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Abstract. We study the approximability of predicates on k variables
from a domain [q], and give a new sufficient condition for such predi-
cates to be approximation resistant under the Unique Games Conjec-
ture. Specifically, we show that a predicate P is approximation resis-
tant if there exists a balanced pairwise independent distribution over
[q]k whose support is contained in the set of satisfying assignments to
P .
Using constructions of pairwise independent distributions this result im-
plies that

◦ For general k ≥ 3 and q ≥ 2, the Max k-CSPq problem is UG-
hard to approximate within O(kq2)/qk + ε.

◦ For the special case of q = 2, i.e., boolean variables, we can
sharpen this bound to (k +O(k0.525))/2k + ε, improving upon the
best previous bound of 2k/2k + ε (Samorodnitsky and Trevisan,
STOC’06) by essentially a factor 2.

◦ Finally, again for q = 2, assuming that the famous Hadamard
Conjecture is true, this can be improved even further, and the
O(k0.525) term can be replaced by the constant 4.
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1. Introduction

In the Max k-CSP problem, we are given a set of constraints over a set of
boolean variables, each constraint being a boolean function acting on at most
k of the variables. The objective is to find an assignment to the variables sat-
isfying as many of the constraints as possible. This problem is NP-hard for
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any k ≥ 2, and as a consequence, a lot of research has been focused on study-
ing how well the problem can be approximated. We say that a (randomized)
algorithm has approximation ratio α if, for all instances, the algorithm is guar-
anteed to find an assignment which (in expectation) satisfies at least α ·Opt of
the constraints, where Opt is the maximum number of simultaneously satisfied
constraints, in any assignment.

A particularly simple approximation algorithm is the algorithm which sim-
ply picks a random assignment to the variables. This algorithm has a ratio of
1/2k. It was first improved by Trevisan (1998) who gave an algorithm with
ratio 2/2k for Max k-CSP. Recently, Hast (2005a) gave an algorithm with ra-
tio Ω(k/(2k log k)), which was subsequently improved by Charikar et al. (2007)
who gave an algorithm with approximation ratio c · k/2k, where c > 0.44 is an
absolute constant.

The PCP Theorem implies that the Max k-CSP problem is NP-hard to
approximate within 1/ck for some constant c > 1. Samorodnitsky & Trevisan

(2000) improved this hardness to 22
√

k/2k, and this was further improved to

2
√

2k/2k by Engebretsen & Holmerin (2005). Finally, Samorodnitsky & Trevisan
(2006) proved that, if the Unique Games Conjecture (Khot 2002) is true, then
the Max k-CSP problem is hard to approximate within 2k/2k. To be more
precise, the hardness they obtained was 2dlog2 k+1e/2k, which is (k + 1)/2k for
k = 2r − 1, but can be as large as 2k/2k for general k. Thus, the current gap
between hardness and approximability is a small constant factor of 2/0.44.

For a predicate P : {0, 1}k → {0, 1}, the Max CSP(P ) problem is the spe-
cial case of Max k-CSP in which all constraints are of the form P (l1, . . . , lk),
where each literal li is either a variable or a negated variable. For this prob-
lem, the random assignment algorithm achieves a ratio of m/2k, where m is
the number of satisfying assignments of P . Surprisingly, it turns out that for
certain choices of P , this is the best possible algorithm. In a celebrated result,
H̊astad (2001) showed that for P (x1, x2, x3) = x1 ⊕ x2 ⊕ x3, the Max CSP(P)
problem is hard to approximate within 1/2 + ε.

Predicates P for which it is hard to approximate the Max CSP(P ) prob-
lem better than a random assignment, are called approximation resistant. A
slightly stronger notion is that of hereditary approximation resistance – a pred-
icate P is hereditary approximation resistant if all predicates implied by P are
approximation resistant. A natural and important question is to understand
the structure of approximation resistance. For k = 2 and k = 3, this ques-
tion is resolved – predicates on 2 variables are never approximation resistant,
and a predicate on 3 variables is approximation resistant if and only if it is
implied by an XOR of the three variables (H̊astad 2001; Zwick 1998). For
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k = 4, Hast (2005b) managed to classify most of the predicates with respect
to to approximation resistance, but for this case there does not appear to be
as nice a characterization as in the case k = 3. It turns out that, assuming the
Unique Games Conjecture, most predicates are in fact hereditary approxima-
tion resistant – as k grows, the fraction of such predicates tend to 1 (H̊astad
2007). Thus, one possible approach to cope with the seemingly complicated
structure of approximation resistance, is to instead characterize the possibly
simpler structure of hereditarily resistant predicates, since these constitute the
vast majority of all resistant predicates.

Additionally, approximation resistance is useful for proving inapproxima-
bility results for Max k-CSP in general – a natural approach for obtaining
such inapproximability is to search for approximation resistant predicates with
very few accepting inputs. This is indeed how all mentioned hardness results
for Max k-CSP come about (except the one implied by the PCP Theorem).

It is natural to generalize the Max k-CSP problem to variables over a
domain of size q, rather than just boolean variables. Without loss of generality
we may assume that the domain is [q]. We call this the Max k-CSPq problem.
For Max k-CSPq, the random assignment gives a 1/qk-approximation. By
an observation of Yury Makarychev, the algorithm of Charikar et al. for q =
2 can be used to obtain a 0.44kblog2 qc/qk-approximation for general q (see
Corollary B.2). The best previous inapproximability for the Max k-CSPq

problem is due to Engebretsen (2004), who showed that the problem is NP-

hard to approximate within qO(
√

k)/qk.

