P̂r is the estimated probability density, in this case, by a histogram.
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density of a variable Pr(𝑋𝑖|𝑌 = 𝑐𝑖) to that of all other variables Pr(𝑋𝑖|𝑌 ̸= 𝑐𝑖). For
𝑑 classes VDM relevance can be defined as:

VDM(𝑋,𝑌 ) =
1

𝑑

𝑑∑︁
𝑖=1

∫︁
|Pr(𝑋 = 𝑥|𝑌 = 𝑐𝑖)− Pr(𝑋 = 𝑥|𝑌 ̸= 𝑐𝑖)|d𝑥− 1. (3.15)

3.1.4 Fit criterion

Figure 3.1: Separating two distributions. Finding a decision boundary between two
distributions: a decision problem. Adapted from Duda et al. (2000).
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Figure 3.1 shows two (random) normal distributions which we will refer to as
𝑋1 and 𝑋2. No single decision boundary (threshold) on the abscissa will serve
to discriminate perfectly between the two distributions. Of all thresholds the line



34 Feature selection by relevance and redundancy

marks one that will lead to the best discrimination (lowest number of errors). This
example is inspired from Duda et al. (2000).

The question is then: how to find a good cut between the two distributions? A
sensible beginning would be to start from the centers of gravity of each class, then
find a cut somewhere between the two classes. Obviously, the extent (spread) of
each distribution plays an important role in finding such a cut.

For a given point 𝑥, a criterion to evaluate its typicality with respect to a dis-
tribution 𝑋1 could be defined as the distance of the point to the center of the
distribution, 𝜇𝑋1 , in terms of the variance of the distribution 𝜎𝑋1 .

|𝑥− 𝜇𝑋1 |
𝜎𝑋1

, (3.16)

where 𝜇𝑋 is a center of the distribution (as given, for example, by the mean 3)
and 𝜎 denotes some measure of statistical dispersion, (for example, the standard
deviation).

A decision criterion as to whether a point 𝑥 belongs to distribution 𝑋1 or to
distribution 𝑋2 could be then this:

FCP(𝑥,𝑋1, 𝑋2) =

⎧⎨⎩1 if |𝑥−𝜇𝑋1 |
𝜎𝑋1

<
|𝑥−𝜇𝑋2 |

𝜎𝑋2

2 if |𝑥−𝜇𝑋1 |
𝜎𝑋1

>
|𝑥−𝜇𝑋2 |

𝜎𝑋2

(3.17)

Note that you need to decide what to do in the case that both distances are equal.
We refer to FCP as the fit criterion for a given point.

More generally for 𝑘 distributions and a single feature, this can be expressed as

FCP(𝑥,𝑋1, . . . 𝑋𝑘) = argmin𝑖=1...𝑘

|𝑥− 𝜇𝑋𝑖 |
𝜎𝑋𝑖

(3.18)

We will now show the derivation of the decision boundary 𝑥̇ that results from FCP

3As the classical center of gravity the mean could be preferable to the median.
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again given two distributions 𝑋1 and 𝑋2. Our decision boundary 𝑥̇ is:

|𝜇𝑋1 − 𝑥̇|
𝜎𝑋1

=
|𝜇𝑋2 − 𝑥̇|
𝜎𝑋2

(3.19)

This means that 𝑥̇ has to be at equal distance to both 𝜇𝑋1 in terms of 𝜎𝑋1 and
𝜇𝑋2 in terms of 𝜎𝑋2 . We can distinguish two cases, either 𝜇𝑋1 ≤ 𝑥̇ ≤ 𝜇𝑋2 or
𝜇𝑋2 ≤ 𝑥̇ ≤ 𝜇𝑋1

4. We will continue for case 1, assuming 𝜇𝑋1 ≤ 𝜇𝑋2 .

𝑥̇+ 𝜇𝑋1

𝜎𝑋1

=
𝑥̇− 𝜇𝑋2

𝜎𝑋2

(3.20)

𝑥̇− 𝜇𝑋1 =
𝜎𝑋1

𝜎𝑋2

(𝜇𝑋2 − 𝑥̇) (3.21)

𝑥̇ =

𝜎𝑋1
𝜎𝑋2

𝜇𝑋2 + 𝜇𝑋1

1 +
𝜎𝑋1
𝜎𝑋2

(3.22)

These decision boundaries are ignorant of many of the characteristics of the
distributions. Note that the above expression loses meaning with long tails and
with 𝑛-modal distributions (𝑛 > 1). An advantage of this criterion in the context of
classification is that it is unbiased between different distributions, because they do
not take into account prior class–probabilities.

In the case of two classes 𝑐1 and 𝑐2, the decision whether a given point 𝑥 from
distribution 𝑋1 belongs to class 𝑐1 or 𝑐2 is FCP(𝑥,𝑋1|𝑌 = 𝑐1, 𝑋|𝑌 = 𝑐2) according
to eq. 3.18.

For computing relevance based on the FCP, we proceed with the conditional
distributions Pr(𝑋𝑖|𝑌 ) and for each point 𝑥 ∈ 𝑋𝑖 we compute the FCP, i.e. the class
which point 𝑥 should belong to according to eq. 3.18. This is then matched with
the target labels. The percentage of correct classification by eq. 3.18 we then call
the fit criterion (short FC ), our relevance criterion. Given data [𝑋|𝑌 ] of 𝑚 features
𝑋𝑖 =

{︁
𝑥𝑗𝑖
⃒⃒
𝑗 = 1 . . . 𝑛

}︁
⊂ R, where 𝑛 is the number of points, and matching class

4We could be more strict and make these two cases exclusive by assuming 𝜎𝑋1 , 𝜎𝑋2 > 0 and
𝜇𝑋1 ̸= 𝜇𝑋2 .
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labels 𝑌 =
{︀
𝑦𝑗
⃒⃒
𝑗 = 1 . . . 𝑛

}︀
∈ 𝐶, we define the relevance fit criterion for binary class

labels in 𝑌 and some feature 𝑋𝑘 as:

FC(𝑋𝑘, 𝑌 ) =
1

𝑛

𝑛∑︁
𝑖=1

1FCP(𝑥𝑖
𝑘,𝑋𝑘|𝑦𝑖=𝑐1,𝑋𝑘|𝑦𝑖=𝑐2)=𝑦𝑖 , (3.23)

where 1FCP(𝑥𝑖
𝑘,𝑋𝑘|𝑦𝑖=𝑐1,𝑋𝑘|𝑦𝑖=𝑐2)=𝑦𝑖 is an indicator function returning 1 (correct) or

0 (incorrect) depending on the correctness of the prediction by FCP.

3.2 Redundancy criteria

We want a feature set that is not redundant. This means that each feature should
provide different information for predicting the class. Redundancy criteria should
capture similarities of mappings from features to classes, i.e. given a predictor func-
tion 𝑓 ∈ 𝐹 : R → 𝐶, our intuition is that for two non–redundant features 𝑋1 and
𝑋2, 𝑓(𝑋1) should be different from 𝑓(𝑋2). Predicting classes based on each feature
is most likely associated with an error (this is related to relevance) and we hope that
the effects of these errors are complementary.

Given two features 𝑋1 and 𝑋2, and a target 𝑌 , another intuitive formulation
would be5:

Red(𝑋1, 𝑋2, 𝑌 ) ≡ given 𝑋1, how much of 𝑋2 is dispensable for predicting Y.
(3.24)

This statement is non–symmetric, however, we thought it intuitive that redundancy
should be symmetric, i.e.

Red(𝑋1, 𝑋2, 𝑌 ) = Red(𝑋2, 𝑋1, 𝑌 ), (3.25)

5Although, redundancies can be 𝑛–ary relations of features, we will henceforth take redundancies
to mean binary relations, i.e. between only two features. This is simpler to estimate and also how
it was used in other articles that we found on relevance and redundancy.
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therefore, we formulated:

Red(𝑋1, 𝑋2, 𝑌 ) ≡ how much do 𝑋1 and 𝑋2 have in common for predicting Y?
(3.26)

We used these redundancy criteria:

• Kolmogorov–Smirnov test on class–conditional distributions (KSC),

• Kolmogorov–Smirnov test ignoring classes (KSD),

• redundancy VDM (RVDM),

• redundancy fit criterion (RFC),

• Spearman rank correlation coefficients (CC)6,

• Jensen–Shannon divergence (JS), and

• Sign–test (ST).

Redundancy can be measured without respect to a given class or with respect to
a given class. For purpose of comparison, we include two redundancy criteria that
differ only in whether or not they use class information, KSC and KSD , where KSC
takes into account the classes and KSD does not.

Formally the redundancy between features 𝑋1 and 𝑋2 given class targets 𝑌 ∈
𝐶𝑛 = {𝑐1, . . . |𝐶|}𝑛 can be written as

Red(𝑋1, 𝑋2, 𝑌 ) =
1

|𝐶|

|𝐶|∑︁
𝑖=1

Δ(𝑋1|𝑌 = 𝑐𝑖, 𝑋2|𝑌 = 𝑐𝑖) , (3.27)

where 𝑋1|𝑌 = 𝑐𝑖 denotes the distribution of feature 1 given class 𝑖 and Δ one of the
distributional similarity measures that will be defined below. There could be more
advantageous ways to combine the conditional metrics than the arithmetic mean as
in equation 3.27, but we intentionally chose a conservative one.

Relevance and redundancy measures are tests for the “goodness-of-fit“ and, as
such, we could use the same function for measuring redundancy and relevance. Given

6Please, note that we did not distinguish terminology for relCC and redCC as it should be clear
from the context, which one is meant.
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a relevance measure 𝑅𝑒𝑙(), features 𝑋1 and 𝑋2, and targets 𝑌 ∈ 𝐶𝑛, we can define

Red(𝑋1, 𝑋2, 𝑌 ) =
1

|𝐶|

|𝐶|∑︁
𝑖=1

(Rel(𝑋1|𝑌 = 𝑐𝑖, 𝑋2|𝑌 = 𝑐𝑖)) . (3.28)

3.2.1 Kolmogorov–Smirnov test

The Kolmogorov–Smirnov test , short KS–test, can help determine whether two (one-
dimensional) probability distributions could be based on the same finite samples
(𝐻0). The 𝐷 statistic of the KS-test is the maximum vertical distance between the
curves of data 𝑋1 and 𝑋2 in an empirical distribution function (MathWorks, 2007a).

We use MATLAB’s function kstest (MathWorks, 2007c) to obtain 𝑝-values of
the 2–sided KS-test as our KS redundancy.

We used two variants of KS redundancy: Biesiada and Duch (2005) used the
Kolmogorov–Smirnov test as redundancy measure, however, did not specify whether
they tested class–conditional distributions 𝑝(𝑋𝑖|𝑌 = 𝑐𝑘) or features 𝑝(𝑋𝑖) as a total.
We assume they used Δ(𝑝(𝑋𝑖), 𝑝(𝑋𝑗)) and computed the KS-test on the conditional
distributions and on the features as a total. The KS-test as (presumably) used
by Biesiada and Duch (2005) is given as KSD , while the KS on the conditional
distribution is given as 𝐾𝑆𝐶.

3.2.2 Redundancy VDM

VDM, introduced as relevance criterion, can be restated as a redundancy criterion.
Given a target 𝑌 ∈ 𝐶𝑁 and features 𝑋1 and 𝑋2,

RVDM(𝑋1, 𝑋2, 𝑌 ) =
1

|𝐶|

|𝐶|∑︁
𝑖=1

∑︁
𝑘

⃒⃒⃒
P̂r𝑘(𝑋1|𝑌 = 𝑐𝑖)− P̂r𝑘(𝑋2|𝑌 = 𝑐𝑖)

⃒⃒⃒
, (3.29)

where P̂r is the estimated probability.

3.2.3 Redundancy fit criterion

The fit criterion gives the goodness of fit for each point with respect to a certain class.
Rating correct class predictions by this criterion as hits and incorrect predictions
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as misses, the sequence of class predictions from a feature 𝑋𝑘 can be rewritten
as a binary sequence of truth values hits𝑋𝑘

=
{︁
ℎ
(︁
FCP

𝑋𝑗
𝑘
, 𝑌 𝑗

)︁ ⃒⃒
𝑗 = 1, . . . 𝑁

}︁
=

{hit,miss} = {1, 0}𝑁 , where ℎ() is an indicator function. A redundancy criterion
between two such binary sequences hits𝑋1 and hits𝑋2 could be the normalized sum
of hits combined by binary operators ∨ (or) and ∧ (and):

RFC𝑋1,𝑋2 =

∑︀𝑁 (hits𝑋1 ∧ hits𝑋2) ∨ (¬hits𝑋1 ∧ ¬hits𝑋2)

𝑁
(3.30)

This measure, where 𝑁 is the number of points, quantifies the percentage of identi-
cally classified points after a hypothetic perfect join7. We will refer to the fit criterion
as “RFC“ when it is used to measure redundancy, specifically distinguishing it from
the fit criterion for relevance.

3.2.4 Spearman’s Rank Correlation

Spearman’s rank correlation could be used as a measure of similarity between two
features as well (again, we take absolute values of 𝜌). Using equation 3.28 we convert
relevance to redundancy:

RedCC(𝑋1, 𝑋2, 𝑌 ) =
1

|𝐶|

|𝐶|∑︁
𝑖=1

(𝜌(𝑋1|𝑌 = 𝑐𝑖, 𝑋2|𝑌 = 𝑐𝑖)), (3.31)

where 𝜌() computes the Spearman correlation coefficient of its two arguments.

3.2.5 Jensen–Shannon divergence

The Jensen–Shannon divergence is a variation of the Kullback–Leibler divergence
(sometimes: information divergence, information gain, relative entropy , henceforth
short: KL), which is an information theoretic measure of the difference between two
probability distributions 𝑃 and 𝑄. Given the probability distributions 𝑝(𝑖), 𝑞(𝑖) of

7There most likely exist better options, involving graded instead of binary sequences and/or
quantifying only the number of incorrectly classified points, however, our solution has the advantage
of being straightforward and simple.
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two discrete variables, KL is defined as: (Kullback and Leibler, 1951; Lin, 1991)

𝐷KL(𝑃‖𝑄) =
∑︁
𝑖

𝑝(𝑖) log
𝑝(𝑖)

𝑞(𝑖)
, (3.32)

and for probability distributions of two continuous variables

𝐷KL(𝑃‖𝑄) =

∫︁ ∞

−∞
𝑝(𝑥) log

𝑝(𝑥)

𝑞(𝑥)
d𝑥. (3.33)

Note that

𝐷KL(𝑃‖𝑄) = −
∑︀

𝑥 𝑝(𝑥) log 𝑞(𝑥) +
∑︀

𝑥 𝑝(𝑥) log 𝑝(𝑥)

= 𝐻(𝑃,𝑄) − 𝐻(𝑃 )
(3.34)

Here 𝐻(𝑃 ) denotes the entropy and 𝐻(𝑃,𝑄) the cross-entropy. Having 𝐻(𝑃 ) de-
fined above, the cross-entropy in the discrete case is

H(𝑝, 𝑞) = −
∑︁
𝑥

𝑝(𝑥) log 𝑞(𝑥). (3.35)

The KL–divergence is non–symmetric and non–negative. The Jensen–Shannon di-
vergence (henceforth short: JS ) is a symmetrized and smoothed version of the
Kullback–Leibler divergence (Lee et al., 1999).

JS(𝑃 ‖ 𝑄) =
1

2
𝐷KL(𝑃 ‖

1

2
(𝑃 +𝑄)) +

1

2
𝐷KL(𝑄 ‖

1

2
(𝑃 +𝑄)) (3.36)

The units of this measure are called bits for log2, hartleys (or bans) for log10, and
nat (also: nit) for log𝑒 (which is what we used for information theoretic measures).

We take the conditional distributions, i.e.

Red′JS(𝑋1, 𝑋2, 𝑌 ) =
1

|𝐶|

|𝐶|∑︁
𝑖=1

(JS(𝑋1|𝑌 = 𝑐𝑖 ‖ 𝑋2|𝑌 = 𝑐𝑖)) (3.37)

Because JS is a measure of information divergence (and not similarity), we take the
inverse by subtracting from the maximum over all computed divergences in order to
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obtain a redundancy measure.

RedJS(𝑋1, 𝑋2, 𝑌 ) =

(︂
max

𝑗=1,...𝑑
max

𝑘=𝑗,...𝑑
Red′JS(𝑋𝑘, 𝑋𝑗 , 𝑌 )

)︂
− Red′JS(𝑋1, 𝑋2, 𝑌 ) (3.38)

3.2.6 Sign–Test

The two-sided sign–test (henceforth short: ST ) for paired-values gives the 𝑝-value
for the null hypothesis, that the difference between distributions 𝑋 and 𝑌 comes
from a distribution where the median is zero. The sign–test is a non–parametric
test that has the advantage of simplicity and generality (Noether, 1991).

We deal with a distribution 𝑋̄ = 𝑋 − 𝑌 . We compute two test statistics 𝑆− =

|𝑋̄ < 0| and 𝑆+ = |𝑋̄ > 0|, discarding all observations that equal 0.
We used 𝑝-values from MATLAB’s signtest function (MathWorks, 2007e) as our

ST redundancy.

3.3 Density estimation and quantization

Several of the measures previously presented need discrete data as input. Approxi-
mating a probability or a density at some point 𝑥 from a sample is non–trivial. After
experiments with different bin sizes and subsequent smoothing by convolutions of
Parzen and Gaussian windows, respectively, and using different window sizes, we
reluctantly made peace with the fact that the approximation of density depends on
the scale of measurement (c.f. Mandelbrot, 1967), and stayed with histograms with
𝑘 = 100.

Computations of symmetric uncertainty using this approach did not show a sig-
nificant performance increase, and no further attempts at different parametrizations
were undertaken.

It was thought that mixture modeling could possibly give better results than
using histograms. Given a random sample 𝑋 = (𝑥1, . . . 𝑥𝑛) with a continuous,
univariate density 𝑓 , the univariate kernel density estimator (KDE) is

𝑓 (𝑥, ℎ) =
1

𝑛ℎ

𝑛∑︁
𝑖=1

𝐾

(︂
𝑥− 𝑥𝑖
ℎ

)︂
, (3.39)
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with kernel 𝐾( · ) and bandwidth ℎ. The bandwidth parameter ℎ controls the
smoothness/roughness of the density estimate and unfortunate selection may give
under- or over-smoothing of the data.

𝐾( · ) includes some restrictions such as
∫︀
𝐾(𝑢)𝑑𝑢 = 1 and ∀𝑢 : 𝐾(𝑢) ≥ 0. We

employed the Epanechikov kernel, defined as

𝐾(𝑢) =
3

4
(1− 𝑢2) 1(|𝑢|≤1) (3.40)

Such computations were performed at reduced scale8. It was concluded that time
consumption was exorbitant and non-practical in computations involving the com-
plete feature set.

Histograms are the most common and simplest way to approximate probability
distributions. Conforming to Cromwell’s rule of avoiding probabilities of 1 and 0

(except for logical true and false), we apply the Laplacian rule of succession (c.f.
Zabell, 1989) by calculating the probabilities of bin 𝑖 with frequency count 𝑛𝑖 as

𝑝(𝑖) =
𝑛𝑖 + 1

𝑘 +
∑︀𝑘

𝑗=1 𝑛𝑗
(3.41)

We made several attempts at setting bin sizes according to different ideas, in-
cluding the Nyquist–Shannon Sampling theorem (Nyquist, 1924), Scott’s choice, and
others (c.f. Wand, 1997). We also did bin size optimization for some features (not
reported in this thesis), yet with inconclusive results. In order to avoid any problems
with optimization of a bandwidth or bin number we chose a rigid bin number of 100.

Linde and Lindeberg (2012) investigated the influence of the number of bins for
object recognition using histogram–based image descriptors. They found that the
best results are often obtained for low numbers of bins, with just two to five bins
per dimension.

8Using Alex Ihler’s KDE toolbox, see http://ttic.uchicago.edu/~ihler/code/.

http://ttic.uchicago.edu/~ihler/code/
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3.4 Feature selection schemes

We will now look at three ways to combine redundancy and relevance information
in order to select features. These are:

1. minimum redundancy–maximum relevance (mRmR) — combination by mea-
sure

(a) rel
red , or

(b) rel− red

2. Greedy algorithm with redundancy threshold

3. Hopfield network — integration of redundancy and relevance information in a
network

3.4.1 Minimum redundancy maximum relevance feature selection

Ding and Peng (2005), Peng et al. (2005), and Zhou and Peng (2007) presented min-
imum redundancy–maximum relevance feature selection. The method boils down to
a forward scheme9 maximizing one out of two measures for combination of redun-
dancy and relevance information (mutual information in both cases) by subtraction
and division, respectively. These measures are:

• argmax𝑖rel(𝑖, 𝑐)−
∑︀

𝑗 red(𝑖,𝑗)

𝑚 , with 𝑖 and 𝑗 being two features, 𝑐 the paired class,
and 𝑚 the numbers of competing features at each step,

• argmax𝑖
rel(𝑖,𝑐)∑︀
𝑗 red(𝑖,𝑗)

𝑚

.

Peng et al. (2005) used mutual information as measure for relevance and redun-
dancy. They referred to the first measure as mutual information difference (MID),
and to the second as mutual information quotient (MIQ). We will refer to these two
normalization methods (dropping the reference to mutual information) as mRmRD

9Peng et al. (2005) also discussed and tested a backward scheme but it is given less importance
than the forward scheme.
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and mRmRQ, respectively. We implemented the mRmR forward search and in-
tegrated it with our redundancy and relevance methods. The algorithm works as
summarized in figure 3.2. best() is the selection measure, i.e. either quotient or
difference. Features are 𝑋𝑖, 𝑖 ∈ [1, . . .𝑚].

We did not want to mix results from different discretizations, hence we used the
discretization with 100 bins. Also we did not want to rely on closed–source binaries
as provided in Peng’s MATLAB toolbox for computing the mutual information10.
We implemented the forward search with our redundancy and relevance methods.
We trusted the measure of mutual information should be similar to SU (and, to
some extent, to JS) so that some of our methods are comparable to that of Peng
et al. (2005).

The algorithm works as lined out in figure 3.2. 𝑏𝑒𝑠𝑡() is the function that selects
the best feature by either quotient or difference. Features are 𝑋𝑖, 𝑖 ∈ [1, . . .𝑚].

Figure 3.2: mRmR feature selection after Peng et al. (2005).

Input: rel ∈ R𝑚: relevance scores
red ∈ R𝑚2 redundancy scores
𝑠: number of features that need to be selected (assumed 𝑘 ≥ 1)
Initialize set 𝐷 = {𝑋1, . . . 𝑋𝑚}
for 𝑖← 1;𝑖 ≤ 𝑠;𝑖++ do

𝑆𝑖 ← 𝑏𝑒𝑠𝑡(𝐷)
𝐷 ← 𝐷 ∖ 𝑆(𝑖)

end
Output: 𝑆: 𝑠 features ordered by mRmR

3.4.2 Greedy algorithm with redundancy threshold

Biesiada and Duch (2005) presented a forward–scheme that proceeds at each step
including variables starting from highest relevance and excluding variables that are
redundant. They used the Kolmogorov–Smirnov test (KS) for measuring redun-
dancy and set the threshold to a 𝑝-value> 0.95. We implemented this greedy forward

10See http://research.janelia.org/peng/proj/mRMR/index.htm

http://research.janelia.org/peng/proj/mRMR/index.htm
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heuristic, and we tried it with different combinations of redundancy and relevance
criteria.

Albeit simple as an algorithm, while assuming a meaningful computation of rel-
evancy and redundancy, the effectiveness of the resulting set of features depends on
thresholds for redundancy. It does not take into account more complex redundan-
cies between variables, which leads to the fact that the inclusion of the individually
most relevant variables can lead to suboptimal results (a common finding also re-
ported by Biesiada and Duch (2005) in the introduction to their article). Figure 3.3
summarizes the workings of the algorithm.

Figure 3.3: Greedy feature selection algorithm with Thresholding after Biesiada and Duch
(2005).

Input: 𝑚: number of features,
rel ∈ R𝑚: relevance scores,
red ∈ R𝑚2 : redundancy scores, 𝜖: threshold
Initialize sets: set 𝑆 ← ∅, and 𝐶 ← {𝑐1, . . . 𝑐𝑚} = {1, . . .𝑚}
while |𝐶| > 0 do

𝑆 ← 𝑆 ∪ argmax𝑖rel𝑐𝑖
𝐶 ← 𝐶 ∖ {𝑖}
𝐶 ← 𝐶 ∖

{︀
𝑗|∃𝑠𝑖 ∈ 𝑆, red𝑠𝑖,𝑐𝑗 ≥ 𝜖

}︀
end
Output: Selected features are in 𝑆

3.4.3 Hopfield network

In this section, a feature selection scheme based on a Hopfield network will be ex-
plained. This feature selection scheme was introduced in paper I. To our knowledge
an unsupervised neural network has not been used before for feature selection for op-
timization of minimal redundancy and maximal relevance, though approaches that
use neural networks for feature selection (e.g. Yu et al., 2004) or that apply a step
of feature selection before feeding data into neural networks exist (e.g. Valenzuela
et al., 2006).

The spaces of feature combinations and the corresponding space of their energy
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or error functions have numerous local minima, which iterative algorithms could
have difficulties dealing with. This brought us to the idea of applying a network
as a manner of partitioning the feature space and selecting from the emergent pat-
tern within the configuration space of the network arising from connections and
activations.

Drawing each feature as a node with an activation (relevance), we can connect
them to form complete graphs. The redundancy measures gives us proximity ma-
trices 𝐷 ∈ R𝑚2 , where 𝑚 is the number of variables. Redundancy is a (inhibitory)
connection between features.

3.4.3.1 Introduction

The Hopfield network (Hopfield, 1982, 1984; Tank and Hopfield, 1986) is a well-
studied recurrent network. As an introduction, we we will briefly lay out the simplest
version of the Hopfield network. In the next section, we will then explain the version
we used. A concise introduction to Hopfield networks can be found in Hopfield
(2007).

In the simplest form of the Hopfield network, we formalize the connections (hav-
ing an appropriate normalization) as symmetric, real-valued connections 𝑤𝑖𝑗 , units
𝑆𝑖 ∈ [0, 1] and corresponding bias units 𝐼𝑖. The input to each unit 𝑖 is

𝑛𝑖 ←
∑︁
𝑗

𝑤𝑖𝑗𝑆𝑗 + 𝐼𝑖 , (3.42)

where 𝑆𝑗 is the activation of unit 𝑗.
In the classical (binary) formalization, nodes can be asynchronously (serially)

updated at each time step 𝑡:

𝑆𝑖(𝑡+ 1)←

⎧⎪⎨⎪⎩
1 if 𝑛𝑖(𝑡) > 0,

0 if 𝑛𝑖(𝑡) < 0,

𝑆𝑖(𝑡) otherwise.
(3.43)

In this formalization, the bias term 𝐼𝑖 serves in lieu of a threshold parameter.
Unit updating proceeds iteratively by randomly choosing a unit and applying

equation 3.43.
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Thinking of redundancies as proximity matrices 𝐷 = R𝑚2 , where 𝑚 is the num-
ber of variables, the features can be imagined as nodes. Redundancy constitutes
inhibitory connections between the features. The lateral connections represented by
the redundancies could create an attractor network that forms basins of attractions,
where redundancies are lowest and relevancies are highest. In this manner, the
choice of features could come up as an emergent pattern within the configuration
space of the network arising from the connections and activations. The idea of using
a Hopfield network for feature selection in such a form for feature selection was that
it could have the advantage of being able of generating more complex integration
of redundancy and relevance and of providing insight into the number of variables
without prior knowledge.

3.4.3.2 Implementation

We chose a simple implementation for continuous (graded) activation (and responses)
and asynchronous updating in discrete time-steps11.

We tried many different parameters, normalizations of activations and connec-
tions. Parameters included annealing with different rates, using, for example, Rprop
(Riedmiller and Braun, 1993). However, we found that a simple configuration was
most successful. Weights and activations were normalized in the range [−1, 0] and
[0, 1] respectively, with the diagonal of the weight matrix set to 0. We set the noise
parameter 𝑢0 = 0.015 (Hopfield, 1984) and we fixed the adaptation rate at 𝜆 = 0.1.

