
Optimal Command Ordering for Serial Link
Manipulators

Christian Smith and Yiannis Karayiannidis
Centre for Autonomous Systems, Royal Institute of Technology

Stockholm, Sweden. e-mail: {ccs|yiankar}@kth.se

Abstract—Reducing the number of cables needed for the
actuators and sensors of humanoid and other robots with high
numbers of degrees of freedom (DoF) is a relevant problem,
often solved by using a common bus for all communication,
which may result in bandwidth limitation problems. This paper
proposes an optimized method to re-order the commands sent to
the joint-local controllers of a serial manipulator. The proposed
method evaluates which local controller would benefit the
most from an updated command given a cost function, and
sends a command to this controller. As is demonstrated in
both simulation and on a real robot, the resulting scheme
can significantly improve system performance, equivalent to
increasing the communication frequency by up to 3 times.

I. INTRODUCTION

Humanoid robots present some of the most difficult chal-
lenges for robot design. Not only do they need to be self-
contained with no or limited physical connections to external
power or processing units, but they also need to fit a human
form factor of limited dimensions, often with hard constraints
on weight. Furthermore, the extremities are expected to have
similar motion and manipulation capabilities to a real human,
with high requirements for dexterity, strength, and precision.

Historically, the solutions to these problems have had
different trade-offs between performance measures. Placing
the actuators in the torso and moving the joints via cables
enables low mass for the arms [1], but the torso may have
to be excessively bulky to accomodate for the motors and
control units [2], while the heat generated from centralized
motors may be difficult to dissipate. Some robots have
central controller units and run individual power cables to
actuators located near each joint, and individual signal cables
from each sensor or joint angle encoder back to the control
unit [3]. Even in the simpler case, this results in four cables
per actuated/encoded degree of freedom. For a high DoF arm
with an advanced hand this may pose a major problem, both
in terms of weight and space inside the arms, and mechanical
problems of passing cables through each joint.

To reduce the amount of cables running along a manipu-
lator, it has become common practice to use local controllers
for each actuator and/or sensor [4]–[12], reducing the cabling
need to a total of four (or a similar small number of)
cables: two for power and two for signals between the local
controllers and the centralized control computer. However,
this has introduced a new problem. Since all communications
between local controllers and the central computer share
the same bus, the communication speed becomes inversely

proportional to the number of connected local controllers.
The latter implies that advanced controllers requiring high
frequency control loops are increasingly difficult to imple-
ment on systems with a high number of DoFs. As a result,
robotic systems cannot combine the advantages of using local
controllers with shared cables with high frequency control on
low-cost standardized communication buses.

In this paper we observe that for many applications, the
communication needs are unevenly distributed between dif-
ferent local controllers, and propose a locally optimized mes-
sage priority scheme that allows different local controllers to
communicate at different frequencies. The performance of
the scheme is evaluated in simulation, and an implementation
on a real robot demonstrates the performance of the proposed
scheme for a real velocity controlled 7 DoF robot arm for a
hybrid force/velocity control type task.

II. RELATED WORK

It is common practice to place local controllers at (or near)
each joint, and send messages to these on a common bus.
This section presents works using these schemes and how
problems of limited bandwith have been dealt with.

Several robot systems have been implemented using the
Controller Area Network (CAN) bus, motivated by its robust-
ness and reliability. However, CAN is limited to a theoretical
maximum of approximately 7000 messages per second, with
many implementations performing significantly slower. The
KHR-2 humanoid uses distributed control and a 1 Mbaud
CAN bus. Having a total of 41 DoFs, the overall control
loop is closed at 100 Hz [13]. The HRP-3 humanoid robot
uses centralized motordrivers and controllers for the arms
for heat dissipation reasons, but the lower body and legs use
joint-local controllers that are connected on a CAN bus [3].
For the HRP-4 humanoid, joint-local controllers are used for
the arms as well, but a total of 10 seperate CAN buses are
used for the 34 actuators to achieve sufficient communication
throughput [12]. In [14], 4 parallel CAN buses are used close
the main control loop at 600 Hz for a 6 DoF manipulator. By
using several parallel buses, these implementations still have
to cope with problems of running large numbers of cables
through the kinematic structure. Other implementations use
different kinds of serial buses. Paredis et al. use a 5 MBaud
RS485 bus to achieve 400 Hz control of an arm using
distributed controllers [4]. Jia et al use a RS422 bus and
distributed controllers to velocity control a 6 DoF arm at



