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Abstract

This thesis treats the subject of applying human motion models to create estimators for the
input signals of human operators controlling a telerobotic system.

In telerobotic systems, the control signal input by the operator is often treated as a known
quantity. However, there are instances where this is not the case. For example, a well-studied
problem is teleoperation under time delay, where the robot at the remote site does not have access
to current operator input due to time delays in the communication channel. Another is where the
hardware sensors in the input device have low accuracy. Both these cases are studied in this thesis.

A solution to these types of problems is to apply an estimator to the input signal. There exist
several models that describe human hand motion, and these can be used to create a model-based
estimator. In the present work, we propose the use of the minimum jerk (MJ) model. This choice
of model is based mainly on the simplicity of the MJ model, which can be described as a fifth
degree polynomial in the cartesian space of the position of the subject’s hand.

Estimators incorporating the MJ model are implemented and inserted into control systems
for a teleoperated robot arm. We perform experiments where we show that these estimators can
be used for predictors increasing task performance in the presence of time delays. We also show
how similar estimators can be used to implement direct position control using a handheld device
equipped only with accelerometers.
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Sammanfattning

Denna avhandling beskriver hur man kan tillämpa modeller for mänsklig rörelse för att skapa
estimatorer för styrsignalerna en mänsklig operatör ger ett fjärrstyrt robotsystem.

Man betraktar ofta operatörens indata som en känd storhet i fjärrstyrda robotsystem. Det
finns dock tillfällen när denna beskrivning inte är tillämpbar. Ett välkänt exempel är när man
har tidsfördröjd fjärrstyrning, så att den fjärrstyrda roboten inte har tillgång till operatörens nu-
varande indata. Ett annat exempel är när mätutrustningen i användargränssnittet har begränsad
noggrannhet. Båda dessa fall avhandlas i denna text.

En lösning för den här typen av problem är att använda en estimator för insignalen. Det finns
modeller som beskriver mänskliga handrörelser, och dessa kan användas för att skapa en modell-
baserad estimator. I den här avhandlingen föreslås den s.k. minimum jerk -modellen (MJ). Valet av
modell baseras främst på modellens enkelhet; modellen kan uttryckas som ett femtegradspolynom
i kartesiska koordinater för handens position.

Estimatorer som bygger på MJ-modellen implementeras och tillämpas i styrsytemet för en
fjärrstyrd robotarm. Vi utför experiment där vi visar att dessa estimatorer kan användas för att
förbättra prestanda för fjärrstyrning med tidsfördröjd kommunikation. Vi visar också hur liknande
estimatorer kan användas för att implementera direkt positionsstyrning med en handhållen apparat
enbart försedd med accelerometrar.
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Chapter 1

Introduction

This thesis is about controlling robots via teleoperation. While a relatively young field,
tracing its origins to the middle of the last century, teleoperation has already been used
in a large variety of situations. Teleoperated robots have handled volatile matter, from
radioactive fuels to hostage situations. They have been used to explore both the depths of
the ocean and the vastness of space. They range in scale and payload from precision devices
like the “Da Vinci” surgical robot to the 15 meter “Canadarm” robot handling payloads up
to 10 tons on the Space Shuttle.

1.1 The Human in Control

Why then, are teleoperated robots of interest? Upon hearing the word robot, the first thing
that would come to mind for most is probably an image of an autonomous device — an
industrial robot performing repetitive tasks significantly faster and with higher precision
than a human worker, or a free moving device like a space exploring rover or an automated
vacuum cleaner, or perhaps even more exotic machines like humanoid robots rarely found
outside the realms of research laboratories or works of fiction.

However, with teleoperation, the robot is controlled by a human operator. There may
be several reasons for this, but most can be summarized as a need for the human’s su-
perior skills of interpretation and analysis of the present situation and ability to react and
adapt to unexpected events and changes in the environment. There exists a multitude of
tasks that humans excel at, but which machines are not yet able to perform unsupervised.
These tasks range from those requiring trained expert skills, like advanced surgery or space
station repairs, to those that require human interaction skills, like hostage negotiation, or
just need human innovation and adaptivity to novel conditions when exploring unknown
environments.

The machine can nonetheless be used to extend the humans capabilities in several dif-
ferent ways, symbiotically utilizing the separate advantages of man and machine. Machines
can be present where it would be too dangerous or too expensive to send a human — in
outer space, at the bottom of the sea, or in nuclear reactors to name a few examples. Also,
machines may have different scales than their human operators, and enable these to handle
very heavy objects, or perform surgery on a scale much too small for human fingers, while
the human provides the skills, knowledge and analysis necessary for the task.

1



2 CHAPTER 1. INTRODUCTION

1.2 Problems Addressed

This thesis focuses on problems that arrise when measuring the input from the human
operator in the presence of different types of measurement uncertainties. One of the main
problems faced when connecting the human operator as a control device for a robotic
system is that the direct control signal in the operator’s brain is not directly available.
Thus, different indirect means of estimating this have to be employed.

Some exploratory work has been done examining the possibilities of directly connecting
a human brain to a machine interface, but this is still rudimentary and require invasive
surgery to connect to the nervous system, and a considerable degree of noise still remains in
the connection. Though this may be acceptable for some prosthetic use, easy-to-use systems
for teleoperation are not expected to be accessible in the overseeable future [18, 106].

In present teleoperation setups, more indirect connections are usually employed. Most
typically, information about the machine is presented to the operator via his/her physical
senses, either by direct observation of the machine, or via some type of display. Visual,
audio, and haptic modalities are the most common. The operator’s control signal is then
input to the system via some input device, which in essence consists of one or several
sensors that measure conscious movements of some part of the operator. A typical mundane
example may be a joystick that measures hand movements.

As with all sensor-based systems, there exists a certain degree of uncertainty in the
mapping between the underlying process and the measured quantities, here represented
by the operators intentions for the machine system and the sensor signals from the input
device. Even if we were to assume that the operator conveys their desired control signal
to the input device without error, the signal from the input device to the robot may be
corrupted by transmission delays or sensor noise, adding further uncertainty to the original
signal.

The main problem addressed in the present thesis is how treat this uncertainty. More
specifically, the thesis investigates how a model of typical conscious human motion can
be used to construct an estimator for the human control input signal, and how such an
estimator then can be used to generate a better estimate of the human operator’s desired
control signal than the original sensor measurements from the input device of the user
interface.

1.3 Contributions

The main contribution of this work is the proposition to use human motion models for
estimating the input from the operator, and the demonstration of implementations of model-
based estimators. By introducing a predictor for input signals on the control signal side of
a teleoperation setup, we extend the toolbox available for treating teleoperation with time
delays. We also introduce simple motion models as a means to perform direct motion input
using only very simple accelerometers.

There are also some minor contributions of this thesis, that are not yet completely veri-
fied but give us pointers to interesting further exploration. We show early results indicating
that minimum jerk (MJ) motion models can be used as accurate descriptors of human op-
erator input using devices ranging from a video game controller to a parallel link haptics
interface.

The work presented here is the author’s own work, but parts have been done in collab-
oration. The experiments described in Sections 6.1 and 7.1 were conducted in cooperation
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with Mattias Bratt, who also implemented the 3D graphics user interfaces described in
Section 5.2.

1.4 Disposition

The remainder of this thesis is disposed in the following way:

Chapter 2 – Background

This chapter introduces the concept of teleoperation and presents its history. Some problems
that have arisen in different scenarios are discussed along with a brief description of how
these have historically been approached. The current state of the art in teleoperation is
summarized here.

Chapter 3 – Control Signal Modelling

In this chapter, we introduce the main idea of this thesis — using human motion models to
construct an estimator for the human operator’s input. Some different models describing
human motion are presented and an argument is made in support of the minimum jerk
(MJ) model. Related work using this and other models of human motion to estimate input
is presented.

Chapter 4 – Experiment Design

Here, we propose what types of experiments to use for evaluating the validity of the models.
We define minimal experiments to use for proof of concepts, along with more difficult
experiments that can be used to establish the limits of what can be achieved. Experiments
are discussed both in terms of what tasks to perform and in terms of what modes of
interaction and which interfaces to employ.

Chapter 5 – Design of Experimental System

This chapter describes the setup used in the experiments. The setup includes a robot arm for
the operator to control, several different user interfaces, both input devices and displays, and
some external sensors used to measure reference positions. The communication structure
of the teleoperation setup is also described. The design of the experimental setup itself has
been presented in publications [21, 132, 133].

Chapter 6 – Offline Experiments

Here, we describe some exploratory experiments with human subjects. In these experiments,
we record all data and use it afterwards for offline analysis. The MJ model is applied to
this recorded data in different ways in order to find possible ways to implement MJ-based
estimators. Parts of the results of these experiments have been presented in publications [22,
131, 135, 136].

Chapter 7 – Online Experiments

Using the results from the previous chapter, we implement MJ estimators that work in
real-time, and perform experiments where the estimator output is used as an input signal
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for robot control in different ways. Parts of the results of these experiments have been
presented in publications [22, 131, 134, 135, 136].

Chapter 8 – Conclusions

In this final chapter, we summarize the thesis, the experimental results and present the
conclusions to be drawn, along with comments on which results are conclusive, and which
results that would need further inquiry.

1.5 Publications

Some of the results presented in this thesis have been previously published in the following
papers:

[21] Mattias Bratt, Christian Smith, and Henrik I. Christensen. Design of a control strategy
for teleoperation of a platform with significant dynamics. Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), pages 1700–1705, Beĳing,
China, Oct 2006.

[22] Mattias Bratt, Christian Smith, and Henrik I. Christensen. Minimum jerk based pre-
diction of user actions for a ball catching task. Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 2710–2716, San Diego, Ca,
USA, Oct 2007.

[132] Christian Smith and Henrik I. Christensen. Using COTS to construct a high per-
formance robot arm. Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), pages 4056–4063, Rome, IT, April 2007. IEEE.

[131] Christian Smith, Mattias Bratt, and Henrik I Christensen. Teleoperation for a
ballcatching task with significant dynamics. Neural Networks, Special Issue on Robotics
and Neuroscience, 24, pages 604–620, May 2008.

[134] Christian Smith and Henrik I. Christensen. A minimum jerk predictor for teleop-
eration with variable time delay. Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 5621–5627, Saint Louis, USA, Oct 2009.

[135] Christian Smith and Henrik I. Christensen. Wiimote robot control using human
motion models. Proceedings of the IEEE/RSJ International Conference on Intelligent Ro-
bots and Systems (IROS), pages 5509–5515, Saint Louis, USA, Oct 2009.

[133] Christian Smith and Henrik I. Christensen. Constructing a high performance ro-
bot from commercially available parts. (to appear) Robotics and Automation Magazine,
vol. 16:4, Dec. 2009.

Parts of the results are currently under review for publication in the following paper:

[136] Christian Smith and Patric Jensfelt. A Predictor for Operator Input for Time-Delayed
Teleoperation. Mechatronics, Special Issue on Design Control Methodology, 2010.



Chapter 2

Background

This chapter will give a brief introduction to the history of teleoperation, describe different
types of telerobotic systems in use, discuss typical problems that can arise, and finally
present some of the state of the art for dealing with these problems.

As the term itself implies, teleoperation is the process of performing some action at a
distance. There does not necessarily exist a generally agreed upon clear definition of what
is to be counted as teleoperation and what is not. Typical definitions are very wide and
encompass a broad range of possible systems.

Sheridan defines teleoperation as “the extension of a person’s sensing and manipulation
capability to a remote location” [124].

Hokayem and Spong defines teleoperation as “Extend[ing] the human capability to ma-
nipulating objects remotely by providing the operator with similar conditions as those at
the remote location” [68]

Rybarczyk defines teleoperation as “Indirectly acting on the world” [119]

For the present work, we shall use a broad definition, and let teleoperation mean the
deployment of any system by which a human operator (the master) can control a piece
of machinery (the slave) without being in direct contact. The distance that separates the
master and slave is not significant for this definition, but the degree of separation should be
such that regular tools with long handles are excluded, and we normally assume that the
slave is actuated in some way.

2.1 History of teleoperation

Since the first tools were invented, it has been possible to transfer human action over
space, time and scale. Different types of cranes, pincers, and tongs have allowed humans to
manipulate objects that have been too large, too small, too far away or too dangerous to
handle with bare hands.

However, the first instance of what could be thought of as a telerobotic system is prob-
ably the mechanical linkage manipulators used in the early 1950’s to handle nuclear ma-
terial. The systems were of the master-slave kind. A human user was operating a master
input device and the slave manipulator reproduced the exact motion. Often the master and
slave were coupled mechanically, so the teleoperation distance was not very far, but on the

5



6 CHAPTER 2. BACKGROUND

other hand, the design inherently provided haptic feedback through the linkage, and visual
feedback through a protective window [48, 151]. Eventually, these systems were replaced
with manipulators with electrical servo motors, allowing for more separation of master and
slave stations, but at the cost of feedback fidelity [29, 49]. These first systems were without
exception only treating teleoperated manipulation. These systems employ direct control,
meaning that the operator directly controls the slave, see Figure 2.1(a).

By the 1960’s, the separation distance was increased as teleoperation was used for under-
water applications. There were several different electric and electrohydralic manipulators
used for manipulating objects at a depth of several thousand meters, with the operator loc-
ated at the surface, or even on the shore [112]. At this time, in conjunction with the space
race, both the United States and the Soviet Union developed teleoperated manipulators to
be used for unmanned space exploration, with the Surveyor and Lunakod systems [76, 139].
Later, manned missions with the Space Shuttle were also aided by the 15 m “Canadarm”
manipulator [2]. As the slave systems became mobile and were sent to places not accessible
to the operator, teleoperated locomotion and teleoperated sensing also became important
fields to study [104].

By 1972, a teleoperated robot known as the wheelbarrow was first employed to disarm
bombs in the UK [16]. Since then, bomb disposal and ordnance clearing has become one
of the most common uses of teleoperation, and teleoperated robots are standard equipment
for many modern police and military bomb disposal units, where they are also sometimes
put to use in other hazardous scenarios like hostage negotiation or surveillance of armed
suspects [90].