The activity function of units should be a monotone increasing function that is
bounded below and above. We chose the hyperbolic tangent tanh𝑥 = sinh𝑥

cosh𝑥 as our
activation function.

The update of the activation 𝑆 of a neuron 𝑖 at time step 𝑡 is then

𝑆𝑖(𝑡+ 1)← (1− 𝜆)𝑆𝑖(𝑡) + 𝜆

(︂
1 + tanh

(︂
𝑢𝑖
𝑢0

)︂
/2

)︂
, where (3.44)

11Our attempts at converging at a good implementation were streamlined considerably by Abdi
(1994).
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𝑢𝑖 =
∑︁
𝑗

𝑤𝑖𝑗 × 𝑆𝑗(𝑡). (3.45)

Feature selection is then — after convergence or after the course of some runs
— a thresholding of the unit activations:

𝑆𝑖 ←

{︃
1 if

∑︀
𝑗 𝑤𝑖𝑗𝑎𝑗 > 𝜃,

0 otherwise.
(3.46)

We choose the most highly activated units in application to feature selection.
Fig. 3.4 shows the activations of features after running them through a network
with 1000 iterations in all combinations of relevance and redundancy measures.
Each plot shows feature indices on the abscissa and activation on the ordinate.
High activation means that corresponding features are assigned high importance.
Rows show redundancy measures in combination with the four relevance measures.
Curves differ greatly over relevance as well as redundancy measures. This means that
relevance and redundancy measures each have their say in the resulting selection.
From the figure, looking at importance assigned to probes, we can make predictions
which relevance and redundancy combinations may work and which not. With the
notable exceptions of KSC and KSD, SU seems to assign the highest importance
to probes. CC relevance shows the same tendency in less degree (with exception of
combinations with ST, KSD, KSC). On the other side VDM and FC do not seem to
have that problem. As for redundancy measures, feature selections based on KSC
and KSD make little distinctions among the real features, yet are probe–killers.
More choosy is ST, which either highly rejects or highly accepts some features and
yields relatively high activation for at least one probe. RVDM gives good results
in combination with VDM and FC. JS performs well with VDM and — to a lesser
degree — with FC.

The biological plausibility of this model is probably much better than that of
supervised networks that train with back-propagation. Credence to the activating
nodes gives synchronization of neural cell oscillation which correlates with visual
attention (Fries et al., 1997, 2001).
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Figure 3.4: Feature selection based on a Hopfield network. This figure serves as an
illustration for the distribution of weights after running the Hopfield feature selection based
on different initializations. The implementation of the Hopfield network is as in paper I. In
each plot, on the abscissa each point stands for one feature, the ordinate indicates network
activation. Legend: a – Laplacians, b – Gabor filters, c – LC, TC, d – random, e – zeros.
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3.5 Evaluation

These ideas and implementations for feature selections were subjected to an ex-
haustive testing procedure, where all combinations of relevance and redundancy as
well as selection schemes were combined and classification performance using three
different classifiers was evaluated. In this section, the testing procedure and eval-
uation is explained. In following section, results will be summarized. The goal of
these tests was to find out which selection schemes and which relevance and redun-
dancy measures perform best. These insights were to be applied for a classification
of biomaterial from a dataset, the same which was also used for the comparison of
the presented methods.

3.5.1 Data set

The data consisted of slices in a 3-D volume of 423× 486× 159 voxels, taken from
CT of bones, into which a tracing material was introduced12. Fig. 3.5 shows the
alien biomaterial marked in white on the right and organic bone material (referred
to henceforth as non–biomaterial in order to distinguish it from the introduced
biomaterial). For the classification task, the introduced biomaterial is the target
class and relatively small as compared to the non–target class. The volume centers
around the introduced material and hence, percentage of biomaterial is greatest in
the centers (around 10 percent), becoming less towards the exteriors.

3.5.2 Feature extraction

Choosing an appropriate feature set is a classical problem in pattern recognition.
Features for computational pattern recognition purposes range from local, gradi-
ent based, to global ones, which are based on the histograms of images. They can
be perceptual primitives (e.g. David Marr Marr, 1982) structural descriptions (for
example Irving Biederman’s Recognition by Components; Biederman, 1987), proper-
ties which human observers perceive as salient, (e.g. Itti and Koch, 2000; Treisman
and Gelade, 1980), or — in a more pragmatic vein — some features of the image,

12Samples available at http://www.maia.ub.es/~maite/out-slice-250-299.arff.

http://www.maia.ub.es/~maite/out-slice-250-299.arff
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Figure 3.5: Dataset of biomaterial used in benchmarks of feature selection.
Slices from the computerized–tomography image dataset. Left: a central slice from the 3-D
volume. Right: labels marked white for visibility.

(a) Central Slice (b) Label Indicated

the statistics of which provide enough discriminative information to separate the
different patterns.

Extracting features from images means finding image transformations according
to informational image properties. What information is relevant depends on the
task at hand. Methods used for feature extraction from images mainly come from
signal detection theory and mathematics (mainly statistical). We recommend Guyon
(2006) to get an overview over methods for feature extraction and Lindeberg (2012,
2008, 1994) for a discussion of features in computer vision.

In biomedical image processing, it is difficult to classify organ tissues using only
shape or gray level information, because the shape of organs is inconsistent over slices
and because intensities overlap considerably for different tissues (Xu and Wunsch,
2005). For these reasons, features often go beyond intensity and include something
what can be very generally referred to as texture (see Vyas and Rege, 2006, more
precisely a weighted sum of the intensity of surroundings pixels. A survey of features
used in Computer-Aided Diagnosis can be found in van Ginneken et al. (2001) abd
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Chan et al. (2008).
Methods in image recognition in 3D either take 2D features that work on different

viewpoints in the volume, or contain implicit or explicit information about the 3D
structure. Examples for the first group of methods are LeCun and Bottou (2004)
and Perrotton et al. (2010), for the second group Savarese (2007), and for the third
Liebelt et al. (2008) and Liebelt and Schmid (2010). In our work, we took the first
approach in using 2D feature maps for classification. This was done recently in a
very similar fashion by Danielsson and Carlsson (2011).

Image features used in earlier work on the same dataset by Lopez-Sanchez et al.
(2007) were Gabor filters. Previous work, such as reported in Cerquides et al.
(2005), and several preliminary tests (not reported) made us expect that a richer
feature set tailored for our data set would increase classification performance. The
next paragraphs will provide detail on methods that we used for feature extraction.
Techniques described in papers I and II and summarized in this chapter are designed
to select from this original set of features a (typically smaller) set of features that
is most discriminant for a classification task.

It is important to note that features have different properties concerning robust-
ness to transformations and distribution in the volume. On the other side, filters of
the scale–space family are shift-, rotation-, and scale–invariant (Florack et al., 1992;
Lindeberg, 1994). We tried out Gabor filters, Laplacian pyramids, and luminance
and texture contrasts, which come from neuro–psychological research. The idea was
that all these features could potentially bring benefit for our task.

Often a too domain-specific adaption of descriptors may lead to less stable repre-
sentations which are vulnerable to changes in scale and location. Hence, photometric
descriptors should be chosen that discriminate well, but that are not too specific to
particular regions for parsimony in representation Pantofaru et al. (2006).

3.5.2.1 Laplacian pyramids

The Laplacian pyramid (Burt and Adelson, 1983; Crowley and Stern, 1984) is a
standard method for compact image encoding where an image is first iteratively
smoothed by convolving Gaussians at increasing scales as low-pass filters. This
is called the pyramid of Gaussians. Then, differences between adjacent scales are
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computed.
Formally stated, the two-dimensional Gaussian convolution of the image 𝑥, 𝑦 at

scale 𝑠 is defined as (after Lindeberg, 2012, 2008, 1994)

GC(𝑥; 𝑦; 𝑠) = ▽2
(︀
𝐼(𝑥; 𝑦)𝐺(𝑥; 𝑦; 𝑠)

)︀
(3.47)

where 𝐼 is the image, and

𝐺(𝑥, 𝑦; 𝑠) =
1

2𝜋𝑠
𝑒−(𝑥2+𝑦2)/(2𝑠) (3.48)

is the Gaussian kernel. A level of the Laplacian pyramid is then defined as the
difference-of-Gaussians (DOG) (after Burt and Adelson, 1983)

LP(𝑥; 𝑦; 𝑠; Δ𝑠) = GC(𝑥; 𝑦; 𝑠)−GC(𝑥; 𝑦; 𝑠+Δ𝑠). (3.49)

We will refer to these features as Laplacians.

3.5.2.2 Local energy and wavelets

Local energy (Morrone and Owens, 1987; Perona and Malik, 1990) or (equivalently)
phase congruency (Kovesi, 1999) in the wavelet or Fourier domain has proved to
be more efficient in segmentation than gradient based methods (cf. Kovesi, 2002
for a discussion). A special kind of wavelet are Gabor filters, which have received
considerable attention because the characteristics of simple cells in the primary
visual cortex of some mammals can be approximated by these filters. They are used
a lot in pattern recognition and texture segmentation. A Gabor filter is defined as

𝑔(𝑥, 𝑦;𝜆, 𝜃, 𝜓, 𝜎, 𝛾) = exp(−𝑥
′2 + 𝛾2𝑦′2

2𝜎2
) cos(2𝜋

𝑥′

𝜆
+ 𝜓), (3.50)

where
𝑥′ = 𝑥 cos 𝜃 + 𝑦 sin 𝜃

𝑦′ = −𝑥 sin 𝜃 + 𝑦 cos 𝜃.
In equation 3.50, 𝜆 represents the wavelength of the cosine factor, 𝜃 represents the
orientation of the normal to the parallel stripes of a Gabor function in degrees, 𝜓
is the phase offset in degrees, and 𝛾 is the spatial aspect ratio, and specifies the
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ellipticity of the support of the Gabor function.
Gabor filters, in contrast to the other compared features, incorporate orientation

information.

3.5.2.3 Luminance contrast

In eye–tracking studies, Reinagel and Zador (1999) gave evidence for increased lu-
minance contrast in fixated regions as compared to control points (fixated points
on different images). They defined luminance contrast (LC) as the variance of lu-
minance within a patch (a rectangular patch for practical purposes) divided by the
mean intensity of the image. Luminance contrast typically is computed (for most
purposes) in patches of 1-2 ∘ of visual angle (e.g. Acik, 2006).

More formally, given a patch 𝑃 of pixel intensity from image 𝐼 and around a
pixel (𝑥, 𝑦):

LC𝑃 =
𝜎𝑃
𝜇𝑃
, (3.51)

where 𝜇𝑃 is the mean and 𝜎𝑃 is the standard deviation of intensity of the patch.

3.5.2.4 Texture contrast

By the definition given in Einhäuser et al. (2006), texture contrast is the luminance
contrast of the luminance contrast of an image. The texture contrast (TC) of a patch
is the standard deviation of the luminance contrast values in the patch standardized
by the luminance contrast mean of the image. Parkhurst and Niebur (2004) sug-
gested an extension of the saliency map model, predicting a tenfold increased effect
of texture contrast compared to luminance contrast. More formally, given a patch
𝑃 from LC𝐼

TC𝑃 =
𝜎𝐿𝐶𝑃

𝜇𝐿𝐶𝑃

= 𝐿𝐶𝑃 (3.52)

3.5.2.5 Feature set

The experiments and comparisons that follow in this chapter are based on a set of
177 features, as summarized in table 3.1, and their respective relevance measures
and mutual redundancies. The feature set consisted of 127 features from a central
image (image index 100). We added 50 probes which have a function in performance
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assessment; a good feature selection method should eliminate most of these probes.
49 of these probes were random variables. 25 of those standard normal distributed,
24 uniformly distributed in the interval (0, 1). The last probe consisted entirely of
zeros.

In summary, our feature set included (c.f. table 3.1)

• Laplacian maps,

• Gabor features (10 orientations at 10 scales),

• luminance contrast at scales (in pixels) 5, 13, 27, 35, 41, 55, 69, 89, 99,

• texture contrast (at scales 5, 13, 27, 35, 41, 55, 69), and

• intensity,

• probes.

Table 3.1: Feature set for feature selection. The different features are explained in
the text. The last three feature types are so–called probes, useless features introduced for
testing purposes. Please, see section 3.5.2 for an explanation of the feature set.

feature index range number

Laplacian Pyramid 1− 10 10
Gabor filters 11− 110 100
Luminance contrast (LC) 111− 119 9
Texture contrast (TC) 120− 126 7
Intensity 127 1
Random std. norm. 128− 153 25
Random uniform. 154− 176 24
Zeros 177 1

3.5.3 Classifiers

We used three classifiers for benchmarking:

• Naïve Bayes,

• GentleBoost, and

• a linear support vector machine (SVM).
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As for Naïve Bayes, we relied on our own implementation for multi-valued features
using 100 bins13 for discretization. Given 𝑚 features 𝑋1, . . . 𝑋𝑚 and corresponding
targets 𝑌 ∈ 𝐶𝑛, classifying a pattern 𝑥 = {𝑥1, . . . 𝑥𝑚} by Naïve Bayes means

argmax
𝑐∈𝐶

𝑝(𝑐)

𝑚∏︁
𝑖=1

𝑝(𝑥𝑖|𝑐 = 𝑌 ), (3.53)

As for GentleBoost, we used Antonio Torralba’s MATLAB toolbox (Russell et al.,
2007).

As for SVM (Cortes and Vapnik, 1995), we used libsvm 2.84 (Chang and Lin,
2001), accessed from within MATLAB using an interface by Michael Vogt (Vogt,
2004) from Technical University Darmstadt.

For SVM learning, we tried out several normalization methods. An often used
method for SVM (Hsu et al., 2003) is normalizing within [0, 1] or 𝑘[−1, 1], which
however, has the disadvantage of staunching distributions with outlier values. Graf
and Borer (2001) proposed to normalize by the square root of the sum of the squares:

𝑥̃ =
𝑋√︀∑︀
𝑋2

. (3.54)

Comparisons (not shown) showed that classification performance being approxi-
mately equal, there was a notable loss of speed with classification after normaliza-
tion as per Graf and Borer (2001), with 𝑧-normalization performing fastest. Conse-
quently, features were 𝑧-normalized.

The cost function was made to compensate for unequal class priors, i.e. the
weight of the less frequent class was set to max

(︁
♯(𝑌=𝑐2)
♯(𝑌=𝑐1)

, ♯(𝑌=𝑐1)
♯(𝑌=𝑐2)

)︁
. We set the SVM

complexity parameter 𝐶 to 1 which seemed to be a good choice and on the right
order of magnitude.

In preliminary tests (omitted here), we determined that 50 iterations and random
sampling seemed to be good choices.

13Compare section 3.3.
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3.5.4 Experimental conditions

More precisely, the benchmark included the feature selection of the combining re-
dundancy and relevance information using 1. mRmRQ, 2. mRmRD, 3. Greedy, and
4. Hopfield.

Additionally to the methods for selection (c.f. section 3.4), as a baseline, features
were selected based on unitary filters, i.e. based on either relevance or redundancy.
As for unitary filters, for relevance measures, the 𝑠 highest relevant features were
used and for redundancy measures, at each step the most redundant feature with all
the remaining features is removed until the desired numbers of features 𝑠 are left.
Another random baseline selection was computed.

Each relevance and redundancy criterion was evaluated on its own by unitary
filters; further all 28 combinations of explained relevance and redundancy measures
with the different methods and random selection. Feature sets were evaluated at
sizes [4, 8, 12, 16, 20, 30, 45, 60, 80, 100]. This choice emphasizes feature sets of sizes
≤ 30 because that was where we found initially the greatest differences between the
different methods.

In table 3.2, in the columns, you can find the independent variables of the ex-
periments. The whole set of experimental conditions can be obtained by combining
selection schemes with corresponding relevance and redundancy measures, classi-
fiers, and numbers of features. Greedy, Hopfield, mRmRQ, and mRmRD, were
tried out with the 28 redundancy and relevance combinations, all classifier, at each
number of features. Unitary filters use either a redundancy measures or a relevance
measures, but not both, were combined with a classifier and a number of features.
The random selection ran with each classifier at each number of features. In total
this made up for 3700 experimental conditions.

At each number of features — in order to compromise between sufficient number
of validations and acceptable duration of experiments — 10 random samplings of size
𝑛/10, and for each sampling 5–fold cross-validation was performed. As for random
feature selection, 10 random samplings of the data of size 𝑛/10 were performed and
10 random selections of features in 5-fold cross-validation were tested.



58 Feature selection by relevance and redundancy

Table 3.2: Experimental conditions in the feature selection study. Independent
experimental variables were selection scheme, redundancy, relevance, classifier, and number
of features. lease, compare section 3.4 for an explanation of the feature selection schemes.
In total, there are 3700 experimental conditions.

scheme Red. measure Rel. measure Classifier ♯features

Greedy KSC SU Naïve Bayes 4
Hopfield KSD CC GentleBoost 8
mRmRD RVDM VDM SVM 12
mRmRQ RFC FC 16
Redundancy filter CC 20
Relevance filter JS 30
Random ST 45

60
80
100

3.5.5 Statistical evaluation

As for the evaluation of the experiments, we relied on Demšar (2006). In that paper,
Demsar gives a review of the state of the art of comparing classifiers and provides
some recommendations. Accordingly, comparisons of performances of different clas-
sifiers should proceed in a one to one fashion, should include performance measures
other than accuracy (desirably including ROC or AUC analysis), and use cross-
validation. As for tests of statistical relevance, Demsar discusses several statistical
tests. He discourages the use of parametric tests in general, such as the paired 𝑡-test
and argues for the signed rank test for single comparisons. For multiple compar-
isons of different classifiers he recommends the Friedman test (Friedman, 1937), a
non–parametric equivalent of the repeated-measures ANOVA. If the null hypothesis
(that performance results are equivalent) is rejected, a post-hoc test, such as the
Nemenyi test should test for significant differences between the results.

We used the AUC as our performance measure throughout the analysis as com-
puted by Will Dwinnell’s (Dwinnell) MATLAB function. Following the recommen-
dations of Demšar (2006) we did not base the statistics on performances of single
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folds but took averages (medians14) over folds.
Our statistic tables generally have the following format (by columns):

1. Name of the method; usually the selection scheme followed by redundancy and
relevance measures

2. Rank of the method within methods compared in the same table

3. Mean rank of performance (decisive for ordering)

4. Median performance

5. Interquartile range of performance

6. Win-Loss from Friedman test and Nemenyi post-hoc test (F/N)

7. Win-Loss from Wilcoxon signed–rank test (SR)

The first column gives the name of the method, usually the selection scheme fol-
lowed by redundancy and relevance measures, the second column indicates the rank
of the method within methods compared in the same table. Ordering follows by
mean rank of performance (third column). Median performance and interquartile
range of the vector of performance scores (columns three and four) served for statis-
tical comparisons by the Friedman test and the Nemenyi post-hoc test (F/N), and
the Wilcoxon signed–rank test (SR). One-to-one comparisons of methods by these
statistical tests can be found in columns five and six as win and loss scores (W/L)
indicating statistical significance. For example, in table 3.4 line 3 reads as follows:

index mean rank median iqr F/N W/L SR W/L

mRmRQ: RVDM+FC 3 18.78 0.98 0.03 69/0 87/0

‘mRmRQ: RVDM+FC“ is minimum redundancy maximum relevance with quo-

14According to the central limit theorem, any sum (such as, for example, a performance bench-
mark), if of finite variance, of many independent identically distributed random features will con-
verge to a Gaussian distribution. This is however, not necessarily to expect for only 5 values, i.e.
from 5-folds of cross-validations. After finding partly huge differences between means and medi-
ans over cross-validations, in pre-trial runs, we decided to take the more robust median (which in
case of normal distributions is equal to the arithmetic mean. As for the error–bar, we plot the
interquartile range (shortened: IQR), which is the difference between values at the first (25%) and
the third quartile (75%).
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tient measure, RDVM redundancy and FC relevance. Index 3 means it is third
ranked method with mean rank 18.78 of 96 methods by AUC. The AUC has its
median at 0.98 with an IQR of 0.03. According to Friedman and Nemenyi tests it
is better than 69 other compared methods and worse than none. According to the
Wilcoxon signed–rank test it is better than 87 methods and worse than none.

Extracts from some tables are given in this chapter, e.g. table 3.4. Tables 3.7 and
3.8 analyze redundancy measures and relevance measures, respectively, over all clas-
sifiers, numbers of features, mRmRQ/D, and Hopfield, and relevance or redundancy
measures, respectively.

A difficulty in tackling some questions with regard to the Greedy method are the
different numbers of features that Greedy produced. Table 3.2 shows the numbers
of features used in each combination of redundancy and relevance measure. Because
of the difficulties tabulating Greedy with the other methods, we chose not to include
this scheme in statistical tests over all numbers of features. However, we included all
Greedy schemes in number-of-features specific comparison tables using a threshold
of |𝑠design−𝑠Greedy|

𝑠design
≤ 0.1.

Result tables were computed for each tested number of features all methods, i.e.
Greedy, Hopfield network, mRmRQ, mRmRD, unitary redundancy filters, unitary
relevance filters with corresponding measures of redundancy and/or relevance. These
tables served for overall comparisons of all selection schemes including Greedy, in
particular, table 3.3.

The Friedman test, the Nemenyi post–hoc test, and the Wilcoxon signed–rank
test are described in the next sections.

3.5.5.1 Friedman test

The Friedman test (sometimes called two-way analysis on ranks) is a non–parametric
statistical test for consistency of distributions. Given data {𝑥𝑖𝑗}𝑛×𝑘 of 𝑛 blocks and
𝑘 treatments, each point representing a single observation (the MATLAB function
friedman allows more), we assign ranks within each row (averaged if tied), obtaining
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{𝑟𝑖𝑗}𝑛×𝑘, where 𝑟𝑖𝑗 indicates the rank of 𝑥𝑖𝑗 within block 𝑖. Let

𝑟 · 𝑗 =
1

𝑛

𝑛∑︁
𝑖=1

𝑟𝑖𝑗 , (3.55)

𝑟 =
1

𝑛𝑘

𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑟𝑖𝑗 , (3.56)

SS𝑡 = 𝑛

𝑘∑︁
𝑗=1

(𝑟 · 𝑗 − 𝑟)2 (3.57)

SS𝑒 =
1

𝑛(𝑘 − 1)

𝑛∑︁
𝑖=1

𝑘∑︁
𝑗=1

(𝑟𝑖𝑗 − 𝑟)2 (3.58)

Then the test statistic is given by 𝑄 = SS𝑡
SS𝑒

. For two columns the Friedman test re-
duces to the Wilcoxon signed–ranks Test. For two rows, it reduces to the Spearman
rank correlation coefficient. The 𝑝-values can be approximated from a 𝜒2 distri-
bution. 𝐻0 is that the distributions of ranks within rows are unrelated between
columns. If significant values are found, a post-hoc test, such as the Nemenyi test,
should be performed (Demšar, 2006).

We used MATLAB’s friedman function (MathWorks, 2007b).

3.5.5.2 Nemenyi test

Given data {𝑥𝑖𝑗}×𝑁,𝑘, where the number of rows 𝑁 corresponds to the number of
results of each classifier and the number of columns 𝑘 to the number of classifiers,
ranks are assigned within rows, which gives {𝑟𝑖𝑗}×𝑁,𝑘. Let 𝑅𝑖 be the mean of column
𝑖. The statistics of the Nemenyi Test is then for two columns 𝑖 and 𝑗

𝑧 =
|𝑅𝑖 −𝑅𝑗 |√︁

𝑘(𝑘+1)
6𝑁

, (3.59)

Critical values for these 𝑧-values can be found in text books on statistics or in
Demšar (2006).

We implemented the Nemenyi test according to his specifications.
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3.5.5.3 Wilcoxon signed–ranks test

As an alternative statistical significance criterion we considered the 𝑝-values of the
Wilcoxon signed–ranks test (also called the Mann-Whitney U test, henceforth abbre-
viated SR, short for signed rank). This test provides an alternative for the paired
t–test when the samples or non–normal. See Ott and Longnecker (p. 319 2008) for
a detailed explanation.

We used MATLAB’s signrank function (MathWorks, 2007d).

3.6 Results

Statistics were extracted from performance vectors and are given over all three
classifiers (Naïve Bayes, GentleBoost, and SVM). Please, note, that there is never
“one true way“, no single best method (“Rule of Diversity“, cf. Raymond, 2003) and
we only can give limited recommendations based on the methods that worked well in
our experiments. If you want to select features, what is the “best“ method depends
on how many features you have and how many you want to/have to select, which
kind of data you have, and how much time.

The evaluation of results focused on five questions:

1. Which is the best feature selection scheme?

(a) In particular, are there differences with respect to numbers of features?

2. What are the best measures of relevance and redundancy (RR)?

(a) What is the best redundancy and relevance (RR) combination?

(b) What is the best redundancy measure?

(c) What is the best relevance measure?

3. Do class–conditional distributions give better redundancy estimations?

4. Are the best methods the ones with fewest probes?

5. What is the best feature set?

Question 1 includes feature selection schemes, measures of redundancy and rele-
vance (short: RR measures), and combinations of relevance and redundancy. Apart
from an overall winner according to our experimental setup, we thought it would be
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instructive to find out which selection scheme could give the best results. Important
for the evaluation are furthermore differences between the methods with respect to
employed redundancy and relevance measures.

As for question 1.a, it was analyzed if relative performance of the different meth-
ods is the same when the number of features selected increases. Another issue to
be considered is what constitutes a good feature size for the classification task and
based on this decision decide on the best selection scheme.

Question 2 concerns comparisons of relevance and redundancy combinations and
of redundancy measures (a) and relevance measures (b) among themselves.

Another distinction is whether it helps to take into account class–conditional dis-
tributions. As for question 3, it was to be resolved whether this made sense, looking
at KSC and KSD redundancy criteria which only differ in using class–conditional
distributions and total distributions.

As for question 4, we looked at probe frequency in order to see whether a selection
scheme with good performance is automatically one with few probes.

Question 5 deals with the final result of our feature selection. We wanted to find
a feature set for classification, so we try to find an answer to this question.

3.6.1 Best selection scheme

Table 3.3: Ranking of all the selection schemes. Please, see section 3.5.5 for an
explanation of the statistical evaluation. Abbreviations: F/N – Friedman–Nemenyi, SR –
signed–ranks test, W/L – win–loss. Please, refer to section 3.4 for an explanation of the
feature selection schemes.

index mean rank F/N W/L SR W/L

mRmRD 1 2.10 3/0 4/0
Hopfield 2 2.85 2/0 2/0
Red 3 3.50 1/0 2/0
mRmRQ 4 3.70 1/0 1/1
Rel 5 3.95 1/1 1/1
Greedy 6 5.00 1/2 1/3
rand 7 6.90 0/6 0/6

As mentioned in subsection 3.5.5, Greedy could not be included for some compar-
isons of totals over all numbers of variables, because of the inconsistent numbers of
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features it produced. However, in comparisons with specific numbers of features, we
took into account Greedy selections where they produced feature sets of sizes max-
imally 10% diverging from the sizes of feature sets from other methods. Table 3.3
(table 1 in paper I) was computed from rankings (in contrast to performance) at
different numbers of features and includes Greedy. Median performance and iqr
were omitted in this table.

According to table 3.3, mRmRD is overall winner followed by Hopfield. The table
is ordered by mean ranks (third column). Ranking by medians (fourth column,
– in this case – medians over ranks) would have put mRmRQ in second place,
however, mRmRQ is by Wilcoxon signed–ranks worse than mRmRD (and Hopfield
and unitary redundancy filters are not).