20 Hz [15]. Jiang et al use RS485 to send commands to the
joint-local controllers of a humanoid robot at 20 Hz. [10].

Implementations requiring higher frequencies of the main
control loop use more advanced, faster buses. Lamarche and
Zhu state that closing the main control loop at 1000 Hz for
a modular robot with a distributed control system requires
a 100 Mbps bus [5]. Similarily, the main control loops of
the Justin humanoid are closed at 1000 Hz, using joint-local
controllers and a 100Mbit/s SERCOS-Bus [9].

III. PROPOSED METHOD

In this section we propose a novel scheme to reorder the
messages on the control bus, to make more efficient use of
the limited bandwith of communication links. State of the
art schemes (see Section IV-A for a listing) address all local
controllers in every iteration of the main loop, while the
scheme proposed here is based on the assumption that the
required update frequency of commands to the joint-local
controllers may differ between joints, and depend on the
current task and controller.

We assume an n-DoF serial link with a local controller at
each joint, and that we can send F commands per second,
and that each command can set the target angular velocity
for the local controller of one joint. We also assume that a
controller keeps the setpoint velocity until a new command is
received. Thus, with a classical approach where a command
is sent to each joint in each iteration of the control loop, the
control loop can be run at a frequency denoted by f :

f =
F
n

(1)

We denote the generalized position of the robot with p,
and we assume that we formulate our control objectives in
term of the generalized velocity, v. The objective for our
system is the minimization of the norm of the error e, i.e.

min ‖e‖ (2)

where e is defined as follows:

e = W(v − vd) (3)

where W is a user-defined weight matrix, v is the current
generalized velocity, and vd is the desired velocity. The
generalized task space velocity v is related to the current
joint space velocity θ̇ through the Jacobian J(θ) as follows:

v = J(θ)θ̇ (4)

Under the assumption that J(θ) is invertible, the desired
joint velocity θ̇d can be calculated as follows:

θ̇d = J−1(θ)vd (5)

Clearly, when all the joints can be simultaneously given
new velocities, then the choice u = θ̇d, with u ∈ <n
denoting the input at the joint level, drives e to zero.

We assume that the velocity in joint space has been altered
by the most recent velocity set-point command. This means

Frame α a θ d
Base 0◦ 0.274 90◦ 0
Base 90◦ 0 0◦ 0

1 0◦ 0 θ1 0
2 −90◦ 0 θ2 + 180◦ 0
3 −90◦ 0 θ3 + 180◦ 0.313
4 −90◦ 0 θ4 + 180◦ 0
5 −90◦ 0 θ5 + 180◦ 0.2665
6 −90◦ 0 θ6 + 180◦ 0
7 −90◦ 0 θ7 + 180◦ 0

Tool 0◦ 0 0◦ 0.42

TABLE I: DH parameters of the 7-DOF arm (using Craig’s
convention).

that the velocity is a sum of the velocity of the previous
time-step, θ̇old, and the change δθ̇ , which in turn implies
that the generalized velocity in the robot workspace can be
expressed as follows:

v = J(θ)(θ̇old + δθ̇) (6)

Substituting (6), (5) in to the weighted error (3) we get:

e = WJ(θ)(θ̇old + δθ̇ − θ̇d) (7)

From (7), it is clear that the error vanishes when δθ̇ is
equal to the difference between actual and desired velocity,
i.e. δθ̇ = θ̇d− θ̇old which is equivalent to u = θ̇d. However,
the system communication constraint implies that in each
loop, only the velocity one of the joints is allowed to be
modified. In other words, all elements but one in δθ̇ have to
be zero. In order to choose which joint’s velocity to modify,
we define a diagonal matrix Eθ as follows:

Eθ = diag[θ̇d − θ̇old] ∈ <n×n (8)

and the matrix corresponding to task space velocity errors:

E := [e1 · · · en] = WJ(θ)Eθ ∈ <m×n (9)

The joint to have its velocity updated corresponds to index
k of the maximum entry of vector veci=1,···n[‖ei‖], i.e.

uk = θ̇dk (10)

with
(‖ek‖, k) = max

i=1,···n
[‖ei‖] (11)

where the max function over a vector returns two outputs:
a) the maximum element and b) the corresponding index.
The joint with index k is thus the one that contributes the
most to the error ‖e‖ if left unchanged, and choosing joint k
to recieve the next velocity update command will therefore
minimize ‖e‖, as desired.

IV. SIMULATION

As a first evaluation, the proposed scheme was imple-
mented in simulation. We simulate a 7 DoF manipulator,
modeled after one arm on our physical platform (see Fig-
ure 1, DH parameters are shown in Table I).



Fig. 1: The Dual 7 DoF manipulator used in the experiments.

In Cartesian space, we define the 7 DOFs as the 3
Cartesian coordinates of the position of the end effector (x,
y, z), the 3 angles parameterizing the orientation of the end
effector (α, β, γ), and the angular position φ of the elbow
along a circle around the vector from shoulder to wrist. We
assume that each joint has a local velocity controller that
will accelerate with constant acceleration until it reaches the
most recently commanded target velocity. When this velocity
is reached, it will be kept until a new velocity command is
received. We assume all links of the manipulator to be rigid.

A. Command ordering schemes

In our simulation, we compare the following 5 methods
of sending commands to the joint-local velocity controllers

A Sequential with same control This approach is com-
mon in the literature, and consists of calculating the
control signal once in each control loop, and sending
each joint controller its individual velocity command in
sequence [5], [11], [15].

Algorithm A Sequential commands with same control

while not done do
Calculate u
for i = 1→ n do

send ui to joint i
joint i executes ui

end for
end while

B Sequential with updated control This approach is
similar to A, but assuming that we have high-frequency
state updates from sensors, and that calculating u is
computationally inexpensive, we can recalculate the
control signal before sending each command

C Synchronized non-predictive If the communication
bus allows commands to be broadcast to all units,
the velocity commands can be synchronized by letting
the distributed controllers wait, and not start executing
the latest command until a synchronize command is
recieved. This means that the overall frequency of the

Algorithm B Sequential commands with updated control

while not done do
for i = 1→ n do

Calculate u
send ui to joint i
joint i executes ui

end for
end while

control loop will be lower, with f = F
n+1 , but that

motion is synchronized, so that the resulting velocity in
cartesian space is always in the same direction as was
commanded [16].

Algorithm C Synchronized non-predictive

while not done do
for i = 1→ n do

Calculate u
send ui to joint i

end for
broadcast synchronize command
joint i executes ui, ∀i

end while

D Synchronized predictive Since the synchronization
command will effectively delay the execution of the
control command by one complete period of the control
loop, performance may suffer. To counteract this, we
predict the desired command for the next iteration of
the control loop denoted by upredicted and use it instead.
This method may be very difficult to implement outside
of simulation for tasks with significant feedback, but it
is included here for completeness.

Algorithm D Synchronized predictive

while not done do
for i = 1→ n do

Calculate upredicted
send ui to joint i

end for
broadcast synchronize command
joint i executes ui, ∀i

end while

E Proposed optimized ordering With this proposed
method, we use the procedure described in Section III
to determine which joint should be updated with the
next command.

B. Free motion

We start with the simplest case, with free motion following
a predefined generalized position trajectory pd(t) and the
corresponding derivative with respect to time ṗd(t). We track
this with the following kinematic control law consisting of



Algorithm E Optimized ordering

while not done do
calculate u
calculate optimal choice of i = k
send uk to joint k
joint k executes uk

end while

a proportional term of the position error plus a feedforward
term of the desired velocity:

vd(t) = a [pd(t)− x(t)] + ṗd(t) (12)

where vd(t) is the commanded generalized velocity, and a
is a constant positive gain. The closed loop system at the
kinematic level is a first order linear differential equation of
the position error. We let W be a 7× 7 identity matrix.