Similarly to q = 2, we can define the Max CSP(P) problem for P : [q]k →
{0, 1}. Here, there are several natural ways of generalizing the notion of a
literal. One possible definition is to say that a literal l is of the form π(xi), for
some variable xi and permutation π : [q] → [q]. A stricter definition is to say
that a literal is of the form xi + a, where, again, xi is a variable, and a ∈ [q] is
some constant. In this paper, we use the second, stricter, definition. As this is
a special case of the first definition, our hardness results apply also to the first
definition.

A further motivation for studying the approximability of the Max k-CSPq

problem is that it is closely related to the optimum soundness-query tradeoff
of probabilistically checkable proof systems. To be specific, let naPCPc,s[r, q, d]
denote the set of languages for which there is a probabilistically checkable proof
system in which the verifier has completeness c and soundness s, uses r bits of
randomness and makes q queries from a proof with symbols from an alphabet
of size d. Then if the Max q-CSPd problem is NP-hard to approximate within
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a factor α, it holds that

NP ⊆ naPCPc,αc[O(log n), k, q],

for some c ∈ [0, 1]. For instance, Theorem 1.3 below shows that if the UGC is
true, one can take c = 1 − ε and s = αc = (1 + o(1))q2k/qk, where the o(1)
term refers to something which tends to 0 as q → ∞ (the fact that one can
take c = 1− ε does not follow from Theorem 1.3 as stated, but follows from the
fact that the theorem is derived from an approximation resistant predicate).

1.1. Our contributions. Our main result is the following:

Theorem 1.1. Let P : [q]k → {0, 1} be a k-ary predicate over [q], and let µ
be a distribution over [q]k such that

Pr
x∈([q]k,µ)

[P (x) = 1] = 1

and for all 1 ≤ i 6= j ≤ k and all a, b ∈ [q], it holds that

Pr
x∈([q]k,µ)

[xi = a, xj = b] = 1/q2.

Then, for any ε > 0, the UGC implies that the Max CSP(P ) problem is
NP-hard to approximate within

|P−1(1)|
qk

+ ε,

i.e., P is hereditary approximation resistant.

Using constructions of pairwise independent distributions, we obtain the
following corollaries:

Theorem 1.2. For any k ≥ 3, q = pe for some prime p, and ε > 0, it is
UG-hard to approximate the Max k-CSPq problem within

k(q − 1)q

qk
+ ε.

In the special case that k = (qr − 1)/(q − 1) for some r, the hardness ratio
improves to

k(q − 1) + 1

qk
+ ε <

kq

qk
+ ε.

Using an observation due to Yury Makarychev (see Corollary B.3), this gives
essentially the same hardness bounds for arbitrary q.
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Theorem 1.3. For any k ≥ 3, q ≥ 2, and ε > 0, it is UG-hard to approximate
the Max k-CSPq problem within

kq2(1 + o(1))/qk + ε

These results constitute a significant improvement upon the hardness by
Engebretsen (2004) of qO(

√
k)/qk. However, they do not improve upon the

results of Samorodnitsky & Trevisan (2006) for the case of q = 2. In this case,
we obtain the following theorem.

Theorem 1.4. For any k ≥ 3 and ε > 0, it is UG-hard to approximate the
Max k-CSP problem within

k +O(k0.525)

2k
+ ε.

If the Hadamard Conjecture is true, it is UG-hard to approximate the Max
k-CSP problem within

4d(k + 1)/4e
2k

+ ε ≤ k + 4

2k
+ ε

Thus, we improve the hardness of Samorodnitsky & Trevisan (2006) by
essentially a factor 2, decreasing the gap to the best algorithm from roughly
2/0.44 to 1/0.44.

1.2. Related work. It is interesting to compare our results to the results of
Samorodnitsky & Trevisan (2006). Recall that using the Gowers norm, they
prove that the Max k-CSP problem has a hardness factor of 2dlog2 k+1e/2k,
which is (k + 1)/2k for k = 2r − 1, but can be as large as 2k/2k for general k.

Our proof uses the same version of the UGC, but the analysis is more direct
and general. The proof of Samorodnitsky & Trevisan (2006) requires us to work
specifically with a hypergraph linearity test for the long codes. For this test, the
success probability is shown to be closely related to the Gowers inner product
of the long codes. In particular, in the soundness analysis it is shown that if
the value of this test is too large, it follows that the Gowers norm is larger than
for “random functions”. From this it is shown that at least two of the functions
have large influences which in turns allows us to obtain a good solution to the
Unique Games instance.

The work of Samorodnitsky & Trevisan (2006) builds upon earlier work
of Samorodnitsky & Trevisan (2000), and H̊astad & Wigderson (2001), which
analyse graph linearity tests (rather than hypergraph tests).
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Our construction on the other hand allows any pairwise distribution to
define a long code test. Using Mossel (2007) we show that if a collection of
supposed long codes does better than random for this long code test, then at
least two of them have coordinates with large influences.

Our approach has a number of advantages. From the quantitative point
of view, we improve existing hardness results for Max k-CSPq, even in the
already thoroughly explored q = 2 case. These improvements may seem very
small, being an improvement only by a constant multiplicative factor of essen-
tially 2. However, as discussed in Section 5, the approach of getting inapprox-
imability from approximation resistant predicates can at best give a hardness
of 2d(k + 1)/2e/2k, and thus, in this respect, our hardness of 4d(k + 1)/4e/2k

assuming the Hadamard Conjecture is optimal to within an additive 2/2k for
k ≡ 0, 1 (mod 4) and exactly optimal for k ≡ 2, 3 (mod 4). Also, our results
give approximation resistance of Max CSP(P ) for a much larger variety of
predicates (any P containing a balanced pairwise independent distribution).