Random feature selection is clearly (and statistically significantly) worse than
the all other selection schemes. Greedy is the worst non–random scheme. Unitary
redundancy filters come high up at the third place.

index mean rank median iqr F/N W/L SR W/L

Red: RVDM 1 11.73 0.99 0.03 87/0 93/0
mRmRD: CC+VDM 2 18.33 0.99 0.03 71/0 88/0
mRmRQ: RVDM+FC 3 18.78 0.98 0.03 69/0 87/0
mRmRD: RVDM+FC 4 19.92 0.97 0.03 64/1 77/2
mRmRD: RVDM+SU 5 20.35 0.99 0.03 73/1 72/1
mRmRD: JS+FC 6 23.03 0.98 0.03 57/1 67/3
mRmRQ: ST+VDM 7 23.58 0.98 0.03 56/1 78/1
mRmRD: RVDM+VDM 8 24.45 0.97 0.03 51/1 70/2
mRmRQ: KSC+VDM 9 26.72 0.98 0.03 53/2 70/4
mRmRD: JS+VDM 10 26.87 0.97 0.03 52/1 65/4
mRmRQ: RVDM+VDM 11 27.58 0.98 0.03 51/1 69/2
mRmRD: ST+VDM 12 27.78 0.98 0.03 49/3 63/5
mRmRQ: KSD+VDM 13 27.98 0.98 0.03 49/3 63/6
mRmRD: KSD+VDM 14 27.98 0.98 0.03 49/3 63/6
mRmRD: KSC+VDM 15 27.98 0.98 0.03 49/3 63/6
mRmRQ: KSC+FC 16 28.32 0.97 0.03 53/1 55/9
Red: JS 17 28.57 0.98 0.03 49/1 54/2
mRmRQ: KSD+FC 18 28.95 0.97 0.03 55/1 54/10
mRmRQ: ST+FC 19 29.03 0.97 0.03 55/1 53/7
mRmRD: RFC+VDM 20 30.50 0.97 0.03 44/3 51/7
mRmRD: KSC+FC 21 31.50 0.97 0.03 51/3 49/17
mRmRD: KSD+FC 22 31.58 0.97 0.03 52/5 50/17
mRmRQ: JS+VDM 23 31.63 0.98 0.03 43/4 61/3

Continued on next page
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Table 3.4 – continued from previous page

index mean rank median iqr F/N W/L SR W/L
mRmRQ: CC+VDM 24 32.23 0.98 0.04 39/3 58/2
mRmRD: ST+FC 25 32.58 0.97 0.03 47/3 45/18
Hopfield: RVDM+VDM 26 34.35 0.98 0.03 42/12 53/14
Hopfield: CC+VDM 27 34.35 0.98 0.03 42/12 53/14
Hopfield: JS+VDM 28 34.35 0.98 0.03 42/12 53/14
Hopfield: RFC+VDM 29 34.35 0.98 0.03 42/12 53/14
. . . . . . . . . . . . . . . . . . . . .

mRmRQ: JS+SU 80 78.68 0.89 0.09 4/75 15/74
mRmRQ: ST+SU 81 80.75 0.89 0.12 14/79 15/79
mRmRD: ST+SU 82 83.38 0.87 0.11 9/79 13/81
mRmRQ: KSC+SU 83 84.22 0.86 0.12 8/80 12/81
mRmRD: KSC+SU 84 84.77 0.86 0.12 9/80 10/82
mRmRD: RFC+SU 85 85.23 0.82 0.21 3/80 6/84
mRmRQ: KSD+SU 86 85.55 0.86 0.12 8/80 8/84
mRmRD: KSD+SU 87 85.63 0.86 0.12 8/81 8/85
Rel: SU 88 86.27 0.86 0.12 7/81 6/84
Hopfield: RVDM+SU 89 88.17 0.85 0.12 4/86 3/87
Hopfield: CC+SU 90 88.32 0.85 0.12 4/86 3/87
Hopfield: RFC+SU 91 88.32 0.85 0.12 4/86 3/87
mRmRD: CC+SU 92 88.70 0.85 0.17 2/85 2/86
mRmRQ: RVDM+SU 93 89.85 0.85 0.10 3/90 3/86
Red: CC 94 91.37 0.70 0.40 1/92 1/93
mRmRQ: CC+SU 95 93.03 0.79 0.19 1/94 1/93
mRmRQ: RFC+SU 96 94.37 0.68 0.20 0/94 0/94

Table 3.4: Selection schemes over all numbers of features and classifiers. Please, see
section 3.5.5 for an explanation about the statistical methodology.

Table 3.4 shows an analysis over all the classifiers and all the features, excluding
Greedy. Unitary RVDM redundancy filter ranks first, followed by mRmRD with CC
redundancy and VDM relevance and mRmRQ with RVDM and FC. mRmRQ/D
came up on top and mostly better than Hopfield using identical RR measures. In
this table, the first Hopfield method ranked 26 (RVDM+VDM). However, many
mRmRQ methods are situated in the bottom rows (which explains why on average
over all RR measures they showed up worse than the Hopfield selection method in
table 3.3).
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3.6.1.1 Best selection method by numbers of features

Fig. 3.6 shows the AUC of random selection at different numbers of features. Perfor-
mance was best with the SVM classifier, second best with GentleBoost, and worst
with Naïve Bayes. The clearest differences occurred until about 30 numbers of
features. It can be seen however, that the performance followed a curve that was
initially log–shaped, but mostly saturated at 100 features. We find the best feature
combination and the best combination method at the upper range of the numbers
of features.

Figure 3.6: Results from random selection. This figure shows the classification per-
formance when features were randomly selected. This is a baseline condition.

At each number of features, all the selection schemes were ranked. The medians



3.6 Results 67

Figure 3.7: Feature selection results: all selection schemes. normalized median
rankings of all the selection schemes. The abscissa shows the size of the feature set. A high
rank (low value) means that a selection scheme was one of the best in the comparison, a low
rank (high value) means that the selection scheme was bad among the compared methods.
Some selection schemes are among the best choices for few features, while others outperform
for more features. For few features mRmRQ and unitary–filter relevance selection are the
best compared. mRmRD, Hopfield network selection, and surprisingly, the selection based
only on redundancy are the methods that perform best for many features. Greedy selection
improves steadily to become one of the best method for many features. Random selection is
the worst compared method at nearly all sizes.
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for each selection scheme are depicted in fig. 3.7. These data served for a global
analysis of all the selection schemes across all redundancy and relevance measures
which can be found in table 3.3.

Fig. 3.7 sums up these results over all the selection methods. We see that with
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Table 3.5: Correlations of relevance measures. Abbreviations: FC – fit criterion,
SU — symmetric uncertainty, VDM — value difference metric, CC — Spearman rank
correlation. Please, see section 3.1 for an explanation of the relevance measures.

Spearman correlations

FC SU VDM CC

FC 1.00
SU 0.22 1.00
VDM 0.68 0.31 1.00
CC 0.28 0.68 0.41 1.00

more features all the selection schemes become better than the random choice be-
cause of the inclusion of less probes. MRmRQ starts as the best method at 4
variables. When adding more features, it improves comparatively less than most
other selection schemes. Hopfield, unitary redundancy filters, and Greedy lead to
the best improvements as compared to other methods mRmRQ/D and unitary rel-
evance filters.

Generally, Hopfield coped better with higher feature spaces than the other meth-
ods and constitutes the best method from 60 features on.

3.6.2 Redundancy and relevance measures

3.6.2.1 Relevance

Table 3.5 shows Spearman correlation coefficients between different relevance scores.
It turns out that the relevance measures differ greatly with respect to the importance
they assign to different features. VDM and FC, and SU and CC demonstrated large
correlations (𝜌 > 0.65).

Fig. 3.8 gives the relevances attributed to each kind of feature by each relevance
measure. All the relevance measures seem to concur that Laplacians and some Gabor
filters are very useful, however, there are huge difference with respect to Gabor
filters, LC, and TC. In particular, it can be observed that CC and SU associate
lower relevance to some Gabor filters than to some probes.
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Figure 3.8: Rankings by features and relevance measures. The vertical grid is to
illustrate the boundaries between the different types of features. A low value in rank (say a
high rank) corresponds to a high relevance. Abbreviations: FC – fit criterion, SU – symmet-
ric uncertainty, VDM – value difference metric, CC – Spearman rank correlation. Gabor
features and Laplacians were given a high ranking. CC and SU did poor in distinguishing
random features (probes).
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Table 3.6: Correlations of redundancy measures. Abbreviations: VDM – value
difference metric, KSD – Kolmogorov–Smirnov, CC – Spearman rank correlation, JS –
Jensen–Shannon, ST – sign–test, RFC — redundancy fit criterion, KSC — Kolmogorov–
Smirnov Class–Conditional. Please, see section 3.2 for an explanation of the redundancy
measures.

Spearman correlations

VDM KSD CC JS ST RFC KSC

VDM 1.00
KSD 0.58 1.00
CC −0.19 0.41 1.00
JS 0.64 0.58 −0.12 1.00
ST 0.48 0.82 0.22 0.52 1.00
RFC 0.13 0.42 −0.61 0.09 0.27 1.00
KSC 0.59 0.96 0.39 0.62 0.85 0.35 1.00

3.6.2.2 Redundancy

Table 3.6 shows the correlations between the redundancy measures. KSC and KSD
(unsurprisingly because they are so similar) were found very highly correlating with
one-another (𝜌 = 0.96). Both of them also were highly correlated with ST(𝜌 >

0.8). CC correlated negatively with some measures, most markedly with RFC (𝜌 =

−0.61).

3.6.2.3 Benchmark results

In table 1 of paper II (omitted in this summary), we find a ranking of RR combi-
nations over all numbers of features and over mRmRQ/D and Hopfield. The best
combination was RVDM with FC. The table shows nearly coherent groupings by the
relevance measure. Everything including SU is clearly at the bottom. Also bad, but
better than SU we find combinations with CC relevance. RFC and CC redundancy
seem worse than others, with CC having greater deviation. RVDM seems to be a
good redundancy measure.

Generally, RVDM and RFC performed very well as unitary filters. Integration of
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SU made the performance degrade in many cases with a given redundancy measure
when compared to other relevance measures. CC was a bad measure for redundancy;
performance was worst when using only CC (Red:CC) and any information helped
improve the performance. KSD was also bad, KSC slightly better. Over the different
integration schemes, the measures for redundancy and relevance differed in their
contribution.

Table 3.7: Redundancy measures over all numbers of features and selection
schemes. Results exclude greedy (see text). Abbreviations: RVDM – redundancy value
difference metric, KSD – Kolmogorov–Smirnov, CC – Spearman rank correlation, JS –
Jensen–Shannon, ST – sign–test, RFC – redundancy fit criterion, KSC – Kolmogorov–
Smirnov Class–Conditional. Please, see section 3.2 for an explanation of the redundancy
measures.

index mean rank median iqr F/N W/L SR W/L

JS 1 2.68 0.97 0.04 5/0 6/0
RVDM 2 2.94 0.96 0.04 3/0 5/1
ST 3 3.82 0.96 0.07 2/2 3/2
KSC 4 4.23 0.95 0.08 2/2 2/3
KSD 5 4.38 0.95 0.08 1/3 1/4
CC 6 4.54 0.95 0.06 0/2 0/2
RFC 7 5.40 0.95 0.05 0/4 0/5

In table 3.7 we see rankings of the redundancy measures averaged (medians)
over mRmRQ/D and Hopfield over all numbers of features. In this case, the clear
winner is JS, followed by RVDM and ST together with highly correlated KSC and
KSD. RFC comes last, after CC. Both showed only low correlations to the other
measures (and highly negatively with each other).

We find a comparison of relevance measures in table 3.8. The statistics is again
over mRmRQ/D and Hopfield and over all numbers of features. VDM and FC,
which had been found highly correlating, were clearly the best relevance measures.
CC comes before SU, which was the clear loser.

3.6.3 Class–Conditional distributions

In section 3.2.1, we introduced two very similar redundancy criteria, KSC and KSD,
which both use the Kolmogorov–Smirnov (KS) test. KSD was computed based on
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Table 3.8: Relevance measures over all numbers of features and selection
schemes. Results exclude greedy (see text). Please, see section 3.1 for an explanation
of the relevance measures and section 3.5.5 for an explanation of the statistical evaluation.
Abbreviations: F/N – Friedman–Nemenyi, SR – signed–ranks test, W/L – win–loss, FC –
fit criterion, SU — symmetric uncertainty, VDM – value difference metric, CC – Spearman
rank correlation.

index mean rank median iqr F/N W/L SR W/L

VDM 1 1.49 0.97 0.04 2/0 3/0
FC 2 1.88 0.97 0.06 2/0 2/1
CC 3 2.76 0.95 0.04 1/2 1/2
SU 4 3.86 0.86 0.12 0/3 0/3

the total distributions and KSC on the class–conditional distributions, i.e.

𝐾𝑆𝐷(𝑋1, 𝑋2) = 𝐾𝑆(𝑋1, 𝑋2) (3.60)

and

𝐾𝑆𝐶(𝑋1, 𝑋2, 𝑌 ) =
1

|𝐶|
∑︁

∀𝑖∈[1,|𝐶|]

(𝐾𝑆(𝑋1|𝑌 = 𝑐𝑖, 𝑋2|𝑌 = 𝑐𝑖)), (3.61)

where KS refers to the 𝑝-values of the KS test as implemented by MATLAB’s kstest.
We had introduced both KSC and KSD in order to test, whether it is better to

use class–conditional distributions for redundancy estimation. In table 3.6 it can
be seen that they were highly correlated (Spearman correlation coefficient of 0.96).
Table 3.7 shows the small difference between the two measures could have made a
difference in performance with KSC performing better than KSD. The difference
in performance is statistically significant according to the Wilcoxon test, but not
significant according to the stricter Friedman and Nemenyi tests. We can conclude
that estimations based on class–conditional distributions serve equal or better for
redundancy measures than estimations based on the distribution totals.
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3.6.4 Probes

As explained in section 3.5.2.5, probes are noisy features which we introduced as a
quality criterion. Absence of the introduced probes in the selected feature set is a
good sign. Fig. 3.9 shows the expected frequency of probes (feature index > 127) in
the selection of schemes (over all measures). Frequencies are normalized by numbers
of features in the selected set.

We see that Greedy, the worst selection scheme, suffered from probes. Selection
based on unitary redundancy filters also had this problem. Unitary relevance filters
and Hopfield let in least probes as compared to the other measures. mRmRD/Q
were ranked in the middle of the field.

Over all the classifiers, the Spearman correlations of normalized ranks and inverse
(subtracting from 1) normalized probe frequencies over all RR combinations at each
number of features range between −0.08 and 0.6. This suggests that low probe
frequencies are not sufficient for good classifier performance. The correlations follow
a curious pattern: they start at medium range (0.5), go down (until −0.08), and
climb up again. This suggests low probe frequencies being relatively important at
low numbers of variables and when there are few to choose from (but not in-between).

As for probe frequency, in general, the relevance measures, VDM and FC came
before CC and SU (which corresponds to their performance ranking). As for re-
dundancy measures, CC lets slip in many probes, which seems to have caused the
mediocre performances with CC redundancy. RFC and JS also were more tolerant
to probes.

As we will see below in table 3.9, the probe of zeros (feature index 177), enjoyed
some popularity. This seems to be a problem that comes from the skewed class-
distributions, which makes that 0 can be to 90% associated with one class.

3.6.5 Best features

Table 3.9 lists for all numbers of features the selection method that provided the best
performing feature set at that size. From column 3-10 you see the normalized fre-
quencies of features from Laplacian Pyramid (LP), Gabor filters, luminance contrast
(LC), texture contrast (TC), intensity (Int.), random normal probes (RN), random
uniform probes (RU), and the zero probe. The frequency of each feature type in
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Figure 3.9: Normalized probe frequencies of all the selection schemes. The
abscissa gives the number of features. The scale is inverted so that the selection schemes
with least random features are on top. These are relevance and Hopfield network selection.
The methods mRmRQ and mrmRD also have little problems with probes. The Greedy and
redundancy–based selections have the highest probe frequencies.
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Table 3.9: Best selection method for each tested number of features. This table
includes the frequency of each type of feature in the selected set relative to the available
number of that type as an indicator for how useful a particular feature type is. Types
of features are Laplacians (LP), Gabor filters, luminance contrast (LC), texture contrast
(TC), intensity (Int), random normal distributed probes (RN), random uniformly distributed
probes (RU). Please, see text or other captions for more abbreviations.

♯features selection method LP Gabors LC TC Int RN RU Zeros

4 mRmRQ, CC+CC 4.42 0.89 0.00 0.00 0.00 0.00 0.00 44.25
8 mRmRD. CC+VDM 6.64 1.11 0.00 0.00 0.00 0.00 0.00 0.00
12 mRmRD, CC+VDM 7.38 0.89 0.00 2.11 0.00 0.00 0.00 0.00
16 Redundancy Filter VDM 0.00 1.33 4.92 0.00 0.00 0.00 0.00 0.00
20 Redundancy Filter VDM 0.00 1.33 4.92 0.00 0.00 0.00 0.00 0.00
30 mRmRQ RVDM FC 5.31 1.00 1.97 0.84 0.00 0.00 0.00 0.00
45 mRmRQ, RVDM+FC 3.54 1.14 2.62 0.56 0.00 0.00 0.00 0.00
60 Hopfield. KSC+CC 0.00 1.24 2.95 2.95 2.95 0.00 0.00 2.95
80 Hopfield, KSD+FC 0.89 1.28 2.21 2.21 2.21 0.00 0.00 2.21
100 Hopfield, KSD+FC 1.77 1.27 1.77 1.77 1.77 0.00 0.00 1.77

the selected set was divided by the frequency expected from prior probabilities. As
for Gabor filters, the a-priori probability is 100/177 ≈ 0.56. For 100 features, the
expected number of Gabor features is 0.56 × 100 = 56. The figures corresponding
to each number of features and feature type tell how much the frequencies found
for the type exceed or fall behind expectations. For example, for 100 features from
Gabor filters there were 1.27 times more than expected.

Laplacian Pyramids, intensity, texture contrast, and luminance contrast appear
prominently (relative to their proportion in the feature set). There were many Gabor
filters present. It is remarkable that only few probes are selected (the zeros each
time, i.e. feature 177).

3.7 Conclusions

In this chapter, we summarized a framework for measuring the redundancy and rel-
evance of features, which was previously presented in papers I and II, and explained
several measures of redundancy and relevance within this framework.

We explained two measures for the evaluation of feature relevance and redun-
dancy that were newly introduced in paper II, fit criterion (FC) and value difference
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metric (VDM). We also presented an application of Hopfield networks to feature se-
lection within the framework of maximum relevance and minimum redundancy.

We explained experiments which were conducted in order to compare the validity
of different relevance and redundacy measures and feature selection schemes. The
testing involved an exhaustive comparison of all combinations at different sizes of
feature sets. Additionally, it included several baselines such as useless features that
were introduced to test selection quality (probes), particularly random features,
a zero–valued feature. Baselines for selection schemes were random selection and
unitary–filter selection.

Of the compared relevance measures, the measures proposed in paper II, the
best were the value difference metric (VDM) and the fit criterion (FC). Rank cross–
correlations (Spearman correlations) favored the zero–feature (cf. fig. 3.8). Because
of its formulation, Spearman rank correlation coefficients are unsuitable for com-
parisons between distributions with highly different cardinalities, such as the case
for comparing classes (cardinality 2) and features (possibly 𝑛 ≈ 200, 000). Possibly
other more appropriate correlation measures should be used instead. As for the
redundancy measures, the Jensen–Shannon divergence (JS), the redundancy value
difference metric (RVDM), and the sign–test (ST) resulted in good predictions. The
redundancy fit criterion (RFC), which is based on the FC relevance measure, may
have been too simplistic.

On the whole, for all the tested features we observed that mRmRD was the best
combination scheme. Selection with Hopfield networks showed huge improvements
for higher–dimensioned feature sets. The redundancy unitary–filter based value
difference metric also performed well.

In general, we observed a log–shaped performance curve with feature size. There-
fore, we chose the most features (100) as best feature size and the corresponding
method as the best method, the Hopfield network with the Kolmogorov–Smirnov
Test (KSD) as redundancy measure, and FC relevance (FC).

It would be interesting to compare methods for feature reduction as opposed to
feature selection to the results obtained.

Although this study was limited to binary classification, its methods are not. It
remains to be seen how our feature selection scales up from a two-class problem to
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multi-class domains with thousands of features.
In our experimental design we emphasized few numbers of features (70% of

feature sizes below 50), which turned out favorably for mRmRD. The Hopfield
network selection seems to perform well for high–dimensional feature spaces and
could be used in the analysis of complex data. It remains to test the methods in
higher dimensional feature spaces.

The general aim of the presented studies was to extend a classification pipeline
for biomedical images by a feature selection in order to make the performance more
robust and to allow for a cleaner separation between the classes. Experiments on
other data set would have been valuable for validation, however, more extensive
testing remains for the future.

It could be that other methods for density estimation could bring an improve-
ment for some measures. Dougherty et al. (1995) tested several methods of dis-
cretization and subsequent classification using Naïve Bayes and the C4.5 decision
tree. They concluded that an optimization according to the minimum description
length principle performed better than other tested methods. More recently, Liu
et al. (2002) systematized and tested several methods of discretization and again
found the minimum description length performing best. Peng et al. (2005) chose to
discretize data using 𝜇± 𝛼𝜎, with 𝛼 ∈ [0, 2, 0.5].

As for relevance and redundancy measures, it is not at all obvious that a single
universally best measure exists for all applications (Weeds and Weir, 2003). While
this study showed the usefulness of certain metrics and schemes, results should not
be taken as universal for all feature selection problems.
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Chapter 4

A genetic clustering algorithm

In this chapter, a clustering technique based on a genetic algorithm will be explained,
which was introduced in paper III. In the proposed algorithm, the searching capa-
bility of genetic algorithms was exploited to find appropriate cluster partitions in
the feature space such that a fitness metric of the resulting clusters is optimized.
The advantage of this technique was the generality of the admitted fitness functions.
For example, we could take distance functions that do not rely on the concept of a
cluster centroid. This was meant to allow the clustering to find more complex clus-
ters, as opposed to Gaussian–shaped or hyper–spheroidal ones, which are preferred
by more conventional algorithms (see chapter 2). The algorithm was tested on sev-
eral commonly used machine learning (UCI) datasets, and compared to a standard
clustering algorithm (fuzzy c–means). Furthermore, several cluster validity criteria
were compared.

The main documentation and results can be found in paper III. In this chapter,
the methods and results are briefly summarized.

4.1 Methods

The genetic algorithm has the following characteristics:

• as fitness function, any internal cluster validity measure can be used,
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• it incorporates a measure of intra–cluster distance in the cross–over operation
(as opposed to just global fitness),

• it uses a mutation bias to find appropriate genes (points) for mutation (compa-
rable to temparature in the simulated annealing technique Kirkpatrick et al.,
1983),

• at each iteration, it self–adaptively adjusts the global mutation rate in order
to keep variance of fitness within a certain range,

• it keeps a small (𝑀 = 20) population of candidate solutions and employs
elitist recombination.

Figure 4.1 shows a pseudo–code that should explain the algorithm.
Given data 𝐷 and the desired number of clusters 𝑘, the algorithm returns a

cluster assignment for each point in a membership matrix 𝑈 ∈ {1, 𝑘}𝑛. The popula-
tion consists of 𝐾 individual candidate solutions, which are crisp cluster partitions
in terms of membership matrices 𝑈𝐾 = {𝑈𝑛

1 , . . . , 𝑈
𝑛
𝐾}, where 𝑛 is the number of

points in our dataset, 𝑈 𝑗
𝑖 ∈ [1, 𝑘] and𝐾 is the number of individuals or chromosomes

for each generation. Before the first iteration, one random parent is initialized and
𝐾 children are created from random permutations (mutate()).

For speed–up, the algorithm uses several heuristics. These include the following:

• the inclusion of a mutation bias,

• the preferred selection of individuals with desired traits (good assignment of
a cluster), and

• adjustment of the learning rate according to the history of the fitness.

For permutations, a matrix 𝑀 was taken as a mutation bias for each point. 𝑀

regulates the mutation probability for each point in the dataset. At each iteration
this matrix 𝑀 ∈ [0, 1]𝑛,𝑘 is updated according to the success and failure of cluster
assignments in the previous generation, giving each point its share proportional to
the size of the cluster. In the beginning, mutations for any point to any cluster
assignment are assumed to be equally probable. Over time, this matrix should
converge so that the arguments of the maximum for each point reflect the cluster
assignment. In this way, the adaptation of𝑀 is a simulated annealing. The mutation
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Figure 4.1: The genetic algorithm with biased mutation and local cross–over (simplified
description). Input parameters are data 𝐷 and number of clusters 𝑘. Parameters within
learningrateupdata() are 𝛼min ← 0.01, 𝛼max ← 0.5 and 𝛼inc ← 0.05. The stop criterion is
explained in the text.

Input: D, k
Output: U, M
// Parameter definitions:
maxiteration← 5000, 𝐾 ← 20, minchange← 0.0001,
𝛼← 0.1, 𝑖← 0,
// The mutation matrix of size 𝑛× 𝑘 is set to equal values and

normalized to row sum 1:
𝑀 ← 1𝑛,𝑘 × 1/𝑘
// Algorithm starts:
𝑈 ← newgeneration(𝑀,𝐾,𝛼)
while 𝑖 < maxiteration and not stop do

(𝐹, 𝑖𝑛𝑡𝑟𝑎)𝐾 ← fitness(𝐷,𝑈)
if 𝑖 > 0 then

learningrateupdate(𝐹, 𝐹old, 𝛼)
else

end
// Select the fittest individual:
𝑤1 ← argmax𝑖𝐹 𝑖

// Select the individual with the best single cluster:
(𝑤2,wc)← argmax𝑖,𝑗 intra𝑖,𝑗

// Select the individual that is best for a random cluster:
rc← ceil(rand× 𝑘)
𝑤3 ← argmax𝑖intra𝑖,rc

𝑈1← 𝑈𝑤1

𝑈2← crossover(𝑈1, 𝑈𝑤2 ,wc)
𝑈3← crossover(𝑈1, 𝑈𝑤3 , rc)
𝑀 ← mutationbiasupdate(𝐹, 𝑖𝑛𝑡𝑟𝑎,𝑀)
𝑈 ←
mutate(𝑈1,𝐾/2,𝑀, 𝛼) ∪mutate(𝑈2,𝐾/4,𝑀, 𝛼) ∪mutate(𝑈3,𝐾/4,𝑀, 𝛼)
𝑖← 𝑖+ 1

end
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bias, or temperature, of each point is indicative of the algorithms confidence in its
assignment, similar to a fuzzy cluster membership matrix.

At each iteration, the winner U1 was determined as the individual from 𝑈𝐾 that
obtained the highest fitness according to a given cluster validity function. This indi-
vidual was then permuted to yield 𝐾/2 individuals. For the rest of 𝐾/2 individuals
in the next generation, we used the following procedure: for each cluster assignment,
we evaluated the individual with the lowest intra–cluster distance (or inversely, the
highest intra–cluster similarity). We took the individual with the best value for
intra–cluster distance, cross-combined it with the overall winner, and permuted the
result to yield 𝐾/4 additional individuals. We then randomly took one of the indi-
viduals with low intra–cluster distance to cross-combine with the overall winner and
again permuted to obtain 𝐾/4 individuals. Thereby, each new generation consists
of 𝐾 individuals.

The learning rate was increased when the fitness function could not distinguish
between candidates and decreased when the previous winner was best again. Learn-
ing or mutation rate 𝛼 was regulated within a fixed range, between 𝛼min and 𝛼max.
If the previous winner came up a second time as winner, this could mean there were
too many mutations and 𝛼 was down-regulated. If, on the other hand, changes
were so minuscule that the chromosomes could not be distinguished by the fitness
function (in our implementation this could be the case when the winner is 1), 𝛼 is
up-regulated. We took the same value, 𝛼inc for linear increments and decrements.

We concluded in pre–trials (not reported in this thesis) that the biased mutation
operator gives a significant speed up for optimization. We used as stopping criterion
(stop), a threshold minchange which is compared to changes to the mutation bias
operator 𝑀 . If the changes per point of 𝑀 did not reached twice in a row this
threshold, the algorithm was terminated. Otherwise the algorithm iterated until
maxiteration.