Teleoperated robots were also introduced into surgery in the mid 1980’s. In the begin-
ning, the motivation was to provide stability for sensitive operations such as brain or heart
surgery [114]. In the 1990’s the application of different types of minimal invasive surgery
increased, as robots made it possible to make surgical operations through minimal narrow
openings, while increasing the number of available degrees of freedom [58, 45, 96]. While
this type of robot surgery is typically performed with the surgeon in close vicinity to the
patient and robot, using long distance communications to let a surgeon operate on a remote
patient has also been realized, with the first successful intercontinental operation carried
out on a pig in 1995 [118], and the first intercontinental operation on a human patient car-
ried out in 2001 [97]. For these tasks, the sense of touch is important for performing well.
Therefore, they often employ bilateral control, meaning that the slave is directly controlled
by the human operator, but an automatic control loop generates a feedback signal that in
turn directly controls the force feedback to the user interface, see Figure 2.1(b).

More recent work such as operation of the MARS rovers have transferred actions not only
across space, but also across time, due to the significant time-delay of operating vehicles on
another planet. The degree of autonomy is significant to enable efficient operation and to
avoid direct closure of the control loop, which would be close to impossible [143, 15]. These
systems are known as semiautomatic control systems. The role of the human operator is
to supply the slave controller with setpoints, targets, or objectives to accomplish. The
distribution of control between operator and robot can vary, from shared or cooperative
control — where the robot for example may aid with keeping a prespecified distance or
contolling some DoF’s while the operator controls the rest — to supervisory control, where
the operator chooses a task for the robot to perform autonomously [5], see Figure 2.1(c).

Prompted by the Kobe earthquake and the McVeigh bombing of a federal building in
Oklahoma, teleoperated robots were introduced into urban search and rescue in the mid
1990’s. The first actual deployment to help disaster victims was at the site of the collapsed
World Trade Center buildings in New York in 2001 [34, 26].

Some of the most recent applications of teleoperation is using a humaoid robot to extend
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Figure 2.1: Teleoperation control types

as many of the operator’s functions as possible to the remote site. The first examples
include using a teleoperated robot to replace the human driver of heavy machinery at
potentially dangerous earthquake sites [153]. More novel, exploratory work uses a human-
like android robot to convey the presence of the operator to a remote site for human to
human communication purposes [120, 110]. While most teleoperation scenarios emphasize
telepresence as the operator’s own sensation of being present at the remote site, these last
cases emphasize the sensation the operator’s presence as experienced by observers at the
remote site.

Teleoperation Problems

The problems facing a successful implementation of teleoperation can roughly be divided
into two types. The first type of problems concern how the operator and system interact.
One has to decide on what modalities of the robot the operator should control. Here, the
issue can be one of simplicity of operation versus versatility. For example, when teleop-
erating a humanoid robot with more than 30 degrees of freedom (DoF), it is simpler for
the operator if he/she does not have to control the enrire robot directly, but the number
of possible actions may be limited if some DoFs are not controllable [54]. Furthermore,
depending on the task, different control spaces may give different performance [5]. Should
the operator control all joints directly, as with a typical crane or backhoe, or should the
end effector be controlled in cartesian space? In the chosen space, should the position be
controlled directly, or should the operator control the velocity? Tasks with short precision
motions benefit from the former, while tasks with longer, faster, motions normally benefit
from the latter [102]. In some cases, as with a humanoid robot, there may exist intuitive
mappings between human motor skills and the robot’s capabilities, while these might be
less obvious in other cases, such as three-armed snakelike surgical robots [129].

Related problems of the same type concern what information to display to the operator,
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and how. Again there is a balance, where providing too much information feedback may
cause sensory overload for the operator, while providing too little information may limit the
operator’s understanding of the remote site. Also, it is a nontrivial consideration as how
to present sensory information from artificial senses that differ from the operator’s human
senses, such as radar scans, temperature mappings, velocity or inertia measurements and
suchlike [124]. Depending on available bandwidth the amount of sensor data that is relayable
may be severely limited [5]. Even with a multitude of available sensor data, most users may
still focus on a single type, typically video feedback, and ignore other sensor readings [10].

The second type of problem concerns performance limitations. Differences of scale, avail-
able velocity and robot fragility may set unintuitive limitations on the robot that have to
be conveyed to the operator [150, 53]. If the robot is not able to perform the commanded
action, discrepancies between operator input and slave actions may introduce instabilities.
One of the most significant, and consequently one of the most studied limitations is trans-
mission time delays [64]. These can cause instability as the operator tries to correct for
perceived errors that are due to delays that may be as small as one or a few tenths of a
second [150, 38]. For the longer time delays of interplanetary teleoperation, direct control
may be altogether impossible for all but the most trivial tasks [104, 61, 140]. Teleoperation
with time delay is one of the main problems studied in the present work.

2.2 State of the Art

Since the problems associated with time-delayed teleoperation have been well-known for
several decades, several techniques to deal with these problems have been proposed and
applied [126, 6, 68]. In a short summary, the main approaches that have been used can be
classified as one of the following:

• Move-and-wait was the first approach applied to time-delayed teleoperation. It
consists of the user first executing a small part of the overall motion, and then waiting
while the remote slave reacts to the command. The user then makes the next move,
waits for the response and so on. It is robust and simple to implement. Performance,
as measured by task completion time, degrades linearly with the size of the time
delay [127, 38].

• Task level/supervisory control is mostly used when teleoperation bandwidth is
very low, or delays are large. In most cases, task-level control lets the operator choose
from a predefined set of tasks, that are then performed autonomously by the remote
system. This is a common approach in space telerobotics due to the large distances
and thereby long time-delays involved. In supervisory control, a controller at the
slave site may perform low-level control like for example obstacle avoidance, while the
human operator specifies the desired goal or trajectory. This approach requires either
a competent autonomous system at the remote site, or good enough modelling so that
all possible tasks can be pre-programmed [150, 152, 125, 51, 50, 19, 95, 20, 15, 104,
61, 140]. Similar to this is the use of virtual fixtures. In a peg-in-hole experiment that
suffered 45% task execution time degradation under 450 ms delay, this was reduced
to 3% using virtual fixtures [117]

• Predictive/simulated displays can be used when autonomous control at the re-
mote site is difficult to achieve. This approach uses a simulation at the master side for
real-time interaction by the operator. The remote site then performs the same mo-
tions. It is common to present the operator with both the simulation and the delayed
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measurements from the remote site, so that the actual results can be observed. This
approach requires a good model of the remote site in order to create a valid simulated
environment [13, 85, 12, 65, 14, 83]. A variant is the “hidden robot” concept, where
the remote robot is not displayed to the operator, but only the remote environment
itself, which can be “felt” via haptic feedback to the user [82]. A special case of
simulated display is teleprogramming, where the task is first performed in simulation
until a satisfactory performance has been recorded. Only the satisfactory version is
then replayed at remote site [57]. Recent model-mediated methods simulate the re-
mote environment locally for high-bandwidth interaction, and use sensor data from
the remote site to estimate and update model parameters [101].

• Wave variables are applicable for bilateral force feedback teleoperation. This basic
idea of this approach is to use a coordinate rotation to transform velocity and force
variables into wave variables that are sums and differences, respectively, of the original
variables. One of the main strengths of this approach is the guaranteed stability via
a passive communication channel, small sensitivity to model errors, and the proven
ability to be adapted to variable delays [108, 105, 27, 60], while the major drawback
is that the bandwidth is severely limited by the time delay, i.e., given a time delay τ ,
the performance for frequencies above 1/τ is limited [59]. An attempt to circumvent
this problem using a predictive model of the environment coupled with a passive
communication layer was proposed in [43].

• Predictive control from classical closed-loop control theory, uses a prediction ŷ of
the measured state y to deal with delays. This has also been applied to teleoperation.
This approach requires enough knowledge of the remote site to construct a valid
predictor ŷ [137, 25, 6, 123, 130, 111], and is applicable when the feedback signal
consists of low-dimensional readily-modelled quantities like manipulator positions,
velocities or forces.

Common for these approaches is that they do not provide any solution for when there
is a need for fast, high-bandwidth interaction, and the feedback signal is difficult to model
or predict, as for example would be the case with a video or audio feedback signal from an
unmodelled remote environment.





Chapter 3

Control Signal Modelling

This chapter motivates why it is of interest to use human motion models in teleoperation,
and how they can be applied. A brief overview of common models used to describe human
motion is given, and arguments are presented in support of using the minimum jerk model.
Finally, the details of the minimum jerk model are described, along with a brief presentation
of how this model has been used in other work.

3.1 Model Based Input Estimation

In most approaches to teleoperation, the input from the user is considered a known, more
or less error-free signal. For most cases this is a valid assumption, as the operator station is
a controlled and well-known environment, and input devices impose no significant unknown
errors into the system.

We can imagine cases where we even with highly controlled operator environments can-
not observe the operator’s input signal directly. The typical case is when we, for example
due to long distances separating master and slave stations, have a considerable time delay.
In this case, even with perfect measurements of the operator’s input at the master station,
we will only have access to a time-delayed version of this signal at the slave station.

One can also imagine delay-free scenarios where the assumption of low noise in the input
signal starts to loose validity. The simplest scenario is when we have a limited budget or
other limitations on the available input devices. This could include cases where the input
device should be portable, or even incorporated as one function among many on a cheap
portable device that can be used in any uncontrolled public environment, such as mobile
phone, PDA, or a video game controller.

In the light of these two scenarios, the aim of the present work is to use models of human
motion to compensate for imperfections in the input signal.

User Input Estimation and Prediction

Estimation of stochastic or noisy signals is a well studied problem in the fields of signal
processing and optimal filtering [77, 8, 9, 81, 7, 149]. Most methods require some model
of the process that generates the signal that is estimated. The more accurate this model
is, the better the estimator will perform. Thus, with a good model of human motion, it
should be possible to use estimation methods from optimal filtering theory to fit this model
to noisy observations.

11
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Figure 3.1: Teleoperation control structure with predictions to bridge time delay

As mentioned in the compilation of methods used to deal with time delays in teleoper-
ation in the previous chapter, several methods include different ways to predict the remote
site, or put in control terms, one substitutes the unavailable future measurement y with the
predictor ŷ. A schematic of this is shown in Figure 3.1(a).

Given the possibility to use a model to predict the operator’s command input signal,
we can propose a novel control structure. Instead of handling the roundtrip delay by
predicting the remote state with a simulation, the delay handling is moved to a command
input predictor. The principal structure for this approach is shown in Figure 3.1(b). With
this approach, measurements and video data from the remote site can be displayed as is, and
there is no need for models of the remote site. Video feedback based control can therefore
be performed with a camera with an unknown position in relation to the remote robot and
task, as long as the camera shows an adequate view of the task space, enabling a human
operator to interpret and react to the scene.

In cases where the process is highly non-linear, improvements can be made by not
predicting the entire roundtrip delay at one instant, but predicting just the one-way delay
for each of observation and command signals, as illustrated in Figure 3.1(c).
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Limitations

Since one of the main motivations behind using direct control teleoperation as opposed
to autonomous or semi-autonomous control is to use a human operator as the feedback
controller of the system, it is important not to limit the freedom of the operator to control
the system. Thus, it is not meaningful to make predictions that are so far into the future
as to allow for enough time for the operator to change their mind and subsequently their
planned control input. In practice, therefore, input predictions will be limited by the
characteristical time constants in the human motor control system.

Furthermore, by imposing a model on the operator’s input, the system is limited to
motions that are described with sufficient accuracy by the model. The more specific a
model is, the more possible actions would be expected to be excluded, and the more general
the model is, the lower the accuracy would be expected for a specific motion. The tradeoff
between generality and accuracy will have to be considered thoroughly when designing a
system for input estimation, as with any model based estimation.

3.2 Human Motion Models

The human motor system is very complex and not yet completely understood. However, it
is well studied, and although not all of the questions as to why and how humans generate
the motions we do may be answered, there is adequate knowledge about what motions we
perform.

Trajectory Models for Human Reaching Motion

A subject of study in neurophysiology is how freely moving hand trajectories, such as when
reaching towards an object to pick up, are formed in the human motor control system. When
moving a hand from one position to another, there are infinitely many possible trajectories
to do this. Even when following a specified trajectory, there are infinitely many possible
velocity profiles that can be applied to a given trajectory [79]. In the field of neurophysiology,
two of the main questions posed regarding the trajectories of reaching motions are:

1. Out of the infinite possibilities, which trajectory and/or velocity profile is chosen?

2. Why is this option chosen?

In the present work, only the first question will be of relevance, but since the two have
often been studied simultaneously, many models and attempted descriptions address both
questions.

As an early hypothesis, the answer to question 2 was assumed to be found in optimiza-
tion. Given a multitude of possibilities, it seemed rational that the optimal solution should
be chosen. However, the target function of optimization was unknown, and became the first
subject of study [36].

One of the first systematic compilations of candidate functions was presented in [107].
A list of plausible functions to minimize was produced and the results attained by applying
optimization techniques to these were compared to actual motions. The target functions
studied here were:

1. Total time of the motion, constrained by maximum acceleration. This generates a tra-
jectory consisting of two second degree polynomials. The first has constant maximum
acceleration, the second has constant maximum deceleration.
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2. Peak force applied during the motion. For negligible friction, this is equivalent to peak
acceleration. This generates a trajectory consisting of two second degree polynomials.
The first has constant acceleration, the second has constant deceleration, where the
acceleration and deceleration are the values needed to reach the target point at the
target time.

3. The absolute value of impulse, as integrated over the duration of the motion. This is
equivalent to the peak velocity attained during the motion. This generates a trajectory
that begins with a second degree polynomial with constant maximum acceleration
until the peak velocity is reached, then a linear segment with constant velocity, and
and finally a second degree polynomial with constant maximum deceleration until the
motion stops at the desired point.

4. Total energy spent during the motion. This model has the biological rationality that
all organisms should tend to conserve energy whenever possible. This generates tra-
jectories consisting of piecewise third degree polynomials.

5. The value of the jerk (time differential of acceleration) squared, as integrated over the
duration of the motion. This criterion is known as minimum jerk (MJ), and was first
thoroughly described in [66]. This generates trajectories consisting of a single fifth
degree polynomial.

Under the assumption of negligible friction, apart from total energy, these can all be
expressed in terms of hand position as a function of time. In order to achieve a meaningful
definition of total energy, one would need some knowledge of the friction characteristics of
the arm, as well as the energy conversion characteristics of the muscles.