In the first test, we use the following target trajectory along
a straight line parallel to the y axis:

xd = −0.2 yd = 0.15 + 0.3 t5 ,
zd = 0.05 t = 0 . . . 5 s
αd = π/2 βd = 3π/4
γd = 0.05 φd = −π/4

(13)

This is a simple trajectory to follow, and as we can see
in Figure 2, most approaches perform similarily. While the
delayed methods A and C perform slightly worse, we see
acceptable behavior, with less than 1 mm root mean square
deviation (RMSD) from approximately 100 msgs per second,
or approximately 15 Hz in the main loop for all conventional
methods. The proposed method is equivalent to conventional
methods for this case.

We then proceed to make the target trajectory more
challenging, by adding a small amplitude but high frequency
sinusoidal wave to the orientation angle γ:

0 50 100 150 200 250 300 350 400
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Frequency [msg/s]

R
M

S
D

 [
m

]

Position error

 

 

A

B

C

D

E

Fig. 2: Results from straight line trajectory following. The
plot shows the root mean square deviation from the target
trajectory. We note that methods A and C, which have
inherent delays perform worse than the rest, and that the
performances of methods B, D, and E are equivalent.

0 100 200 300 400 500 600 700 800
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Frequency [msg/s]

R
M

S
D

 [
m

]

Position error

 

 

A

B

C

D

E

Fig. 3: Results from following straight line trajectory with
oscillatory orientation. The plot shows the root mean square
deviation from the target trajectory. Methods A and C, which
have inherent delays, perform poorly, with resonance prob-
lems around 100 msg/s, while the performances of methods
B and D are equivalent. The proposed approach E performs
significantly better for this task.

γd = 0.05 + 0.005 · sin(20t) (14)

The remaining parameters of the trajectory are unchanged
from (13). As is shown in Figure 3, the position error for a
given communication frequency is now significantly smaller
for the proposed method E, while the relative performance of
the other methods is similar to the previous task. The angle
γ is here proportional to the 7th joint of the robot, and the
required control frequency for the 7th joint is thus higher
than for the other joints, fitting the proposed method.

C. Force Control

In the second simulation scenario we examine the perfor-
mance for a hybrid force/position controlled task. Here, we
use the same controller as above for controlling position in x,
y, and the rotation angles, but use the following PI controller
in the z direction to control contact force against the surface:

vdz(t) = kPFe(t) + kI

∫ t

0

Fe(τ)dτ (15)

where the force error Fe(t) is defined as the difference
between desired and actual force, Fd(t)−F (t), and kP and
kI are positive constants. We set the weight matrix W to be
a 7×7 identity matrix. We assume a surface with the normal
in the z direction, located at z = 0.05, which gives a similar
trajectory as in the previous section. The interaction stiffness
is defined as a linear spring with stiffness 10 kN/m. We
make the problem more challenging by adding step-shaped
disturbances of an amplitude of 1 mm, defining the surface
with the following function:

z = 0.05 + round[0.001sin(5t)] (16)



0 500 1000 1500 2000 2500
10

0

10
1

10
2

10
3

10
4

Frequency [msg/s]

R
M

S
D

 [
N

]

Force error

 

 

A

B

C

D

E

Fig. 4: Results from tracking a target force along a straight
line trajectory with step-function disturbances. The plot
shows the root mean square deviation from the target force.
Methods A and C, which have inherent delays, perform
poorly, while the performances of methods B and D are
roughly equivalent. The proposed approach E performs sig-
nificantly better for this task.

This is a more challenging control problem than the
previous section, and the system requires higher messenging
frequencies to perform well. Figure 4 shows the force error
as a function of messenging frequency.

We see that the proposed method E has significantly lower
messenging frequency requirements for acceptable perfor-
mance, and gives stable performance at 130 Hz, see Figure 5.
At approximately 3 times higher messenging frequencies,
450 Hz, methods B and D begin to stabilize, see Figure 6.
Note that the predictive method D may not be realistic to
implement for this scenario, unless a very detailed model
of the force disturbance is available. The non-predictive
synchronized approach C needs more than 1000 messages
per second for stable performance in this scenario, which is
approximately 8 times more than the proposed method.