As fitness function we were at liberty to choose many different cluster validation
functions. In section 2.1.1 of this thesis, a brief overview over such measures was
presented. In the following paragraphs the fitness functions that we tried in paper III
are presented.
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4.1.1 Euclidean distance

The fuzzy c-means and k-means algorithms use the Euclidean distance from cen-
troids as criterion function. The distance of a point 𝑥 to centroid 𝑖, 𝑐𝑖 = {𝑐𝑖,1, . . . , 𝑐𝑖,𝑚}
(𝑚 features or dimensions) is defined as follows:

𝑑Euclidean(𝑐𝑖, 𝑥) =

⎯⎸⎸⎷ 𝑚∑︁
𝑗

(𝑐𝑖,𝑗 − 𝑥𝑗)2 (4.1)

where 𝑐𝑖, the centroid, is adapted at each iteration to the center of gravity of cluster
𝑖. Points should be assigned to a cluster such that distances to its cluster centroids
are small, while distances to centroids of other clusters are large.

4.1.2 Global and local Mahalanobis distances

The Mahalanobis distance (Mahalanobis, 1936) is a distance measure capable of
dealing with hyper–elipsoidal distances, as opposed to hyper–spherical distances
(e.g. Euclidean). The point–distance from cluster centroids would be defined as:

𝑑Mahalanobis(𝑐𝑖, 𝑥) =
√︁
(𝑥− 𝑐𝑖)𝑇𝑆−1(𝑥− 𝑐) (4.2)

where 𝑆 is the covariance matrix usually corresponds to 𝐷, however there have been
also experiments with taking cluster covariances. It has been shown experimentally
that taking local and global results can make a big difference (Lebart, 1992).

We implemented the Mahalanobis distance for our algorithms in two variants,
with global and local (cluster–specific) covariances, which we will refer to as global
and local Mahalanobis.

The computation of the inverse of the covariance matrix presented a problem
with few data points, because it easily becomes singular or near singular. This was
especially true for the local version, where the covariance is computed from points
of each cluster. The inverse of the covariance matrix could take extreme values.
To prevent this from happening, a restriction was implemented, so that clusters
had to have at least the size (𝑘−1)

𝑘 * 𝑛
𝑘 , where 𝑘 is the number of clusters and 𝑛

the number of points in the dataset. Smaller clusters were heavily penalized. This
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restriction was implemented for all used cluster validity measures in order to have
them comparable.

4.1.3 SVD entropy

Alter et al. (2000) proposed an entropy measure based on the distribution of eigenval-
ues. This entropy has found application in different areas including feature filtering
(Varshavsky et al., 2006). However, we are not aware of any previous application
to clustering. The main idea of the entropy criterion is to find clusters with points
that have a low entropy and, at the same time, clusters that have a high entropy
when joined with other clusters.

Following the definition by Varshavsky et al. (2006), formally, if 𝑠𝑗 denotes the
singular values of the matrix 𝐴, 𝑠2 are the eigenvalues of the 𝑛×𝑛 matrix 𝐴𝐴𝑡. The
normalized relative values are given as:

𝑉𝑗 =
𝑠2𝑗∑︀
𝑘 𝑠

2
𝑘

(4.3)

and the dataset entropy as:

𝐻 = − 1

log 𝑛

𝑛∑︁
𝑗=1

𝑉𝑗 log 𝑉𝑗 (4.4)

This entropy takes values in the range [0, 1]. 𝐻 = 0 stand for an ultra-ordered
dataset that can be explained by a single eigenvector and 𝐻 = 1 corresponds to
a disordered matrix with a uniformly distributed spectrum. We used this as our
intra–cluster distance.

As a measure of distance between two clusters, the inter–cluster distance, we
used this SVD entropy:

𝐻𝑑 = 𝐻all − (𝐻1 +𝐻2) (4.5)

where 𝐻1 and 𝐻2 correspond to the SVD entropies of clusters 𝐶1 and 𝐶2 and 𝐻all

to the entropy of the combined cluster 𝐶1 ∪ 𝐶2.
As a fitness function we combined linearly the thus obtained intra– and inter–

cluster validities.
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4.2 Results

We applied our algorithm to several data sets from the UCI machine repository
(Frank and Asuncion, 2010). These were the Wine, Iris, Ionosphere, and Breast data
sets. We randomly initialized the candidates, set 𝐾 to 20, and set the maximum
iterations for our algorithm to 5000. The clustering of all data sets was completed
within several minutes on an off-the-shelf desktop office computer.

We used the Jaccard index (c.f. equation 2.4) to quantify the correctness of
results from the genetic clustering algorithm by comparing the correct cluster as-
signment and the obtained clusters from the algorithm. A score of 1 would mean
that all points were correctly assigned.

We compared our results to results from the fuzzy c-means algorithm, which next
to k-means is probably the most popular algorithms for clustering. Fuzzy c-means
(Bezdek et al., 1984) is an improved version of k–means, which is more robust to
outliers and overlap (e.g. Mingoti and Lima, 2006).

In paper III it is shown how starting from random initialization the genetic al-
gorithm optimized according to different fitness functions. Table 4.1 compares clus-
tering performance by fuzzy c–means clustering (FCM) and the genetic algorithm
(GA) based on four different fitness functions, Euclidean distance (Eucl), global Ma-
halanobis (MaG), local Mahalanobis (MaL), and SVD Entropy (Ent). The values
displayed correspond to averages (medians) over 10 runs. The genetic algorithm
was run for 5000 iterations. The values stand for the coincidence of found clusters
(Jaccard index) with the real cluster assignments, so that high values indicate good
solutions (1 for the perfect solution).

For the Iris dataset, we obtained a high coincidence with the true cluster assign-
ments with the entropy fitness criterion. The fuzzy c-means algorithms in its default
implementation in MATLAB, with fuzzifier parameter 𝑚 = 2, achieved a Jaccard
score of 0.6959.

4.3 Discussion

In paper III, a genetic algorithm for clustering was proposed and tested. Optimiza-
tion criteria consisted of information theoretic measures on complete clusters (SVD
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Table 4.1: Comparison of clustering Results: Clustering results of the fuzzy c–means
algorithm and the genetic algorithm based on four fitness functions. Units express the
coincidences between correct partitions and found partitions (Jaccard Index). FCM stands
for fuzzy c–means, GA for the genetic algorithm. As for the fitness functions employed
for optimization in the genetic algorithm, Eucl stands as Euclidean distance, MaG for the
Mahalanobis distance with global covariance, MaL for the Mahalanobis distance with local
(i.e. cluster) covariance, and Ent for SVD entropy. The best results for each dataset are
typeset in bold.

Data FCM GA-Eucl GA-MaG GA-MaL GA-Ent

Breast 0.5219 0.4035 0.6564 0.6750 0.4008
Wine 0.4120 0.4160 0.4261 0.5741 0.3565
Ionosphere 0.4314 0.4176 0.4544 0.5606 0.4040
Iris 0.6959 0.6997 0.6997 0.5779 0.4677

entropy), the Mahalanobis distance with global and local covariance, respectively,
and the Euclidean distance. Results for real-life datasets were presented and com-
pared to partitions obtained by fuzzy c–means. The dataset comprised different
data distributions.

We think that the results show that some of the problems are very difficult,
where popular off–the–shelf algorithms such as the fuzzy c-means do not achieve
good results. We conjecture that the unsatisfactory results for fuzzy c–means reflect
in part the fact that Euclidean distances from the centroids are not very sensitive and
might even be inappropriate for some datasets. We think that our results underline
the importance of finding a fitness function that is both sensitive to small changes
in partitions and works for the particular dataset (c.f. Jain and Dubes, 1988).

It was shown that — given a fitness function which is appropriate for the data
— the algorithm can converge to good solutions. We conclude that the results from
clustering using our genetic algorithm were competitive with results from fuzzy c–
means. Our good results reflect in part the use of proper fitness functions, the
application of which was made possible by our genetic algorithm. We tested the
algorithm with Euclidean distances, Mahalanobis distances, but we could have used
other validity measures, as well. Results with the SVD Entropy measure were gen-
erally disappointing, performing worse than the fuzzy c–means algorithm in our
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tests. We think that both Mahalanobis distances (local and global versions) gave
very promising results. The local version returned at least satisfactory results for
all data sets, achieving the top result for Breast, while the global version performed
well for Iris and Breast.

In practice, the algorithm often converged fast. We think that the self–adaptation
of the mutation rate helped greatly to find solutions. We conjecture that this is be-
cause it helps to maintain a certain level of correlation of fitness between candidates
(c.f. Altenberg, 1995). We think that another reason for this good convergence is
the cross–over operation, where we applied a goodness value for each cluster. We
are not aware of a previous application of intra–cluster validity to the crossover
operation in genetic algorithms.

Preliminary experiments have been performed where this genetic algorithm was
extended to run without fixing the parameter 𝑘 in advance. The inter–cluster dis-
tance was used to merge or split clusters. Further, by extensions of the mutation
routine new clusters could appear or old clusters could disappear.

We want to emphasize that results from our algorithms were achieved with a
global set of parameters. We assume that parameter optimization could yield better
results. The algorithm did not converge on a good solution for some combinations
of data sets and fitness functions. This goes to show that there is still work to do
and therefore we see these results as preliminary. There is also still testing to be
done on more datasets, however, we think that results presented in paper III are
promising.

We think it can be an interesting possibility to initialize the cluster partitions by
a conventional clustering algorithm and then run a genetic algorithm for refinement.
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Part II

Representations of odors in the
early olfactory pathway





Chapter 5

The sense of smell

Zitto! mi pare sentir odor di femmina! — Don Giovanni in Mozart’s
eponymous play.

Olfaction, more commonly called the sense of smell, gives us information about
the presence of small airborne substances in our proximal and distant surroundings.
Together with gustation, the sense of taste, it is one of the two chemical senses in
humans and most vertebrates. This chapter deals with the importance of the sense
of smell and with its biology in vertebrates – especially rodents, particularly rats.
The main interest therein concentrates on the olfactory bulb and its glomerular
layer. We will briefly discuss the relationship of molecular structure to smell and
how sensory impressions of smells are stored and processed in the brain. Chapter 6
will then deal with representations in the olfactory bulb.

5.1 The importance of smell

Olfaction is an evolutionary very primitive sense (c.f. Dryer, 2000; Eisthen, 1997).
Historically, the sense of smell has been considered as a second class sense, especially
in humans, as compared to other senses such as vision or hearing (cf. Shepherd, 2004;
Le Guérer, 2002; Howes, 1991). In fact, when analyzing data across many species,
Barton et al. (1995) found that volumes of visual and olfactory areas are negatively
correlated and they suggested that this negative correlation indicates a trade–off
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between vision and olfaction. The argument is, however, more complicated than
vision supplanting olfaction (c.f. Smith et al., 2007), particularly since comparisons
are often made relative in terms of volumes relative to the total brain, which is
problematic, since it is unclear if different senses exhibit similar relationships to
body size (Smith and Bhatnagar, 2004).

The comparatively low number of functional receptor genes and the high pro-
portion of pseudogenes in humans compared to other vertebrates (Aloni et al., 2006)
have been taken to support the case that humans perform worse in different tasks
related to smelling. It is a general assumption that size of brain structure is related
to function (e.g. Kaas, 2000) and the analogous assumption with the number of
functional receptors seems parsimonious. Regarding sizes of regions this has been
experimentally validated in studies on humans regarding the size of the olfactory
bulb and the olfactory sulcus (Buschhüter et al., 2008; Hummel et al., 2003).

Surprisingly, Maresh et al. (2008) found more glomeruli in humans than had
been previously found in other animals, which could then predict actually a su-
perior functionality of the human OB. Laska et al. (2005) investigated in different
species olfactory discrimination with enantiomers, i.e. identical molecules with vary-
ing structure, and they found little correlation between the number of active receptor
genes and performance, however, it is not clear if this result generalizes to a broader
set of odorants (c.f. 5.3.1; Keller and Vosshall, 2008).

Obviously, environmental constraints, such as diet and ecological niche play an
important role in determining how much a species has to rely on smell (Barton
et al., 1995). Asahina et al. (2008) argued that olfaction gives fruit flies a survival
advantage and the argument could be extended for other animals, as we will discuss.
In fact, more and more studies reveal the importance of olfaction in many different
animals, including humans.

The sense of smell is important for many aspects of life. These can be grouped
into four, where the first three certainly apply to humans: (c.f. Gottfried, 2006;
Wilson and Stevenson, 2006, chapter 5)

• food — detection of food sources and control of food quality,

• social communication — recognition of kin, identifying mates,

• threat — avoidance of dangerous conditions (including predators), and
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• navigation — homing and territorial marking.

Therefore, the sense of smell is crucial for survival in many animals, including many
for behaviors such as maternal bonding, mating, kinship recognition, territorial de-
fense, and aggressive behavior (c.f. Sanchez-Andrade and Kendrick, 2009; Tirindelli
et al., 2009; Savic et al., 2001; Martin et al., 2011; Schleich and Zenuto, 2010; Dehn-
hard, 2011). While the mechanisms of information processing that underlie these
behaviors are still poorly understood, they seem remarkably similar across phyla and
species (Kaupp, 2010; Zhang and Firestein, 2009; Ache and Young, 2005; Strausfeld
and Hildebrand, 1999; Hildebrand and Shepherd, 1997). Some of these similari-
ties could come from common evolutionary ancestry, others might reflect functional
convergence that resulted from pressure by similar constraints and tasks (Eisthen,
2002). This indicates that components of the olfactory system, by which odorant
molecules are sensed by peripheral receptors and then translated into neural acti-
vation and into odor percepts, have remained consistent over millions of years and
throughout ecological niches.

Smell is also important in humans, as we will discuss now. While human subjects
report not being significantly affected in their lives after olfactory loss; we are often
not aware of the effects that smell has on our lives. Patients with a loss of smell, after
a head injury or an infection, do not only lose a great part of their flavor perception,
but also tend to suffer more from depression and are affected in their psychological
well–being and sex lives (Hummel and Nordin, 2005). This could indicate that
olfaction often works on an unconscious level. Consistent with this interpretation is
that we recognize smells but often have problems labeling them linguistically, which
is sometimes called the tip–of–the–nose phenomenon (Cleary et al., 2010).

Olfactory memories are associated with emotional arousal (c.f. Willander and
Larsson, 2007) and as we will discuss in below, in section 5.4.2, the salient affec-
tive dimension is characteristic for smell. This could have to do with the fact that
olfactory stimuli are transmitted to the amygdala (Zald and Pardo, 1997), among
other structures, which is associated with emotional processing (Ledoux, 2008) and
evaluation of biological significance (Pessoa and Adolphs, 2010). It is anecdotal wis-
dom, voiced in Marcel Proust’s À la recherche du temps perdu that smell can evoke
vivid memories from early life. Indeed, Maria Larsson and colleagues found that,
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contrary to visual and verbal cues, olfactory cues tend to bring back memories from
early in life (Larsson and Willander, 2009; Willander and Larsson, 2006). While it
is possible that olfactory memory follows a slower decay function, another explana-
tion for the findings of age distribution of memories could be the complex nature of
olfactory experience which implies that we rarely have the same sensory impressions
repeated and therefore olfactory memories and therefore they could be less prone to
be erased or overwritten (c.f. Lewandowsky et al., 2009).

Generally, it is assumed that there exist two classes of receptors, 1. olfactory
receptors (ORs) and 2. pheromone receptors. These two types are situated in their
respective anatomically separated areas in the nose, i.e. main olfactory epithelium
and vomeronasal organ (also called Jacobsen’s organ). This crisp distinction, how-
ever, is not without challenge (Sam et al., 2001; Spehr, 2010). Stowers and Logan
(2010) proposed a distinction between three types of olfactory stimuli, each of which
with their specific sites of detection in the nose and respective sites of projection in
the brain:

• pheromones — which trigger emotional and behavioral responses in conspecifics,

• instinctive cues — which elicit conserved, stereotyped behavior on first and
subsequent exposure (such as spoiled food),

• odorants — chemicals that have a perceptual quality and which can be asso-
ciated with behavior given a learning process.

Pheromones (from Greek phero “to bear” and hormone “urge”) are substances
which are secreted by an animal and have an effect on the behavior or the phys-
iology of conspecifics (Karlson and Luscher, 1959). For an in–depth treatment of
pheromones, refer to Wyatt (2003); Dulac and Torello (2003) and for a recent review
to Wyatt (2010).

In many species, pheromonal compounds have been identified (e.g. Schaal et al.,
2003). Behavioral impacts of odorants in humans are known, some of which could
be pheromonal, according to the definition above. In contrast, although there are
candidates, such as, for example, androstenone (Dorries et al., 1989; Hays, 2003), the
identification of human pheromonal compounds is a matter of debate and, according
to Wyatt (2009), none has been conclusively identified yet.
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To give examples for behavioral effects of odorants in humans, it is known that
odor signals mediate synchronization of menstrual cycles among women (Stern and
McClintock, 1998) and that newborn babies can find their mother’s nipples by smell
(Varendi et al., 1994), which could be regarded as olfactory imprinting in humans.
Odors also play a role in mate selection (Moshkin et al., 2011), social preferences of
faces (Li et al., 2007; Todrank et al., 1995), and can help us to recognize each other
by kinship (Porter et al., 1986; Hold and Schleidt, 1977). Odors are important for
emotions, for example, certain kinds of odors attenuate stress responses (Nakashima
et al., 2004). Also aggression, fear, and stress responses can be triggered by smell
(Mujica-Parodi et al., 2009; Albrecht et al., 2011; Haegler et al., 2010). Tears reduce
sexual arousal in men by a chemical signal (Gelstein et al., 2011), and putative
sex hormones can trigger hypothalamic responses associated with sexual arousal in
humans of the opposite gender (Savic and Berglund, 2010; Kovács et al., 2004; Savic
et al., 2001).

The main pheromone processing system, the vomeronasal system, is likely not
functional in humans (Trotier, 2011), a fact which leaves some mystery about the
signaling process involved in putative pheromone effects, some of which were men-
tioned above. It is known, however, that at least some pheromones in vertebrates
could be detected via the main olfactory epithelium (Wang et al., 2007; Liberles and
Buck, 2006; Rodriguez et al., 2000).

Olfaction is also important for food quality evaluation (e.g. Warwick et al., 1993;
Lawless, 1991; Massler, 1980). Odors influence our perception of taste over the
retronasal pathway (Valentin et al., 2006; Mozell et al., 1969; Finck, 1913)1 and if
we taste food without smelling it (when nasal passages are blocked), we have signif-
icantly more difficulty in identifying flavors (Mozell et al., 1969). This means that
sensory qualities of foods are partly determined by smell. Conveniently, the English
language provides the word flavor , as combined perception from taste, olfactory,
and additionally the trigeminal system (Berridge and Fentress, 1985). There is not
only direct olfactory evaluation, but Galef and Giraldeau (2001) additionally found
in rats that smelling the breath of a poisoned animal can induce avoidance behavior

1And taste influences odor perception (Green et al., 2012).
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of the ingested foods.
Apart from social communication as well as locating and identifying food, the

sense of smell is useful in warning us of danger, for example to detect fires (Lloyd
and Roen, 2002; Chalke et al., 1958) or toxic substances (Ruth, 1986).

In clinical research, olfactory capabilities (or loss thereof) have been associ-
ated with neurologic and psychiatric diseases. High detection thresholds for smells,
together with impaired identification, can be an early indicator for the onset of
Alzheimer’s disease and cognitive decline (Doty, 2009; Olofsson et al., 2009; Djord-
jevic et al., 2008).

In order to perform functions underlying aforementioned behaviors, animals have
to create meaningful perceptual representations of odor qualities and this will be
dealt with in chapter 6.

5.2 Commercial applications

As discussed in the review by Gilbert and Firestein (2002), there are many commer-
cial applications in olfaction.

One important application are gas sensors which detect the presence of gases
within an area, often within applications for safety. They are mostly based on
metal oxide (MOX) or other materials, such as conductive polymers. The term
machine olfaction describes automated systems that measure the concentrations
of airborne molecules using sensor technology and pattern recognition algorithms
(c.f. Gutierrez-Osuna, 2002a). With reference to biology, these systems are some-
times called artificial noses or electronic noses (c.f. Röck et al., 2008; Hierlemann
and Gutierrez-Osuna, 2008; Persaud and Dodd, 1982). On the sensor and software
level, they are different to biological systems in several aspects (Berna et al., 2009;
Pearce, 1997a,b), although work is ongoing to close this gap by analyzing biological
approaches to engineering problems in order to obtain novel solutions. Artificial
sensing systems are interesting for many applications (Nagle et al., 1998), such as
the following:

• healthcare — such as detection of skin or lung cancers,
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• quality control — e.g. in agriculture,

• safety — such as fire–sensors, and

• security — such as detection of explosives.

A curious example for commercial application in olfaction, which has not reached
market acceptance, are smellies, films with accompanying olfactory stimuli. Smellies
are possibly still best-known under the Smell-O-Vision brand that came out with
the slogan “first (1893) they moved, then (1927) they talked, now (1959) they smell.”
These efforts failed, however, to become successful for various reasons (Gilbert, 2008,
ch. 8) that have to do with technical difficulties and marketing.

In retail settings, smell dispensers have become popular, especially, since they
have been shown to stimulate good mood (Baron, 1997). Additionally, congruence
with settings can make people explore more, come back more frequently, and stim-
ulate sales (Spangenberg and Grohmann, 2005; Spangenberg et al., 2006).

5.3 Biology

In vertebrates, the early part of the main olfactory system is composed of an olfac-
tory organ, which is the olfactory epithelium, the olfactory nerve, and the olfactory
bulb. It can be characterized by several essential conceptual features which are sum-
marized in figures 5.1 and 5.2. They can be stated as the following (after Cleland,
2008):

• Olfactory receptor neurons (ORNs) in the olfactory epithelium (OE) receive
information about odorants from their receptors.

• Their axons branch and terminate within glomeruli in the olfactory bulb (OB),
where

• they synapse with mitral and tufted cells (commonly called M/T cells).

• These M/T cells transmit information to higher olfactory centers.

Table 5.1 should help to understand convergence and divergence principles in
the early olfactory system. Please, note that specific estimates must be treated
with caution because of large variability across different studies. This variability is
highest for rat GLs and presumably comes from different sources including methods
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Figure 5.1: Schematic of the early olfactory system including the olfactory epithe-
lium and bulb. Odorant molecules are generally light and lipophilic (Ohloff, 1986). They
bind to ORs, which activate ORNs, which in turn transduce the input signal into action
potentials. Each olfactory receptor neuron (ORN) generally expresses one type of receptor
(OR). This is referred to as the one neuron–one receptor rule (Strotmann et al., 2000; Mom-
baerts, 2004; Serizawa et al., 2004). Each ORN responds to a set of odorants. Glomeruli
(GLs) receive in general only input from ORNs of one type of OR (Mombaerts, 2004; Bozza
et al., 2002). This means that each GL is a convergence region for a certain type of re-
ceptor with the possible function of signal–to–noise improvement (e.g. Chen and Shepherd,
2005; Pearce et al., 2001; Meisami, 1989). GLs are innervated by the primary dendrites
of mitral and tufted cells (M/T cells). These neurons forward their output to higher-order
brain regions. Granule cells (not shown) mediate lateral and feedback inhibition on M/T
cells. They get excited by the olfactory cortex and M/T cells (Haberly and Price, 1977).
The colors and symbols in the plot indicate molecular features of odorants and OR identity
of sensory projections to GLs. This figure is taken from Auffarth et al. (2011c, ; paper VI).
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Table 5.1: Numbers of functional receptors, glomeruli, and secondary neurons.
The table gives estimates for olfactory receptors, glomeruli (GL), and mitral cells per bulb.
Mitral cell counts may include some tufted cells. In the rat, the data are adapted from
Zhang et al. (2007b); Royet et al. (1998, 1988). In rats, there is an estimated number of 10
million olfactory receptor neurons (ORNs) per nasal half (Meisami, 1989) and 1.04 million
neurons per hemisphere in the piriform cortex (Chen and Buckmaster, 2005). Kim et al.
(2011), in their study on the rat, estimated the number of cells in the granule layer (granule
cells, deep short axon cells, and possibly others) at roughly between 5,000,000 and 6,000,000.
The estimates for the rabbit and the mouse are based on Royet et al. (1998); Meisami and
Safari (1981). In the mouse, per glomerulus, there is an estimated number of 20–25 mitral
cells, 50 tufted cells, and 25 periglomerular cells (Christie et al., 2005; Purves et al., 2004;
Royet et al., 1998). Human data are based on Aloni et al. (2006); Maresh et al. (2008);
Bhatnagar et al. (1987). The rounded estimate of M/T cells is for humans at age 25. For
comparison, two insect species were added. Honeybee data are based on Robertson and
Wanner (2006); Sachse et al. (1999); Gascuel and Masson (1991). Esslen and Kaissling
(1976) estimated the number of ORNs in honeybees as 60,000 and of the local interneurons
(LIN) as 4,000. Data for the drosophila melanogaster (fruitfly) come from Hallem and
Carlson (2004); Vosshall et al. (2000); Clyne et al. (1999); Stocker (1994). Hallem and
Carlson (2004) give the number of ORNs in drosophila as 1300.

ORs GLs mitral cells

rats 1,300 2350-4,200 56,200
rabbit ? 1,800-6,300 59,600
mouse 1,100 1,810 38,400
human 350-400 5,500 50,000

ORs GLs PNs

honeybee 163 160 800
drosophila 62 50 150

of measurement and differences in animal care and age. For example, it is known that
laboratory animals typically have smaller brains than free animals, which could be
partly due to sensory deprivation in laboratory settings (Kempermann et al., 2010)
and this is what is observed with the number of GLs in deprived animals (Royet
et al., 1998). Bhatnagar et al. (1987) found that volume and cell count of the OB in
humans decreases as a function of age. The ratio of glomeruli to mitral cells is likely
to vary widely across species (Royet et al., 1998). Royet et al. (1998) suggested
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based on their own studies and comparisons to other studies that the number of
GLs is often underestimated.

Please refer to fig. 5.1 for more details about the olfactory bulb architecture.
There are other cells than M/T cells in early olfaction, including some with sup-
porting functions. Of those involved in bulbar processing, main distinctions are
periglomerular cells, short–axon cells, and granule cells (Shepherd et al., 2004).

5.3.1 The peripheral system

In terrestrial animals, odorants are light, volatile molecules that pass through the
nasal passages (called orthonasal stimulation) and via the mouth (retronasal stim-
ulation)2. On the olfactory epithelium, towards the dorsal roof of the nasal cavity,
these molecules dissolve in the mucosa, an aqueous medium, and bind with receptors
(Buck and Axel, 1991). These are located on hair–like projections, called cilia, on
top of receptor cell protrusions (dendritic knobs; cf. fig. 5.3).

In contrast to pheromone receptors, which only respond to particular pheromones,
odorant receptors have been characterized as broadly tuned (c.f. Malnic et al., 1999;
Sánchez-Montañés and Pearce, 2002; Wilson and Mainen, 2006; Nara et al., 2011).
However, Nara et al. (2011) recently found in a large–scale analysis of olfactory
receptor neurons that most receptors respond only to few odorants.

Generally, it is believed that the recognition of odorants by receptors is an an-
alytical process (however c.f. Turin, 1996). Odotope theory (Mori, 1995; Mori and
Shepherd, 1994; Shepherd, 1987) is the prevalent view on olfactory transduction
and proposes that receptors are molecular feature detectors, although it is not clear
what these features are. These features are called odotopes in analogy with epitopes,
the antigenic determinant of the immune system. Each odorant molecule contains
many different properties and according to this theory, the information about the
odorant is then encoded by the combined responses of many types of receptors, each
of which recognizes a specific subset.