The study showed that though there were special cases, such as bowing a violin, where
minimizing peak velocity gave trajectories that coincided with observations, for uncon-
strained reaching motions, the best fit was obtained when minimizing either one of total
spent energy or the square integral of jerk. These trajectories have a bell shaped velocity
profile resembling that observed in actual motion, while the trajectories obtained when
minimizing peak velocity or peak acceleration have triangular or trapezoidal velocity pro-
files. The trajectories obtained when minimizin motion time were very different from actual
observations, as most real motions take significantly longer to execute.

The trajectories achieved by minimizing either energy or jerk were very similar, and
the energy cost of minimum jerk was less than 2% higher then that of the minimum energy
solution. For a free moving body, the MJ solution is the solution that minimizes mechanical
strain.

This led to the proposition of a model where the change of joint torque was minimized
over the course of trajectory, motivated by claiming that if mechanical strain on the person
performing the motion was to be minimized, the hand should not be treated as a freely
moving body but as part of the mechanical linkage of the arm. It was also argued that
dynamics should be considered, and not only kinematics. Studies showed that for uncon-
strained reaching motions where body posture underwent negligable change, this model
produced the same trajectories as the MJ model. However, when posture was changed
significantly during the execution of the motion, or if varying external forces were applied,
the minimum torque change model was significantly more accurate [144, 79]. The Jacobian
transform from joint-space motion to cartesian motion can be approximated with a linear
function locally, meaning that the MJ solution and the minimum torque change solution
will be similar. When the motion is large enough that the linearity approximation is no
longer valid, the two solutions will diverge.
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Yet another physiologically motivated approach is based on information content in the
control signal. Observing that the noise in the human motor system is proportional to
the signal amplitude, a model where the trajectory of a reaching motion is explained by
minimizing the variance of the final position has been suggested. The actual trajectories
were generated by applying quadratic programming to find the series of neural input signals
that minimized the final variance for a given target point at a given time. While this
model may have biological relevance as to explaining why a certain trajectory is chosen, the
trajectories it predicts for reaching motions do not differ significantly from those given by
MJ or minimum torque change[55].

Choice of Model

In the present work, the usefulness of a model for explaining how the human motor systems
performs planning and/or control is of little relevance. Instead, we focus solely on two
criteria when choosing an appropriate model for estimating human motion:

1. Accuracy. How well does the model fit and/or predict actual observations?

2. Implementability. How suitable is the model to implement as a predictor in a
real-time teleoperation scenario?

Given the first criterion, we can remove the first simple models that minimize time, peak
acceleration or peak velocity, as these do not fit well with observations. If we assume no
external forces or large changes of posture, all the remaining models have similar accuracy.
For most teleoperation scenarios, this should be a valid assumption since the operator should
be assumed to be stationary and using an interface with a relatively small workspace situated
comfortably in front of the user.

As for the second criterion, both the MJ model and the minimum energy model can be
described by polynomials in cartesian space, but while the MJ model is purely kinematic,
the minimum energy model requires modelling the internal dynamics of the arm. The same
is also true for the minimum torque change model, and the minimum variance approach.

Thus, by choosing the MJ model, all modelling can be based solely on measurements
of the subject’s hand position, which can easily be attained with any input device. Also,
since this model is polynomial, it is trivial to integrate or differentiate, enabling the use of
velocity or acceleration measurements as well as position.

The limitations imposed by the model is that it is only valid in the absence of external
forces and when the subject does not change posture significantly. In teleoperation terms,
this translates to limiting the application to contactless free motion, with a limited size of
the workspace for the input interface.

The Minimum Jerk Model

The minimum jerk (MJ) model is well-known and used for explaining the kinematics of
visually guided human reaching motions. It was first proposed for single-joint motions
in [66], and later extended to include multi-joint planar motion in [41]. It was observed that
the trajectory of voluntary arm motions, when described in a cartesian space independent of
the subject, follow certain constraints. The trajectories can be predicted by using a model
in which the square sum of the third derivative of position, jerk, integrated over time is
minimized. Thus, given a starting point, an end point and a time to move between the two,
the trajectory that minimizes the jerk on this interval is the MJ trajectory. Observations on
the motions that humans make when freely catching a thrown ball indicate that they start
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by moving towards the expected point of impact with a distinct MJ-type reaching motion,
and later add smaller corrective MJ-type motions to accurately catch the ball [56, 88].

All MJ trajectories share the property that the 6th derivative is zero for the duration
of the motion, and that they thus can be described as 5th degree polynomials, as in Equa-
tion 3.1.

x(t) = a1t
5 + a2t

4 + a3t
3 + a4t

2 + a5t + a6 (3.1)

If we also add the start and end points of the motion, x(t0) and x(t1), and state the
position, velocity, and acceleration at these points, we get the following constraints on
Equation 3.1.

x(t0) = x0, x(t1) = x1

ẋ(t0) = ẋ0, ẋ(t1) = ẋ1

ẍ(t0) = ẍ0, ẍ(t1) = ẍ1

The above constraints will give us 6 equations, and we get a well-defined system to
find the 6 parameters a1 . . . a6. Thus, there is only one possible MJ trajectory for a given
start and end, and it can be found by solving a simple system of linear equations. For a
typical reaching motion, the velocity and acceleration are zero at the start and end points,
ẋ0 = ẋ1 = ẍ0 = ẍ1 = 0. Using this, we can rewrite the equation as a function of a1 alone:

x(t) = x0 + a1

[
t5 − 5

2 (t0 + t1)t4 + 5
3 (t12 + 4t1t0 + t0

2)t3−
5(t1t02 − t1

2t0)t2 + 5t0
2t1

2t−
1
6 t0

5 + 5
6 t0

4t1 − 5
3 t0

3t1
2
] (3.2)

Where the remaining constants are related as:

a2 = − 5
2 (t0 + t1)a1

a3 = 5
3 (t20 + t21 + 4t0t1)a1

a4 = −5(t20t1 + t0t
2
1)a1

a5 = −5a1t
4
0 − 4a2t

3
0 − 3a3t

2
0 − 2a4t0

a6 = x0 − (a1t
5
0 + a2t

4
0 + a3t

3
0 + a4t

2
0 + a5t0)

Without loss of generality, we can choose the coordinate system so that the start position
x0 = 0, and that the motion starts at t0 = 0 and the equation can then be rewritten as:

x(t) = a1(t5 − 5
2 t1t

4 + 5
3 t1

2t3) (3.3)

If we solve for a1 at t = t1 we get:

a1 = 6x1
t15 (3.4)

So the entire trajectory is defined completely by the distance (x1) and duration (t1). An
illustration of a typical MJ trajectory and its first five derivatives (velocity, acceleration,
jerk, snap, and crackle) are shown in Figure 3.2. In this case, the motion has duration 0.5 s
and the distance moved is 0.3 m.

For 3-dimensional motion, each dimension of the motion is described by a polynomial
as in Equation 3.1, where the coefficients for the different dimensions are independent from
one another, but the t0 and t1 are the same [79].
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Figure 3.2: An illustration of a typical MJ trajectory and its five first derivatives. The names
“snap” and “crackle” are sometimes playfully used for the fourth and fifth derivatives of
position, and are used here as no other names have formal status.
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Superposition Priciple

The trajectories described by a simple MJ model are limited to one single MJ motion.
It has been shown that each MJ motion is executed in a feed-forward manner without
feedback [17]. If a more complex motion is performed, or if the target of the motion is
changed in mid-motion, the trajectory can be described by generating a new MJ submotion
before the old motion is ended and superpositioning this onto the old [103]. If the added
MJ trajectory has an initial position, velocity, and acceleration of zero, this will still result
in a continuous, smooth (first two differentials continuous) motion where the 6th derivative
is zero, so the jerk is still minimized. For these types of compound motions, a common trait
is that the tangential velocity tends to be lower as the radius of curvature decreases. Thus,
if the direction of a new motion differs significantly from that of the previous motion, the
new motion will not be added until the previous motion is close to finishing. Compound MJ
motions have been described thoroughly in [67, 40, 146, 47]. In the motor control system
of humans, a new submovement can be generated as often as once every 100 ms [100]. This
observation, in combination with the feed-forward nature of the individual submotions,
makes it reasonable to assume that human motions could be possible to predict accurately
for att least 100 ms.

As an illustration, we fit MJ trajectories to actual human reaching motions. The hu-
man motions were recorded in an experiment with teleoperated ballcatching in a virtual
environment, as described in Section 6.1. In the first example, the subject was successful
in determining where the ball would come, and caught the ball with a single reaching mo-
tion. Figure 3.3 shows the largest component (y) of this reaching motion, with a single MJ
trajectory fitted.

In another try, the subject was not initially successful in determining the trajectory of
the ball, but had to make subsequent corrections of hand position in order to successfully
catch it. Figure 3.4 shows the largest component (y) of this reaching motion, with a series of
MJ trajectories fit in such a way that the superposition of the submotions fits the measured
position.

3.3 Related Work

There have been a few applications using minimum jerk models to estimate the input
from a human operator, and minimum jerk models have been used in a multitude of other
applications to robotics.

Recently, Weber et. al. have presented work where MJ models are applied to user
input in a teleoperated system. Their approach limits robot motion to avoid collision, by
substituting the user’s input signal with the MJ trajectory that most closely resembles the
original input, while not colliding with a wall. Their approach has only been applied to
1 DoF motion, but shows that it is possible to use human models to limit robot motions
to a safe workspace without removing the sense of presence of the operator, as the limited
motion is not perceived as being in conflict with user’s intended motion [148].

Jarrassé et. al. have studied the use of human motion prediction to enhance the per-
ceived transparency of a teleoperation system. However, they do not explicitely treat the
prediction process itself, but assume that prediction can be done, and substitute prerecor-
ded motion data for predictions for a task where the exact motion profile is known before-
hand [75].

Apart from these, one of the most widely studied uses of human motion models in robot
control is to generate as humanlike motions as possible for robots with higher degrees of
autonomy. There exist three main motivations for these applications.
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Figure 3.3: One of the components (y) of the measured hand trajectory with MJ trajectory
fitted. In this case the hand trajectory contains only one major MJ component.
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The first motivation is that some robots are aimed for applications that require them to
have as humanlike behavior as possible, such as humanlike androids or robotic prosthesis
replacing human limbs. MJ trajectories have been used to generate humanlike motion for
prosthetic fingers [122]. They have also been used as a smoothing function for a path plan-
ner for a humanoid robot, with the auxillary goal of producing motion that is as humanlike
as possible [89]. A slightly different approach is to mimic human gaze shifts during manip-
ulation, by using humanlike anticipatory motions to align a camera for teleoperation. This
has shown to improve both objective performance and perceived immersion [119].

The second motivation is for robots working in close proximity to humans, where having
the same motion profiles as a human makes interaction easier. This would for example be
industrial robots that handle an object together with a human, for instance making the load
lighter while the human controls the trajectory. Corteville et. al. have proposed a system
that uses an online estimator based on minimum jerk models for admittance control. This
system uses the estimate of the human operator’s input to generate forces that moves the
robot along the same trajectory as the human, thereby aiding the humans’s motion. So far,
experiments are limited to 1 DoF motion, but the approach is thought to be applicable to
more general motions. Proposed applications include lifting aids for moving heavy loads.
A successful application should minimize the force that the operator has to exert to move
the load [32].

A similar motivation has led to minimum jerk trajectories being used to generate smooth
interaction for robot-assisted therapy for recovering stroke victims, where the robot enforces
MJ motions while helping the patient to move his/her arm, mimicking the actions of a
human physical therapist [86].

The third motivation is the common motivation of biomimetic design, that if it is good
enough for a human, then it must also be good enough for a robot, or rephrased: “if evolution
determined that MJ and MJ-like motions were the most efficient and wear-minimizing, who
are we to argue?” A control law that generates minimum jerk trajectories to optimize
precision is presented in [91]. A system utilizing a neural network and minimum torque
change to learn to control an articulated arm without explicit knowledge of kinematics
and dynamics was proposed in [78]. Observations that the superposition strategy works
well for humans when replanning motion led to applying the same to robot on-line path-
planning [47]. A biologically inspired MJ-based control law for robot manipulators with the
aim to reduce wear was presented in [113].

Using much simpler models of human motion, that do not use trajectory models, tele-
operation schemes have been proposed that include simplified models of the passive imped-
ance of the operator. These typically contain the human as a spring-damper object, and
are mainly concerned with the reactive aspect of the operator’s interaction with a force-
feedback device. These do not try to model the proactive control inputs from the operator
— these are either treated as noise or as the given control signal u [53].

Also related is work that models the human behavior at a higher level. This is sometimes
called intent detection, and typically models the input at a task level rather than precise
motions. An example is using statistical models to infer which of a number of possible paths
a user intends for a walker in the presence of obstacles [70]. There have been attempts to
classify user input and map reaching motion to to the most probable target for space
telerobotics [141].

There exists an implementation for pick-and-place tasks for a humaoid torso, where
the system estimates the intended target by measuring the jointspace distance between
user input trajectory and an autonomously generated trajectory for each possible target,
and lets the user switch from direct control to autonomous mode when he/she accepts
the proposed target of the system [37]. Work has also been done on using Hidden Markov
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Models to identify the operator’s current intention, with the aim of switching control modes
between “fast” or “accurate”, depending on type of current operation [71].





Chapter 4

Experiment Design

We want to try the ideas presented in the previous chapter with a series of experiments.
We thus need to find relevant experimental tasks and setups. This chapter arguments for
what type of experiments should be done and why.

4.1 Tasks

The validity of the minimum jerk (MJ) model described in Section 3.2 for estimating op-
erator input can be evaluated by applying it to different teleoperation scenarios. In order
to have a thorough testing, it is reasonable to both apply the methods to scenarios that
should be a perfect match for the MJ model’s strengths and weaknesses and to more general
scenarios where the MJ model might not be obviously appropriate.

A teleoperation task where the MJ model would be expected to be a good description
of user input should fulfill the following criteria:

1. The task should be visually guided, since most experimental support for the MJ model
is based on visually guided hand motions.

2. There should not be any significant contact forces acting in the direction of motion,
as these would alter the velocity profile.

3. The task should be accomplishable in a single reaching motion, so that it can be
accurately described by a single MJ submotion. This will strip the experimental
treatment of the problem of handling superpositioning of several MJ submotions.

4. The task should require fast reactions, forcing the operator to perform MJ-type feed-
forward motion. Also, the potential benefit of a successful application of input estim-
ation is larger for tasks that require fast execution.

The first two criteria are necessary for the MJ model assumptions to hold, but the last
two criteria could be changed in order to make a more challenging test:

3. The task should require continuous motion, so that a large number of superimposed
submotions are required to describe the trajectory.