From a qualitative point of view, our analysis is very direct, and general
enough to accomodate any domain [q] with virtually no extra effort. Also, our
proof uses bounds on expectations of products under certain types of corre-
lation, putting it in the same general framework as many other UGC-based
hardness results, in particular those for 2-CSPs (Austrin 2007a,b; Khot et al.
2007; Khot & O’Donnell 2006; O’Donnell & Wu 2008; Raghavendra 2008).

Parallel to this work, Guruswami & Raghavendra (2008) extended the
“Gowers-based” approach of Samorodnitsky & Trevisan (2006) to larger val-
ues of q. For a prime q, the inapproximability they obtain is kq2/qk, which
is slightly weaker than our bound of kq(q − 1)/qk (which holds for any prime
power). As in the q = 2 case, our analysis is also simpler and more direct than
that of Guruswami & Raghavendra (2008).

Also independently of this work, Raghavendra (2008) obtained very general
hardness results for Max CSP(P ). He proved that if a natural SDP relaxation
of Max CSP(P ) has a certain integrality gap, then it is UG-hard to approx-
imate Max CSP(P ) within a factor better than that gap. We remark that,
since we do not have any good integrality gaps for Max CSP(P ), his results
can not (currently) be used to obtain the results of this paper.

In a subsequent work by Austrin & H̊astad (2009), the results of this pa-
per were used to derive strong lower bounds on the probability that a random
predicate is resistant. To be specific, it was shown that a random predicate on
k variables, accepting c(q)·k2 inputs, supports a pairwise independent distribu-
tion with high probability (and hence is approximation resistant assuming the
UGC). The previous bounds on random approximation resistant predicates by
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H̊astad (2007) only showed that a (boolean) predicate with Θ(2t/
√

t) accepting
inputs is resistant (also under the UGC). This previous result uses the hardness
result of Samorodnitsky & Trevisan (2006), and it is shown that Θ(2t/

√
t) is

the best that can be hoped for by that method. This further demonstrates the
strength of this paper: predicates supporting pairwise independence are a lot
more common than the predicates obtained by the result of Samorodnitsky &
Trevisan (2006).

2. Definitions

2.1. Unique Games. Originally, we proved our results under a variant of
the Unique Games Conjecture that we call the (t, k)-UGC, which we could
show was implied by the UGC. It was our hope that the (t, k)-UGC could be
slightly less difficult to prove than the UGC, or that it could be the case that
the (t, k)-UGC was true even in the event that the UGC turns out to be false.

However, using the recent strong parallel repetition result of Rao (2008), it
turns out that the (t, k)-UGC is equivalent to the UGC. Nevertheless, we still
give the details of the (t, k)-UGC and its equivalence with the UGC, as this
may be of independent interest.

Definition 2.1. An instance of the k-ary Unique Label Cover problem is a
k-uniform hypergraph where for each hyperedge (v1, . . . , vk) there are k per-
mutations π1, . . . , πk on [L].

We say that a hyperedge (v1, . . . , vk) with permutations π1, . . . , πk is t-wise
satisfied by a labelling ` : V → [L] if there are i1 < i2 < . . . < it such
that πi1(`(vi1)) = πi2(`(vi2)) = . . . = πit(`(vit)). We say that a hyperedge is
completely satisfied by a labelling if it is k-wise satisfied.

We denote by Optt(Ψ) ∈ [0, 1] the maximum fraction of t-wise satisfied
hyperedges, over any labelling. Note that Optt+1(Ψ) ≤ Optt(Ψ).

Conjecture 2.2. For any 2 ≤ t ≤ k, and δ > 0, there exists an L > 0 such
that it is NP-hard to distinguish between k-ary Unique Label Cover instances
Ψ with label set [L] with Optk(Ψ) ≥ 1− δ, and Optt(Ψ) ≤ δ.

For particular values of t and k we will refer to the corresponding special
case of the above conjecture as the (t, k)-Unique Games Conjecture (or the
(t, k)-UGC). In Appendix A we prove that the (t, k)-UGC is equivalent to the
(2, 2)-UGC for all 2 ≤ t ≤ k.
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Khot’s original formulation of the Unique Games Conjecture (Khot 2002)
is then exactly the (2, 2)-UGC. Khot & Regev (2003) proved that this conjec-
ture is equivalent to the (2, k)-UGC for all k, which is what Samorodnitsky &
Trevisan (2006) used to obtain hardness for Max k-CSP. The methods of this
paper can be used to show that any predicate supporting a t-wise independent
distribution is approximation resistant under the (t+1, k)-UGC. As these con-
jectures are all equivalent, the presentation only deals with the case of pairwise
independence, and uses the (2, k)-UGC to simplify the presentation.

2.2. Influences. It is well known (see e.g. Khot et al. (2007)) that each
function f : [q]n → R admits a unique Efron-Stein decomposition:

f =
∑
S⊆[n]

fS

where

◦ The function fS depends on xS = (xi : i ∈ S) only.

◦ For every S 6⊆ S ′, and every yS′ ∈ [q]S
′
it holds that

E[fS(xS)|xS′ = yS′ ] = 0.

For d ≤ n we write f≤d =
∑

S:|S|≤d fS for the degree d part of f . We now define

the influence of the ith coordinate on f , denoted by Infi(f) by

Infi(f) = E
x
[Var

xi

[f(x)]].