It is believed that the chemosensory repertoire is of perceptual consequence (c.f.
Keller and Vosshall, 2008). Keller et al. (2007) found that a genetic variation in

2In aquatic animals, odorants are water soluble.
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Figure 5.2: The rat olfactory system: Anatomical illustration of olfactory bulb and
downstream areas. A — The peripheral input is through axons coming from the olfactory
epithelium. This information is then transmitted over the bulb to the primary olfactory cor-
tex (also called piriform cortex). AOB — accessory olfactory bulb. nOT — bed nucleus of
the olfactory tract. This figure adapted from Watson et al. (2010, p. 101). B — Anatomical
drawing of the inferior aspect of the right half of a rabbit’s brain including olfactory bulb and
downstream areas. Adapted from Cunningham (1918, p. 625). C — Abstract schematic of
areas and information flow in the main olfactory system including the bulb as well as pri-
mary olfactory cortex and other downstream areas. dm nucleus — dorsomedial nucleus.
Olfactory projections go from the olfactory bulb directly to primary and secondary olfactory
areas via afferent fibers, the lateral olfactory tract (LOT). The olfactory system is special
in the sense that olfactory signals pass to the primary sensory cortex without a thalamic
relay. Projections connect to so–called limbic structures such as amygdala and hippocampus.
The OB is connected to the amygdala over slow and fast pathways, directly and indirectly
over the piriform cortex. The anterior commissure is a large bundle of crossing fibers which
connects contralateral OBs and parts of the cerebrum. This figure was constructed based on
Shipley et al. (2008), de Castro (2009), and Wilson and Stevenson (2006). Compare also
Haberly and Bower (1989) and (more generally about large–scale integration of the piriform
cortex) Averbeck and Seo (2008).
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a single OR in humans is related to differences in perception of androstenone and
andostadieonone. Khan et al. (2011) reported that the frequency distribution of
receptor gene expression is not uniform. There seems also to be a variability of gene
expression during development (Nguyen et al., 2010).

In vertebrates, each olfactory receptor neuron (c.f. fig. 5.3) expresses generally
one (Strotmann et al., 2000; Mombaerts, 2004) of a possible functional 1, 300 ORs
(roughly 350 identified functional types in humans — Aloni et al., 2006; Glusman
et al., 2001; Zhang et al., 2007a). ORNs are apparently not scattered at random
over the olfactory epithelium (Spehr, 2010; Mori, 1999). Gardner et al. (2007);
Mozell et al. (1987); Hornung and Mozell (1977); Mozell (1964) suggested that the
distribution of ORNs along the turbinates could be optimized in a way analogous to
a chromatograph, however, Abaffy and Defazio (2011) found that the spatial order
of ORs was not dependent on volatility and solubility of odorants.

ORNs transmit signals about the odor to the olfactory bulb, a multi–layered
telencephalic brain structure. (Please, refer to the microscopy image in fig. 5.3.)

5.3.2 The olfactory bulb

The olfactory bulb (OB) is spheroidal structure (c.f. fig. 5.4) in the brain, which is
crucial for the processing of olfactory signals (c.f. Buschhüter et al., 2008; Cleland
et al., 2007; Johnson and Leon, 2000d). The processing units on its surface are
called glomeruli (GLs). These GLs are mostly devoid of cell bodies, built of neu-
ropil and measure approximately 100− 200 𝜇m in diameter (Pinching and Powell,
1971). They are the place where sensory axons synapse with bulbar interneurons
and dendrites of OB output neurons (M/T cells; Kosaka and Kosaka, 2011).

Axons from ORNs that express the same OR are bundled in approximately two
glomeruli at stereotyped positions (typically one on each of both mirror–symmetric
sides) of about 1800 in each olfactory bulb (Fantana, 2006; Zhang et al., 2007b;
Ressler et al., 1994; Vassar et al., 1994). Each glomerulus is target for convergence
of axons from many ORNs expressing (mostly) the same type of olfactory receptor
(OR; Chen and Shepherd, 2005; Bozza et al., 2002; Mori, 1999; Kauer and Cinelli,
1993; Shepherd, 1992). This convergence, on the order of several thousand ORNs per
glomerulus (c.f. table 5.1), could allow for reduced detection thresholds and higher
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Figure 5.3: Anatomical drawings of olfactory receptor neuron and microscope
image of the olfactory bulb. (a) Illustration of olfactory receptor neurons (ORNs).
Olfactory receptor neurons (ORNs) are bipolar, unmyelinated, and very thin (0.1− 0.3 𝜇m
of diameter; Shepherd et al., 2004). Image source: Cunningham (page 805 1918). (b)
A coronal section through the main olfactory bulb (OB) of an adult male mouse. Image
taken with a confocal microscope visualizing all cell nuclei. The color code indicates the
following cells: blue — glomerular layer containing periglomerular cells, red — external
plexiform layer (EPL) and mitral cell layer containing cell bodies of M/T cells and some
granule cells, green — internal plexiform and granule cell layer containing cell bodies of
immature migrating neuroblasts, and mature granule cells. Image source: Valley (2006).
(c) A sagittal section through the olfactory bulb of an 16 day old mouse. Tissue was stained
using immunoperoxidase with antibodies against a GABA𝐴–receptor (brown) and counter
stained using Nissl (blue). Indicated are glomeruli (G), the mitral cell layer (MC), and the
accessory olfactory bulb (AOB) which receives input from the vomeronasal organ. Image
source: Elsaesser and Paysan (2007).

(a) Olfactory receptor neuron (b) Olfactory bulb (coronal section)

(c) Olfactory bulb (sagittal section)
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Figure 5.4: Rendered 3-D model of the olfactory bulb. The olfactory bulb is
a spheroidal structure. This image was generated from a Open–GL rendering using the
Blender software with a vertex model provided by the Leon lab (Leon and Johnson, 2006).

sensitivity which also implies broader dose–response curves (Chen and Shepherd,
2005; Meisami, 1989; Pearce et al., 2001).

To summarize the basic principles of this early olfactory processing:

• Every ORN expresses a single type of olfactory receptor (one neuron–one re-
ceptor rule)3;

• Each OR responds to many molecules and each molecule elicits responses from
many different receptors;

• ORN axons are targeting GLs;

• Each glomerulus receives input from neurons of (generally) only one type of
receptor (one glomerulus–one receptor type rule).

In this fashion, each odorant elicits a specific pattern of glomerular activation.

3An exception from this rule is the Caenorhabditis elegans
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5.3.3 Axon guidance

The establishment of a functional architecture in networks of neurons during de-
velopment and its maintenance in mature animals relies on mechanisms of process
outgrowth and synapse formation. This formation of connectivity is defined by sev-
eral factors, including molecular cues and neural activity (Butz et al., 2009; Katz
and Crowley, 2002; Sperry, 1963), but also has been linked to the exploration of the
environment (Laishram et al., 2009) and mechanical factors (Cardamone et al., 2011;
Weiss and Hiscoe, 1948). Sensory axon coalescence has been found to rely on several
mechanisms that contribute differently on a local and global scale, some of which
are likely related to activity (Mori and Sakano, 2011; Sakano, 2010; Mombaerts,
2006; Ming et al., 2002). It is known that ORN type–convergence is at least partly
mediated by experience (Imai and Sakano, 2007; Kerr and Belluscio, 2006; Yu et al.,
2004). Particularly, in the absence of activity cues, GLs can contain projections
from ORNs of different OR types (Zou et al., 2004).

In axonal growth, the direction of the growth cone is regulated by various chem-
ical cues, diffusible chemo–attractants and repellants (Sanes and Jessell, 2000). The
fasciculation and targeting of axons are promoted by the expression of receptors for
guidance and adhesion molecules, which can be regulated by neuronal activity (Cho
et al., 2009). Serizawa et al. (2006) found evidence in the mouse that a correla-
tion of neural activity mediated axonal attraction and repulsion by up– and down–
regulation of a set of olfactory axon guidance cues. This indicates that axon sorting
could be based on correlated neural activity. The principles of chemo–attraction
and –repulsion in axon fate are illustrated in fig. 5.5.

It is known that in vision, touch, sound, and taste, a topographic order of rep-
resentations is maintained in different regions of the brain (c.f. section 6.4.1). This
topography could come about by several principles, including by the aforementioned
molecular gradient information (McLaughlin and O’Leary, 2005). In a pioneering
experiments in frogs, after dissection of the retino–tectal connections and surgical
rotation of the retina, the connections regrow and result in a rotated topography,
with behavioral consequences such as tongue flicking responses in opposite directions
(Sperry, 1944, 1945).

Topography leads to a grouping of units with similar response profiles. Therefore,
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self–organized models have been proposed as a model of map formation (e.g. Antolík
and Bednar, 2011; Tsigankov and Koulakov, 2010; Swindale, 1996; Kohonen, 1982;
Willshaw and Malsburg, 1976; Malsburg, 1973), which have been demonstrated to
result in a topographic arrangement. Biologically, this correlation principle could
be based on global or local distribution of gradients of cues in axonal guidance
(Serizawa et al., 2006; Ming and Song, 2005). Dubacq et al. (2009) demonstrated
recently a local synthesis of the receptor mRNAs in the sensory axons, a mechanism
which could result in a sorting based on OR identity.

Figure 5.5: Chemoattraction and chemorepulsion in axon guidance. Principles of
axon guidance through chemoattraction and chemorepulsion: Direction of the axon’s growth
cone is regulated by various chemical cues in a series of discrete steps Sanes and Jessell
(2000). The axon in the middle (light orange) receives directional information from dif-
fusible repellants (blue) and from attractive guidance molecules drawing the axon in direc-
tion of the left axon (orange). The fasciculation and targeting of ORN axons is promoted by
the expression of adhesion molecules and other guidance molecules, which can be regulated
by neuronal activity. ORN axons can express different receptors for guidance molecules.
The combination of the receptors expressed may be related to the strength of adhesive and
repulsive forces between axons.(Cho et al., 2009). This figure was created by Bernhard
Kaplan.
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5.3.4 Bulbar processing

The olfactory bulb circuit contains axodendritic, dendrodendritic, somatodendritic,
and dendrosomatic synapses (Shepherd et al., 2004). Apart from periglomerular,
short–axon, and granule cells, many other cell types have been identified and are
still being identified (c.f. Kosaka and Kosaka, 2011).
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Willhite et al. (2006) documented evidence from a tracer study with virus injec-
tion for a columnar organization by OR identity. These columns stretched across
glomerular, mitral cell, and granule cell layers. Mori et al. (2009) called this func-
tional compartmentalization receptor channels.

5.3.4.1 Interglomerular circuitry

Yaksi and Wilson (2010) provide evidence in the insect that local circuitry between
GLs could serve for gain control (also called volume control) by contrast enhance-
ment. The length of the periglomerular axons, which strech only across few GLs
(Shepherd et al., 2004) could speak in favor of this functionality. Olsen and Wilson
(2008) demonstrated in drosophila that lateral inhibitory activity between glomeruli
scales with input activity and therefore serves for concentration normalization (for
gain control in the locust also compare Papadopoulou et al. 2011; Luo et al. 2010).
It could also be that concentration invariance is learned as part of the wiring plas-
ticity between glomeruli (Cleland et al., 2012). Gill and Pearce (2003) compared
learning rules for wiring models between GLs.

5.3.4.2 Granule cells

Granule cells receive input from M/T cells and the olfactory cortex. They laterally
inhibit mitral cell activities via dendrodendritic synapses (c.f. review in Shepherd
et al., 2007;Price and Powell, 1970). Willhite et al. (2006) found in a viral tracer
study that granule cells receive feed–forward input from mainly one glomerulus. In
another tracer study, they found that inhibitory connectivity onto M/T cells was
mediated by a broad, spatially segregated subset of granule cells (Kim et al., 2011).
They speculated that this connectivity pattern could help to shape the OB output
to simplify the readout of behaviorally relevant information.

M/T cell lateral inhibition is thought to serve a computational function that has
been called olfactory contrast enhancement (Abraham et al., 2010; Yokoi, 1995).
Migliore and Shepherd (2008) and Wiechert et al. (2010) developed computational
models of this circuit functionality.

Granule cells receive axosomatic and axodendritic input from the olfactory cor-
tex. This input introduces modulation of odor responses by high–level processes
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such as attention, expectancy, and memory (Freeman and Schneider, 1982; Kay and
Laurent, 1999). Additionally granule cells receive input from the anterior commis-
sure of the contralateral OB.

Pager et al. (1972) compared mitral cell responses to food odors by bipolar elec-
trodes and found a response increase in hungry versus satiated rats, which they
discussed in terms of the bulbar–hypothalamic loop. Lledo and Lagier (2006) sug-
gested that plastic mechanisms in the OB are highly modulated and can serve to
optimize performance for a given environment. Similarly, Fuentes et al. (2008) mea-
sured single M/T cell responses and local field potentials in behaving awake rats.
They found a reduction of firing rates and a decrease in power at frequencies above
50 Hz during a two–alternative choice discrimination task versus passive odorant
exposure which they attributed to task–dependent modulation by top–down pro-
jections. On the other hand, Li et al. (2011) found that there was no significant
difference in mitral cell activities when the odorant was presented at different anes-
thesia levels. They argued for existence of mechanisms in the OB that ensure that
odor information reaches the sensory cortex relatively unmodulated by centrifugal
connections.

5.3.4.3 Output neurons

Mitral and tufted cells are often classified together as M/T cells (such as in this
thesis; c.f. Mori, 1999), although tufted cells are smaller and comparably closer
to the GLs, and they appear to have sometimes different response properties and
projection patterns (c.f. Nagayama et al., 2010, 2004). Nagayama et al. (2010)
presented data suggesting that mitral cells projected rather to anterior and posterior
piriform cortex, while tufted cells projected to the olfactory tubercle.

While Willhite et al. (2006) found that M/T cells receive feed–forward input from
mainly one glomerulus, Fantana et al. (2008) found that mitral cells receive effective
inputs from few, chemically dissimilar, and spatially separated GLs. This apparent
contradiction could be reconciled by findings by Najac et al. (2011), who demon-
strated a dendrodendritic excitation between M/T cells over their secondary den-
drites (which occurs on a slower timescale than postsynaptic excitation by ORNs).
Overall, M/T cells seem to have a more narrow response profile than glomeruli (Tan
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et al., 2010). Such a circuitry could point towards a role of M/T cells as feature
detectors.

5.3.5 Symmetry and crossings

In the visual system, axons from ganglion cells in the medial retina cross in the
optic chiasm to the contralateral side and similar symmetry has been observed in
the olfactory system, although this seems to be a less prominent feature (as discussed
in Huesa et al., 2000). In the olfactory system, there is symmetry between the two
bulbs (c.f. Rubin and Katz, 1999), as well as a symmetry within the olfactory bulb.

Sensory axons coming from a neuron of the same receptor type commonly project
to about two GLs on each side, the positions of which are symmetric along a radial
axis (c.f. Khan et al., 2010; Soucy et al., 2009; Lodovichi et al., 2003; Vassar et al.,
1994). Lodovichi et al. (2003) reported that external tufted cells form intrabulbar
connections to granule cells in the isofunctional olfactory columns.

There is evidence in some animals for primary axons crossing the midline over to
the contralateral olfactory bulb. Secondary fibers cross over the anterior commisure
from mitral cells of one side to granule cells of the contralateral side. Yan et al.
(2008) revealed in a tracing study that isofunctional olfactory columns are connected
between the two bulbs over excitatory neurons in the anterior olfactory nucleus pars
externa (connections running via the anterior commissure).

In fact, it was experimentally shown that human subjects can recognize odors
over the naïve nostril that was not exposed during previous learning (Mainland
et al., 2002), although this result could be explained by centrifugal connectivity, as
well.

In insects, there is a bilateral symmetry between the two antennal lobes, (for
example Galizia et al., 1998; Fiala et al., 2002). In contrast to vertebrates, to our
knowledge, an internal symmetry has not been reported.

5.3.6 Downstream processing

All brain regions that receive direct bulbar input are collectively called olfactory
cortex (de Olmos et al., 1978; Price, 1973). Principal recipients include the piriform
cortex, the amygdala, and the entorhinal cortex. Olfactory bulb output neurons,
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M/T cells, project to primary olfactory cortical areas, anterior olfactory nucleus,
piriform cortex, olfactory tubercle and lateral entorhinal cortex, and the amygdala
(Shipley et al., 2008, ; c.f. fig. 5.2). Most of the olfactory cortex is of an evolutionarily
old 3–layered type.

The olfactory cortex is the only area of the cortex that receives direct sensory
input without intermittent thalamic connection. While this could be understood to
mean that a thalamic relay is inconsequential for smell or that the piriform cortex
plays the role of the thalamus, results from Plailly et al. (2008) suggest that olfaction,
like all other sensory modalities, requires the thalamus when consciously analyzing.

The main task of the olfactory cortex was suggested to be synthesis of differ-
ent dimensions into perceptual objects (c.f. Haberly, 2001; Wilson and Stevenson,
2006; Gottfried, 2010). Savic et al. (2000) found evidence that response–activity
to smells in higher–order brain centers is task–dependent, which suggests a parallel
and hierarchical processing of olfactory information (c.f. also Savic and Berglund,
2004).

Anderson et al. (2003) found in an fMRI study with human subjects that amyg-
dala activation was related to intensity but not valence (aversive vs. pleasant) of
odors. Further, they found activations in the orbitofrontal cortex to be related to
valence. Grabenhorst et al. (2007) found in another fMRI study that pleasant odors
lead to an increase of activations in the medial orbitofrontal cortex, while unpleas-
ant odors activate differentially the cingulate and mid–orbitofrontal cortex. Rolls
(2011) proposed that the orbitofrontal cortex is associated with reward value of
stimuli (visual, olfactory, and taste).

Several studies have looked at convergence of M/T cells to the olfactory cortex
(Miyamichi et al., 2011; Ghosh et al., 2011; Sosulski et al., 2011; Gottfried, 2010;
Miyasaka et al., 2009; Stettler and Axel, 2009). Using different tracing techniques
in the mouse, Miyamichi et al. (2011); Ghosh et al. (2011); Sosulski et al. (2011)
found no spatial bias in connectivity of M/T cells to the piriform cortex. This
suggests that M/T cells which innervate the same glomerulus, independently connect
to postsynaptic cortical targets in the piriform cortex. This is different from the
situation in other sensory cortices, compare section 6.4.1. Currently, the consensus is
that cells in the piriform cortex are fed by convergent input from random collections
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of GLs without any order in the spatial domain (cf. Choi et al., 2011).4 If confirmed,
this apparent non–topographic projection could indicate that apart from complex
higher–order feature selectivity there is a reorganization of the sensory space in the
olfactory cortex.

It is known that representations in the human piriform cortex are distinct for
several olfactory perceptual qualities (Gottfried, 2010). Howard et al. (2009) showed
that fMRI measures in the posterior piriform cortex in humans (but not of the an-
terior piriform cortex, amygdala, or orbitofrontal cortex) correlated with perceptual
differences. Choi et al. (2011) showed that populations of neurons in the piriform
cortex can drive behavior. In yet another fMRI study, Gottfried et al. (2006) sug-
gested based on experimental data, again from humans, a bimodal processing of
odors with a dissociation in the piriform cortex between odorant structure and odor
quality such that anterior regions encode structure and posterior regions encode
quality. Davison and Ehlers (2011) found by in–vivo electrophysiological recordings
in mice the anterior piriform cortex that firing was insensitive to single–glomerulus
photostimulation, but instead showed responses to combinations of coactive GLs,
which supports their proposed role as higher–order feature detectors. Yoshida and
Mori (2007) compared response profiles of neurons in the dorsoposterior part of the
rat piriform cortex across multiple food categories and found that neurons were se-
lective to either one or a combination of several of these categories, from which they
concluded that neurons in the piriform cortex have a category–profile selectivity.

Miyamichi et al. (2011) did find patterned connectivity of M/T cells to the
amygdala and anterior olfactory nucleus (AON).

We will return to this in chapter 6, where we will talk about representations in
the olfactory system.

4Zou et al. (2008, 2005) reported in mice that different zones in the mucosa project to different
parts of the bulb and that in the piriform cortex, the areas of activation overlapped, which suggests
that complex odors are processed cortically. However, they later failed to replicate their results
and Linda Buck retracted their articles.
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5.4 Understanding smell

Odor–related spaces are illustrated in fig. 5.6. They correspond to genetics, the
olfactory stimulus, neurophysiology, and cognition, respectively. In case of vision,
the retina contains light–sensitive rods and cones. Color vision is mediated by sep-
arate classes of cones each tuned to different frequencies of light. In trichromatic
mammals, three types of cones correspond to the three basic colors, red, green, and
blue. In audition, organs in the inner ear distinguish between resonance frequencies.
In taste, five basic tastes are sensed by taste receptor cells which have their specific
sensitivities to a single taste quality. In most vertebrates, there exist roughly be-
tween 600 and 1300 OR genes, with a large fraction being pseudogenes — the exact
numbers of genes and the fraction of pseudogenes vary considerably between species
(c.f. Kaupp, 2010). The transduction principle of receptors is not well–understood
(for a recent introduction see Crasto, 2009) and the physico–chemical space is possi-
bly highly complex (Haddad et al., 2008b). Each odorant triggers one of a possibly
indeterminate number of activation patterns on the epithelium, the OB, and down-
stream layers. These patterns of activities are perceptually interpreted.

Elucidating the interactions and links between relationships between these dif-
ferent spaces could be pivotal in understanding olfaction. In order to accomplish
this different approaches are necessary such as investigating intermediate represen-
tations, influences of the behavioral context, and computational principles.

5.4.1 The stimulus problem

The broad availability of gas chromatography (James and Martin, 1952) in conjunc-
tion with mass spectroscopy allowed for the chemical analysis of natural odors (for
example Friedrich and Acree, 1998) and, using an olfactometer, a device for delivery
of gases, which allows for control over mixtures, humidity, and temperature, studies
of perceptual qualities of odors (Zwaardemaker, 1917) could be done (see Reineccius
and Vickers, 2000 for an introduction to perceptual and chemical analysis of olfac-
tory, gustatory, and trigeminal stimuli). Some complex odors, such as wine or coffee,
are composed of hundreds of different mixture components (Briandet et al., 1996;
Louw et al., 2009). Which of these components and which of the physico–chemical
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properties are important, presented itself as a problem. It turns out that many
of these complex smells can be reduced to the impact of a few molecules (Gilbert,
2008, p. 28), so, for example, it was found out that the main contributors to fecal
smell are sulfur–containing compounds, and compounds including methyl benzoate
(Woodford, 1981) are now used to train dogs to detect cocaine, and smell of Gala
Apples corresponds to L-Alanine, described by the Hill formula 𝐶136𝐻215𝑁33𝑂45

(Sitzmann, 2009).
The stimulus problem in olfaction, which refers to the relation of physical proper-

ties and perception which is poorly understood (c.f. Sell, 2006; Turin, 2002; Rossiter,
1996; Ohloff, 1986). Alexander Bell is quoted as having said in 1914 (Wise et al.,
2000):

Can you measure the difference between one kind of smell and an-
other? It is very obvious that we have very many different kinds of
smells, all the way from the odour of violets and roses up to asafetida.
But until you can measure their likeness and differences you can have no
science of odour.

Ninety years later, in his review “On the Unpredictability of Odor,” after reviewing
research, Charles Sell concluded that there are no molecular features of the odorant
that directly determine perceptive quality and that it “would seem that consistently
accurate prediction of odors are not possible for a very considerable time” (Sell,
2006). Aggravating this complicated situation is that there are interactions between
features (for example Johnson et al., 2005a) and molecules in a mixture (Zwaarde-
maker, 1917).

Turin discusses the stimulus problem at length in his book The secret of scent:
adventures in perfume and the science of smell (Turin, 2006). Some odorants of sim-
ilar structure smell similar, such as guaiacol and vanillic, however, different structure
sometimes comes also with similar smell such as benzaldehyde and cyanide, which
smell of bitter almonds. Further, a similar structure can come with a different
smell, such as straight–chain aldehydes. He puts up hypotheses to account for this,
including: (i) different receptors for the smell and (ii) the molecules get associated
together because they often come together.
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Size and volatility of odorants affect their usefulness in communication (c.f. Wil-
son and Stevenson, 2006, chapter 5). Small volatile molecules allow for rapid diffu-
sion over short distances, while large and less volatile molecules provide a relatively
long signal. At the same time, structural complexity (including length and weight)
of odorants is related to the complexity of the smells and their pleasantness (Kermen
et al., 2011; Zarzo, 2011; Joussain et al., 2011).

Haddad et al. (2008a) proposed a space of 32 dimensions of molecular properties
that co–varied with activation patterns of glomeruli and MT cells. However, it can
be expected that the last word on this topic is not spoken yet. Soh et al. (2011) found
another metric based on structural similarity of odorants that seemed to outperform
Haddad and colleagues measure on one dataset, while performing on a similar level
on another. Chen et al. (2011b) found only barely significant correlations of this
metric with results from a behavioral study on drosophila. Also, as noted by Chen
et al. (2011b), Haddad et al. (2008a) did not account for effects of intensity.

It is thought that molecular features relate mostly to molecular shape and one
physico–chemical dimension that investigations have put emphasis on is carbon chain
length of odorants (e.g. Mori et al., 2006b; Leon and Johnson, 2003; Johnson and
Leon, 2000d). It is known, however, that enantiomers, molecules that are mirror–
symmetric to each other, can produce different activations at the bulb and cortical
levels and different odor sensations (Leon and Johnson, 2003; Li et al., 2008), which
indicates that shape alone does not account for relevant features.

It has been found that principal dimensions in a dataset of odorants described by
physico–chemical properties are related to pleasantness (Khan et al., 2007). Khan
et al. (2007); Haddad et al. (2008b) argued that olfactory pleasantness corresponds
to a natural axis of maximal discriminability among biologically relevant molecules
and that the olfactory system has evolved to exploit regularities in the odor space.

There exist many studies on perception of odor intensity and detection thresholds
(e.g. Kobal and Kettenmann, 2000; Cain and Johnson, 1978; Zwaardemaker, 1909),
usually done using an olfactometer. Laska and Teubner (1999) found in a forced–
choice test that the discrimination ability of subjects between homologous odors
was correlated to differences in carbon chain length. It is known that some odors
are associated with specific molecular properties, e.g. putrid to amines and Doleman
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(1998) suggested that increased olfactory sensitivity for alkylamines or alkylthiols (in
humans) as compared to alkanes or alcohols could be accounted for by evolutionary
adaptation for detecting decaying food and toxic gases.

In section 6.4.3 the importance of different molecular features will be discussed
in the context of OB representations.

5.4.2 Perceptual dimensions of smell

The epistemological status of olfaction was disputed during a long time Le Guérer
(2002) and therefore it is not surprising that literature on olfactory dimensions is not
abundant (however, see review in Zarzo and Stanton, 2009, and references therein).

Some authors speculated about a number of olfactory perceptions, e.g. Axel
(2006) put this number up to 10,000, however, there is little evidence to back this up
and coding mechanisms in the epithelium (Malnic et al., 1999) and the bulb (Meister
and Bonhoeffer, 2001; Sachse et al., 1999; Spors and Grinvald, 2002; Uchida et al.,
2000; Wachowiak and Cohen, 2003, 2001; Kauer and Cinelli, 1993) suggest rather
an unlimited number.

Generally, perceptual characters of odors have been described by two differrent
methods (Zarzo and Stanton, 2009; Wise et al., 2000; Chastrette, 1998): (i) numer-
ical scales of odor similarity assigned by a panel or (ii) semantic labeling. Partic-
ularly well–known examples are, for the first type, Dravnieks’ panel assessment of
odor character (Dravnieks, 1985), and, for the second type, semantic databases such
as Acree and Arn (1998). Similarly to the case in physico–chemical properties, the
dimensionality of these datasets is quite high. Callegari et al. (1997) analyzed corre-
lations between odorants as a function of the number of descriptors and argued that
around 30 descriptors are optimal. Analyses on these datasets commonly observe an
embedded structure of latent dimensions of categories which explain the perceptual
experience or the common effect of odorants. One of the most salient dimensions
in these data seems to be pleasantness (Arzi and Sobel, 2011; Yeshurun and Sobel,
2010; Zarzo, 2008). Generally, it is plausible that things that are potentially useful
for the body tend to smell good, and things that are potentially harmful smell bad5.