4. The task should allow for some forward planning for the operator, so that the operator
is free to choose any possible trajectory.

23
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Furthermore, in order for the experiment to be conclusive, we should use a task that
requires fairly high precision to be performed successfully. Thus, a model-based estimator
that does not fit the user input well will be likely to cause a failure to complete the task,
and can thereby be more easily identified.

Based on these criteria, we suggest three basic tasks to test in experiments.

Reaching to Touch a Target

A first task, that is prototypical for the MJ model, is to reach towards a stationary target.
This means that the subject has clear view of the target and can perform a simple reaching
motion to touch the target. This type of task is mostly a proof-of-concept type task. If the
MJ model is at all applicable, it should work for this task, as explained in Section 3.2. This
task can also be used to test and design the predictor implementation.

Ballcatching

To further test the single reaching type motion, we also try a task that is inherently difficult
for the user to perform successfully without any aids. The purpose of this is to find if a
significant improvement can be made with the use of MJ models. We propose ball-catching
as the second task. Robot manipulators have been made to autonomously catch thrown
balls since the early 1980’s [4, 69, 44], so the task should be physically possible. However,
given the necessary reaction time and precision, it should be difficult for a human operator
to achieve.

There is a multitude of literature on human ballcatching, such as in sports and games.
The possible strategies for ball-catching can be divided into two categories, predictive
strategies relying on ballistic models, or prospective strategies utilizing feedback [35]. Pre-
dictive ball-catching relies on a ballistic model of ball motion and observed initial conditions
to make a prediction of the most probable trajectory. A predictive strategy is necessary
when the motion commands have to be started well before the point of impact, i.e. when
the time of flight of the ball is short compared to the reaction and/or motion time of the
catcher. This is typical for batting in baseball or cricket [35, 92]. Prospective strategies
utilize continuous feedback from the task performed. There is no explicit need for an exact
model of the target’s motion, but instead, corrections are made to minimize the distance
or relative velocity between target and catcher. This type of strategy is viable when there
is enough time to perform several corrections before the point of impact, and is useful
when the trajectory is difficult to predict from initial conditions. This is typical for outfield
players in baseball [35].

Catching of balls that have been thrown for shorter distances — where the viewpoint
location is clearly separate from the position of the hand — has been studied in terms of
the internal models that humans might apply to the catching task. Specifically, it has been
shown that a priori knowledge about gravity direction and magnitude is used when catching
falling balls [99]. When catching a ball that is thrown across a room at a moderate velocity
of approximately 5 to 6 m/s, the time for the entire throw is typically second or less1. In one
study, it was found that the average hand motion time for a human subject attempting to
catch such a ball was 0.52 s, and that the average hand trajectory length was approximately
0.35 m [88]. In these cases, there does not seem to be enough time for a conscious continuous
feed-back loop to correct the hand position, but rather an initial estimate is made of the

1The time of flight is limited by ceiling height. The higher the apex of the trajectory is above the start
and end points, the longer the ball will be in flight. For a throw where the apex is 1.3 meters higher than
the start and end points, as could be the typical limit for an indoor throw, the time of flight is 1.03 s.
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ball trajectory, and the hand moved roughly toward a point of intercept. If there is still
time to react, this position can be corrected to produce an accurate catch, possibly applying
multiple corrections. Evidence towards this is that one can distinguish a distict trajectory
towards an initial catch position estimate, and additional shorter distinct trajectories that
correct this [56].

Linetracing

Finally, in order to have a task that is as general as possible, we wish to let the operator
move the arm for extended continuous motions. Since we want the motion to be visually
guided, and we also want to have a ground truth by which to compare the performance,
we let the operator use the robot arm to follow a preset pattern on a piece of paper. This
should generalize to many other types of complex visually guided tasks.

4.2 Interface Types

There are several types of interfaces that are interesting to study. First, in order to assure
that the motion models are valid, it is desirable to use an interface where the human operator
has a high level of immersion, and is allowed to make as natural movements as possible,
i.e. there are no significant interaction forces. The results gained with such an interface
can then be compared to the results with a more standardized teleoperation interface in
order to evaluate what parts of potential performance problems can be attributed to the
interface.

It is also interesting to use a very simple and/or cheap interface where the quality of
the input signal may not be very high, in order to test the possibilities to overcome poor
measurements using the modelbased estimation approach.

Given that one of the most significant problems facing any teleoperation scheme is
transmission time delay, we should also have a setup that can address this. However, one
of the main reasons why time delays are a substantial problem is that they are present in
virtually any advanced system. Thus, it should be trivial to introduce time delays into any
setup regardless of the interface type, and this will not be a major issue in the choice of
interface.

With these motivations, we shall study the following types of interfaces:

Virtual Reality

The human motion models we intend to use originate from studies of unconstrained human
subjects reaching freely for visible targets. To recreate this as accurately as possible using
available technology, we propose to use virtual reality (VR). We can let the the subject move
freely and use non-contact measurements for handtracking to generate input signals, and
give visual feedback via a head-mounted display (HMD). This allows for free 3D motion.

VR with a HMD has been used to enhance teleoperation and has been shown to give
unrivaled levels of immersion [24]. VR as a technology is mature enough that behavioral
scientists consider it usable to perform experiments and consider the results as applicable
to the real world [142].

Some concerns have been raised regarding the safety of VR systems. VR with HMDs has
been connected to some motoric (balance and other) symptoms after usage, but sufferers
are few and recover quickly and completely [30].
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Screen and Joystick

We also want to try a setup that is simple to implement and easy to replicate by others, so
that our results will be valid for standard type setups. One of the most common types of
interfaces for teleoperation is a joystick for input and a computer screen for visual feedback.
The joystick can have 1 or 2 DoFs in simpler setups, like reported for space teleoperation
and urban rescue robots [72, 26, 42], or 3 or more DoFs for more advanced motions for
advanced experimental use [28, 85]. For better immersion, the computer monitor can show
3D images by using shutter glass technology, as demonstrated in advanced teleoperation
experiments in orbital satellites [63].

Game Controller

Finally, we also want to examine the potential use of model based input estimation on
less-than-perfect input signals. Recently, mass market video game controllers have begun
to attract attention as teleoperation interfaces. Specifically, the remote control device for
the Nintendo Wii video game, the accelerometer-equipped “wiimote” interface is reported
as being intuitive and easy to use [52, 93, 46, 145, 98, 128]. Even though it is far from as
accurate as a traditional teleoperation control interface, the cognitive load is lower, allowing
the user to concentrate on other things, or performing several tasks simultaneously. Others
report that wiimote control is less precise and lowers task performance as compared to
more traditional input devices [138]. Recently, an industrial robot arm controlled with a
wiimote has attracted media attention [31], but so far this has only been using task level
control where the task is not performed until the user input motion has ended. To the
knowledge of the author, there are no reports of direct position tracking using the wiimote
accelerometers, so an implementation that enables position tracking is also an interesting
demonstrator application in its own right.



Chapter 5

Design of Experimental System

This chapter describes the systems used for all tests and experimemts presented in this
thesis. Custom built parts of the systems are described in more detail than those that are
readily commercially available.

5.1 Robot Manipulator

Given the physical decoupling of master and slave that is inherent in most teleoperation
systems, many scenarios could probably be tested with a completely simulated slave en-
vironment, removing the need of an expensive and cumbersome physical robot. However,
if we were to create a completely virtual system, the suspicion that the simulation is less
complex than a real setup is difficult to shake. Therefore, in order to make sure that no
unintentional simplifications are made, and that in extension the results are applicable for
real systems, it is preferable to use a real physical robot.

Since the experiments we want to perform concern different types of reaching, touching,
and catching motions, it is natural tu use a stationary robot manipulator, rather than a mo-
bile robot. The choice of robot is non-trivial given the amount of money and time involved
in setting up a new system. Therefore, it is important to start by making rigorous specific-
ations. In our case, we want the robot to be fast enough to match the operator’s motions,
so that we can minimize the problems associated with motion discrepancies between master
and slave, as described in Section 2.1. We also want to implement our own controller so
that we can perform controlled experiments. We may need to simulate the robot to predict
observations, so we want to have accurate models of the robot dynamics, which requires
access to descriptions of both hardware and software. Unfortunately, commercial systems
rarely provide such well-documented low-level access.

A large number of robot manipulators have been designed over the last half century,
and several of these have become standard platforms for R&D efforts. Historically, the
most widely used for academic research is without a doubt the Unimate PUMA 5xx series,
which is readily available, but lacking in dynamic capacity. As actuation systems have
become more powerful and miniaturized it has become possible to build fast robot systems
to perform highly dynamic tasks. Early examples of highly dynamic robot control include
the ping-pong playing robot at Bell Labs [3], and the juggling robot developed by Koditschek
et al [23, 116]. Another example of dynamic systems are walking robots [115].

Several commercially available candidates were examined - see Table 5.1. Of these, the
only candidate that fulfills both performance and accessibility requirements is the KUKA
LWR [62], which was not commercially available when this research was initiated (it was
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Table 5.1: Comparison to some alternative manipulators. Data as given in manufacturers’
documentation.

name: price(e)a: dof: reach: weight: powerb: payload: API: velocity:

Puma 560 —c 6 0.86m 63 kg 1.5 kW 2.5kg RT joint 0.5 m/s
Neuronics Katana 20 000 5 0.60m 4.3 kg 96 W 0.4 kg RT traj/joint 90 deg/s
KUKA KR5 850 22 000 6 0.85m 29 kg 2.3 kW 5 kg 80 Hz pos/vel 250 deg/s
Schunk LWA3 45 000 7 —d 10 kgd 0.48 kW 5 kg traj/current 70 deg/s
Custom Robote 50 000 6 0.91m 23 kg 5.5 kW —f 600 Hz pos/vel 7m/s
Barret WAM 70 000 7 1 m 27 kg 250 W 3 kg 500 Hz traj/force 1 m/s
KUKA LWR 120 000 6 0.94m 14 kg 720 W 14 kg 1 kHz force/traj 120 deg/s

(a) Actual prices paid or as quoted by supplier.

(b) Rated peak power consumption.

(c) Used, price varies with condition.

(d) Available in different configurations.

(e) The manipulator described in the present text.

(f) Not tested for durability.

announced available on the Euron Mailing list on Aug 25, 2009), and had an expected price
that at the time was prohibitive. A light-weight industrial robot like the KUKA KR5 may
have a more attractive performance/price ratio, but the proprietary interface limits control
to high-level position or velocity control at 80 Hz with no low-level interface, meaning that
it is not suitable for our research applications

This left the alternative of constructing a custom built robot, like many of the examples
used for dynamic manipulation experiments mentioned above. This raises the concern that
in the field of robotics, too much research is performed on a basis that cannot be replic-
ated, reproduced or reused. Recently there have been several attempts to utilize standard
platforms for research, in order to assure repeatability of experiments, as exemplified by
the LAGR program organized by DARPA [74]. The RobotCub project has also made a few
robots available to the research community [121]. Given this background, it is an interest-
ing inquiry in its own right to see if an inexpensive high performance manipulator can be
custom made from standard parts, so that it is easy for anyone to replicate.

Basic Requirements

The most demanding type of experiment that we want to perform involve catching a ball
thrown across a room. We anticipate a normal, slow, underhand throw from a distance
of approximately 4 m. In an indoor environment, a ball can be thrown with reasonable
accuracy along a parabolic path with an apex of 2.3 m, with both the thrower and the
catcher situated at a height of approximately 1 m (see Figure 5.1). Simple studies of
human performance indicates that the system must be able to accommodate variations in
thrower accuracy corresponding to catching the ball within a 60×60 cm window. From
these basic requirements it is possible to compute flight time and velocities for the scenario,
as summarized below:

• Throwing distance will be approximately 4 m.

• Flight time will be up to 1 s, the typical time is expected to be 0.8 s.

• The ball will travel with an approximate velocity of 6 m/s at time of arrival.
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5 m

2.3 m

Figure 5.1: Schematic of ballcatching experiment.

• The ball should be caught if it arrives within a 0.6 m × 0.6 m window.

One desired feature is the use of standard video cameras for ball trajectory estimation.
With normal 50 Hz cameras, the frame time is approximately 20 ms, and a similar time
window is expected to be needed for segmenting the ball in the image and estimating the
position. In addition, at least three frames are required for trajectory estimation, but
limited accuracy of the cameras will mean that more, probably as many as 10 images might
be necessary (c.f. [44]). Thus, the time delay from the initiation of a throw to the initial
trajectory estimate might be 200 ms. The setup is intended to be used for teleoperated
catching, were a human operator steers the robot towards the predicted trajectory, so we
have to allow for the operator’s reaction time as well. This might be around 100 ms, so a
window of 300 ms is reserved for initial reaction to a throw, leaving 500 ms in which the
arm has to move into position. In the worst-case scenario, the arm has to move from one
opposing corner of the operational window to another, a distance of almost 0.9 m. Since
the experiments will not be concerned with grasping, a simple passive end effector like a
small bucket can be employed, and the positioning error has to be smaller than the radius
of the bucket, preferably less than 1 cm. These requirements can be summarized as:

• End effector has to be able to move 0.9 m in 0.5 s, (partially) against gravity, from
stand-still to stand-still.

• The precision of positioning the end effector should be within 1 cm

Given constant and equal acceleration and deceleration, a distance of 0.9 m can be
traveled in 0.5 s if the acceleration is at least 14.4 m/s2, and the maximum velocity is at
least 3.6 m/s. This also has to be achieved when working against gravity. These are the
minimum dynamic requirements — the actual implementation should have some margin
to allow for uncertainties. To enable flexibility in the design of future experiments, it is
desirable to allow for different types of sensors to be mounted in the end effector reference
frame, so this should be freely orientable in a dexterous manner. The end effector therefore
has to have 6 degrees of freedom, and should be freely orientable within the entire operation
window.

The system thus requires significant dynamics and the control has to be performed in
real-time. This implies that it is desirable to have closed form solutions for kinematics to
avoid computationally expensive numerical calculations, which in turn imposes constraints
on the design of the overall kinematic structure. Without a closed form kinematic/dynamic
solution it would be much more challenging to guarantee the real-time performance.
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A highly dynamic robot arm will pose a potential hazard to both its operator and itself
unless sufficient precautions are taken. Therefore, the control of the arm has to be suffi-
ciently exact so that safe paths can be accurately followed, and precautions against malfunc-
tions have to be taken. The former requires control loops running at a high frequency/low
latency, the latter that software and hardware malfunctions are kept at a minimum, and
that the negative effects of malfunctions should be minimized. Thus, the software environ-
ment has to be a stable real-time system, while the hardware contains fail-safe fallback for
dealing with software failure.