We define the degree m influence of the ith coordinate on f , denoted by Inf≤d
i (f)

by Infi(f
≤d).

Recall that the influence Infi(f) measures how much the function f depends
on the i’th variable, while the low degree influence Inf≤d

i (f) measures this for
the low degree part of the part of f . The later quantity is closely related to
the influence of a “smoothed” version of f .

An important property of low-degree influences is that

n∑
i=1

Inf≤d
i (f) ≤ d Var[f ],

implying that the number of coordinates with large low-degree influence must
be small. In particular, we have the following fact.
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Fact 2.3. For f : [q]n → [0, 1], the the number of coordinates with degree d
influence at least τ is at most d/τ .

2.3. Correlated Probability Spaces. We will be interested in probability
distributions supported on P−1(1) ⊆ [q]k, where P is some predicate defining
a Max CSP(P ) problem.

It would be useful to follow Mossel (2007) and view [q]k with such a prob-
ability measure as a collection of k correlated spaces corresponding to the k
coordinates. We proceed with formal definitions of two and k correlated spaces.

We use Cov[X, Y ] = E[XY ]− E[X] E[Y ] to denote the covariance between
two random variables X and Y , and Var[X] = Cov[X, X] to denote the variance
of a random variable.

Definition 2.4. Let (Ω, µ) be a probability space over a finite product space
Ω = Ω1 × Ω2. The correlation between Ω1 and Ω2 (with respect to µ) is

ρ(Ω1, Ω2; µ) = sup{Cov[f1(x1)f2(x2)] : fi : Ωi → R, Var[fi(xi)] = 1 },

where (x1, x2) is drawn from (Ω, µ).

Definition 2.5. Let (Ω, µ) be a probability space over a finite product space
Ω =

∏k
i=1 Ωi. The correlation of Ω1, . . . , Ωk (with respect to µ) is

ρ(Ω1, . . . , Ωk; µ) = max
1≤i≤k

ρ

(
Ωi,
∏
j 6=i

Ωj; µ

)

Of particular interest to us is the case where correlated spaces are defined
by a measure that is t-wise independent.

Definition 2.6. Let (Ω, µ) be a probability space over a product space Ω =∏k
i=1 Ωi. We say that µ is t-wise independent if, for any choice of i1 < i2 <

. . . < it and b1, . . . , bt with bj ∈ Ωij , we have that

Pr
w∈(Ω,µ)

[wi1 = b1, . . . , wit = bt] =
t∏

j=1

Pr
w∈(Ω,µ)

[wij = bj]

We say that (Ω, µ) is balanced if for every i ∈ [k], b ∈ Ωi, we have that
Prw∈(Ω,µ)[wi = b] = 1/|Ωi|.
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The following theorem considers low influence functions that act on corre-
lated spaces where the correlation is given by a t-wise independent probability
measure for t ≥ 2. It shows that in this case, the outputs of the functions have
almost the same distribution as if the inputs were completely independent.
Moreover, the result holds even if some of the functions have large influences
as long as in each coordinate not more than t functions have large influences.

Theorem 2.7 (Mossel 2007, Theorem 6.6 and Lemma 6.9). Let (Ω, µ) be a fi-
nite probability space over Ω =

∏k
i=1 Ωi with the following properties:

(a) µ is t-wise independent.

(b) For all i ∈ [k] and bi ∈ Ωi, µi(bi) > 0.

(c) ρ(Ω1, . . . , Ωk; µ) < 1.

Then for all ε > 0 there exists a τ > 0 and d > 0 such that the following holds
for all n. Let f1, . . . , fk be functions fi : Ωn

i → [0, 1] satisfying that, for all
1 ≤ j ≤ n,

|{ i : Inf≤d
j (fi) ≥ τ }| ≤ t.

Then ∣∣∣∣∣ E
w1,...,wn

[
k∏

i=1

fi(w1,i, . . . , wn,i)

]
−

k∏
i=1

E
w1,...,wn

[fi(w1,i, . . . , wn,i)]

∣∣∣∣∣ ≤ ε,

where w1, . . . , wn are drawn independently from (Ω, µ), and wi,j ∈ Ωj denotes
the jth coordinate of wi.

Roughly speaking, the basic idea behind the theorem and its proof is that
low influence functions cannot detect dependencies of high order – in particular
if the underlying measure is pairwise independent, then low influence functions
of different coordinates are essentially independent.

Since condition (c) of the theorem is somewhat inconvenient to work with,
we will instead use the following much simpler condition, which is a special
case of Lemma 2.9 in Mossel (2007).

Fact 2.8. A sufficient condition for (c) to hold in Theorem 2.7 is that for all
w ∈ Ω, µ(w) > 0.
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3. Main theorem

In this section, we prove our main theorem. Note that it is a generalization of
Theorem 1.1.

Theorem 3.1. Let P : [q]k → {0, 1} be a k-ary predicate over a (finite)
domain of size q, and let µ be a balanced pairwise independent distribution
over [q]k such that Prx∈([q]k,µ)[P (x) = 1] > 0. Then, for any ε > 0, the UGC
implies that the Max CSP(P ) problem is NP-hard to approximate within

|P−1(1)|
qk · Prx∈([q]k,µ)[P (x) = 1]

+ ε

In particular, note that if Prx∈([q]k,µ)[P (x) = 1] = 1, i.e., if the support
of µ is entirely contained in the set of satisfying assignments to P , then P is
approximation resistant. It is also hereditary approximation resistant, since
the support of µ will still be contained in P−1(1) when we add more satisfying
assignments to P .