A look into the relative frequencies of the different joints
illustrates how the proposed method works. Figure 7 shows
how the relative frequency is temporarily raised for joints 2
and 4, that have a high influence on the z position and thus
for the force compensation. When the force error has been
corrected, other joints are needed to correct the pose, and
have their relative frequency temporarily raised. When all
deviations have been handled, the relative joint frequencies
return to the distribution before the disturbance.

D. Discussion

In this section we have shown the relative performance
for different methods to address the joint-local velocity
controllers of a simulated robot arm. We have shown that for
simple, straight-line trajectories, any approach performs well
with relatively low update frequencies. When the trajectory
becomes more complex, by adding a high frequency compo-
nent, the proposed method begins to perform better than the

3 3.1 3.2 3.3 3.4
0

5

10

15

20

25

30

35

40

time [s]

F
o
rc

e
 [
N

]

Forces at 130 msg/s

 

 

A

B

C

D

E

Fig. 5: An illustration of the force tracking performance
at 130 msg/s. The proposed method is stable and handles
the disturbances well, while the other methods perform very
poorly and are mostly outside the plotted region. The target
force is 20 N, and stepfunction disturbances are given at
t=3.04 s and t=3.25 s.

3 3.1 3.2 3.3 3.4
0

5

10

15

20

25

30

35

40

time [s]

F
o
rc

e
 [
N

]

Forces at 450 msg/s

 

 

A

B

C

D

E

Fig. 6: An illustration of the force tracking performance
at 450 msg/s. The proposed method is stable and handles
the disturbances well, while the other methods perform
worse. Methods B and D start to perform acceptably at
this frequency. The target force is 20 N, and stepfunction
disturbances are given at t=3.04 s and t=3.25 s.

traditional approaches. When we attempt force control with
step-shaped disturbances, we see a significant performance
increase with the proposed method.

Note that the control law functions for the simulation were
chosen arbitrarily, and that the performance as a function of
communication frequency depends on the choice of function,
tracked trajectory, and interaction stiffnesses. However, the
relative performance between the different approaches is
similar for different choices for these parameters. E.g, for
stiffer interaction with higher gains, the required frequencies
will be higher, but the relative order of when the methods
give stable performance will remain unchanged.



3.04 3.06 3.08 3.1 3.12 3.14 3.16

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

frequencies per joint

time [s]

fr
e
q
u
e
n
c
y
 [
p
o
rt

io
n
 o

f 
to

ta
l]

 

 

j1

j2

j3

j4

j5

j6

j7

Fig. 7: An illustration of the relative messenging frequencies
of the different joints 450 msg/s. A stepfunction disturbance
is given at t=3.045 s and the realitive frequencies of joints
2 and 4 are raised to counter the force offset, and when this
has been handled, the frequencies of joints 1, 5, and 7 are
temporarily raised to correct the pose error caused by the
force compensation. The plots have been smoothed with an
adaptive moving average.

V. EXPERIMENTS

As a validation of the proposed optimized serial addressing
scheme, we implemented it on our dual-arm mobile robot.

A. Experimental Setup

The performance specifications of the real robot are the
same as the simulated robot, but the real robot has upper
bounds on motor torques, and the physical system contains
more sources of error and noise. The 7 DoF arms of the robot
have joint-local velocity controllers, and are connected via a
500 kbaud CAN bus and support broadcasted synchroniza-
tion commands. Including the time it takes for the joint-local
control modules to respond to a command, it is possible to
send up to 1200 commands per second on the bus. In this
setup, forces were measured with a ATI mini 45 force/torque
sensor located at the wrist of the robot and connected to a
separate CAN bus that did not interfere with the bus sending
the velocity commands.