These further requirements imposed on the design are summarized below:

• Closed form analytical kinematics and dynamics are necessary for speed of calcula-
tions.

• At least 6 degrees of freedom.

• Acceleration of at least 14.4 m/s2 for end effector.

• Velocity of end effector of at least 3.6 m/s.

• Safety for operator and machinery requires a stable real-time system, as well as fault-
tolerant hardware.

Designed Solution

Having decided to construct our own 6 DoF arm, we examine if this can be done using
PowerCube modules from Amtec1. These modules are available off the shelf and allow
rapid prototyping. The range of modules clearly include some that have specifications
which are adequate for the target application (See Section 5.1). These modules also have a
built-in controller that can be used for embedded safety functions.

The actual performance depends on the configuration that the modules are assembled
in, so a few different configurations were examined more closely in computer simulation,
where a 10 % uncertainty was added to the maker specifications. The configuration that
showed the most promising results is one that is kinematically very similar to a Puma560
arm (and to many other commercially available robots). This is not only a configuration
that allows for very good dynamic performance (see Section 5.1), but as it has been widely
used and studied, several implementation issues are already solved, thus making the design
process considerably faster. For example, the closed form solution for inverse kinematics
and dynamics are well-known.

The choice of gearings and link lengths induce a trade-off between acceleration and
end effector velocities. The balancing of this trade-off has been made to minimize the
time needed to move the end effector from one stationary position to another within the
operation window. Since there is a limited, discrete amount of possible combinations of
actuators, it was possible to find the optimum through an exhaustive search. The resulting
configuration that performed the best in simulation is specified in Table 5.3. The design
and dimensions can be seen in Figure 5.2. The design allows for a workspace that is more
than large enough to accommodate for the specified 60 cm × 60 cm window for ballcatching,
though the manipulator’s dynamic performance deteriorates somewhat at the edges of the
workspace. A cross-section of the workspace can be seen in Fig. 5.2(c). The arm has
rotational symmetry as viewed from above, but is for safety reasons limited to a half-circle
to avoid collisions with any objects behind it.

1Now Schunk, Ltd.
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0.31 m

0.09 m

0.51 m

(a) Dimensions (b) 3D rendering of arm and operational win-
dow

540mm

Workspace

1000mm

(c) Workspace with tool oriented to-
wards user.

Figure 5.2: The first design of the manipulator, using Amtec PowerCubes.

The PowerCube modules support several different communication protocols, but for
robustness and responsiveness, the option of a 1 Mbit/s CAN bus was deemed optimal.
The hardware design can be implemented in several different ways. In principle all modules
could be on a single CAN bus or each module could have a bus of its own. The end-effector
joint is a combined pan-tilt which requires use of a single bus to control both degrees of
freedom. This means that the control computer could be equipped with either 1, 2, or
3 CAN controllers for symmetric loads, or 4 or 5 controllers for assymetric loads, where
the inner joints that control positioning are run at a higher frequency than the outermost
controlling orientation. Simulations where the inner joints were controlled at 500 Hz and
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the outer joints at 200 Hz show that this is a viable option. In simulation, the inner joints
can be stably controlled at full power output using frequencies from approximately 400 Hz
and upwards.

The first choice for the operating system for the computer performing the direct low-level
control of the robot was RTAI, a real time GNU/Linux system that has showed good per-
formance in previous studies [1], but some testing led to the choice of a standard GNU/Linux
kernel patched with high resolution timers2, as this not only showed at least equal realtime
performance but allows for easier implementations in user space. The control computer
will also perform the trajectory generation and be responsible for dynamic and kinematic
calculations.

Specifications

The basic design specification is outlined below:

• 6 DoF arm made with Amtec PowerCubes

• Kinematic configuration of Puma560 type

• GNU/Linux, preferably with high resolution timers, for control computer

• Communication over several parallel CAN connections.

Simulated Performance

The performance of the proposed arm was first calculated using the specifications from
Amtec and numerical simulations. The results for the travel times depend on the type of
controller used, and in this particular case, the controller included a dynamic model for
feed-forward control, and the torques in each individual joint were set in order to achieve a
target velocity as quick as possible. The target velocity was chosen as the minimum of the
actuators maximum velocity and the highest velocity from which stopping at the desired
position was achievable. This latter factor was calculated using the maximum torque of the
actuators and the inertial load of the current configuration, a figure that was multiplied
with a factor slightly less than 1 to achieve a margin. Using this simple controller, the
simulated arm had more than adequate performance, as is summarized in Table 5.2. Note
that the first acceleration figure given is the maximum achievable for small movements, and
the second figure for larger, cross-workspace movements.

Hardware Implementation

The arm proposed and specified in the earlier sections was constructed and mounted on a
sturdy industrial work table (see photo in Figure 5.3). The lower three actuators have a
maximum output of almost 1.5 kW each, harmonic drive gearboxes and incorporated brakes
to lessen motor strain when not moving. The fourth actuator is similar, but considerably
smaller as it carries a lighter inertial load. The maximum output is 0.36 kW. The last two
joints are contained in a combined pan/tilt unit. This is less powerful, but has lower weight
per joint than other solutions. This also incorporates the same gearbox and brakes as the
other modules. Specifications can be found in Tables 5.3, 5.4 and 5.5

The PowerCube modules have a simple onboard controller that also implements basic
security features. They will not allow motion beyond certain angle limits (that can be set

2 http://www.tglx.de/hrtimers.html
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Table 5.2: Simulated performance of robot arm. All values are given as their lower limit
within the operational window, and are thus equal to or better than this in the entire
window. The first acceleration given is the maximum possible for small movements, the
second (in braces) is the maximum acceleration achievable for large movements.

Endpoint acceleration > 100 m/s2 (> 30m/s2)

Endpoint velocity > 5 m/s

Traveltime across window vertically, from
standstill to standstill

< 0.36 s

Traveltime across window diagonal, from
standstill to standstill

< 0.37 s

Traveltime from window center to upper
corner, from standstill to standstill

< 0.22 s

Repeatability of position ±1 mm

Figure 5.3: The custom built manipulator.
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Table 5.3: Specifications for the parts used in the manipulator.

Part Product name mass Comment

1st joint PowerCube PR110 5.6 kg 51:1 reduction gear
1st link PAM104 0.2 kg 55mm cylindrical rigid link
2nd joint PowerCube PR110 5.6 kg 101:1 reduction gear
2nd link PAM108 0.8 kg 200mm cylindrical rigid link
3rd joint PowerCube PR110 5.6 kg 51:1 reduction gear
3rd link PAM119 0.2 kg 45mm conical rigid link
4th joint PowerCube PR070 1.7 kg 51:1 reduction gear
4th link PAM106 0.6 kg 200mm cylindrical rigid link
5th,6th joint PowerCube PW070 1.8 kg 2DoF wrist joint

Table 5.4: Manufacturer’s specifications for the joint actuators.

Joint no. max torque max angular velocity repeatability

1 134 Nm 8.2 rad/s (470o/s) ±0.00035 rad
2 267 Nm 4.1 rad/s (238o/s) ±0.00035 rad
3 134 Nm 8.2 rad/s (470o/s) ±0.00035 rad
4 23 Nm 8.2 rad/s (470o/s) ±0.00035 rad
5 35 Nm 4.3 rad/s (248o/s) ±0.00035 rad
6 8 Nm 6.2 rad/s (356o/s) ±0.00035 rad

Table 5.5: The Denavit-Hartenberg parameters for the arm, using J.J. Craig’s notation [33].

i αi−1 ai−1 di θi

1 0◦ 0 m 0 m θ1

2 −90◦ 0 m 0 m θ2

3 0◦ 0.31 m 0 m θ3

4 −90◦ 0 m 0.51 m θ4

5 −90◦ 0 m 0 m θ5

6 90◦ 0 m 0 m θ6

by the user), and will perform an emergency stop if these limits are exceeded, or if no
watchdog signal has been transmitted over the CAN bus for 50 ms.

In order to avoid collisions, both with itself and environment, the angles of the different
joints have been limited to the values shown in Table 5.6. There are two sets of limits,
each set prohibiting collisions in itself but with a limited workspace. The system will
switch limit sets when moving out of range of one set and into range of another, with an
intermediate limit set that consists of the tighter limits of the two sets. This means that
even if communication would break down in the middle of a limit switch, the individual
modules will always be limited to safe intervals, while at the same time allowing for use of
a large part of the robot’s potential workspace.
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To test these safety measures, two experiments were conducted. In the first experiment,
the communication link was severed between the computer and the robot. This results in a
termination of the watchdog update, and the modules finish their last command and engage
the brakes. In the second security experiment, illegal position commands were intently
issued by the control program. The modules’ onboard controller correctly identified these
as violating joint limits. The arm moved into the legal position that was closest to the
commanded position and stopped. This should account for safe handling of an unexpected
breakdown of control algorithms, the control computer, or the CAN communication link.

Table 5.6: Limits on joint angles.

Joint no set 1 set 2

1 −90o – +90o −90o – +90o

2 −100o – −40o −130o – −70o

3 −60o – 50o −40o – 90o

4 −160o – +160o −160o – +160o

5 −120o – +120o −120o – +120o

6 −180o – +180o −180o – +180o

The communication interface was designed to be implemented over 4 separate CAN
buses, one each for the 3 inner (position controlling) joints, and one common bus for the
3 outer (orientation controlling) joints. Two 2-channel PCI CAN controllers from Kvaser
were chosen, as these had open source device drivers for Linux that where deemed plausible
to port to real-time usage.

Software Implementation

A Linux 2.6.19 Kernel was patched with high resolution timers for low latency realtime
performance. A customized communications API was implemented to guarantee low-latency
communication with the PowerCube modules, as well as customized libraries for fast vector
manipulations optimized for calculating arm dynamics. The control loop is run in soft
real-time, using the round-robin scheduler SCHED_RR and maximum priority. All services
not necessary for robot control are turned off. Experiments running the robot for several
hundred hours have shown that this gives a worst case latency of less than 100 µs, which
is sufficient. The average jitter for the main loop of the control algorithm is 6 µs, which is
significantly less than the modules’ latency of up to 600 µs. For this application, this soft
real-time performance is comparable to that of hard real-time systems like RTAI, but with
the advantage of simple straight-forward userspace implementation.

Inverse kinematics and dynamics are calculated using a C implementation of the ana-
lytical solution for a Puma arm in [33], and the forward dynamics are calculated using
the second algorithm in [147]. As a result, inverse kinematics can be calculated in 1.7µs,
and dynamics in 41µs, so that all calculations needed in the control loop take less than
50µs. This means that virtually all latency in the control loop originates from the CAN
bus communication path and the PowerCube modules response times.

Combined position and velocity control has been implemented on the system using a
combined feed-forward computed torque control (CTC) scheme and a feed-back PI control-
ler. When a new setpoint enters the controller, a velocity ramp trajectory is calculated
in joint space. This trajectory is limited by a preset top velocity (presently 4 rad/s) and
a maximum acceleration, but otherwise is the shortest path towards reaching the desired
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position θd and velocity θ̇d from the actual position θa, without exceeding the maximum
allowable acceleration amax, see Equation 5.1. This ramp works under the assumption that
the desired position is frequently updated to new positions in accordance with the desired
velocity.

θ̇ramp =
√
|θd − θa| · amax · sign(θd − θa) + θ̇d (5.1)

The maximum acceleration amax is limited by a preset limit value3 and the maximum
achievable acceleration, computed by calculating the resulting acceleration with maximum
torque and taking away a small safety margin. The desired acceleration fed to the the CTC
controller is then the acceleration necessary to achieve the target velocity θ̇ramp as soon as
possible, without violating the limits on acceleration or jerk. For use in the experiments
the acceleration is limited to 16 rad/s2, and jerk to 400 rad/s3.

The ramp trajectory is recalculated in each iteration of the control loop. The current
position and velocity, and the acceleration prescribed by the ramp, are fed to the inverse
dynamics function that determines the necessary torques to follow the trajectory. These
torques are converted to currents assuming a linear conversion factor and sent to the actu-
ator modules.

A corrective term consisting of a PI controller monitors the difference between desired
velocity and actual velocity, and corrects the controller current accordingly. This term is
necessary as the feedforward CTC controller does not contain an accurate enough model
of friction, the movements of the power cords or the nonlinearities in the current/torque
relationship. For a schematic of the control scheme, see Fig 5.4.

PI

Trajectory
Generator

Modules
Actuator

+

+

−

+desired
velocity

Current

Current

(Pos, vel)

CTC

acceleration
desired
Calculate
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Figure 5.4: Schematic of controller

3The limits on velocity, acceleration, and jerk are chosen to limit the mechanical stress on the system,
while still being able to reach a given point in the workspace in less than 0.5 s.
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Table 5.7: Prices (in Euro) for the robot arm setup

Part(s) Price (e)

Actuators 38,000
Rigid Links 3,400
CAN System 1,600
Mountings 500
Power Supply 4,400
Control Computer 1,600
Total 49,500

Precision

In order to measure the repeatability of positioning of the arm, a paper ”target” with a
millimeter scale was fixed to the last joint of the arm. The arm was stopped in a position in
the center of the workspace. A laser pointer capable of producing a light point approximately
1 mm in diameter was fixed to point to the center of the target. The arm was then taken
around a complicated path traversing and circling the workspace for approximately one
minute. The arm was then sent back to the original position. To the precision of the scale
and the observer’s perception, the pointer was in the middle of the target. This was repeated
for several different positions and angles, with the laser pointer mounted both horizontally
and vertically, with the same results. The repeatability is therefore deemed to be better
than ±1 mm. The arm has also been tested to follow a straight path with sub-millimeter
accuracy, but this has only been performed at very low speeds for safety reasons, so there
are no experimental results for the accuracy at higher velocities.