Reduction. We will construct a probabilistically checkable proof system for
Unique Label Cover. Given a k-ary Unique Label Cover instance Ψ, the prover
writes down the table of a function fv : [q]L → [q] for each v, which is supposed
to be the dictator function fv(x) = x`(v) corresponding to the label `(v) of
vertex v. Furthermore, we will assume that fv is folded, i.e., that for every
x ∈ [q]k and a ∈ [q], we have

fv(x + (a, . . . , a)) = fv(x) + a

(where the definition of “+” in [q] is arbitrary as long as ([q], +) is an Abelian
group). When reading the value of fv(x1, . . . , xL), the verifier can enforce this
condition by instead querying fv(x1 − x1, x2 − x1, . . . , xL − x1) and adding x1

to the result. Let η > 0 be a parameter, the value of which will be determined
later. Define a probability distribution µ′ on [q]k by

µ′(w) = (1− η) · µ(w) + η · µU(w),

where µU is the uniform distribution on [q]k, i.e., µU(w) = 1/qk. Finally, for
f : [q]L → R and a permutation π : [L] → [L], we define fπ : [q]L → R by
fπ(x) = f(xπ(1), xπ(2), . . . , xπ(L)). Given a proof Σ = {fv}v∈V of supposed long
codes for a good labelling of Ψ, the verifier checks Σ as follows.
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Algorithm 1: The verifier V
V(Ψ, Σ = {fv}v∈V )
(1) Pick a random hyperedge e = (v1, . . . , vk) with permutations

π1, . . . , πk.
(2) For each i ∈ [L], draw wi randomly from ([q]k, µ′).
(3) For each j ∈ [k], let xj = w1,j . . . wL,j, and let bj = fvj

πj(xj).
(4) Accept if P (b1, . . . , bk) = 1.

Lemma 3.2 (Completeness). For any δ, if Optk(Ψ) ≥ 1 − δ, then there is a
proof Σ such that

Pr[V(Ψ, Σ) accepts] ≥ (1− δ)(1− η) Pr
w∈([q]k,µ)

[P (w) = 1]

Proof. Take a labelling ` for Ψ such that a fraction ≥ 1−δ of the hyperedges
are k-wise satisfied, and let fv : [q]L → [q] be the long code of the label `(v) of
vertex v.

Let (v1, . . . , vk) be an hyperedge that is k-wise satisfied by `. Then for each
j ∈ [k], fvj

πj is the dictator function return the πj(`(vj))’th coordinate. Hence
since the hyperedge is k-wise satisfied it holds that fv1π1 = fv2π2 = . . . = fvk

πk,
each being the dictator function returning the i’th input for some i ∈ [L]. The
probability that V accepts is then exactly the probability that P (wi) is true.
Since wi is drawn from ([q]k, µ) with probability 1 − η, P (wi) is true with
probability at least (1− η) Prw∈([q]k,µ)[P (w) = 1].

The probability that the hyperedge e chosen by the verifier in step 1 is
satisfied by ` is at least 1− δ, and so we end up with the desired inequality. �

Lemma 3.3 (Soundness). For any ε > 0, η > 0, there is a constant δ :=
δ(ε, η, k, q) > 0, such that if Opt2(Ψ) < δ, then for any proof Σ, we have

Pr[V(Ψ, Σ) accepts] ≤ |P−1(1)|
qk

+ ε

Proof. Assume that

(3.4) Pr[V(Ψ, Σ) accepts] >
|P−1(1)|

qk
+ ε.

We need to prove that this implies that there is a δ := δ(ε, η, k, q) > 0 such
that Opt2(Ψ) ≥ δ.
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Equation 3.4 implies that for a fraction of at least ε/2 of the hyperedges e,

the probability that V(Ψ, Σ) accepts when choosing e is at least |P−1(1)|
qk + ε/2.

Let e = (v1, . . . , vk) with permutations π1, . . . , πk be such a “good” hyper-
edge. For v ∈ V and a ∈ [q], define gv,a : [q]L → {0, 1} by

gv,a(x) =

{
1 if fv(x) = a
0 otherwise

.

The probability that V accepts when choosing e is then exactly

∑
a∈P−1(1)

E
w1,...,wL

[
k∏

i=1

gvi,ai
πi(w1,i, . . . , wL,i)

]
,

which, by the choice of e, is greater than |P−1(1)|/qk + ε/2. This implies that
there is some a ∈ P−1(1) such that

E
w1,...,wL

[
k∏

i=1

gvi,ai
πi(w1,i, . . . , wL,i)

]
> 1/qk + ε′

=
k∏

i=1

E
w1,...,wL

[gvi,ai
πi(w1,i, . . . , wL,i)] + ε′,

where ε′ = ε/(2|P−1(1)|) and the last equality uses that, because fvi
is folded

and µ is balanced, we have Ew1,...,wL
[gvi,ai

(w1,i, . . . , wL,i)] = 1/q.
Note that because both µ and µU are pairwise independent, µ′ is also pair-

wise independent. Also, we have that for each w ∈ [q]k, µ′(w) ≥ η/qk > 0,
which by Fact 2.8 implies both conditions (b) and (c) of Theorem 2.7. Then,
the contrapositive formulation of Theorem 2.7 implies that there is an i ∈ [L]
and at least two indices J ⊆ [k] such that Inf≤d

π−1
j (i)

(gvj ,aj
) = Inf≤d

i (gvj ,aj
πj) ≥ τ

for all j ∈ J , where τ and d are functions of ε, η, t, k, and q.
The process of constructing a good labelling of Ψ from this point is standard.