The experiment was carried out by letting the robot hold
a wooden fork and trace it along a countertop with a
constant normal force. A second fork had been placed on the
countertop to provide a disturbance similar to the periodic
step function in Section IV-C, see Figure 8. The trajectory
to follow was given as:

xd = 0.3− 0.03t, t = 0 . . . 7 s
yd = 0.4 zd = −0.11
αd = π βd = π/12
γd = 0 φd = −π/4

(17)

The table surface is located at z = −0.11, and the second
fork is approximately 9 mm thick. The controller gains were

Fig. 8: In the experiment, the robot traced a straight line
(dotted red in image) along a counter with a wooden fork,
trying to apply a constant force of 5 N.

set to α = 1, kP = 0.03, and kI = 0.01. The interaction
stiffness of the setup was measured to be 1.73 kN/m, and
the target force was set to 5 N. This is deliberately chosen
to be less than in the simulation, so that the performance of
all schemes would be acceptable in the measurable range. We
compare the performance of schemes A, B, C, and E from
Section IV. Scheme D, with prediction, was left out of this
treatment, as it was not possible to implement an accurate
enough predictor for the force measurements.

The experiment was run several times for each scheme,
and artificial delays of different were inserted into the
communication loop to evaluate the performance of different
messenging frequencies. The different schemes also insert
different delays into the system, for calculating the control
signal. Schemes A and C, could thus be run at slightly higher
messenging frequencies, as they calculate the control signal
less often. The messenging frequencies presented here were
the actual achieved frequencies, as measured while running
the experiments. Figure 9 shows the results, in terms of root
mean square deviation (RMSD) from desired force. The error
does not reach zero for higher frequencies, since the physical
robot system takes a finite amount of time to correct the
step function disturbances, and due to noise and errors in
the physical setup.

B. Results and Observations

The proposed scheme performs significantly better than
the others. For this specific task and controller, the system is
stable down to less than 200 messages per second, while
the second best performing scheme (B) needs more than
50% higher communication speeds for stable performance.
The two remaining schemes require several times higher
communication speeds for the same performance. Keeping
in mind that there are 7 DoFs on the robot, for methods A
and C the effective control frequency is 1/7th of the commu-
nication frequency. Comparing the proposed method E with



0 200 400 600 800 1000 1200
1

2

3

4

5

6

7

8

Frequency [msg/s]

R
M

S
D

 [
N

]

Force error

 

 

A

B

C

E

Fig. 9: Results from the force tracking experiment. The plot
shows the root mean square deviation from the target force.
Methods A and C, which have inherent delays, perform
poorly, while the performance of method B is better. The
proposed approach E performs significantly better for this
task. Method D is not implemented.

the synchronized method C, the effective control frequency
for the proposed method is approximately 1/2 of the the
communication frequency for this task. Thus, for a given
communication frequency, the proposed method will allow
more than 3 times as many units to be connected to the
same bus without loss of performance.

VI. CONCLUSION

This paper proposes a method for determinining the op-
timal joint to target with updated velocity commands for a
serial link manipulator with joint-local velocity controllers.
The aim of the method is to improve performance for systems
at low messenging frequencies. Simulations show that for the
simplest case of undisturbed free motion along a straight line,
the proposed scheme performs as good as any previously
published method. For more complex motions, including
high-frequency free motion, and hybrid velocity/force con-
trolled motion, the proposed method performs significantly
better than previous methods. Finally, the proposed method
was implemented on a robot, and results for the non-trivial
task of hybrid velocity/force control are compared for differ-
ent methods at different communication frequencies, again
showing that the proposed method performs significantly
better for lower messenging frequencies. Implementing the
proposed method on a humanoid robot with a high number
of DOFs enables one to take advantage of the low cabling
demands for connecting all joint-local controllers to a com-
mon bus, while providing performance equivalent of using
several parallell buses.

ACKNOWLEDGMENT

The work presented in this paper has been funded by
The Swedish Research Council and the European Union

FP7 project RoboHow.Cog (FP7-ICT-288533). The authors
gratefully acknowledge the support.