Dynamic performance

The arm has been timed to traverse the operational window shown in Figure 5.2 vertically
(distance 60 cm) in both directions within 0.39 s from standstill to standstill, which was
predicted in the simulations. As for other movements — horizontal (60 cm) and diagonal
(90 cm) traversion — only times of 0.5 s have been verified, as this is enough for our
application and we want to minimize mechanical stress on the equipment. However, this
implies that any point-to-point motion in the operational window takes at most 0.5 s to
execute. The outermost joints are slightly slower then the inner ones, so the final angular
alignment of the end effector rather than the positioning is the limiting factor for many
configurations.

Cost Breakdown

The total cost of hardware used in the setup described here was just below 50 000 euros.
For a detailed cost breakdown, see Table 5.7. Please note that these are the actual prices
paid, and that there is no guarantee for future availability at these same prices.

5.2 User Interfaces

This section describes the various user interfaces used in the experiments.
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Figure 5.5: Nest of Birds magnetic tracking device. From left to right: the magnetic
transmitter, the control unit, and the markers.

Input Devices

This section describes the human input devices (HID) that were used for the experiments.

Nest of Birds Magnetic Tracker

For unconstrained free hand motion in the VR setting, we use a magnetic tracking device
called Nets of Birds from Ascension Technology. This device can measure the position
and orientation of up to four markers. Each marker is roughly a cube with 25 mm sides.
According to the manual, the positioning accuracy is 1.8 mm, and 0.5 degrees. The update
rate in our implementation is 100 Hz. The workspace is a sphere with 1.2 m radius centered
on a magnetic transmitter, which is more than enough to measure free arm motions as long
as the subject does not walk around.

We let the subject hold two markers in their dominant hand. The signals from the
two markers are averaged in order to decrease measurement noise. The markers and the
magnetic transmitter are shown in Figure 5.5.

Omega Haptic Device

For more conventional user input, we use a force feedback joystick from Force Dimension
called the Omega. It is a parallel linkage device, with a large workspace, as well as high
stiffness and force output. The position is sampled at approximately 2 kHz, and a Kalman
filter is used to extract a velocity measurement. This gives very accurate, low-noise meas-
urements of both position and velocity. This user interface hardware is shown in Figure 5.6.

Wiimote Inertial Game Controller

The wiimote user interface consists of a stock wiimote video game controller, see Figure 5.7.
The features that are used in this setup are 3 linear accelerometers with a range up to
±50 m/s2 and 0.38 m/s2 resolution, a 1024×768 pixel IR camera, and a trigger button.
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Figure 5.6: Subject using operator station with Omega haptic device and stereo display.
Photo by Mattias Bratt.

User input is read at 100 Hz. The accelerometers are reported to have an accuracy of
±10% [52], but this has not been verified in the present setup. The accelerometers were
calibrated so that constant and linear bias errors were eliminated. However, noise when
used hand-held is typically around 0.5 m/s2, which is on the same order of magnitude as
some users’ input signals.

Figure 5.7: The Wiimote input device.
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An IR LED setup provided with the wiimote is used with the camera to determine the
orientation when the user is pointing forward. When the LEDs are not visible, an EKF
keeps track of the orientation, also making use of the accelerometer data generated by
gravity whenever the wiimote is assumed to be nearly motionless. When the LEDs are not
visible, the orientation measurements become slightly less accurate, but the main difference
to using LED data is that rotation can not be measured along the vertical axis, limiting
tracking to 5 DoF instead of 6, assuming that there is no rotation around the vertical
axis. Apart from tracking the direction the user is pointing, the orientation data is also
used to subtract the Earth’s gravity from the accelerometer readings, as well as to convert
measurements from the wiimote frame of reference to the global frame of reference. The
trigger button is connected to a reset function that sets position and velocity to zero, used
to initialize the reference zero position.

5.3 Sensors

This section describes the external sensors used.We employ a vision system consisting of a
wall-mounted stereo camera pair from Videre Design with a 60 cm baseline, see Fig 5.8. The
cameras connect via Firewire to a Dell Precision 9510 workstation with a Pentium D dual
core processor at 2.8 GHz. This setup allows for stereo pairs of color images taken at 50 Hz
at a resolution of 320×240 pixels. The cameras have a field of view of approximately 50o

in the horizontal plane.

Figure 5.8: 60 cm baseline stereo cameras

For ball catching experiments, these cameras are used to track the balls, using an ex-
tended Kalman filter (EKF), as described in [44]. The ball is detected in each image using
simple color segmentation. First, the 24 bit RGB image is converted to 24 bit HSV using a
lookup table. The ball was found to have a hue value of 3, and a (largely varying) saturation
value of approximately 160, so all pixels that are in the range 1–5 for hue and 120–200 for
saturation are preliminary marked as ball pixels. A second pass that only keeps marked
pixels with at least 3 other marked neighbors eliminates noise. The center of mass for the
marked pixels is calculated and used as the ball centroid. A subwindowing scheme is ap-
plied, since these have shown to be very efficient to significantly reduce the time needed in
segmenting moving objects (c.f. [73]). After the ball has been detected the first time, only
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a subwindow where the ball should be expected to be found is processed. This subwindow
is calculated using the state estimate from the EKF, and the size of the window is set to
cover several times the standard deviation in position. Using this approach, the ball can be
segmented and localized with a reasonable accuracy at less than 4 ms processing time per
stereo image pair, giving sufficient real-time performance.

For other motion capture purposes, such as tracking the absolute position of the wiimote,
the cameras are used to track a small (5 mm × 5 mm) plastic marker of the same color as
the balls, using mostly the same approach. The main difference is that for general motion
capture, no assumptions can be made about the motion of the marker, so that instead of
using an EKF, the 3D position is just recorded as is. Thus, there is no estimated standard
deviation available to decide the subwindow size, but this is instead set to a fixed size of
60 × 60 pixels centered around the last tracked position, which showed empirically to work
well, due to the tracked motions being much slower than those of the flying ball.

Displays

This section describes the different displays used for presenting feedback to the user.

Stereoscopic Monitor

A stereo display was realized with a Philips Brilliance 109P4 monitor and shutter glasses.
The monitor updates the image at 120 Hz, meaning that each eye sees a relatively flicker-
free image updated at 60 Hz. The visualization of the remote site is performed using Open
Inventor 6 from Mercury Computer Systems.

Even though the Omega device setup and the software developed supports feeding back
robot arm momentum and obstacle avoidance forces to the user, this functionality was
disabled for the catching experiments. Instead, the force control in the device was only
used to enforce the limits of the workspace and to nullify gravity and friction.

The user interface receives the estimated position of the ball from the stereo vision sys-
tem of Section 5.3. To be able to bridge communication time delays using prediction, it
also needs the complete state of the Kalman filter to make future ball position estimates.
Estimates are computed by letting the state develop further forward in time without the
usual measurement update. This predictive power is also used over the much longer time
interval of a complete throw to generate a projected trajectory of the ball. This is shown
as a red line through the ball, and the uncertainty inherent in the future Kalman states is
displayed as a semi-transparent shell around it. The shell cross section that corresponds
to a particular point on the trajectory is the projection along the predicted velocity of an
uncertainty ellipsoid. The axes of the ellipsoid are twice the standard deviations along
different directions derived from the eigenvectors and eigenvalues of the Kalman filter co-
variance matrix for the predicted x, y, and z coordinates of the ball. The result is that
the uncertainty of the ball trajectory drawn is visible as a funnel that has its narrow end
at the current ball position, and widens as the standard deviation, represented by the dis-
tance from the trajectory in the center, increases the further into the future the prediction
extends. Screen dumps of the operator interface are shown in Figures 5.9 and 5.10.

When the ball is not in flight, but is visible to the vision system, the user interface
computer still gets information about the estimated ball position. In this case, which often
occurs just before a throw, the rest of the Kalman state is not available, and the ball is
shown in an alternate color. As the vision system determines that a throw has begun, full
Kalman state data starts to flow in, and the word ‘go’ is output to the speaker to alert the
user. Another sound is played if and when the ball is caught.
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Figure 5.9: The user’s view, as taken from the ball-catching experiment.

Figure 5.10: A side view of the virtual world of the ball-catching experiment.
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All data about user actions, as well as received robot and ball states, are logged to
file by the user interface computer. The log files can then be exported and used for data
analysis, but also serves as input to the interface software in replay mode. This mode of
operation allows normal and reduced speed play-back and pausing of recorded experiment
sessions. The viewpoint and viewing direction can be arbitrarily adjusted in real-time using
a 3Dconnexion SpaceTraveler six DoF mouse-like input device.

Head Mounted Display

For the head mounted display (HMD), the stereo image is displayed on an eMagin 3DVisor
Z800, aimed at the high-end gaming market. It has one 600×800 OLED display per eye, and
a diagonal field of view of 40 degrees. For headtracking and tracking of free hand motion
the Ascension Technology Nest of Birds device described in Section 5.2 is employed. To
get acceptable quality headtracking we use a setup with two of the four available markers
fixed to the user’s head and the magnetic transmitter unit mounted at a distance of only
approximately 30 centimeters from the markers. This allows measuring the orientation and
position of the head with the in-device filtering disabled. It otherwise causes unacceptable
lag and, consequently, nauseates the user.

USB Camera Video Stream

A direct video stream of the remote site is realized with an inexpensive USB camera with
640 × 480 resolution and a framerate of 15 fps, which was mounted to point towards the
robots workspace. The unprocessed video image is then shown on a 19-inch Samsung
SyncMaster 940x LCD monitor using xawtv software, c.f. Figure 5.11.

Figure 5.11: User interface hardware, with video display of remote site and haptic input
device.
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5.4 Communication Handling

For teleoperation purposes, and to simplify changing the operator interfaces and introduce
time delays, all parts of the system are connected over an IP network, either locally on the
LAN in the lab, or globally using the Internet. Different kinds of fluctuations in the delay
include random noise, changes due to variable network load, delays from transmitting too
much data, bunching of packets not originally transmitted together, and lost packets [109].

For transmission of real-time data UDP (user datagram protocol) is preferable to TCP
(transport control protocol), because it avoids the overhead of e.g. detecting and retrans-
mitting lost packets, at the expense of not guaranteeing transmission of all data or constant
ordering [105]. If the packets are self contained, i.e. they each contain one sample of all
transmitted signals, only the newest packet available at the receiving side is relevant, making
retransmission of old data and enforcing constant ordering unnecessary.

We perform a simple experiment, repeating that presented in [105], to illustrate the
difference between UDP and TCP. For the test to be comparable, the exact same trans-
mission characteristics are used. We sample transmission characteristics between the Royal
Institute of Technology (KTH) in Stockholm, Sweden and the University of Genova (UGE)
in Genova, Italy. The samples were taken at 10:40 in the morning on September 25, 2008.
The minimum delay was 46 ms, and the median delay was 48 ms. A histogram of the delays
is shown in Figure 5.12. We then transmit a simple cosine signal between two computers
connected on the same LAN, with no significant transmission delays, but delay each packet
according to the sampled real internet delays. For TCP, all packets arrive, and the ordering
is preserved. For UDP, we use time stamps to be able to drop all arriving packets that arrive
out of order, i.e. after a packet with a later time stamp. This means that with UDP, some
packets will be dropped, but the overall real-time performance is better, see Figure 5.13.

All separate parts of the system have synchronized clocks, so that time stamps set by
different parts of the system can be directly compared, and delays are easy to measure.
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Figure 5.12: Histogram of internet delays between KTH and UGE at 10:40 CET on Sep.
25 2008.
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(a) Comparison of received and transmitted signal when using UDP over an internet
connection with stochastic delays. Some packets are allowed to be dropped, but doing
so allows the remaining packets to have be delayed less.
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(b) Comparison of received and transmitted signal when using TCP over an internet
connection with stochastic delays. No packets are dropped, but enforcing this causes
delays in some of the subsequent packets.

Figure 5.13: Comparison of transmission characteristics for UDP and TCP.





Chapter 6

Offline Experiments

The proposed hardware setup, experimental scenarios, and minimum jerk (MJ) motion
models were given a first evaluation in a series of experiments. The common factor in these
experiments is that no part of the robot control depends on the validity of the models. All
analysis is made on recorded signals after the experiments have been carried out. The results
gained from this approach will then be used to design and implement on-line experimental
setups.

6.1 Ballcatching with Simulated Robot

The first experiment is an initial pilot study of the two 3D user interfaces, to determine if
they are appropriate for the ballcatching task, and to see if the minimuim jerk (MJ) model is
applicable to estimate user input when using the interfaces for this task. In the experiment,
we want to accomplish several goals. First, we want to evaluate the experimental setup,
to determine the task difficulty and examine how subjects interact with the UIs. We also
want to collect user input data to get an initial indication of what kind of input signals to
expect.

We want to compare the 3D Monitor + Haptic UI (setup 1) with the VR HMD UI
(setup 2), both described in Section 5.2. The initial assumption is that setup 2 should allow
for interaction that is natural enough that the MJ models are valid. We want to compare
this to the results from setup 1, to determine if MJ models are also valid for the latter.

In the user trials, only the simulated virtual reality system was used. Since the goal was
to study the interaction between the user and the interface, it was deemed that connecting
the actual robot arm would not benefit the experiments. In the setup, the same virtual
world was presented in the two different interfaces. The user’s viewpoint was slightly behind
and above the manipulator with a clear view of the rest of the room and the path of the
incoming balls, see Figure 5.9. Balls were visualized as small spheres.

Prior to the experiment, a ball was thrown several times to the robot described in
Section 5.1, which was set to autonomously catch any balls by intercepting the predicted
ballistic trajectory. The ball trajectories of 21 successful catches were recorded, verifying
that all trajectories were physically possible to catch. The recorded ball trajectories could
be replayed at will, and in the same order for all experiments.

The subjects were given a brief explanation of how the interface works. They were told
that they would see balls being thrown towards them, and that they were to try to steer
the robot arm so as to intercept the ballpath and thereby catch the ball. With setup 1,
the subjects were instructed that the arm would copy the movements of the input device,

47
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Table 6.1: Catching success rates

Subject Setup 1 Setup 2

1 0.62 0.71
2 0.24 0.33
3 0.29 0.38
4 0.48 0.67
5 0.48 0.52
6 0.29 0.10
7 0.76 0.71
8 0.81 0.62
9 0.71 0.33
10 0.33 0.43
total 0.50 0.48

and were given some time to explore this before the ball-catching task was introduced. In
setup 2, subjects were told that the robot arm would mimic the motions of their right hand
(or left for the one left-handed subject), and that the end effector of the manipulator would
be visualized as being where they would normally expect to see their hand.