For each v ∈ V , let

C(v) = { i | Inf≤d
i (gv,a) ≥ τ for some a ∈ [q] }.

Note that by Fact 2.3, |C(v)| ≤ q · d/τ .
Define a labelling ` : V → [L] by picking, for each v ∈ V , a label `(v)

uniformly at random from C(v) (or an arbitrary label in case C(v) is empty).
Let e = (v1, . . . , vk) be one of the “good” hyperedges, so that there are at least
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two indices j ∈ [k] with values aj ∈ [q] such that Inf≤d

π−1
j (i)

(gvj ,aj
) ≥ τ . Then

for all such j, π−1
j (i) ∈ C(vj), and thus, the probability that πj(`(vj)) = i

is 1/|C(vj)|. This implies that the probability that this hyperedge is 2-wise

satisfied is at least
(

τ
d·q

)2

. Overall, the total expected fraction of hyperedges

that are 2-wise satisfied by ` is at least δ = ε
(

τ
d·q

)2

, and thus Opt2(Ψ) ≥ δ. �

It is now straightforward to prove Theorem 3.1.

Proof (of Theorem 3.1). Let c = Prx∈([q]k,µ)[P (x) = 1], s = |P−1(1)|/qk,
and η = min(1/4, εc

8s
). Note that since the statement of the Theorem requires

c > 0 we also have s > 0 and η > 0. Assume that the (2, k)-UGC is true,
and pick L large enough so that it is NP-hard to distinguish between k-ary
Unique Label Cover instances Ψ with Opt2(Ψ) ≤ δ and Optk(Ψ) ≥ 1 − δ,
where δ = min(η, δ(εc/4, η, k, q)) and δ(. . .) is the function from Lemma 3.3.
By Lemmas 3.2 and 3.3, we then get that it is NP-hard to distinguish between
Max CSP(P ) instances with Opt ≥ (1 − δ)(1 − η)c ≥ (1 − 2η)c and Opt ≤
s + εc/4. In other words, it is NP-hard to approximate the Max CSP(P)
problem within a factor

s + εc/4

(1− 2η)c
≤ s(1 + 4η)

c
+ (1 + 4η)ε/4 ≤ s/c + ε.

�

4. Inapproximability for Max k-CSPq

As a simple corollary to Theorem 3.1, we have:

Corollary 4.1. Let µ be a balanced pairwise independent distribution over
[q]k. Then the UGC implies that that Max k-CSPq problem is NP-hard to
approximate within

| Supp(µ)|
qk

Thus, we have reduced the problem of obtaining strong inapproximability
for Max k-CSPq to the problem of finding small pairwise independent distri-
butions.

In the remainder of this section, we will focus on the details of standard con-
structions of pairwise independence, giving hardness for Max k-CSPq under
the UGC.



Approximation Resistant Predicates 15

4.1. Theorem 1.2. The pairwise independent distributions used to give
Theorem 1.2 is based on the following simple lemma, which is well-known but
stated here in a slightly more general form than usual:

Lemma 4.2. Let R be a finite commutative ring, and let u, v ∈ Rn be two
vectors over R such that uivj − ujvi ∈ R∗ for some i, j.1 Let X ∈ Rn be
a uniformly random vector over Rn and let µ be the probability distribution
over R2 of (〈u, X〉 , 〈v, X〉) ∈ R2. Then µ is a balanced pairwise independent
distribution.

Proof. Without loss of generality, assume that i = 1 and j = 2. It suffices
to prove that, for all (a, b) ∈ R2 and any choice of values of X3, . . . , Xn, we
have

Pr[(〈u, X〉 , 〈v, X〉) = (a, b) |X3, . . . , Xn] = 1/|R|2.
For this to be true, we need that the system{

u1X1 + u2X2 = a′

v1X1 + v2X2 = b′

has exactly one solution, where a′ = a −
∑n

i=3 uiXi and b′ = b −
∑n

i=3 viXi.
This in turn follows directly from the condition on u and v. �

Consequently, given a set of m vectors in Rn such that any pair of them
satisfy the condition of Lemma 4.2, we can construct a pairwise independent
distribution over Rm with support size |R|n.

From this, it is easy to prove Theorem 1.2. The construction we use is
essentially the same as that of O’Brien (1980).

Proof (of Theorem 1.2). Define

r = dlogq(k(q − 1) + 1)e n = (qr − 1)/(q − 1) ≥ k.

Let P(Fr
q) denote the projective space over Fr

q, i.e.,

P(Fr
q) = (Fr

q \ 0)/∼.

Here ∼ is the equivalence relation defined by (x1, . . . , xr) ∼ (y1, . . . , yr) if there
exists a c ∈ F∗

q such that xi = cyi for all i, i.e., if (x1, . . . , xr) and (y1, . . . , yr)
are linearly dependent. We then have

|P(Fr
q)| = (qr − 1)/(q − 1) = n.

1R∗ denotes the set of units of R. In the case that R is a field, the condition is equivalent
to saying that u and v are linearly independent.
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Choose n vectors u1, . . . , un ∈ Fr
q as representatives from each of the equiva-

lence classes of P(Fr
q). Then any pair ui, uj satisfy the condition of Lemma 4.2.

Thus, we have that (〈ui, X〉)1≤i≤n for a uniformly random X ∈ Fr
q induces a

balanced pairwise independent distribution over Fn
q (and hence over [q]k) with

support size qr.