5This rule has some exceptions, such as some food which actually smells unpleasant to people



116 The sense of smell

Different categorizations have been proposed for natural odors (reviewed in
Gilbert, 2008, , p. 5–37; Chastrette et al., 1988; Abe et al., 1990; Mamlouk and
Martinetz, 2004; Zarzo and Stanton, 2006). They include the wine aroma wheel
(Noble et al., 1984), a beer flavor wheel (Meilgaard, 1982), for medical plants (Lin-
neus, 1752), or more general for all kind of smells (Crocker and Henderson, 1927).
Amoore (1977) proposed basic categories from data on anosmia, the loss of smell.
These are listed below with examples:

• Camphoraceous (such as mothballs)

• Musky (perfumes and aftershave),

• Floral (roses),

• Pepperminty,

• Ethereal (cleaning fluid),

• Pungent (vinegar),

• Putrid (rotten eggs).

It is known that the categorization of odors varies with cultural differences (Chrea
et al., 2005; Chrea, 2004; Ayabe-Kanamura et al., 1998), however Chrea et al. (2005)
argued that odor categories are based on perceptual similarities and that, while the
category boundaries are culture–specific, core odor–category structure could have
common representations. Zarzo and Stanton (2009) found that the PCA space of
physico–chemical odorant descriptors from several studies shows a clustering by
odorant categories, which could suggest that some perceptual categories are more
universal than previously thought. As they reconciled results from different datasets,
they found proximities between descriptors such as a group of sweet, balsam, vanilla,
heliotropin, and syrup (as reviewed by Donna, 2009).

This structure of the perceptual space could be partly grounded in physico–
chemical properties. Khan et al. (2007) found by principal component analysis of
physico–chemical descriptors that latent dimensionality in physical space is related
to hedonic quality of odorants. Mandairon et al. (2009) analyzed investigation
time in mice with different odorants and found that they were related with human

not used to it, such as some cheese, coffee, fermented herring, etc.
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pleasantness sensation of these odors. They argued that perception of odors in mice
and humans is related and speculated that this similarity could arise because of
prewiring from receptor level.

Smell is not an intrinsic property of odorant molecules, but a perceptual phenomenon
that depends on mechanisms proper to the biological organism which perceives.
Studying activations elicited by odorants can help to understand how smells are
generated. The next chapter will deal with representations in the olfactory system,
especially at the glomerular layer.
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Figure 5.6: Spaces of smell. A — Isomap projection of receptors similarity based on
distances between genetic coding regions of predicted binding pockets. Circles a–d indicate
regions where binding sites of either human or mouse are over–represented. Circle e in-
dicates a pair of human–mouse orthologs (MOR27-1 and OR52P1) with identical binding
site. Source: Man et al. (2007). B — MDS projection onto three dimensions of the 32–
dimensional matrix of molecular properties proposed by Haddad et al. (2008a). Each point
represents an odorant. C — Euclidean differences between glomerular odorant response
patterns, computed based on data from Leon and Johnson (2006). D — MDS projection of
odorant perceptual descriptors. Source: Koulakov (2011).

(a) Receptor space (b) Physico–chemical Space

(c) Activation space (d) Perceptual space



Chapter 6

Representation of odors

In the previous chapter, it was briefly discussed how odorants, which generally en-
compass many air–borne mono–molecular components, are analyzed into component
features and how this information is propagated via electrical activity to the OB.
This chapter will discuss how odors are expressed in terms of spatio–temporal pat-
terns of neural activity at the level of the OB, specifically at the glomerular level.
How sensory objects are generated from molecules in the air is not clear, but as
we will see, such patterns are likely the basis for perceptual processes. Where this
happens is also unclear, however, a perceptual ordering of representations has been
found previously in the epithelium (Lapid et al., 2011). Others have found such an
order in the piriform cortex (Howard et al., 2009) and, recently, we found an order
by perceptual categories in the OB (Auffarth et al., 2011c; paper V).

Many studies of odorant coding in the OB provide evidence that odors are rep-
resented at the levels of glomeruli and M/T cells by spatio–temporal codes (c.f.
Niessing and Friedrich, 2010; Leon and Johnson, 2009; Rubin and Cleland, 2006;
Lei et al., 2004; Spors and Grinvald, 2002; Laurent, 1997), while there is uncertainty
with regard to several questions, which will be briefly introduced in the following
sections:

• population vs. spatial codes (c.f. section 6.3 and section 6.4),

– distributed vs. localized (clustered) representations (c.f. section 6.4.1),

• the relative importance of spatial versus temporal patterning (c.f. section 6.2).
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In the case of local spatial representations, another question pertains to the
principles of distance relationships between representations (c.f. section 6.4.3).

Generally, the topology of information processing in brain regions is constrained
by its task demands (Sporns, 2010; Montagnini and Treves, 2003), which includes
its input–output relationships with other regions. While topographic organization
(local and spatial) indicates bottom–up integration or coincidence detection of mixed
information, distributed codes or population codes would indicate a wide broadcast
of information and often is not explained by purely bottom–up approaches (Cauller,
1995).

6.1 Neuroimaging methods for the OB

There are many different techniques for visualizing processes in glomeruli (for re-
views see Galizia, 2009; Pain et al., 2011), and the usual caveats apply for the use
of signals with respect to their origin, time, and spatial resolution (c.f. fig. 6.1; for a
review with many techniques relevant to olfaction, especially in insects, see Galizia,
2009). Various different methods of monitoring glomerular activity have been uti-
lized, including voltage–sensitive dyes, optical imaging, calcium imaging, and 2DG
(c.f. Manzini et al., 2007; Takahashi et al., 2004; Meister and Bonhoeffer, 2001; Spors
and Grinvald, 2002; Wachowiak and Cohen, 2003, 2001; Uchida et al., 2000; Sachse
et al., 1999; Friedrich and Korsching, 1997; Stewart et al., 1979).

Please, refer to section 7.1 for more details on the 2DG method.

6.2 Temporal coding

Many studies, mostly in insects, have emphasized the importance of temporal net-
work dynamics in encoding sensory memories (for recent reviews, see Gupta and
Stopfer, 2011; Bathellier et al., 2010; see also section 7.1).

A prominent dynamic phenomenon in the OB are oscillations (Chapter 3 Wilson
and Stevenson, 2006):

• gamma frequency (40–90 Hz): driven by mitral cell–granule cell circuits (c.f. Beshel
et al., 2007),
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Figure 6.1: Spatial and temporal characteristics of neuroimaging techniques.
Sides of rectangles indicate upper and lower limits of spatial and temporal characteristics of
each technique. Adapted from Grinvald and Hildesheim (2004).

2

0

-2

-4

2 4-4 -2 0 6 8

Time resolution or duration (log seconds)

min hour day

S
p
a

ti
a
l 
re

s
o
lu

ti
o

n
 (

lo
g
 m

m
)

Patch Clamp

Single Unit

Optical Imaging fMRI

2DG

Micro llesions

Lesions

Electron

microscopy

sms

EEG and MEG PET

• beta frequency (15–40 Hz): driven by OB – cortex feedback loops (c.f. Ravel
et al., 2003), and

• theta frequency (2–15 Hz): driven by sensory input and respiratory cycle
(c.f. Margrie and Schaefer, 2003).

Synchronization and phase–locking of M/T cell activity has been observed with the
possible functional roles of increasing sensitivity, temporal binding, or multiplexing
(Schaefer and Margrie, 2007; Schoppa, 2006; Friedrich et al., 2004; Schoppa and
Westbrook, 2001; Kashiwadani et al., 1999, e.g.).

Many proponents of the temporal coding idea work on insect models, as opposed
to researchers working on vertebrate models, who seem to put more emphasis on
spatial coding schemes. This might as well have to do with spatial and temporal
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dynamics of different methods of measurements at their disposal (c.f. section 6.1),
but also could point to some differences in the insect and vertebrate systems.

The importance of time dynamics relative to spatial representations is not clear
(c.f. Schaefer and Margrie, 2007; Khan and Sobel, 2004). According to the most
radical epitome of the temporal coding idea, spatial patterns are largely epiphenome-
nal; on the other hand, some consider oscillations an epiphenomenon (c.f. Freeman,
1978; Fletcher et al., 2005; Singer, 1999). Most are more conciliatory, however,
for example Knüsel et al. (2007) argued based on their model that temporal and
spatial information could be complementary. Laurent (2002) discussed how bulbar
dynamics on different timescales could serve functions in optimizing stimulus repre-
sentation, such as sparsening, feature binding, and decorrelation, and how read–out
mechanisms could make use of temporal patterns in different ways. However, he
concluded that after optimization of representations, initial complexity could be
reduced.

Rabinovich et al. (2008) argued that neural processing could be explained in
terms of transient dynamics without any need for stable attractor states, a view that
is contrary to the more traditional view of neural processing in terms of the attractor
network model (c.f. Mozer, 2009; Lansner, 2009; Kesner et al., 2000; Hopfield, 1982).
Niessing and Friedrich (2010) measured responses of 128 mitral cells in the zebrafish
to two amino acids at different concentrations and found that while concentrations
lead to small changes, switching between two odorants leads to abrupt network
changes in the network states which can be accounted for by the attractor network
model. Interestingly, this is what should be expected with categorical perception
(Damper and Harnad, 2000).

Uchida and Mainen (2003) found that early information, as provided by the first
sniff, is sufficient to reliably discriminate olfactory patterns. Spors and Grinvald
(2002) described that spatial patterns at early and late stages of stimulation are
largely maintained, however, that spatial patterns are refined over time and some
glomeruli get lost in the process. This suggests that latency could play a role in the
decoding of glomerular patterns (e.g. Zavada et al., 2011), however, it could mean
as well that later changes to glomerular activities could be regulated by adaptation
mechanisms and that steady–state information is enough for discrimination.
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In the following, we will concentrate on spatial aspects of coding, where input
olfactory stimuli patterns are classified into discrete patterns of activities. We will
concentrate in this discussion on the glomerular level.

6.3 Population coding

Hinton and McClelland (1986) declared their belief in distributed representations
and many people in the connectionist community have been repeating this credo.
Experimental support for this argument is, however, not conclusive (for example
Malach et al., 2002; Haxby et al., 2001)1. As for examples of distributed represen-
tations, movement directions in the monkey could be predicted by matrix multi-
plication of neuronal activities with their respective movement direction selectivity
(Georgopoulos et al., 1986).

Haddad et al. (2010); Cleland et al. (2007); Youngentob et al. (2006); Lin et al.
(2006); Wilson and Stevenson (2006); Rubin and Katz (1999) argued for population
codes in the OB and there is evidence supporting their plausibility. Haddad et al.
(2010) analyzed population activity of glomeruli and MT cells from different studies
and concluded that the first principal component was highly correlated to approach
or withdrawal, or pleasantness. They found it also correlated with many perceptual
descriptors. Rubin and Katz (1999) showed that correlation between activity maps
could explain differences in carbon chain length.

Johnson et al. (2005b, 2004, 2002, 1999); Rubin and Katz (1999) found correla-
tions between differences of physico–chemical odorant properties and overall differ-
ences of glomerular response patterns. Johnson et al. (2004, 1999); Rubin and Katz
(1999) demonstrated that differences in carbon number correlated with overall map
differences, Johnson et al. (2005b) showed a significant correlation between distances
of functional group position and differences between patterns.

In a scenario with population codes, each glomerulus would be broadly tuned
across olfactory modalities and smell recognition would be the result of decoding the

1It should be noted that not finding topographic coding for a property is not a proof of dis-
tributed representation in that area. It could have to do with the stimulus or with the resolution
of measurement.
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combined activity of various glomeruli. Recognition can be achieved by integrating
activations of a sufficiently broad subset of units. The population code for an odor
quality would be the mean map over all activity maps corresponding to the quality
(or the mean maps of relative levels of activation across the ensemble). The response
profile of M/T cells is actually more narrow than that of glomeruli (Tan et al., 2010),
a fact which rather speaks against such a broad integration.

Salinas and Abbott (1994) suggested that weighting the neurons would result in a
more optimal code. If these weights become very unevenly distributed or sparse, we
speak of a spatial code as opposed to a population code. If they are spatially clustered,
we could speak of a continuous spatial or local code as opposed to distributed.
Spatial coding refers to the case where encoding for a certain type of information is
spatially restricted to a subset of the units of a population. Spatial codes could still
be distributed, or spatially clustered. If spatial codes are clustered, we can speak of
a labeled–lines coding (c.f. 6.4.1).

6.4 Spatial coding

Intensity and odor quality is coded by activity at the OB level. Odor identity is
encoded by a unique spatial pattern across glomeruli. Odor concentration is related
to the intensity and spread of this pattern. It is well established using different
techniques that glomerular activations spread spatially out as a function of odorant
concentration (Rubin and Katz, 1999; Cleland et al., 2007; Johnson and Leon, 2000a;
Stewart et al., 1979). See fig. 6.2 for an illustration of glomerular activation patterns.

Many studies suggest a modular organization of the glomerular layer (c.f. Mat-
sumoto et al., 2010; Johnson et al., 2005b,a; Takahashi et al., 2004; Johnson et al.,
2004; Mori, 2003; Leon and Johnson, 2003; Johnson et al., 2002; Linster et al.,
2001; Uchida et al., 2000; Johnson and Leon, 2000b,a; Johnson et al., 1999, 1998)
in the sense of functional clusters of glomeruli, which respond to related features.
Arguments for such an organization comes from a number of observations:

• glomeruli of related molecular specificity tend to be close on the glomerular
layer,
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• responses to odorants with common molecular features encompass overlapping
regions,

• odorants activate sometimes different glomeruli within these regions.

Alonso and Chen (2009) define the term receptive field as a “portion of the
sensory space that can elicit neuronal responses when stimulated.” A prominent
example for receptive fields are combinations of different features such as shapes
and aspect ratios, which are detected by place fields in the hippocampus (Wills
et al., 2005). In olfaction, receptive fields in terms of molecular properties have
been called molecular receptive ranges (Mori and Shepherd, 1994). Please refer to
Arzi and Sobel (2011); Murthy (2011); Khan et al. (2010) for recent reviews on the
topic.

The properties of visual receptive fields can be explained from first principles
(Lindeberg, 2010), however, similar characterizations of the olfactory system have
not been done. As mentioned before in section 5.4.1, olfactory stimuli dimensions
are still elusive (c.f. section 5.4; Sell, 2006; Haddad et al., 2008b) and there is
no clear dimension along which to arrange a stimulus continuum. This missing
metric for smell makes the study of odors particularly difficult and therefore also
the characterization of receptive fields (Leon and Johnson, 2009; Haddad et al.,
2008b).

General findings from studies on glomerular coding using different techniques
could be summarized as the following (adapted from Khan et al., 2010):

• odorant molecules tend to elicits several foci of activations (Stewart et al.,
1979),

• each of those foci consists of multiple glomeruli (Johnson et al., 1998, 1999),

• odorants with different chemical structure, shape, and perception generate
distinctive patterns of glomerular activation,

• these patterns are bilaterally symmetric and very similar between individuals
for a given odorant,

• increasing the ligand concentrations increases size of foci,

• glomeruli are molecular feature detectors (for example Galizia et al., 1999;
Johnson and Leon, 2000a).
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. Many groups did experiments on activation of glomeruli in response to a lim-
ited set of odorants which varied with respect to physico–chemical properties, which
differed in several properties. The result from these studies is that varying some
physico–chemical properties activated distinct clusters of glomeruli. Investigated
properties which had particular influence on the localization of the activation peaks
are functional groups (Johnson and Leon, 2000a; Johnson et al., 1998) and hydro-
carbon structures (e.g. double–bonded, branched, cyclic, etc. Johnson and Leon,
2000b).

Many studies have shown using single mono–molecular odorants that odors can
be discriminated based on distinct spatial responses at the glomerular level (e.g.
Niessing and Friedrich, 2010). Simple odorant molecules tend to activate several
regions in the OB (e.g. Spors and Grinvald, 2002) and each site of activation con-
sists of multiple glomeruli (for example Johnson et al., 1995, 1998). In contrast,
Lin et al. (2006) concluded that population responses to complex natural stimuli
constituted roughly the sum of the responses to its individual components in a way
that individual glomeruli signaled the presence of particular components. Johnson
et al. (2010) found that glomerular activations of ecologically relevant odors were
much more focal than those elicited by mono–molecular compounds.

To give some more examples of spatial coding, Miklavc and Valentincic (2011)
tested discrimination ability between 15 amino acids in the zebrafish and compared
results to spatial overlap of most activated areas in glomerular response maps as per
Friedrich and Korsching (1997). From their results, it can be argued that spatial
activation patterns are the basis of discrimination ability. Auffarth et al. (paper IV;
2011b) demonstrated that physico–chemical properties can be reliably predicted
from constricted glomerular zones. Auffarth et al. (paper V; 2011a) showed that
qualitative odor perception can be predicted from small areas of glomerular activity
patterns.

6.4.1 Topography

Continuous spatial codes can also be called labeled–line coding .
Topography is an isomorphic mapping between different spaces. As Thivierge

and Marcus (2007) point out in their excellent review of topography in the brain, it
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Figure 6.2: Glomerular activity maps. Activity–related glomerular response to two
odorants (left octanol, right propanol). Colors indicate (normalized) radioactive uptake.
Odorants can be distinguished — to some extent — by the spatial activation pattern of
glomeruli. Plot based on data obtained from Leon and Johnson (2006).

is a common feature in the animal world, found in mammals as well as insects. It has
been found at different levels of the brain that information is spatially embedded,
in a way that the relative spatial structure of units is preserved between two re-
gions (compare Thivierge and Marcus, 2007; Malach et al., 2002; Singer, 1994; Udin
and Fawcett, 1988). Topography can be found in the visual (Wandell et al., 2005;
Sereno et al., 2001; Tootell et al., 1988; Talbot and Marshall, 1941), auditory (Ro-
mani et al., 1982; Reale and Imig, 1980; Woolsey and Walzl, 1942), somatosensory
(Marshall et al., 1941), and gustatory systems (Chen et al., 2011a). In particular, the
spatial structure of representations in sensory cortices has been observed in many
parts of the brain to locally reflect subspaces of stimuli that are behaviorally or
perceptually relevant. Particularly well–known examples for this phenomenon come
from studies of receptive fields in early visual and auditory processing, where afferent
input from primary sensory neurons is spatially segregated (c.f. Humphries et al.,
2010; Swindale, 2008). In vision, neurons are arranged across the cortical surface
in an orderly orientation map of preferred stimulus orientations (called orientation
pinwheels) (Ohki et al., 2006; Hubel and Wiesel, 1962). Topographic organization
has been experimentally demonstrated in the primary auditory cortex (Merzenich,
1974), the retinotopic organization in the striate cortex (Tusa et al., 1978), the or-
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ganization of the somatosensory system (Dawson and Killackey, 1987; Woolsey and
Van der Loos, 1970). Prominent textbook examples for this principle are occular
dominance columns, blobs in layers II and III in V1 of monkey, stripes in layers II
and III of V2 of a monkey, and barrels in the primary somatic cortex (p. 207 Purves
et al., 2004).

Topography is not tied to columns, since it is present even in areas of animals
where there is no columnar organization (Kalatsky and Stryker, 2003). It is not
limited to reflect spatial aspects of the input space, as illustrated in the case of
the OB, the tonotopic map in the auditory cortex, or the specialization in the
gustatory system. In taste, while the idea that regions of the tongue are exclusive for
certain taste categories has been abandoned, it was found that there are fiber tracts
responsible for specific gustatory sensations such as salty or sweet (Chandrashekar
et al., 2006) and it has recently been found that a spatial map in the gustatory
cortex encodes the five basic taste sensations (Chen et al., 2011a).

In olfaction, as for the glomeruli of the OB, Soucy et al. (2009) found a coarse
topographic organization with respect to overall response profiles and many studies
found molecular feature clusters (e.g. Matsumoto et al., 2010; Johnson and Leon,
2007; Mori et al., 2006a; Auffarth et al., 2011b; paper IV). Cleland and Sethupathy
(2006) argued that the two–dimensional geometry of the OB could not accommodate
the complexities of contrast–enhancement and made the argument that a projection
to two dimensional space would result in a fragmented map. While it is not clear if
the OB projection is two–dimensional (c.f. fig. 5.4), topography is complemented by
splits, disproportionate magnifications, and other transformations (after Thivierge
and Marcus, 2007, ; Kaas, 1997; Sereno, 1991). Inhibitory long–range connections
could be part of these constraints that establish symmetry (c.f. section 5.3.5 for
symmetry in the olfactory system and Kaschube et al., 2010). As for the OB,
Johnson and Leon (2007) observed that the spatial progression of some properties
on the glomerular layer is often disrupted by unresponsive glomeruli. They provided
two possible reasons for that: 1. some related odorants were not tested 2. unrelated
specificity might be present in these (intermittent) domains.

In the piriform cortex, a topographic order has not been found, however, it was
found in projections to the amygdala and the anterior olfactory nucleus (compare
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section 5.3.6).
Interestingly, the formation of topographic maps can be explained by activity–

dependent principles, compare section 5.3.3.
It has been argued that such an organization helps to minimize wiring length

(Chen et al., 2006; Buzsáki et al., 2004). The functional implications of topographic
organization are not clear, however, (e.g. Kaas, 1997). Different arguments have
been made in favor of a computational advantage conveyed by this principle, which
fall into two categories (after Thivierge and Marcus, 2007): (i) local computation
(Sporns, 2010; Hilgetag et al., 2000) and (ii) faithful representation of a 1–1 rela-
tionship (Pulvermüller, 2005; Simmons and Barsalou, 2003; Friston, 2002; Barlow,
1981).Further, such an organization could imply a sparse code, where few units en-
code particular patterns. Such a sparse code could in itself confer several advantages
(c.f. Olshausen and Field, 2004).

It was suggested that inhibition between glomeruli decorrelates M/T activity
and sharpens mitral cell response profiles and that this could be supported by a
topographic organization (Aungst et al., 2003; Friedrich and Laurent, 2001; Mori
and Shepherd, 1994). Niessing and Friedrich (2010) studied M/T activities in the
zebrafish in response to amino acids (natural food odors for zebrafish) for which it
is known that they have highly similar glomerular patterns and found differential
cell activity. They argued that chemotopic coding could support decorrelation of
similar odors.

6.4.2 Spatial progressions

Johnson et al. (1999, 2004); Ho et al. (2006) remark that increasing the number of
carbon atoms, glomerular activations shift gradually to ventral locations (chemical
progression; Johnson et al., 1999, 2004). This shift occurs mostly within regions
responsive to functional groups, however, is also present in odorants without func-
tional groups (Ho et al., 2006). We found such a progression in a systematic study
based on 362 odorants (paper IV; Auffarth et al., 2011b).

At the same time, analysis of carboxylic acids with different hydrocarbon struc-
tures demonstrated a ventral progression medially with molecular length (as op-
posed to hydrophobicity or volume; Johnson and Leon, 2000b). Johnson et al.
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(2004) suggested chemotopic progression as an organizational principal in olfactory
processing. Interestingly, in the epithelium, more hydrophilic, less volatile, heavy
odorants absorb more readily into the olfactory mucosa and would therefore project
more dorsally, while more hydrophobic and shorter or lighter molecules could absorb
more posterior and thereby project to peripheral and ventral zones (Schoenfeld and
Knott, 2004).

Similarly to what Johnson et al. (1999, 2004) observed about functional groups
and carbon number, Yoshida and Mori (2007) proposed primary and secondary odor-
ant categories, where secondary categories could serve to enhance category–profile
selectivity. As primary properties they suggested sulfides, alcohols, methoxypyrazines,
6–carbon and 9–carbon green–odor compounds, aldehydes, ketones, isothiocyanates,
terpene hydrocarbons, esters, terpene alcohols, alkylamines, acids, lactones, and
phenol and its derivatives. Our results align well with these suggestions (paper IV;
Auffarth et al., 2011b).

It is further known that carbon–chain length is related to discrimination abil-
ity (Cleland et al., 2002) and there is evidence for a progression by carbon–chain
length (paper IV; Auffarth et al., 2011b; Johnson et al., 2004). This indicates that
spatial segregation (spatial distance between representations) could have behavioral
correspondences.

6.4.3 Principles that determine the localization of representations

A particular distinction of the olfactory system is the relative lack of intrinsic spatial
topology of the stimulus as compared to other senses (or at least it is not under-
stood). While visual and tactile stimuli have an spatial dimension to them, auditory
stimuli get converted to a spatial domain by frequencies.

Generally, factors that determine the localization of representations in the OB
are the following (compare Mori and Sakano, 2011):

• molecular features,

– chemotopy, or (related)

– odotopy.

• rhinotopy,
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• perceptual relevance (c.f. section 6.5), and

• genetic identity of axon guidance cone (c.f. section 5.3.3).

There is accumulated evidence for continuous spatial zones responsive for certain
groups of odorants based on data from different techniques. It is well established that
some molecular odorant properties map differentially to clustered spatial locations
(for example Matsumoto et al., 2010; Mori et al., 2009; Johnson and Leon, 2007;
Mori et al., 2006b; Lodovichi et al., 2003; Meister and Bonhoeffer, 2001; Vassar et al.,
1994) and our results from a systematic large–scale study of glomerular activity
indicated that coding of some molecular properties is organized in continuous zones
and locally very restricted (paper IV; Auffarth et al., 2011b). This map–like feature
at the level of the OB that seemingly represents molecules as perceptual objects
(Haberly, 2001; Mori and Shepherd, 1994) has led to comparisons of the OB to
sensory cortices (Schoenfeld and Knott, 2004; Haberly, 2001; Johnson and Leon,
2000c).

Furthermore, the relative spatial locations between representational areas cor-
responding to odorant categories could be related to chemical similarity (Johnson
et al., 2004; Cleland et al., 2002; Uchida et al., 2000). This principle has been re-
ferred to as chemotopy or, spatial progression, in the case of a spatial shift related
to molecular properties. A related concept is odotopy , which refers to a spatial
arrangement by odotopes.

In the olfactory system, there is a spatial order of glomeruli related to the dis-
tribution of ORNs at the epithelium which is referred to as rhinotopy (Johnson and
Leon, 2007; Miyamichi et al., 2005; Schoenfeld and Knott, 2004; Astic and Saucier,
1986).

6.5 Representation of perceptual dimensions

Where physico–chemical properties are mapped to perceptual qualities is unclear. A
perceptual encoding of representations has been found previously in the epithelium
(Lapid et al., 2011) and the piriform cortex (Howard et al., 2009).

Youngentob et al. (2006); Johnson and Leon (2000d) argued that qualitative odor
perception is, in fact, determined by glomerular activity patterns. They described
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that different glomerular activity patterns, elicited e.g. by increased concentration
can lead to qualitatively different odor percepts. Haddad et al. (2010) showed that
the first principal component of population activity of glomeruli and MT cells was
highly correlated to approach or withdrawal in animals, or pleasantness in humans.
Cleland et al. (2002); Ho et al. (2006); Linster et al. (2001, 2002) found correlations
between behavioral measures and pattern similarity. We found that perceptual
categories are mapped to continuous spatial zones (paper V; Auffarth et al., 2011a),

Studies in rats and mice have shown that different types of behavior, e.g. de-
fensive behavior towards predators, aversion or attraction towards food, can be
related to the chemical categories of odorants and generally supports the behavioral
relevance of molecular feature combinations and glomerular domains (paper VI; Auf-
farth et al., 2011c; Sakano, 2010; Raman and Gutierrez-Osuna, 2009; Kobayakawa
et al., 2007; van der Goes van Naters and Carlson, 2007; Stockinger et al., 2005;
Dielenberg and McGregor, 2001). A study by Kobayakawa et al. (2007) suggested
that the OB of mice consists of at least two different functional modules, one for
innate odor responses and one for (associatively) learned odor responses. Similar
spatial behavioral organization is also known to occur in insects (for example Sem-
melhack and Wang, 2009). Changing locations of glomeruli in mice can result in
behavioral impairments, in spite of persistent physiological activations (Adam and
Mizrahi, 2010).



Chapter 7

Data and methods

In this chapter, we will introduce some methods and data sets that were used
throughout.