For each system, the subjects were given 20 practice throws, in which the balls were
thrown in a random order. After a short break, they were subject to 21 throws that they
were told would be measured. When using setup 2, the subjects were allowed a short rest
after each 7 throws, dividing the experiment into three shorter sessions. This was so that
they could rest their arms/shoulders in order to minimize fatigue. The setup may cause
users to stand with their arm in an outstretched position that causes strain on the shoulder,
and if not explicitely instructed to rest subjects may concentrate too much on the robot
control task to notice.

A total of 10 subjects were used, all of whom are robotics or computer vision researchers
affiliated with our university, but with no prior knowledge of the setup. Of these 3 were
female and 7 were male. The same subjects were used for both setups, but the trials with the
different systems were conducted approximately two weeks apart. The trials with setup 1
were performed before the trials with setup 2.

Results

In the simulation experiments, the catch performance varied largely between subjects. Some
subjects were able to successfully catch most balls after the initial practice, while others
were hardly able to catch any. The success rate for the different setups are shown in
Table 6.1. When making comparisons with the performance of the real robot setup in
later experiments, it should be noted that balls are much easier to catch in the simulated
environment, mostly due to the lack of modelling of collision dynamics. Thus, all balls that
hit the catching cylinder are considered to be “caught” in the simulator, while many of
these might bounce off in the real system.

Although not explicitely studied here, debriefing with the subjects hints at a correlation
between successful stereo fusion in the interface and successful catching. some subjects with
poor results complained that they did not feel adequately “immersed” in the interface. It
is more difficult to intercept a ball trajectory in three dimensions for a user that can only
perceive two.
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Table 6.2: Average times and distances for MJ motions on setup 1

Subject Avg ∆t [s] Std(∆t) [s] Avg distance [m] Std [m]

1 0.3376 0.0859 0.2115 0.0859
2 0.2974 0.0462 0.5753 0.1078
3 0.3906 0.0498 0.3638 0.1216
4 0.3076 0.0940 0.1806 0.0692
5 0.3883 0.0853 0.2594 0.0678
6 0.3059 0.0948 0.3552 0.1283
7 0.3190 0.0839 0.1945 0.0724
8 0.2874 0.0863 0.1935 0.0565
9 0.3738 0.0876 0.4557 0.0731
10 0.3471 0.1015 0.2348 0.1382
total 0.3355 0.0801 0.3024 0.1571

Table 6.3: Average times for MJ motions on setup 2.

Subject Avg ∆t [s] Std(∆t) [s] Avg distance [m] Std [m]

1 0.7229 0.1063 0.2579 0.1174
2 0.5268 0.0628 0.5082 0.1018
3 0.6738 0.1430 0.3190 0.1832
4 0.6799 0.1291 0.3987 0.2876
5 0.8269 0.1361 0.3135 0.0896
6 0.4860 0.0965 0.4211 0.1330
7 0.6703 0.1162 0.3315 0.1264
8 0.7474 0.1201 0.3971 0.0977
9 0.5945 0.1010 0.3774 0.1282
10 0.6112 0.1218 0.5137 0.1574
total 0.6542 0.1492 0.3838 0.1688

The average time and average traveled distance for the the first MJ trajectory for the
different subjects using setup 1 are presented in Table 6.2. The distances are measured in
the robot space for easy comparison. The actual distance moved with the device is 10 times
smaller. Given that all subjects try to catch balls from an identical set of trajectories, it
could be expected that the differences in traveled distance would be smaller. Some subjects
would return the robot to a default position between catches. This position varies across
subjects, and accounts for most of the difference in average distance. The average time and
the average motion distances (in robot space) for the first MJ trajectory using setup 2 is
presented in Table 6.3. We see that the distances moved with the robot and the variations
of these do not vary much between the setups, as is expected as the subjects are trying to
perform the same task in both setups. However, there is a large difference in the motion
time, with subjects taking almost twice as long to perform the motion in setup 2. A probable
explanation for this is that setup 1 has a scaling factor of 10, thereby allowing the subject
to move up to 10 times faster.



50 CHAPTER 6. OFFLINE EXPERIMENTS

Minimum Jerk Fitting

We examine how the recorded motions from the experiment can be approximated with MJ
trajectories. As the subjects were given several tries to practice, we also assume that the
initial reaching motion will be of approximately equal duration in different trials with the
same person, as the velocity of the approaching ball and the distance to the intercept point
is similar between trials. Our first approach was therefore to extract the average duration
∆t = t1 − t0 for a reaching motion.

In order to find ∆t, it is important to identify where one MJ trajectory starts and ends.
Since the total motion can contain several MJ trajectories superimposed on each other, they
must be separated. Our method for separation works by identifying the typical bell-shaped
tangential velocity profiles of a MJ motion [100, 41]. These bell-shaped velocity profiles
are 4th-degree polynomials with boundary value conditions that state that they start and
end at zero, with zero derivatives, c.f. 3.2. This leaves only one free parameter, which
can be estimated using a least-squares approach. Since we anticipate several superimposed
trajectories, we fit several such 4th-degree curves, minimizing the mean square error of the
sum of these trajectories as they approximate the total velocity profile. An example of the
results of such a fitting is shown in Figure 6.1. We assume that submovements are at least
100 ms apart, as observed by Milner [100].
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Figure 6.1: A fitting of two superimposed 4th-degree polynomials to a measured tangential
velocity profile

We extract the average duration of the first motion of each recording, and use for ∆t.
The parameter t0 was determined by finding the point in time after a throw commenced
that the motion exceeded a predefined threshold velocity v0. We fit Equation 3.2 to the
data using least squares fitting.

We also want to see if MJ models are appropriate for predicting future motion. We do
this by performing the least squares fit using points in the interval from t0 to t0 + α∆t,
where α ∈ [0, 1] is the portion of the motion used for fitting. The less data that is used for
fitting the MJ trajectory, the earlier a prediction can be made. However, it is expected that
the quality of the prediction will deteriorate with the use of fewer samples. It is therefore
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of interest to find what performance can be expected when using different portions, α, of
the trajectory data before making a prediction.

To illustrate the fitting of a MJ trajectory to recorded data, two examples are shown.
Both examples originate from subject 1, for whom the performance of MJ fitting was average
on setup 1, as shown in Figure 6.3.

The first example, in the left part of Figure 6.2, illustrates a catching motion that
was close to the MJ model, and could be fit well to a MJ trajectory. The plot shows the
tangential velocity profile at the top, and the different components below. The green dotted
line is the fit MJ trajectory, ended with an asterisk. The first vertical line represents the
start of the motion, and the second vertical line shows the last sample used for fitting. In
this example, a portion of α = 0.35 of the motion was used for prediction. The second
example, in the right part of Figure 6.2, shows the performance when a large corrective
motion is added after the initial motion. As can be seen, this motion is not a good fit to
the MJ trajectory, mostly due to the fact that almost no samples of the corrective motion
are used for fitting the MJ trajectory.

The average deviation from final position for the fitted MJ trajectories for all subjects
is shown in Figure 6.3. This was calculated by using the samples from the first portion
of the motion to fit an MJ trajectory, and then measure the distance between the end of
the predicted trajectory, and the actual position at this time. When only a small portion
(α < 0.2) of the samples were used, insufficient data accounts for the larger part of this
deviation. When more samples are used, non-modeled corrective movements after the used
samples account for most of the deviation.

To evaluate the performance of MJ trajectory fitting, the results are compared to other,
simpler models. For MJ fitting to be meaningful, it should at least outperform simpler
approaches that do not use human motion models. Perhaps the simplest fitting possible is
to use the last available sample and assume that the subsequent signal remains constant.

Since this model does not assume any motion after the last observation, it can be viewed
as a zero-order model. If motion is assumed, using least square fitting to fit linear, quadratic,
or cubic functions to the data set can be used. A comparison of the performance of MJ
trajectories and extrapolation of polynomials of different degrees using setup 1 is shown
in Figure 6.4. The average deviation from the final position for the fitted MJ trajectories
using setup 2 is shown in Figure 6.5. A comparison of the performance of MJ trajectories
and extrapolation of polynomials of different degrees is shown in Figure 6.6.

Polynomials of higher degree than 3 result in even larger deviations when used for
extrapolation. Note that in all these fittings, the temporal duration of the motion, i.e.
determining when to stop, was found by fitting the MJ model to the velocity profile as
described above. Since the MJ model in itself is a 5th degree polynomial, the difference in
predictive performance is explained by the boundary conditions.

If we pick out just the motions where there is only one major MJ component, the
predictive performance of the MJ model for these motions is much better. For these tries,
which make up 60% of the total tries, the prediction error is less than 0.07 m (the radius
of the ball catching end effector) after 40% of the motion has passed. We can also observe
that the error of the MJ-based model fit does not reach zero even as α reaches 1. This is
due to the actual recorded motion not being a perfect single submotion MJ trajectory.

Retry With Expert Subject

As shown in the results above, the performance varies significantly between subjects. Also,
we see that subjects that perform better at catching fit the MJ model better. We therefore
decided to isolate one subject and let him have a large amount of training with the system,
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Figure 6.2: Examples of fitting a MJ trajectory to a catching motion using data from the
first 35% of the motion to fit. The left plots show a successful fit, and the right plots show
a failed fit. The solid line is the measured trajectory, the dotted line is the MJ trajectory
fit. The two vertical dashed bars enclose the portion of the trajectory used for fitting. The
portion of the MJ trajectory that continues beyond this portion is purely extrapolated.
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Figure 6.3: The final deviation of the predicted MJ trajectory as a function of the portion
of the trajectory used for fitting, using setup 1.

eventually reaching a performance of almost 100% successful catches. We then let this
subject perform the experiment with setup 1 and examine the estimation performance. In
order to achieve reasonably statistical significance, we let this subject perform 5 times as
many tries as in the previous experiment, or a total of 105 tries. Of these, all 105 tries were
successfully caught. With this experiment, we isolate user input that is well described by
the MJ model, and should thereby acquire an upper limit of the potential performance of
the approach.

Some tries that did not generate interesting data are excluded from parts of the analysis.
For example, for some tries, by chance the subject was in the correct final position before
the throw began. For these tries, a successful catch was performed without moving the
robot at all, and the prediction of the motion endpoint could trivially be found within a
very high absolute accuracy. There were approximately 12 tries where the initial position
was too close. Also, for some throws, the operator made a very poor initial motion and
the subsequent corrective motions were of equal or larger magnitude than the first. There
were approximately 24 throws where the operator’s initial guess was significantly off. This
left 69 throws to be considered in the main part of the analysis. The performance on all
recorded motions is also presented, for reference.

The data collected in the experiment was analyzed offline, and the endpoint of the hand
motion was continually estimated as time approached the catching instant. This prediction
was then compared to the hand catch position to test the quality of the prediction. The
results of this analysis are shown by the plots in Figures 6.7 and 6.8.

The plots demonstrate that for most hand trajectories in the selected set, good estimates
of the catch position become available during an interval from approximately 250 to 200 ms
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Figure 6.4: The final deviation of the predicted MJ trajectory as a function of the portion α
of the trajectory used for fitting, as compared to the final deviation when fitting polynomials,
using setup 1. This is the average over all subjects. The line labeled ’one submotion’
represents the tries where only one significant MJ submotion was identified.

before impact. At around 200 ms the time advantage before the same level of convergence
is reached without prediction is approximately 70 ms.

The threshold distance of 6 cm from the catch position that was used to generate Fig-
ure 6.7 was chosen by examining several similar plots. Increasing the threshold slightly
beyond 6 cm gives little improvement in terms of earlier convergence, whereas decreasing it
causes a substantially larger delay. A sphere with radius 6 cm has a volume equal to 2.3%
of the smallest possible convex volume containing all the hand catch positions. Also, given
that the accuracy of the ball tracking setup is roughly ±1 cm, a 6 cm radius in prediction
should guarantee that the total accuracy covers the 7 cm radius of the ball-catching end
effector, thus resulting in a successful catch in reality.

Observations and Conclusions

One of the most important observations we can make in this experiment is that the MJ
model seems adequate for both tested types of user interface. Somewhat surprisingly, the
MJ model gives better early predictions for input via the haptic interface than for input via
the VR interface. The simple explanation for this is probably that setup 2 has a significantly
lower sampling frequency than setup 1, and therefore the results for using only the first 10
or 20% of the samples are not very reliable. With 100 Hz sampling and a 0.6 s motion
duration, the first 10% of a motion consist of only 6 points, which will not result in stable
fitting to a 5th degree polynomial.

As can be seen from the plots of fitting performance, the MJ fitting outperforms the
other fitting methods, at least for a portion of the interval. In both experimental setups
it seems that MJ fitting is better when one to two thirds of the data is used for fitting.
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Figure 6.5: The final deviation of the predicted MJ trajectory as a function of the portion
α of the trajectory used for fitting, using setup 2.

However, it is also obvious that this performance varies greatly with the subject. There
seems to be a connection between successful catching and successful fitting to a MJ tra-
jectory. An explanation for this can be that subjects that perform well with the catching
task are able to make a good early prediction of the ball trajectory and therefore need less
corrective motions. This proposition is supported by the observation that many of these
subjects tend to move shorter distances with less variation, as can be seen in Tables 6.2
and 6.3. Accordingly, when we enlist an expert subject, the performance of the predictor is
significantly improved.

It should also be noted here, that the average deviation does not give all information.
As illustrated in 6.2, if the motion contains only one major MJ component, the prediction
error is much smaller than if the motion also contains significant corrective submotions.
We could therefore expect reasonable predictive performance for such user input that only
contains one major MJ submotion.

Another observation is that there is a large difference in where the subjects start their
motions, some start close to the robot center position, and do not have to move very far
to catch a ball, while some start far from the center position, and have to move farther
to reach the catch position. The distribution of motion distances is shown in Tables 6.2
and 6.3. This difference in moved distance may give different users different difficulty levels,
and should be corrected in the online experiments.

From this, we conclude that setup 1 allows interaction that is close enough to uncon-
strained free motion that the MJ model is applicable. We also see that with this setup, the
largest accuracy gain for prediction mith MJ models as compared to other approaches is
found when approximately one third of the motion has been executed.
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Figure 6.6: The final deviation of the predicted MJ trajectory as a function of the portion α
of the trajectory used for fitting, as compared to the final deviation when fitting polynomials,
using setup 2. This is the average over all subjects. The line labeled ’one submotion’
represents the tries where only one significant MJ submotion was identified.