When k = (qr−1)/(q−1), this gives a hardness of k(q−1)+1
qk , and for general

k, in particular

k = (qr−1 − 1)/(q − 1) + 1,

we lose a factor q in the hardness ratio. �

We remark that for q = 2 this construction gives exactly the predicate used
by Samorodnitsky & Trevisan (2006), giving an inapproximability of 2k/2k for
all k, and (k + 1)/2k for all k of the form 2l − 1.

4.2. Theorem 1.4. Let us now look closer at the special case of boolean vari-
ables, i.e., q = 2. So far, we have only given a different proof of Samorodnitsky
and Trevisan’s result, but we will now show how to improve this.

An Hadamard matrix is an n×n matrix over ±1 such that HHT = nI, i.e.,
each pair of rows, and each pair of columns, are orthogonal. Let h(n) denote
the smallest n′ ≥ n such that there exists an n′ × n′ Hadamard matrix. It
is a well-known fact that Hadamard matrices give small pairwise independent
distributions and thus give hardness of approximating Max k-CSP. To be
specific, we have the following proposition:

Proposition 4.3. For every k ≥ 3, the UGC implies that the Max k-CSP
problem is UG-hard to approximate within h(k + 1)/2k + ε.

Proof. Let n = h(k+1) and let A be an n×n Hadamard matrix, normalized
so that one column contains only ones. Remove n−k of the columns, including
the all-ones column, and let A′ be the resulting n×k matrix. Let µ : {−1, 1}k →
[0, 1] be the probability distribution which assigns probability 1/n to each row
of A′. Then µ is a balanced pairwise independent distribution with | Supp(µ)| =
h(k + 1). �

It is well known that Hadamard matrices can only exist for n = 1, n = 2,
and n ≡ 0 (mod 4). The famous Hadamard Conjecture asserts that Hadamard
matrices exist for all n which are divisible by 4, in other words, that h(n) =
4dn/4e ≤ n + 3. It is also possible to get useful unconditional bounds on h(n).
We now give one such easy bound.
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Theorem 4.4 (Paley 1933). For every odd prime p and integers e, f ≥ 0,
there exists an n × n Hadamard matrix Hn where n = 2e(pf + 1), whenever
this number is divisible by 4.

Theorem 4.5 (Baker et al. 2001). There exists an integer n0 such that for
every n ≥ n0, there is a prime p between n and n + n0.525.

Corollary 4.6. h(n) ≤ n +O(n0.525).

Proof. Let p be the smallest prime larger than n/2, and let n′ = 2(p +
1) ≥ n. Then, Theorem 4.4 asserts that there exists an n′ × n′ Hadamard
matrix, so h(n) ≤ n′. If n is sufficiently large (n ≥ 2n0), then by Theorem 4.5,
p ≤ n/2 + (n/2)0.525 and n′ ≤ n + 2n0.525, as desired. �

Theorem 1.4 follows from Proposition 4.3 and Corollary 4.6.
It is probably possible to get a stronger unconditional bound on h(n) than

the one given by Corollary 4.6, by using stronger construction techniques than
the one of Theorem 4.4.

5. Discussion

We have given a strong sufficient condition for predicates to be hereditary
approximation resistant under the Unique Games Conjecture: it suffices for
the set of satisfying assignments to contain a balanced pairwise independent
distribution. Using constructions of such distributions with small support,
we were then able to construct approximation resistant predicates with few
accepting inputs, which in turn gave improved hardness for the Max k-CSPq

problem.
There are several aspects here where there is room for interesting further

work:
A very natural and interesting question is whether our condition is also nec-

essary for a predicate to be hereditary approximation resistant, i.e., if pairwise
independence gives a complete characterization of hereditary approximation
resistance.

Finally, it is natural to ask whether our results for Max k-CSPq can be
pushed a bit further, or whether they are tight. For the case of boolean vari-
ables, Hast (2005b) proved that any predicate accepting at most 2bk/2c+1 in-
puts is not approximation resistant. For k ≡ 2, 3 (mod 4) this exactly matches
the result we get under the UGC and the Hadamard Conjecture (which for
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k = 2r − 1 and k = 2r − 2 is the same hardness as in Samorodnitsky & Tre-
visan (2006)). For k ≡ 0, 1 (mod 4), there is an additive constant 2 between
how few satisfying assignments an approximation resistant predicate can and
cannot have.

Thus, the hitherto very succesful approach of obtaining hardness for Max
k-CSP by finding “small” approximation resistant predicates, can not be taken
further, but there is still a small constant gap of roughly 1/0.44 to the best
current algorithm. It would be interesting to know whether the algorithm
can be improved, or whether the hardest instances of Max k-CSP are not
Max CSP(P ) instances for some approximation resistant P .

For large q, there is still a significant gap of Θ(q2/ log q) between the best
algorithm and the best inapproximability. However, on the positive side, we
note that this gap is independent of k, and depends only on q.
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A. Equivalence of the (t, k)-conjectures

In this section, we prove that for every 2 ≤ t ≤ k, the (t, k)-UGC (as defined
in Section 2.1) is equivalent to Khot’s Unique Games Conjecture.

As mentioned in Section 2.1, Khot & Regev (2003) proved that Khot’s
original Unique Games Conjecture is equivalent to the (2, k)-UGC for all k ≥ 2.
Clearly, since Optt+1(Ψ) ≤ Optt(Ψ), the (t, k)-UGC implies the (t+1, k)-UGC,
so it suffices to prove the following proposition.

Proposition A.1. The (k, k)-UGC implies the (2, 2)-UGC.