7.1 Glomerular Response Archive

The glomerular response dataset was used in papers V and VI. In these studies, we
used a set of 2–deoxyglucose (2DG) autoradiography images of glomeruli covering
the entire lamina of the rat olfactory bulb (Leon and Johnson, 2006; Johnson et al.,
2006, 1999). These response images are part of a database collected by Michael
Leon’s group over the course of many years. They have formed the basis of many
published studies and they are available for download from their public database.
See fig. 6.2 for an illustration.

2DG is taken up by the glucose transporters of cells and uptake correlates with
cell glucose matabolism and hence activity in neurons. Generally in 2DG measure-
ments, the 2DG is labeled by a radioactive substance such as tritium or carbon–14
which can then be measured in autoradiography.

In the experiments in Leon’s lab, they stimulated unanesthetized and freely
respiring animals with odorants. The animals were then dissected and imaged. Each
of these images corresponds to glomerular responses to one particular odorant. Leon
and Johnson took averages over the left and the right bulbs and averaged over arrays
from all animals exposed to the same concentration of the same odorant (roughly
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around 3 to 5 animals for each combination). It is known that patterns are very
similar across animals and that glomeruli are at stereotypic positions (Soucy et al.,
2009; Fantana, 2006). According to Johnson et al. (2006), the 2DG method is
capable of resolution down to a single glomerulus, however, averaging over multiple
animals results in a loss of apparent spatial resolution. The 2DG method provides a
single (averaged) response map for each odorant presentation and is therefore unable
to resolve the temporal dynamics of activity. According to Rubin and Katz (1999);
Guthrie and Gall (1995); Slotnick et al. (1989) glomerular activations are relatively
constant over time, indicating the absence of temporal dynamics might not be a
limitation, however, over time, spatial patterns become refined and some glomeruli
are not activated anymore (Spors and Grinvald, 2002), and Wilson and Stevenson
(2006, ch. 5) cautioned that after initial sampling, subsequent changes might reflect
an adaptation process. For a discussion of differences in method to other studies
and their implications, please compare Johnson and Leon (2007).

The ventral–centered chart of the glomerular layer in fig. 7.1 denominates loca-
tions in anatomical terms of the rat olfactory bulb.

Figure 7.1: View types of glomerular images. This figure visualizes locations in
anatomical terms for the glomerular layer in dorsal and ventral–centered charts of the rat
olfactory bulb. These charts have been described as “rolled-out maps“ (Leon and Johnson,
2006). They open dorsally and are rotated so that dorsal is located at the top and bottom
boundaries of the charts, lateral is located in the upper half, medial is in the lower half.
Rostral is to the left and caudal to the right. This is adapted from Johnson et al. (1999).

AOB

rostral caudal

rostral caudal

dorsal

dorsal

ventral
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Nawroth et al. (2007) analyzed the energy metabolism within GLs of the OB
and concluded that, while presynaptic inhibition of the sensory axon terminals by
periglomerular cells modulates activity ranges, most of the energy budget is related
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to axodendritic transmission between axons of primary and dendrites of secondary
neurons. It should be cautioned, however, about inferring M/T cell firing patterns
from these data. There are papers that show that there is a high correlation between
glomerular imaging signals to M/T cell activations (e.g. Moreaux and Laurent, 2008)
and further, results from tracing studies indicate a functional compartmentalization
by receptor channels throughout glomerular and M/T layers (Willhite et al., 2006).
However, M/T cells receive excitatory and inhibitory input from other glomeruli
(Najac et al., 2011; Kim et al., 2011, ; c.f. section 5.3.4). Therefore, we do not
pretend to know about the spatial patterning of responses on the M/T layer.

7.1.1 Molecular descriptors

For each of the activation maps we had information about which odorant they cor-
respond to and some additional descriptive information, which was also provided by
the Leon Lab. These descriptors, about 200 in total, include physico–chemical odor-
ant properties, as well as perceptual properties associated with the odor. Properties
are of continuous and binary type. Continuous properties include molecular length,
height, and weight. To give some examples of binary properties, these concerned
cyclization (whether an odorant is alicyclic, aromatic, polycyclic, or heterocyclic,
respectively), bond saturation (whether an odorant is alkene, alkane, or alkyne),
and functional groups (whether an odorant is ester or lactone, amine, carboxylic
acid, contains sulfur, contains halogen, is a ketone, alcohol, or phenol). Perceptual
properties are all binary and include flavors such as sweet, camphoraceous, floral,
and minty.

For the classification study reported in paper IV, we took into account 13 binary
molecular properties where at least four images were available. These were sulfur–
containing compound, alkyne, alkane, alkene, amine, carboxylic acid, aromatic, ke-
tone, polycyclic, ester+lactone (being both an ester and a lactone), alcohol+phenol
(being both an alcohol and a phenol), heterocyclic, and alicyclic.

We defined one additional property as elongation, which we computed as the
variance over molecular length, surface area, and molecular depth.
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7.1.2 Data pre–processing

In our pre–processing of activation maps, we started with 472 maps, of which some
represented responses to identical odorants in different concentrations. By visual
inspection, we eliminated five highly saturated images where most or all of the
glomeruli were activated and took means over the responses corresponding to the
same odorant in different concentrations (222 maps in on average 3 concentrations).
Ten maps had to be discarded because of missing odorant information. This se-
lection left us with 308 point maps, each of which corresponded to odor–induced
glomerular activities. Pixels with missing values, caused by loss of tissue during
cryosectioning, others due to loss of tissue during removal of the bulbs from the
skull using microdissecting scissors, were removed, which left us with 1834 pixels
per map. We mean–centered all pixels and normalized deviations to standard unit
to compensate for differences in absolute pixel intensities.

For some binary properties, there were many associated activity maps, for others
very few. We only took into account binary properties where the less frequent case
was represented by at least four maps.

7.2 Odorant perceptual properties

In papers V and VI, we analyzed representations according to perceptual categories
of odorants. In paper V, we took a set of odorant perceptual properties (sometimes
called organoleptic properties) provided by Leon and Johnson (2006) together with
the odorants.

For paper VI, we extracted perceptual odorant descriptors from flavornet (Acree
and Arn, 1998)1, a public internet resource about basic volatile compounds that
humans experience in their environment. Examples for these odor descriptors are
sweet, camphoraceous, floral, or minty.

In both papers, we grouped organoleptic properties into odor categories, which
we will henceforth call odor qualities. These are odor perceptual categories, as
described by Zarzo (2008). These categories are florals, cleaner (cleaning agent),

1Available at http://www.flavornet.org/

http://www.flavornet.org/
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foul, woody, medicinal, nutty/spicy, balsamic, fruity, alcohol, oily, herbaceous, musk,
vegetable, and green.

7.3 Localization of coding zones

To determine the activation loci for certain dimensions of the odor stimuli, such as
odor qualities or physico–chemical properties, we applied a statistical test. The idea
behind this test was to check, whether activations at a pixel increased significantly
when the odorant exhibits a particular property with respect to when it does not.

For each molecular property, we tested whether a pixel showed significant differ-
ences with respect to the property. For binary properties (such as whether it was an
aromatic chemical or not, or sweet smell or not) we compared activations for stim-
uli where the binary property was given, 𝐴𝑃 , against response patterns where the
binary property was not given, 𝐴¬𝑃 . This was done using the Wilcoxon rank–sum
test (also called the Mann–Whitney U test), a non–parametric statistical test, which
assesses whether two samples come from the same distribution (null hypothesis).

For continuous properties the procedure was more involved, such as described in
the following. We discretized properties by grouping their values into bins, taking
bin numbers 𝑘 as first guess from Sturges’ formula (compare Wand, 1997), which is
as follows:

𝑘 = ⌈log2 𝑛+ 1⌉, (7.1)

where braces indicate the ceiling function, 𝑛 are the number of observations (values
in the vector).

Then 𝑘 was manually adjusted such that in each bin there were at least roughly
5% of activation maps.

We could have used different methods, such as histogram equalization, density
models, or optimization of 𝑘 according to some measure, however decided, for sim-
plicity, to stay with this method.

We then applied the procedure with boostrap and Wilcoxon rank–sum test for
differences between activations in response to property values in a particular bin
versus activations in response to values out of the bin, i.e. testing whether points
corresponded to different ranges of the distribution of the chemical property.
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7.3.1 Wilcoxon rank–sum test

The Wilcoxon rank–sum test includes the calculation of a statistic 𝑈 . The distribu-
tion of 𝑈 is known for the null hypothesis, which assumes that the two distributions
are not different. For a detailed explanation, refer to Ott and Longnecker (p. 305
2008):

The test compares two data samples, vectors 𝑆1 and 𝑆2, which are of equal length
𝑁 . A general way to compute the Wilcoxon rank–sum test is to obtain a value, the
z–value, which can be looked up in statistical tables. This can be done as follows:

1 We start by calculating a vector of differences between entries in the two samples:
𝑍𝑖 = 𝑆𝑖

1 − 𝑆𝑖
2.

2 Then we compute a rank vector 𝑅 of these differences by sorting absolute values
of 𝑍 in descending order.

3 A value 𝑊 , with weighted entries of 𝑍 is given by this formula:

𝑊 =

𝑛∑︁
𝑖=1

−11−𝜑𝑖𝑅𝑖 (7.2)

where 𝜑 is an indicator function:

𝜑𝑖 = 𝐼(𝑍𝑖 > 0). (7.3)

4 This gives the z–value, which can be looked up in statistical tables, according to
this formula:

𝑧 = (𝑊 ± 0.5)/
√︀
𝑁(𝑁 − 1)(2𝑁 + 1)/6. (7.4)

Using the Wilcoxon ranked–sum test is analogous to applying the student t–test on
the data after ranking over the combined samples. It has the advantage over the
t–test of not assuming normality.

7.3.2 Bootstrapping

For some properties, we had only very few maps that corresponded to them. To
account for statistical variations in these distributions and differently sized vectors
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we applied a bootstrap (Efron, 1982) resampling procedure for all tests. The purpose
was to estimate p–values of the statistical test.

In bootstrapping, a statistical analysis is repeatedly applied to subpopulations of
the same size, generated by sampling from the original population with replacement.
Bootstrap methods can be used for hypothesis tests and for regression analysis and
allow the estimation of distributions of almost any statistic where only few samples
are available. For a detailed explanation, refer to Chernick (2011).

The combination with bootstrapping gives our method more robustness to out-
liers and allows the two samples to be of arbitrary (unequal) sizes.

7.3.3 Definition of representation

For each pixel, we will define receptive fields as the range of stimuli for which we
can show they evoke excitatory response at significance level.

Definition We say that points are coding for a (binary) property if the null hy-
pothesis could be rejected at the 5% significance level. More formally, the coding of
a property can be expressed as:

coding := (𝑝 ≤ 0.05)× (1− 𝑝)× (−1)2(bigger>0.5)
(7.5)

where 𝑝 stands for the bootstrapped p–value of the statistical test. bigger takes 1 if
the bootstrap estimated of the distribution means 𝜇̂𝐴𝑃

> 𝜇̂𝐴¬𝑃
and 0.

The obtained value indicates how strong odor–induced activity is associated with
a property (or its absence for negative values). If statistical significance is below a
threshold, the value is set to 0. We only took into account values above 0.

7.3.4 Size of coding zones

In order to determine the size of coding area for a property, we took the number
of points that responded significantly different when a property was given as when
the property was absent. Skewed distributions for some properties could have an
impact on how many points are found to be significantly related to a property.
Therefore it is important to note that for the properties under consideration, data
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availability (number of images corresponding to presented molecular properties) and
size of coding zone showed no significant Pearson correlation (𝜌 = 0.33, 𝑝 = 0.27).
We took into account 13 binary molecular properties, where at least four images
were available.

7.4 Relevance of physico–chemical properties

In paper IV, support–vector machine (SVM) classification was utilized as a non-
probabilistic binary linear classifier to test the relevance of physico–chemical fea-
tures. A SVM was chosen because its superior performance compared to other clas-
sification techniques (e.g. Kotsiantis and Zaharakis, 2007) makes it an algorithm
of reference. We take the classification performance as a quantitative measure of
the structure–activation relationship between activations of glomeruli and odorant
features. We take its result as indication of relevance of molecular properties to
glomerular coding.

The scarceness of data in the classification problem for some properties lead to
problems with the classifier. We implemented a MATLAB wrapper for SVM–light
(Joachims, 1999) and tried libSVM Chang and Lin (2001), which are likely the most
popular SVM implementations, however they failed to give consistent results over
repetitions. In the end, we settled on a linear SVM (SVM Cortes and Vapnik, 1995),
in a MATLAB implementation by Miquel Tarzan, a lab colleague in Barcelona. We
found this implementation to be more robust than other SVM implementations,
possibly because of the use of Mathwork’s implementation of quadratic programming
(quadprog function).

Classification was performed on a 32–core linux cluster, a beowulf, that I had
assembled and installed (Auffarth, 2009). For classification, glomerular activations
were taken as input vector and each binary property (present vs. not present) as
binary target. In each of 10 iterations we randomly sampled half of the activation
maps as training set and took the other half as test. We distinguished between two
experimental conditions: 1. best points — classification using most representative
points, and 2. random baseline — classification using randomly sampled points.

We classified molecular properties by glomerular activations as input in order
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to estimate their impact on early olfactory coding (relevance). The logic behind is
that properties that greatly change activations at the OB level should be easier to
classify. Knowing the relevance of molecular properties could provide insight into
early coding of chemical information and provide vital clues for discerning which
properties are functional in determining the degree of interaction between an OR
and odorant molecules. We define relevance as the best classification performance
from either most representative points or random baseline whichever was higher.

For the first experimental condition, for each property, we sorted points in
descending order by their relevance with respect to the property (p–values from
Wilcoxon rank–sum test) and then classified taking the best 𝑛 points, with 𝑛 ∈
𝑁 = {1, 5, . . . 30, 45, 50, 60, . . . 150, 200, 300, . . . 1700, 1834} (36 steps).

As a random baseline, for each property, we took the same intervals 𝑁 , but
randomly sampled points. We averaged over 250 random subsamples of points for
each interval.

We computed the area under the ROC curve (AUC; compare Bradley, 1997)
as performance criterion, which measures the fraction of true positives against the
fraction of false positives. It has the advantage to be unbiased by skewed class
distributions, which are a particular problem in our data set.

7.5 Perceptual distances

We investigated how perceptual categories are represented in the olfactory bulb
responses in paper VI. We made a distinction between spatial coding, the situation,
where specialized local encoders exist for certain information, and, on the oher hand,
population coding, where information is broadly distributed over the responses of the
population. We analyzed and compared glomerular responses to human perceptual
categories.

Zarzo and colleagues (Zarzo, 2008; Zarzo and Stanton, 2009) published analyses
of two studies, perfumers’ odor perception space (BH; Boelens and Haring, 1981)
and cross–cultural odor similarity ratings (Chrea, 2004). In order to know, how
well the coding as identified by the coding centers reflected perceptual orderings
as reported in the literature, we mined PCA plots in the two papers by Zarzo,
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which indicated perceptual distances in the first two principal components between
odorant qualities. This provided us with a pair–wise distance matrix between two
sets of perceptual odor categories.

We extracted two distance matrices which came from the two mentioned datasets,
𝐷Chrea and𝐷BH small. Chrea corresponded to odor categories floral/cosmetic, cleaner,
foul/musty, woody, medicinal, nutty/spicy, balsamic, and fruity. BH small cor-
responded to categories floral, woody, medicinal, balsamic, fruity. We compared
matches to these perceptual spaces from both population activities of the entire
glomerular layer and from spatial codes in order to see which reflected better these
perceptual orderings.

In order to obtain codes for population responses, we took the mean map over
all activity maps corresponding to the same odor quality (compare Cleland et al.,
2007; Rubin and Katz, 1999; Lin et al., 2006).

Thus, a population code for a given odor category A can be written as 𝑣⃗𝐴 =

(⟨𝑥1⟩𝐴, . . . , ⟨𝑥nglom⟩𝐴) where 𝐴 is the set of odorants representing category A and
⟨𝑥𝑖⟩ stands for the mean response of glomerulus 𝑖 averaged over all odorants belong-
ing to 𝐴. As an ordering between properties we calculated the Euclidean distances
between these mean–maps, thus obtaining pairwise distances between odor qualities
based on population code, 𝐷𝑃 .

Johnson and Leon (2000a); Johnson et al. (1998, 1999) used various dissimi-
larity indices and Johnson et al. (2002, 2004, 2005b) used the Pearson correlation
coefficients between glomerular response patterns.

As for the ordering between spatial zones (as per explained definition), we applied
the Hausdorff distance (compare Alt et al., 2003), which measures distances between
two–dimensional shapes and therefore incorporates coding center distance (similar
to Euclidean distances), but additionally information of shape, size, and orientation
match. We applied the modified Hausdorff distance function (Dubuisson and Jain,
1994) between vertices of pairs of encoding zones. Vertices consisted of points that
were found to be responsive to odor categories.

Informally, the Hausdorff distance is the farthest distance of closest points be-
tween two sets. Formally, given 𝑋 and 𝑌 , two non–empty subsets of a metric space
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(𝑀 , 𝑑), their Hausdorff distance 𝑑𝐻(𝑋,𝑌 ) is defined as follows:

𝑑H(𝑋,𝑌 ) = max{ sup
𝑥∈𝑋

inf
𝑦∈𝑌

𝑑(𝑥, 𝑦), sup
𝑦∈𝑌

inf
𝑥∈𝑋

𝑑(𝑥, 𝑦) }, (7.6)

with sup and inf representing the supremum and infimum, respectively.
Thus, we obtained a matrix of pairwise differences between properties based on

coding maps, 𝐷𝑆 .
We normalized each of the three matrices of pairwise distances 𝐷𝑃 , 𝐷𝑆 to unit

sum and computed the sum of the absolute error between both of them and 𝐷Chrea

and 𝐷BH small.
We also added spatial and population information linearly with the same weight

to see if combined they provided a better fit to the perceptual space. For the baseline,
100,000 sets of points were sampled from random uniform distributions. Then the
distances from their pair–wise distances to perceptual space was computed.

7.6 Model of the early olfactory system

In paper VI we presented a model of the early vertebrate olfactory system consisting
of ORs, ORNs, and GLs.

7.6.1 Receptors and receptor neurons

As commented before, there is no simple scale or known dimensionality to olfactory
perception. Therefore one solution to order odorants is representing them by a
large number of molecular descriptors. Haddad et al. (2008a) presented a set of
32 physico–chemical descriptors, derived from an initial set of 1, 664 descriptors,
that were shown to reflect the variability of the bulb and antennal lobe population
responses. In simple terms, this means that odors that cause similar responses are
proximal in this space and odors that elicit dissimilar responses are distant. They
supplied a dataset of 447 odorants described by these 32 properties as supplementary
material with their paper, which we used in this study.

We devised a set of synthetic (or virtual) receptors. These odorant receptors
should be distributed to capture the variance of the physical space and each be
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placed to recognize biologically relevant regions (compare Schmuker and Schneider,
2007; Sánchez-Montañés and Pearce, 2002, for similar concepts). We applied the
fuzzy c–means algorithm (Bezdek, 1981) to draw cluster centers at locations in
the 32–dimensional space. In this way, each OR responds to ligands that occupy a
neighborhood in physical space as described by molecular descriptors. The closer the
combination of molecular properties of an odorant to the center of the receptive field
of the receptor, the higher the response. Each OR can be described by its center in
the 32–dimensional space and its affinities to odorants based on the distance relation
in the 32–dimensional space. OR–odorant affinity relationships are indicated by the
circle radii in fig. 2, paper VI.

We modeled ORN responses to ligands at a given concentration after Sandström
et al. (2009) as a a sigmoidal function of the OR–ligand affinities. The response
𝑅𝑖(𝐶) of ORN 𝑖 to a ligand at concentration 𝐶 is expressed as the product of a term
𝐴𝑖 that represents the amplitude and a term that includes the ligand responses of
ORs. 𝑎𝑖 is the affinity of receptor to the ligand and ℎ is the gain (steepness) of the
ORN response curve.

𝑅𝑖(𝐶) = 𝐴𝑖

(︂
1− 1

𝑒ℎ𝑖𝑎𝑖𝐶

)︂
(7.7)

The response of ORN population 𝑖 is expressed as the product of a term 𝜇𝐴

and a term that includes the ligand responses of homogeneous ORs. The mean
frequency of responses was taken to be as in this formula (adapted from Sandström
et al., 2009):

𝜇𝑅𝑖(𝐶) = 𝜇𝐴

(︂
1− 1

𝑒𝜇ℎ𝑎𝑖𝐶

)︂
(7.8)

We set the mean amplitude, 𝜇𝐴, of ORNs to 1 and mean gain 𝜇ℎ to 1.4 (after
Sandström et al., 2009). Please see fig. 3, paper VI, for an illustration of ORN
dose–response curves.

7.7 Dimensionality reduction

We used multi–dimensional scaling (MDS) (Kruskal, 1964) in papers V and VI.
A recent review and comparison about dimensionality reduction, including MDS,
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can be found in Bunte et al. (2011). Generally dimensionality reduction is about
reducing a dataset from R𝑁 ∋ 𝑥𝑖 → 𝑦𝑖 ∈ R𝑘, where 𝑘 is often chosen as 2 or 3. One
difference between dimensionality reduction methods are the definition of similarity
and employed optimized techniques. Consequently, these techniques also differ with
respect to the preservation of distances, however, there is no universally accepted
definition of topology–preservation (c.f. ch. 5 Lee and Verleysen, 2007).

Multidimensional scaling makes few assumptions about the structure of data
and preserves the distance relationships among data samples. In MDS, the topology
is preserved by minimizing (e.g. using gradient descent) the (Euclidean) pair–wise
distances in the original data set 𝑑𝜒(𝑥𝑖, 𝑥𝑗) and pair–wise distances in the projection
𝑑𝜀(𝑦𝑖, 𝑦𝑗):

𝐸MDS =
∑︁
𝑖𝑗

𝑤𝑖𝑗 (𝑑𝜒(𝑥𝑖, 𝑥𝑗)− 𝑑𝜀(𝑦𝑖, 𝑦𝑗))2. (7.9)

The weights 𝑤𝑖𝑗 can be set to 𝑤𝑖𝑗 = 1/𝑑𝜒(𝑥𝑖, 𝑥𝑗) (Lee and Verleysen, 2007).

7.8 Axon growth

We clustered ORN axon projections by a biomimetic method described in Lansner
et al. (2009). Using multidimensional scaling (MDS) (c.f. section 7.7), axons can be
put in a lower–dimensional space where their locations are defined by distance rela-
tions based on co–activation. In this way, the distances between glomeruli reflects
regularities in the physical odor space. For distance relationships, we computed
Pearson correlations between vectors of response activities of ORN populations to
all odorants.

We reduced the resulting matrix by MDS to three dimensions and obtained coor-
dinate points corresponding to each olfactory axon bundle. In total, this operation
is similar in principle to the self–organizing map used earlier as ORN convergence
model (Gutierrez-Osuna, 2002b; Schmuker and Schneider, 2007) and is consistent
with the chemoaffinity hypothesis (Sperry, 1963).
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Chapter 8

Results about characterization of
the olfactory bulb

As discussed before in chapter 5, glomeruli in the olfactory bulb (OB) are first
processing stations, where odor representations are noise–filtered, sharpened, and
possibly re–organized. Glomeruli are also gateways to secondary neurons and to
higher–order representations. Therefore, learning about glomerular representations
can possibly give important insights into olfactory processing. In this chapter, results
from papers IV, V, and VI are summarized. These papers mainly deal with the
spatial organization of olfactory information at the glomerular level.

The results presented in this chapter will then be discussed in chapter 9.

8.1 Introduction

The relationship between molecular properties of odorants and neural activities is
arguably one of the most important issues in olfaction and the rules governing this
relationship are not clear. In paper IV, we investigated glomerular representations
of odorant properties. We compared the relevance of these properties and the size
of their coding zones. This was done on a dataset of nearly 400 odorants which
covered the whole array of glomeruli (c.f. section 7.1). In chapter 7, the methods
used for data analysis are described, including a nonparametric statistical test and
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a support-vector machine classification study.
As discussed in chapter 5, representations of perceptual qualities have previously

been found in the piriform cortex, however, several recent studies indicate that the
olfactory bulb code reflects behaviorally relevant dimensions spatially as well as at
the population level. For paper V, we applied the same statistical analysis tech-
niques on the odor response images as in paper IV. The purpose in that study was
to understand odor quality coding in the brain. We used several techniques in the
analyses to compare hypotheses of population and spatial coding (c.f. section 7.5).
The most important and novel result reported in paper V was that we found repre-
sentational areas for several perceptual qualities.

In paper VI, we modeled the early olfactory system, specifically the levels from
the olfactory epithelium to the olfactory bulb. We derived a glomerular organization
based on a set of real–world, biologically–relevant stimuli. Axons were ordered based
on correlations of sensory neurons and thereby we found a spatial organization of
glomeruli, which we analyzed with similar techniques as in paper V. Our main result
was to show that this simple spatial organizational principle of glomeruli plausibly
can explain a range of phenomena, including perceptual ordering comparable to that
shown in paper V.

The rest of this chapter is ordered by papers.

8.2 Results on physico–chemical representations in the
rat glomerular map

8.2.1 Localization of coding zones

In figures 8.1 and 8.3, localizations of coding areas for several physico–chemical
properties are displayed. These results were obtained by applying the definition
for representation and the corresponding statistical test described in section 7.3.
These properties included molecular bonds, cyclization, functional groups, molecular
length, and carbon number. In figure 8.3, spatial progressions with molecular length
and carbon number are shown. These specializations to combinations of physico–
chemical properties show a local clustering of receptive glomeruli. As can be seen
in figure 8.3, the spatial representations for the physico–chemical properties are
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Figure 8.1: Representations of physico–chemical properties: Maps with coding
zones for various odorant properties. Loci of the 13 binary properties (described in sec-
tion 7.1), grouped into basic dimensions of molecular bonds, cyclization, and functional
groups. The colors in the figures indicate zones that code for a specific combination of dif-
ferent binary properties as determined by the statistical method described in section 7.3. The
numbers in the legends are explained in this caption. a Example map showing loci coding
for the alkane property. 1 marks the coding zone for alkane. b — A map of odorant bond
properties. The numbers stand for: 1 alkane 2 alkene 3 alkane, alkene 4 alkyne 5 alkane,
alkyne 6 alkene, alkyne 7 alkane, alkene, alkyne. c — Map of two cyclization properties.
The number code is as follows: 1 aromatic 2 alicyclic 3 aromatic and alicyclic. d Areas for
two more cyclization properties. The number code is as follows: 1 polycyclic 2 heterocyclic
3 polycyclic and heterocyclic. e Coding zones for three functional group properties. The
numbers stand for: 1 amine 2 ketone 3 amine and ketone 4 alcohol–phenol 5 amine and
alcohol–phenol 6 ketone and alcohol–phenol. f Loci for the three other functional group prop-
erties. The numbers: 1 ester+lactone 2 carboxylic acid 3 ester+lactone and carboxylic acid
4 sulfur-containing compound 5 ester+lactone and sulfur-containing compound 6 carboxylic
acid and sulfur-containing compound 7 ester+lactone, carboxylic acid and sulfur-containing
compound.
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Figure 8.2: Representations of physico–chemical properties: a — surface area,
b — elongation, c — water solubility. Color explanation: yellow in figure a indicates
a large odorant surface area, orange indicates a small surface area. Orange in figure b
indicates molecules that are elongated (c.f. section 7.1, yellow indicates coding for more
roundish molecules. In figure c, red indicates high water solubility, yellow indicates low
solubility.

(a) Surface Area

 

 

(b) Elongation

 

 

(c) Water Solubility

 

 

Figure 8.3: Representations for physico–chemical properties. In A Molecular
length across the bulb. See the legend for the color code. B Representations of carbon
numbers. The legend explains the color code.

organized in zones. In figure 8.1, the corresponding anatomical terms are indicated.
For space constraints we had excluded many maps from the paper. Here, we

include additional maps for surface area, elongation, and water solubility, visible in
fig. 8.2. It becomes clear that molecular length correlates highly with respect to
co–activation with molecular elongation and surface area. Further, long molecules
are less water soluble, in fact in the dataset, there is a negative correlation between
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water solubility, on the one hand, and surface area, elongation, and water solubility,
on the other hand. This could give rise to interpretations of areal specialization,
along the lines of Wilson and Stevenson (2006, ch. 5), who observed that large, less
volatile odorants provide relatively long–lasting and less easily detectable signals.