REFERENCES

[1] A. Albers, S. Brudniok, J. Ottnad, C. Sauter, and K. Sedchaicham,
“Upper body of a new humanoid robot - the design of ARMAR III,” in
IEEE-RAS International Conference on Humanoid Robots, Dec 2006,
pp. 308–313.

[2] A. Hernandez-Herdocia, A. Shademan, and M. Jägersand, “Building
a mobile manipulator from off-the-shelf components,” in IEEE/ASME
International Conference on Advanced Intelligent Mechatronics, july
2010, pp. 1116–1121.

[3] K. Kaneko, K. Harada, F. Kanehiro, G. Miyamori, and K. Akachi,
“Humanoid robot HRP-3,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, sept. 2008, pp. 2471–2478.

[4] C. J. Paredis, H. B. Brown, and P. K. Khosla, “A rapidly deployable
manipulator system,” in International Conference on Robotics and
Automation. Minneapolis, Minnesota: IEEE, 1996, pp. 1434–39.

[5] T. Lamarche and W.-H. Zhu, “A virtual decomposition control based
communication network for modular robots applications,” in Proceed-
ings of 16th International Conference on Computer Communications
and Networks, aug. 2007, pp. 1321–1326.

[6] H. Brown, M. Schwerin, E. Shammas, and H. Choset, “Design
and control of a second-generation hyper-redundant mechanism,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2007, pp. 2603–2608.

[7] A. Flores-Abad and A. Arpidez, “Embedded control system for a 5-
DOF manipulator by means of SPI bus,” in Electronics, Robotics and
Automotive Mechanics Conference. IEEE, 2009, pp. 123–128.

[8] J. de Gea, J. Lemburg, T. Roehr, M. Wirkus, I. Gurov, and F. Kirchner,
“Design and control of an intelligent dual-arm manipulator for fault-
recovery in a production scenario,” in IEEE Conference on Emerging
Technologies Factory Automation, sept. 2009, pp. 1–5.

[9] M. Fuchs, C. Borst, P. Giordano, A. Baumann, E. Kraemer, J. Lang-
wald, R. Gruber, N. Seitz, G. Plank, K. Kunze, R. Burger, F. Schmidt,
T. Wimboeck, and G. Hirzinger, “Rollin’ justin - design considerations
and realization of a mobile platform for a humanoid upper body,”
in IEEE International Conference on Robotics and Automation, may
2009, pp. 4131 –4137.

[10] C. Jiang, W. Chen, Q. Shi, and B. Xu, “Research and design on
distributed controllers for mechanical arms of humanoid robot,” in 2nd
International Asia Conference on Informatics in Control, Automation,
and Robotics. IEEE, 2010, pp. 88–91.

[11] Y. Zhang, X. Zeng, and X. Wang, “Control system design based on
CANopen framework for multi-legged robot with hand-fused foot,”
Applied Mechanics and Materials, vol. 42, pp. 307–312, 2011.

[12] K. Kaneko, F. Kanehiro, M. Morisawa, K. Akachi, G. Miyamori,
A. Hayashi, and N. Kanehira, “Humanoid robot HRP-4 - humanoid
robotics platform with lightweight and slim body,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems, sept.
2011, pp. 4400–4407.

[13] J.-Y. Kim, I.-W. Park, J. Lee, M.-S. Kim, B. kyu Cho, and J.-H. Oh,
“System design and dynamic walking of humanoid robot KHR-2,”
in IEEE International Conference on Robotics and Automation, april
2005, pp. 1431–1436.

[14] C. Smith and H. I. Christensen, “Constructing a high performance
robot from commercially available parts,” Robotics and Automation
Magazine, vol. 16, pp. 75–83, Dec 2009.

[15] H. Jia, W. Zhuang, Y. Bai, P. Fan, and Q. Huang, “The distributed con-
trol system of a light space manipulator,” in International Conference
on Mechatronics and Automation, aug. 2007, pp. 3525–3530.

[16] K. Xiang, Z. Sun, H. Dai, Q. Chen, and J. Liu, “Can-bus based
distributed control system for hydraulic turbine blade repairing robot,”
in Proceedings of the Third international conference on Intelligent
robotics and applications, 2010, pp. 695–704.