Proof. Given a k-ary Unique Label Cover instance Ψ, create a 2-ary Unique
Label Cover instance Ψ′ as follows. The vertices and labels of Ψ′ are the same
as those of Ψ. For each hyperedge (v1, . . . , vk) with permutations π1, . . . , πk in
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Ψ, and each 1 ≤ i ≤ k, add the edge (vi, vi+1) with permutations πi, πi+1 to Ψ′

(where we define vk+1 = v1 and πk+1 = π1).

The optimums of Ψ and Ψ′ can be related to each other as follows:

Optk(Ψ) ≤ Opt2(Ψ
′) ≤ 1− 2

k
(1−Optk(Ψ))

The first inequality is trivial. To see that the second inequality holds, pick an
arbitrary labelling ` : V → [L], and let (v1, . . . , vk) be an hyperedge in Ψ which
is not k-wise satisfied by `. Then, there is a non-trivial partition of v1, . . . , vk

such that πi(vi) 6= πj(vj) whenever vi and vj are not in the same part. Now,
in Ψ′ there are k edges corresponding to the hyperedge v1, . . . , vk. The total
number of these edges which are not satisfied by ` is at least the number of edges
cut by the partition of v1, . . . , vk, which in turn is at least 2, since this is the size
of a minimum cut in the cycle. Thus, since a fraction of at least 1− Optk(Ψ)
hyperedges of Ψ are not k-wise satisfied by `, we conclude that the total fraction
of not 2-wise satisfied edges in Ψ′ must be at least (1−Optk(Ψ)) · 2/k.

In particular, it follows that if Optk(Ψ) ≥ 1−δ, then Opt2(Ψ
′) ≥ 1−δ, and

if Optk(Ψ) ≤ δ, then Opt2(Ψ
′) ≤ 1− (1− δ)2/k ≤ 1− 1/k (assuming δ ≤ 1/2).

The Proposition follows by applying parallel repetition to Ψ′. In particu-
lar, it follows directly from Rao’s recent strong characterization of the Unique
Games Conjecture (Rao 2008):

Theorem A.2 (Rao 2008). Assume that there exists a δ∗ > 0 such that the
following holds:

For every 0 < δ < δ∗ there exists an L such that it is NP-hard to distin-
guish between 2-ary Unique Label Cover instances Ψ with L labels in which
Opt2(Ψ) ≤ 1− δ1/3 and Opt2(Ψ) ≥ 1− δ.

Then the Unique Games Conjecture is true.

In particular, we have that if the (k, k)-UGC is true, then for all δ > 0 it is
NP-hard to distinguish between the case that Opt2(Ψ) ≤ 1− 1/k and the case
Opt2(Ψ) ≥ 1 − δ, which, by Theorem A.2 (with δ∗ = 1/k3) implies that the
Unique Games Conjecture, a.k.a. the (2, 2)-UGC, is true. �

B. Monotonicity of the approximability of Max k-CSPq

In this section, we describe an observation due to Yury Makarychev, allowing
us to relate inapproximability for general domain sizes q in terms of inapprox-
imability for the case when q = pe is a prime power.
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Proposition B.1. If the Max k-CSPq problem can be approximated within
a factor C(q, k)/qk then for any r ≥ q, the Max k-CSPr problem can be
approximated within a factor C(q, k)/rk.

Note that C(q, k) is the “multiplicative advantage” of the Max k-CSPq

algorithm over the random assignment algorithm. In other words, the propo-
sition states that for fixed k this advantage increases as q increases.

Proof. Given an instance Ψ of the Max k-CSPr problem, pick, indepen-
dently for each variable xi, a set Si ⊆ [r] of size |Si| = q uniformly at random
from

(
[r]
q

)
.

Construct a new Max k-CSPr instance Ψ′ by adding the constraints xi ∈
Si for each variable xi (i.e., for any constraint involving the variable xi, we
throw away all satisfying assignments to that constraint which are such that
xi 6∈ Si). Clearly, Ψ′ can be viewed as a Max k-CSPq instance, and thus, we
can find an assignment a to Ψ′ with value at least C(q, k)/qk Opt(Ψ′), where
Opt(Ψ′) is the value of an optimal solution to Ψ′.

Finally, for any assignment a to Ψ with value V , the expected value of this
assignment in Ψ′ is exactly (q/r)kV , since the sets Si are all independent. It
follows that E[Opt(Ψ′)] = (q/r)k Opt(Ψ), and in particular, the expected value
of the assignment a to Ψ′ is at least C(q, k)/rk Opt(Ψ). Noting that the value
of a as an assigment to Ψ is even larger, the proposition follows. �

In particular, Proposition B.1 has the following two easy corollaries:

Corollary B.2. Assume that the Max k-CSP problem can be approxi-
mated to within a factor C(k)/2k. Then the Max k-CSPq problem can be
approximated to within a factor C(kblog2 qc)/qk.

Proof. This follows by noting that the Max k-CSP2l problem can be ap-
proximated within a factor C(kl)/(2l)k by encoding each value i ∈ [2l] as an
l-bit string and solving the resulting Max (kl)-CSP instance. We then apply
Proposition B.1 with domain sizes 2blog2 qc and q. �

Corollary B.3. Assume that it is UG-hard to approximate Max k-CSPq to
within a factor C(q, k)/qk whenever q is a prime power. Then the Max k-CSPq

problem is UG-hard to approximate within C(q + o(q), k), k)/qk for all q.

Proof. Given q, let p ≥ q be the smallest prime larger than q. By The-
orem 4.5, p ≤ q + O(q0.525) ≤ q + o(q). The Max k-CSPp problem is then
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UG-hard to approximate within C(q + o(q), k)/pk, and the corollary follows
from the contrapositive formulation of Proposition B.1. �
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