These results were based on the definition of representation and the statistical
test thereof (c.f. section 7.3). It is important to note that we did not take into
account correlations between the investigated physico–chemical properties.

We found several zones that are preferentially responsive for different combina-
tions of properties. These properties included molecular bonds, cyclization, func-
tional groups.

Further, by extension of our statistical procedure, we compared the size of cod-
ing zones. We are not aware of other attempts in the literature to systematically
quantify the sizes of coding areas. It should be cautioned that these results should
be interpreted more qualitatively than quantitatively.

We applied support–vector machine classification of physico–chemical odorant
properties by glomerular activations in order to estimate their impact on early ol-
factory coding (this method is described in section 7.4). The logic behind is that
properties that greatly change activations at the OB level should be easier to classify.
Knowing the relevance of molecular properties could provide insights into the early
coding of chemical information and provide vital clues for discerning which prop-
erties are functional in determining the degree of interaction between an OR and
odorant molecules. We define relevance as the best classification performance from
either the most representative points or a random baseline whichever was higher.

Our results indicate that some physico–chemical properties are especially rele-
vant for glomerular representations. The properties with the highest performance
scores were alkyne, alkane, alkene, and amine. This could indicate that these prop-
erties have a very strong impact on olfactory processing in rats. In general, these
systematic results confirm earlier studies indicating the importance of cyclization,
bond saturation, and some functional groups, for example Johnson and Leon (2007)
and Yoshida and Mori (2007).
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8.3 Results on perceptual representations in the rat ol-
factory bulb

Figure 8.4: Representations of perceptual categories. Representations for odors
(indicated in yellow) corresponding to the following perceptual categories: a — floral, b —
cleaner, c — foul, d — woody, e — medicinal, f — nutty/spicy, g — balsamic, h — fruity,
i — herbaceous, and j — musky.
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In paper V, we performed an analysis of coding for perceptual odor qualities.
This was again done based on images from the glomerular response archive, which
was described in section 7.1. The dataset of perceptual properties was described in
section 7.2.

We started off by computing principal components and their correlations to odor
qualities. These (linear) correlations indicated that some odor qualities aligned well
along these principal components. As found in previous studies (e.g. Zarzo, 2008;
Khan et al., 2007), the first dimension correlated with qualities that are known
to be particularly pleasant and unpleasant, such as (pleasant) fruity and floral in
one direction and (unpleasant) medicinal in the opposite direction. As stated, this
reproduces similar results from the literature. However, we found the third principal
dimension to show a similar alignment possibly related to pleasantness.

The main result from paper V was to find clustered responsive regions for some
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odor qualities. These results are reproduced in figure 8.4. These odor qualities
included floral, cleaner, foul, woody, medicinal, nutty, balsamic, fruity, herbaceous,
and musk. To our knowledge, these results are novel.

We then compared the spatial proximity and overlap between these zones (mea-
sured by the Hausdorff distance) to perceptual distances as given in Zarzo (2008)
as an evaluation if these distances could carry meaningful information. The theo-
retical aspect behind this was discussed before in chapter 6 in relation to chemical
progression. As comparison to these spatial distances, for the population code, we
compared dissimilarities based on the Euclidean distances between the (mean) pop-
ulation vectors and the perceptual distances (as per Zarzo 2008). The method for
computing perceptual distances was explained in section 7.5.

Based on this comparison, we argued that spatial distances seemed to be more
informative of perceptual differences than what could be expected from random
distributions and better than distances between the population codes.

8.4 Results on organization of the olfactory bulb

In paper VI, we modeled the early olfactory system based on the methods de-
scribed in section 7.6. The simulation included a dataset of odorants taken from
Haddad et al. (2008a). This dataset contains ecologically–relevant smells in a high–
dimensional space (32 dimensions) that had been optimized to fit with physiological
data of rats, fruit flies, mice, honeybees, and tadpoles. In this space spanned by
the odorants and their descriptors, we placed receptors using fuzzy clustering (the
fuzzy c–means algorithm). These receptors were consequently located at partly
overlapping regions in this space. The receptor response magnitude to an odorant
depended on its distance to the odorant. We defined two different neural response
functions. The first one is simplified to be ignorant to concentration or — in other
words — describes the responses of ORNs with respect to a normalized concentra-
tion. The second response function depends on a concentration and was used to
obtain dose–response curves.

We then simulated sensory responses to the set of odorants and defined regions
of sensory axon projections based on the similarities between the neural response
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profiles. The spatial organization was computed according to the method described
in section 7.8, which included the computation of a distance matrix and dimen-
sionality reduction by multi–dimensional scaling (c.f. section 7.7). The regions of
synaptic convergence were computed using multi–dimensional scaling. At each iter-
ation, odorants were presented to the network, distances between olfactory axons,
and projections were adjusted. We demonstrated that in such a way, over iterations
of the algorithm, axonal projections from ORNs of the same type converge at the
bulb.

We next showed that according to our dose–response model, few glomeruli are
activated at low concentration. As the concentration increases more glomeruli are
activated, until the glomerular map becomes very unspecific and saturated. This
means that our model accounts for increasing glomerular recruitment as reported in
the literature (c.f. section 6.4; Rubin and Katz, 1999; Cleland et al., 2007; Johnson
and Leon, 2000a; Stewart et al., 1979).

Then, similarly to paper V, we computed matches of spatial distances and pop-
ulation vectors, respectively, to perceptual differences (Zarzo, 2008) (dataset de-
scribed in section 7.2). Table 8.1 reproduces these results. It shows that spatial
distances explained perceptual distances much better than could population codes.
Notably, we found significant (Spearman rank) correlations (at the 5% significance
threshold) between the distances for one dataset and the spatial code (for the per-
fumers’ dataset BP; 𝜌 = 0.6848, 𝑝 = 0.04), while other correlations were insignifi-
cant. The method for computing perceptual distance is explained in section 7.5.

Table 8.1: Matching error between perceptual spaces. Absolute error of fit between
coding spaces as computed from response patterns (𝐷𝑃 , 𝐷𝑆) and perceptual spaces (𝐷Chrea
and 𝐷BH small). Chrea and BH small are different perceptual spaces from the literature.

𝐷Chrea 𝐷BH small

𝐷𝑆 0.51 0.24
𝐷𝑃 0.60 0.55

combined 0.43 0.34
baseline 0.65 0.65



Chapter 9

Discussion

After we reviewed some background and literature in chapters 5 and 6, and intro-
duced datasets and methods in chapter 7, we presented our results in chapter 8.
This chapter discusses these results. In chapter 10, some conclusions will be drawn
from them.

In this chapter, instead of dividing the work into sections by papers, we decided
to follow a more problem–oriented structure in order to have a better reading flow.

For two of the studies, we used a dataset by the Michael Leon group (c.f. sec-
tion 7.1). This dataset is publicly available on the internet and contains measure-
ments of glomerular responses to odorants. We applied statistical methods and
analysis based on machine learning techniques (compare section 7.3).

Some principle questions about early olfaction are the following:

• What is the organization of the sensory space?

• How is perceptual information encoded in the olfactory system and how can
it be decoded?

– Is there a spatial organization underlying activations in the olfactory
system?

∗ What are its principles?

∗ What is its function?

– What are the principles of projection to the glomerular layer?
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The goal of our research into spatial coding in the glomerular layer of the olfac-
tory bulb was to gain a better understanding about some of these questions. This
includes issues about the organization of odor representations, coding dimensions
in the olfactory system, the emergence of order based on self–organizing principles,
information transfer in the brain, and the predictive value of activity maps in terms
of perception.

This discussion starts off by the question of spatial organization and then comes
to the other questions.

9.1 Is there a spatial organization underlying activations
in the olfactory bulb?

As discussed earlier, representations in the brain have often been observed to be
spatially organized at least in early stages and in the sensory cortices. For the per-
ception of smells, the analysis of such an organization, however, is not as straight-
forward, because the physical metric is unclear (c.f. section 5.4.1). As discussed in
section 6.4, there is accumulated evidence for glomerular feature clusters and some
molecular properties are detected by topographically close glomeruli (e.g. Johnson
et al., 2007; Mori et al., 2006b; Meister and Bonhoeffer, 2001; Rubin and Katz,
1999; Vassar et al., 1994). Many studies showed a receptive field organization on
the level of glomeruli which correlates with evidence suggesting a pattern of input
convergence of ORs onto topographically confined regions of the OB (for example
Shepherd, 1972; Land and Shepherd, 1974; Lancet, 1986).

In chapter 7, we presented a nonparametric statistical procedure for decoding of
continuous behavioral properties to investigate coding at the glomerular level of the
OB. It was used in paper IV and paper V. It consisted of a univariate statistical test,
the Wilcoxon rank–sum test, within a bootstrap wrapper. This procedure brings the
advantage of systematic and quantitative results in the absence of assumptions of
distributions and allows comparison of vectors of unequal lengths. By our method,
we could map odorant properties to clustered zones. We found continuous spatial
zones for a set of molecular properties and perceptual categories in papers IV and
V, respectively. From these studies, we can draw conclusions about the spatial
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organization of representations at the glomerular layer of the OB.

9.1.1 Spatial organization with respect to a subset of physico–
chemical properties

It was shown earlier (Meister and Bonhoeffer, 2001; Rubin and Katz, 1999) that
many glomeruli are sharply tuned for a small range of carbon chain lengths. John-
son and Leon (2007) found chemotopic progressions with increasing carbon number
for several subgroups of odorants: (i) carboxylic acids, methyl and ethyl esters,
(ii) primary alcohols, aldehydes, phenols, (iii) those with an aliphatic hydrocarbon
chain. These progressions were shifts from medial and lateral areas into ventral
areas.

Our results on the complete set of 362 odorants show mostly medial areas for up
to 7 carbon atoms and ventral areas for 14–21, and ventro–medial areas for molecules
of 8–13 carbon atoms. This confirms and extends Leon and Johnson’s description of
areas for molecular length. Leon and Johnson indicated that zones in dorsal areas
were active for shorter chains, while longer molecules activated zones more ventrally.
Our results for carboxylic acids coincide with Johnson and Leon (2007) in locating
responsive glomeruli in anterior medial/lateral areas. We also confirm Leon and
Johnson’s result in placing regions for alcohols and phenols in lateral/medial areas,
more caudal than regions for carboxylic acids. Further, we found areas for esters
overlapping with their placement of aliphatic esters located in some central medial
and lateral areas just next to alcohols. We found another area for esters in caudal
areas of the lateral and medial bulb.

Johnson and Leon placed a zone for aromatics with oxygen groups and ketones
in a dorsal region and one for aromatic hydrocarbons in a dorsal caudal region. We
found a large region for aromatics, mostly dorsal but also medial and lateral, and a
region for ketones in similar dorsal areas.

Soucy et al. (2009) had only found a coarse topography for similar odorants in
mouse and rats, which could be taken as contrary to our results. We would caution,
however, against a direct comparison, because of several methodological differences.
(i) They used different imaging method (optical imaging vs. 2DG), which imply dif-
ferences in temporal scale of measurements and therefore distortions of correlations
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(compare Khan et al., 2010). (ii) There could also be differences in spatial scale
between the datasets, since Soucy et al. did not average over multiple animals as
did Leon and Johnson (c.f. section 7.1). Although, Soucy et al. report that there is
little variation in location of glomeruli by response-profile across animals, this could
influence results. (iii) Soucy et al. analyzed only a small part of the dorsal surface
of the olfactory bulb, while Leon and Johnson’s dataset provides response profiles
over the whole spatial array of glomeruli. (iv) Soucy et al. investigated correlations
of glomerular response profiles over a set of specific odorants, as opposed to correla-
tions of responses to a set of properties of odorants. (v) Soucy and colleagues used
anesthesized animals which may cause changes in dynamics which are only partially
understood (compare Li et al., 2011; Khan et al., 2010).

In paper IV, we compared sizes of coding zones and relevance to representations
between the investigated molecular properties. By application of a support vector
machine classification procedure, as described in chapter 7, we obtained results for
relevance of these properties. By extension of our statistical procedure, we compared
the size of coding zones. We are not aware of other attempts in the literature to
quantify sizes of coding areas. Results of size go in hand with localization maps
shown above to indicate that some encoding of certain properties are specific to
some spatial areas.

It should be cautioned, however, that these results should be interpreted more
qualitatively than quantitatively. The thresholding of p–values at certain signifi-
cance values means that effects of concentration and relevance cannot be completely
separated, however, presented results could serve to roughly group properties by
their coding zones. Size estimates of investigated properties differed largely. There
are properties that recruit bigger zones and properties that recruit smaller zones.
The properties for which we found the smallest coding zones are amine and sulfur–
containing compound, with roughly 0.5% and 4.1% of recruited area.

It is known from many studies that the size of neural representation is related to
perceptual acuity (e.g. Nienborg et al., 2004; Brown et al., 2004) and that exposure
to olfactory stimuli leads to an increase of the responsive glomerular area (Rochefort
et al., 2002; Woo and Leon, 1991). Therefore, we think that the area sizes we found
could be related to acuity. Larger coding zones could mean that properties are
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sensed by a broad range of ORs or that represented odorants have been presented
frequently. In turn, it could be argued that properties with small coding zones and
high relevance (as measured) could be more directly related to coding primitives,
odotopes. From our results, amine, sulfur–containing compound, and alkyne could
be such candidates.

Our classification results (see method in section 7.4) indicate that there are
some properties that strongly affect odor coding on the OB level. Most relevant
properties are alkyne, alkane, alkene, and amine. From our study, we speculate
that these properties could have a big impact on olfactory processing in rats and we
briefly discussed possible reasons for that.

Activations are very distinct with respect to whether an odorant contained a
sulfur functional group or not. Bond saturation, indicative of the reactiveness of
compounds, seems also to affect coding strongly, as we can see in the high classifica-
tion performance of alkyne, alkane, and alkene. Carboxylic acid another functional
group and aromatic, a cyclization property, still seemed to be quite important. Our
results confirm that cyclization, bond saturation, and some functional groups are
important. This is in line with Johnson and Leon (2007), who proposed as important
dimensions of molecular properties cyclization, carbon numbers, bond saturation,
branching, functional groups, and substitution position.

Our results also partly confirm Yoshida and Mori (2007), who proposed 14 pri-
mary odorant categories which could serve to enhance category–profile selectivity.
These properties were sulfides, alcohols, methoxypyrazines, 6–carbon and 9–carbon
green–odor compounds, aldehydes, ketones, isothiocyanates, terpene hydrocarbons,
esters, terpene alcohols, alkylamines, acids, lactones, and phenol and its derivatives.
As for the properties included in the study in paper IV, we found that, sulfides,
alcohols–phenol, ketones, ester–lactone, amines, performance was good, however,
our results indicate that other properties such as whether odorants contained a
carboxylic–acid group or their bond saturation could also be important.

We find clustered glomerular representations for many molecular properties in a
2–deoxyglucose autoradiography data set of the rat OB. Of the compared molecular
properties, presence of alkyne, alkane, alkene, and amine causes big changes in
these activation maps as compared to other properties. Amines, sulfur–containing
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compounds, and alkynes have small zones and high relevance to activation changes.
Aromatics, alkanes, and carboxylic acids showed biggest zones. Together, these
results suggest a local spatial encoding for some molecular properties.

It has to be mentioned that we did not control for correlations between molecular
properties in our study. Long molecules are, for example, less water soluble. Areas
for molecular length correlated highly with respect to co–activation with molecular
elongation, surface area, and water solubility (not shown). It is known that carbon
number is associated with molecular length, volume, hydrophobicity, among other
properties (c.f. Johnson and Leon, 2007). In many studies only a small set of odor-
ants is examined at differing concentration levels. A comparison across many studies
is therefore not always straightforward, however, we think that our results are gen-
erally in good agreement with conclusions of several studies, including Johnson and
Leon (2007).

9.2 How is perceptual information encoded in the olfac-
tory bulb?

For the study in paper V we matched odor quality descriptors from Leon and John-
son (2006) to odor categories. Then we applied the statistical analysis to find rep-
resentations. We found that representations of perceptual categories are typically
arranged in continuous spatial zones. These results point towards a modular or
domain organization. The implications for coding from such an organization are
discussed in the paper and in section 9.2.1 in this thesis.

We identified representations for perceptual categories from rat glomerular re-
sponse patterns to odors corresponding to these odor categories. This was done
in two manners, according to population and according to spatial coding schemes.
As for population coding, we took the strict interpretation of uniform weights for
all units. As for spatial coding, we used a statistical method to calculate receptive
fields corresponding to odor qualities for each glomerulus.

We first tried to relate principal components of glomerular response patterns to
perceptual categories. Haddad et al. (2010) analyzed population activity of GLs,
ORs, and secondary neurons from different studies and found that the first princi-
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pal component was highly correlated with approach or withdrawal (or pleasantness
vs. unpleasantness). Furthermore, they found that the first principal component
correlated with many odor qualities.

In paper VI, we used the dataset from Haddad et al. (2008a) of realistic, biologically–
relevant odorant data and showed how from these simple principles a topographic
map emerges that is arranged by similarities defined by stimulus statistics. We then
analyzed variability of glomerular responses over different odor categories. Data
of odor categories were obtained by mapping odorant descriptors. We used a sta-
tistical method to calculate receptive fields corresponding to odor categories for
each glomerulus. Then, we compared how well a spatial code and population code
matched differences of human perceptual experiences. We found that errors of fit
between spatial distances of representations, on the one hand, and perceptual or-
derings by human subjects on the other hand, were smaller than was the case for
population codes. Therefore, our results suggest that spatial maps have a stronger
relation to perception than have population codes. However, it has to be noted
that also for population codes we obtain a better match than would be expected
by chance. The combined codes integrating population and spatial codes, matched
better in the case of the smaller set of odor descriptors (BH) and worse for Chrea.
Therefore, overall from our data, it is not clear, whether population and spatial
coding schemes complement each other.

In summary, our model shows that the spatial organization found for perceptual
categories could be partly explained by regularities in the stimulus space.

9.2.1 What is the function of spatial organization?

As explained in section 9.2, our results suggest that there could be information about
perceptual categories on spatial and population levels. Particularly, we found a local
clustering of glomeruli, continuous spatial zones, for some molecular properties and
for perceptual categories. This could point towards an organization into modules
by perceptual relevance.

We already discussed some possible functional implications of this organization
in section 6.4.1. As noted before, it can be speculated that the observed clustering
of properties constitutes an instance of the minimization of wiring length in cortical
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networks for local processing of feature combinations (c.f. Chen et al., 2006; Buzsáki
et al., 2004). Spatial clustering could imply the existence of specialized filters and
read–out mechanisms. As suggested before, clustering by similar sensitivity could
allow a center–surround organization of lateral inhibitory filters.

Along this line, increasing recruitment of activated area could improve signal–
to–noise ratio which allows a decrease of detection thresholds or it could indicate a
further specialization within the recruited area. A smaller area could also indicate
a specialized local feature detector. From that perspective, for example, our result
that both amines and sulfur–containing compounds are represented in a small area
of glomeruli could indicate the need for more thorough investigation.

It has been suggested before (e.g. Leon and Johnson, 2009) that spatial dis-
tances could be related to behavioral (or perceptual) differences. In order to test
this hypothesis, we investigated relations of distances between regions that are pref-
erentially active for perceptual categories to perceptual orderings. We compared how
well a spatial code and population code matched human perceptual experiences. We
found that for odor qualities many representations are spatially continuous, hence
this speaks in favor of a spatial code.

We found that distances between spatial representations were similar to percep-
tual orderings by human subjects (as compared to baseline) and errors were smaller
than for population codes. Therefore, our results suggest that spatial coding has a
stronger relation to perception than population codes and confirm previous studies
which suggest a spatial coding.

Cleland and Leon and Johnson argued based on experiments that qualitative
odor perception is determined by glomerular activity patterns (Cleland et al., 2007;
Johnson and Leon, 2000d). It is also known that activity patterns recruit more size
by increasing odorant concentration (Khan et al., 2010; Johnson and Leon, 2000c;
Sachse et al., 1999) and that perceptual qualities of odors can change depending
on concentration (Wilson and Stevenson, 2006, ch. 4;e.g. Doty et al., 1975). In
the spatial coding scheme, distances between patterns would change with increasing
concentration and we suggest that such an effect could help explaining differences
in discrimination ability.
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9.3 What are the principles of projection to the glomeru-
lar layer?

As we discussed in section 6.4.1, it is not clear, if organizational principles behind the
spatial arrangement of glomeruli can be pervasive in principle and if they could be
useful for processing of smell information in the brain, given that smell is such a high–
dimensional stimulus (c.f. Wilson and Stevenson, 2006; Cleland and Sethupathy,
2006). We think that a better understanding of the olfactory stimulus is needed in
order to make sense of the organization of representations.

In paper VI, we modeled the axon growth of sensory neurons based on co–
variance of neurons. As stated earlier and explained in section 7.6, this was done
based on a dataset of 447 odorants, each of which described by 32 physico–chemical
descriptors. The choice of descriptors maximized correlations between variability of
OB/antennal lobe activity responses, on the one hand, and variability of the odor-
ant descriptors, on the other hand. In our abstract model, we placed OR receptive
fields in the space captured by these molecular odorant descriptors and defined po-
sitions of ORN axon projections onto the bulb by dimensionality reduction of the
OR–odorant affinity correlation matrix. Our model included a population mean
rate in response to a concentration. In order to establish the plausibility of this
axon growth mechanism, apart from referring to biological literature, we showed
how activity–dependent mechanisms could serve to organize olfactory axons into
glomerular structures by OR identity. Axons of receptor neurons of different types
are intermixed as they grow toward the brain and they have to undergo a sorting
process before arriving at their target glomeruli. In our model, olfactory axons clus-
tered together over several iterations of the MDS algorithm. We then showed how
glomerular responses spatially broadened and saturated with increasing concentra-
tions. It is well–established that increasing concentration leads to an increasing
recruitment of glomeruli and thereby to a spatial broadening of local peaks (Khan
et al., 2010; Johnson and Leon, 2000c; Sachse et al., 1999).

We showed in paper paper VI that a model of cortical projections (Lansner
et al., 2009) can be extended to explain the emergence of topography from statistics
of naturally occurring odors (as discussed in section 7.6). The principle of axonal
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coalescence by co–activation gives rise to a topographic map where the distance of
the components in the representation is related to perceptual difference. We showed
how the activity–dependent axon growth could lead to the formation of glomeruli,
the emergence of spatial concentration coding, and topographically organized re-
ceptive fields. We showed that there is a relationship between spatial separation of
coding zones in the model and perceptual differences in humans. This could indicate
that in theory such a pervasive topographic organization is indeed possible.

9.4 What is the organization of the sensory space?

We hope that our model can provide insights into the formation of the olfactory
bulb map and internalizations of environmental regularities, even though the match
between glomerular activity and human perceptual space could be improved by
tuning parameters of the receptor affinity distribution or by including top–down
projections. Other factors influencing axon guidance are also known and the balance
between the different factors is unclear.

As for the placement of receptors (profiles of virtual receptors), it could be that
odorant receptors and projections to the OB are optimized to make environmen-
tal regularities more prominent. For example, Geisler and Diehl (2002) proposed
that the design of perceptual systems is optimized according to statistics of natural
stimuli and evolutionary fitness. More particular for olfaction, Nei et al. (2008) dis-
cussed that part of molecular changes in chemoreceptor repertoires constitutes an
adaptation of organisms to different environments. On the other side, it was sug-
gested (Abbott and Luo, 2007) that olfactory receptors are not optimal either and
Sánchez-Montañés and Pearce (2002) demonstrated that optimal stimulus estima-
tion arises from a local randomized mechanism for receptor specificity generation.
Thus, while our virtual receptors lack a direct biological correspondence, the princi-
ples of their placement seem plausible and reasonable within the scope of our model.
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Conclusions

In chapters 8 and 9, we summarized and discussed results regarding the processing
of odors in the early olfactory pathway of vertebrates. In this chapter, we will draw
conclusions from the presented studies.

In paper IV, we investigated specifically these questions: which odorant proper-
ties are coded and where, what is the size of the coding zones, and how relevant are
individual odorant properties to the encoding.

We performed a systematic study on several hundred odorants and more than a
dozen of physico–chemical properties to investigate the coding for physico–chemical
properties at the OB level, based on a dataset of responses to more than 360 odor-
ants. Statistical analysis and machine learning techniques were used for this pur-
pose. By statistical analysis, we identified sites of representations for many odorant
properties. We systematically determined that representations for many properties,
such as functional groups and properties of molecular shape. Generally, we found
that many properties are coded in specific areas in the OB and that the extent
of these zones tends to be rather limited. In a classification study, we found that
the spatial patterns of glomerular activation are indicative of odor classes and that
the prediction of physico–chemical properties based on small areas was already very
reliable. We confirmed a spatial progression of representations by carbon–chain
length. We compared the relevance of some physico–chemical properties for these
representations using classification performance and found differences with respect
to how strongly properties affect representations at the OB level. We discussed these
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differences in the context of sensitivity enhancement and read–out mechanisms.
Based on the same dataset, we extracted perceptual categories of odors from

the literature and computed spatial codes from rat glomerular response patterns
for these categories. We first analyzed the relationships between the principal com-
ponents of the glomerular response patterns and perceptual categories and roughly
confirmed previous findings about population codes at the OB. We found that repre-
sentations of perceptual categories are confined to continuous spatial zones. Further,
we compared distances between these zones to human perceptual differences. We
found that in general the main orientations of perceptual and coding spaces matched,
which suggests that perceptual qualities could be represented, to some degree, in
codes at the level of the first sensory projection. We found that the distances be-
tween local coding zones span a space that is similar to human–subject perceptual
ordering, and that the distances between spatial representations are more accurate
in predicting perceptual differences than distances between population codes. This
suggests that these spatial continuous representations are organized in a meaningful
way in terms of perceptual relationships.

We built a model of the early olfactory system where we generated virtual re-
ceptors and based sorting of sensory neuron projections on the correlated neural
activities. We used realistic, biologically–relevant odorant data and showed that
this model reproduces basic phenomenological features, such as glomerular cluster-
ing by OR identity and glomerular changes with respect to concentration changes.
We found that spatial distances based predicted by topography explained perceptual
differences better than distances predicted by population coding. The model showed
how natural statistics of odors can give rise to an ordered arrangement of represen-
tations at the OB level where distances between representations are perceptually
relevant. Therefore, these findings support our previous study which suggested a
spatial coding for perceptual categories at the OB. Generally, our results from pa-
per VI point to relationships between natural olfactory stimulus characteristics and
perceptual dimensions.

Although the machinery responsible for axon guidance is much more complex
than that presented in paper VI, we hope that progress of functional understanding
may be facilitated by keeping our model as simple as possible. The formation of
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topographic organization in our model relies exclusively on the input side, however,
other factors could be integrated in our model.

Together, the presented results suggest the existence of spatial receptive fields at
the glomerular level and that the relative spatial arrangement of these receptive fields
could be meaningful in terms of functionality and help to organize stimuli based on
perceptual categories. The question remains about functional implications of this
spatial organization. As we discussed, it has been suggested that the topographic
glomerular organization could facilitate a decrease of detection limits (by increase of
signal–to–noise ratio) and a sharpening of inputs over periglomerular connections,
and we hypothesize that this organization allows for higher–order feature detection
at the level of seconday neurons. Our results could indicate organizing principles
that could serve to efficiently convey behaviorally relevant information to higher
stages, e.g. to the amygdala over slow and fast routes. Thus, we conjecture that
a read–out mechanism could sample from glomeruli in spatial domains to extract
behaviorally relevant information from stimuli.

As for future work, a lot needs to be done. The results from these studies still
need to be confirmed using different recording techniques. The characterization
of physiological responses needs to be extended in terms of physico–chemical and
perceptual properties. Normative results such as from paper VI can be extended
to study theoretical aspects of coding. Different model studies could investigate
functionality of OB and downstream circuitry.
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