6.2 Wiimote Tracking

An offline tracking experiment was conducted using the wiimote interface. The purpose of
this experiment is to record motion data and examine the quality of the input signals from
the wiimote controller. We also want to determine if position tracking is possible, and if
it can be enhanced by applying MJ models. This is done with a comparative analysis of
MJ model based tracking, a naive integration approach, and state of the art target tracking
using a Kalman Filter.

To define the motions for data collection, a set of physical targets were set up. These
consist of colored plastic balls that can be touched with the wiimote. One ball was desig-
nated as a starting point, and three other balls were mounted on a line 0.3 m above it, see
Figure 6.9. Subjects were asked to start by touching the starting point ball, and then touch
the colored balls as called out by the experimenter. In essence, this is a visually guided
reaching motion - the type of motion that MJ models are explicitely claimed to describe.

The starting point was located at about chest height in front of the subject, and the
other targets were located approximately at face height. Each subject was asked to carry
out 40 such touching motions, according to a predetermined pattern.

In total, 5 subjects were used. They were not given any other instructions than to start
stationary and touch the colored balls as called out, and had not been told the purpose of
the experiment or the details of the tracking system before the experiment. The motivation
for this was that this user interface should be intuitive to use, and we want to see how
well we can track motions of uninformed subjects. This is of interest for potential future
applications.
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Figure 6.8: Median deviation of the predicted endpoints for selected hand trajectories
catches from actual hand catch position.
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Figure 6.9: Schematic of targets used in tracking experiment. Subjects start with the
wiimote touching the start point, and move the wiimote to touch the colored targets as
called out by the experimenter.

Tracking Problem

The wiimote uses inexpensive MEMS accelerometers. Consequently, the accuracy is limited
and one has to consider the challenges of using sensors that have limited accuracy, and there
are two main problems one will face when attempting to track position.

The first challenge is one of observability. In the strict sense of the word, position is not
observable from acceleration measurements alone, as one will not know the initial position
or velocity. In practice, however, one can assume that a motion starts at rest at the origin,
adding initial conditions that resolve the problem. The second problem is more difficult. A
measurement ˆ̈x of acceleration ẍ will be corrupted by noise w:

ˆ̈x ∼ ẍ + w (6.1)

Thus, when we integrate ˆ̈x twice to get an estimate x̂ of position x, we will have that

x̂ ∼ x + wt2 (6.2)

That is, the error is now proportional to t2, and will tend to infinity over time. This
is a well-known problem, and has been partially solved for shorter durations by removing
bias errors and filtering the results, with e.g. a Kalman filter [11, 94]. However, these
approaches only minimize the error coefficient w, they do not eliminate the t2 dependency.
Due to these problems, up to now, apart from finding the general direction of the gravity
vector, low-resolution accelerometers have mainly been used for qualitative input, such as
gesture recognition based interfaces [80, 145].

In practical cases, just taking the naïve double integral of acceleration measurements
from a wiimote will give position estimates where the noise to signal ratios exceed 1 after
just a few seconds, given the noise magnitude of approximately 0.5 m/s2.

Minimum Jerk Fitting

For this experiment, using the assumption that the user only performs isolated reaching
motions, an input tracking system based on MJ theory was designed. Here, “isolated” is
used in the sense that one motion does not start until the previous motion is ended, in
practice requiring a 100 ms separation. Thus, the constraints are set so that ẋ0, ẍ0, ẋ1,
and ẍ1 are all zero, and each motion is assumed to start at the postition where the last
one ended. This ensures that all motion estimates end at zero velocity, eliminating buildup
error. Since the measurements are in acceleration space, Equation 3.1 was differentiated
twice to get Equation 6.3.
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ẍ(t) = 20a1t
3 + 12a2t

2 + 6a3t + 2a4 (6.3)

We assume that all motions start and end with zero acceleration, which gives the following
constraints:

ẍ(t0) = 0, ẍ(t1) = 0

Then, Equation 6.3 can be rewritten parametrized by the single constant a1, as in
Equation 6.4.

ẍ(t) = a1(20t3 − 30(t0 + t1)t2

+10(t20 + t21 + 4t0t1)t
−10(t20t1 + t0t

2
1))

(6.4)

Given a consecutive stream of acceleration measurements, Equation 6.4 can be fitted
to a sequence of these using least squares fitting. The initial state is assumed to be non-
moving, and all acceleration measurements beneath a certain threshold are ignored. When
four consecutive measurements above the threshold have been recorded, the fitting process
is initialized. Thus, in the beginning of a motion, only a small part of the curve will be fit
to actual measured points — the rest will be extrapolated.

Two of the parameters in Equation 6.4 are the unknown start and end times of the
motion, t0 and t1. In a first attempt, we tried to find the correct parameters for the MJ
model using a particle filter. However, as exploratory experiments showed that almost
all hypothesis had to be kept for long part of the motion, this probabilistic approach was
abandoned in favor of finding t0 and t1 using an exhaustive search, which performed more
consistently with only a slightly higher computational cost.

Results from 6.1 imply that we should expect motion durations from 0.4 s to 1.0 s,
so we search an interval from 0.3 s to 1.3 s to cover all expected durations. We call the
time where the acceleration threshold is exceeded ttr. We then let t0 take all values from
ttr − 100 ms to ttr + 100 ms in 10 ms steps, and for each value of y0, we let t1 take the
values from t0 + 300 ms to t0 + 1000 ms, also in 10 ms intervals. For each interval [t0, t1],
we find the least square fit using all available data for the interval. The average residual
error is calculated for each possible interval by dividing the residual sum with the number
of measurement points, and the one with the smallest average residual is chosen as the
interval and trajectory to use.

A more efficient way to find the start and end points could probably be implemented,
but as at most approximately 400 datapoints will be used for least squares fitting for 1400
possible time intervals, the trajectory fitting is easily run in a few milliseconds, allowing
realtime implementation on a regular desktop computer. Therefore, this is not an urgent
point of improvement. For comparison, a particle filter type approach was also tried, but
to avoid premature convergence to the wrong hypothesis, the amount of particles needed
meant that the same amount of points had to be evaluated as with this brute force approach,
so that there was no net gain in performance.

The average residual error is summed over all three dimensions, so large distinct min-
imum jerk type motions in one or more dimensions will take precedence over noisier, less
distinct motions in the remaining dimension(s). As it is the same motion, it should start and
end simultaneously in all dimensions, and any deviation from this can be viewed as noise
and ignored. In order to get the trajectory in position space, the polynomial is integrated,
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using zero initial velocity and the last known position as the constants of integration. For
an illustration of acceleration measurements and the fit function, see Figure 6.10.
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Figure 6.10: The left figure shows the third degree curve fit to measured acceleration. The
right plot shows the same data integrated to position space. The dashed horizontal lines in
the right figure show the positions of the target.

When the endpoint t1 has been passed, the system will not attempt to detect the next
motion until 100 ms have passed, in order to avoid treating the end of one motion as
the beginning of the next. The limitations of this approach is that it is only possible
to track (series of) isolated motions. It is not expected to be well suited for following
complicated continuous paths, as 100 ms of motion would be cut out between each detected
MJ trajectory, resulting in severe drift as the robot moves less than the user. However, here
we are only interested in isolated motions, so this will not be a significant limitation for this
application.

To have a ground truth for comparison, the absolute position of the wiimote was tracked
with the stereo camera system, by attaching a small (5×5 mm) colored patch to the base
of the wiimote. The tracking error when using the camera system like this is up to 1 cm,
but drift free. The errors in the camera tracking are uncorrelated to the errors in the
accelerometer tracking, and will cancel out when averages are taken over several hundred
trials.

The position as tracked by the motion capture system, the position as tracked by the
MJ based tracker, and all raw measurement data were logged. For comparability, each
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motion was analyzed separately, rather than measuring the total error after all motions
were completed.

The results of the MJ based tracker were compared to the motion capture positions, and
the error, expressed as the distance between the two positions at the end of each motion
when the wiimote had stopped at the target ball, was recorded. For a baseline of comparison,
the raw data logged from the wiimote was parsed offline through two alternative tracking
methods.

First, the result obtained when performing a naïve double integration of the acceleration
was calculated. In this case, position and velocity was reset at the beginning of each motion,
to attenuate buildup error. Motion start and end times manually picked from the motion
capture tracker were used for limits of integration. This minimized the buildup error by
excluding data not from the actual motion duration.

A more refined approach is to use a Kalman filter for the tracker. The same acceleration
data as with the naïve integrating approach was used, and the filter parameters were tuned
manually offline in order to minimize the error on this dataset. This guarantees that we
achieve the best possible Kalman filter results, and minimize the negative impact of filter
tuning choices. In an online implementation, a Kalman filter would perform worse than
this.

Results

The resulting errors at the motion endpoints are summarized in Table 6.4. As can be seen,
the MJ based approach outperforms the other two for precision. This is so even though the
MJ based approach detects motion start and endpoints automatically. This detection has
to be done manually for the other systems, to prevent small errors in acceleration to build
up to considerable drift in velocity and position.

Table 6.4: Results from reaching experiment

Method avg error std error
Naïve integration 0.097 m 0.108 m
Kalman Filter 0.074 m 0.082 m
MJ model 0.061 m 0.051 m

Observations and Conclusions

The average errors in the previous section are for isolated motions, to be more easily com-
pared. If we instead look at the built-up error over several consecutive motions, as illustrated
in Figure 6.11, we see a much larger drift in the naive approach and the kalman filter ap-
proach than the MJ model, as the two former methods do not enforce motions ending at
zero velocity, so that the velocity error eventually builds up resulting in a quadratic drift
of position. The performance when simply taking the double integral of the accelerometer
readings on the same data does no longer fit in the plot after the first few seconds, but the
accumulated position error is 62.7 m and the velocity error is 3.18 m/s at the end of the 37
second session. The Kalman filter performs slightly better, but the errors are 14.0 m and
0.86 m/s, respectively.

The main reason for the much smaller error in the MJ approach is that it forces all
motion estimates to end at zero velocity, meaning that the error in velocity is bounded,
and the error in position will only grow linearly in time. In this particular scenario, adding
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Figure 6.11: The trajectory of the wiimote estimated with the MJ approach compared to
the trajectory recorded by a motion capture system. The trajectories estimated by naive
double integration and kalman filtering are shown for comparison.

further boundaries, e.g. limiting positions to the robot’s workspace, could probably reduce
errors further.

The conclusion to draw from this study is that tracking using MJ models improves
significantly over kalman filter target tracking, and that it should be possible to use the
wiimote for position control of a robot arm with acceptable accuracy, at least if motion is
limited to consecutive point-to-point type motions.

6.3 Teleoperated Drawing

The third offline experiment deals with what is anticipated to be the most difficult task
— estimating user inputs during free continuous motion. In this experiment, we perform
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initial trials with visually guided teleoperated linetracing, and do offline analysis of the
input signals to determine if they can be predicted with sufficient accuracy. The purpose
of this experiment is to examine if MJ models can be used to predict user input as a way
to handle time delays. Thus, we want to see if we can implement a system to calculate an
estimate of the user’s control signal û(t), given that we know u(t− τ), where τ is the time
delay.

Task Description

A prototype teleoperated drawing task was designed, and a setup was constructed so that
an operator could control the robot with video feedback through arbitrary time-dealys.

Figure 6.12: The manipulator with pen and drawing surface.

A drawing surface was mounted in the robot workspace, and the robot was fitted with
an end effector that can hold a pen, see Figure 6.12. The user’s task is to trace a path as fast
as possible on a paper with the pen, controlling the robot with the Omega haptic interface.
The path the subject was given to trace contains a mixture of straights, sharp corners, and
curves of varying radius. Four different tracks were constructed by mirroring the first track
about the horizontal or vertical axis, see Figure 6.13. The feedback to the user was given
as unprocessed video of the end effector in the drawing surface, see Figure 5.11.

To collect initial data, the task was performed without time delays, and all inputs were
recorded. Track 1 was circled 7 times, both clockwise and counter clockwise, for a duration
of approximately 100 seconds.

Minimum Jerk Estimation

Processing the recorded trajectory data, Minimum Jerk (MJ) submotions were detected
using a method similar to that described in Section 6.1. Since the motion itself is expected
to follow a 5th degree polynomial curve, the velocity profile is expected to follow a 4th
degree polynomial curve that starts and ends at zero value, with zero first derivative. Such
a curve is symmetric around the apex. Empiric analysis of recorded motion data shows that
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(c) Track 3 (d) Track 4

Figure 6.13: The tracks used in the tracing task.

by using a Kalman filter to smooth the velocity estimate, the point of maximum velocity
tvmax

is easy to detect. A threshold value requires the peak velocity to be above a certain
magnitude to be registered. Using a least square approach, the 4th degree velocity profile
can be fit around this peak, using only data before the peak for fitting, see Fig 6.14. The
zeros of the polynomial found with this approach are used as candidates for the start and
end of the motion, and used when fitting the motion data to a MJ trajectory.

A weakness in this approach is that half of the motion has to be observed before a pre-
diction can be made. In order to facilitate earlier predictions, the Kalman Filter observer
can be used to predict when tvmax will be reached. This involves estimating higher deriv-
atives, and is prone to high uncertainties in the presence of observation noise. In practice,
this means that a stable estimate of tvmax can be achieved after approximately one third of
the motion, which coincides with the time when we expect to be able to make reasonably
accurate predictions, as shown in Section 6.1. The implementation used here therefore uses
a tvmax predicted from the EKF until tvmax is reached, after which the algorithm switches
to using the observed value.

When the peak velocity has been passed, at times t > tvmax
, the polynomial estimate

of velocity is subtracted from all subsequent incoming velocity measurements up to time t1,
and the algorithm tries to find the next velocity peak. When t0 and t1 are known, along
with the start position x(t0) of the motion, Equation 3.2 can be fit to the latest measured
data points with a least squares fitter. If we call the resulting polynomial x̂(t), robust
trajectory prediction for time t + τ is possible by calculating x̂(t + τ). For values where
(t + τ) > t1, we specify that x̂(t + τ) ≡ x̂(t1).

The predictions achieved this way are tracked by an extended Kalman filter, treated
as observations. When there are no predictions available, i.e. at the beginning of a MJ
submotion, or during motions too slow to trigger the threshold value for the MJ detector,
an ordinary EKF extrapolation from the (delayed) measured position data is used as ob-
servation. See Figure 6.15
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Figure 6.14: 4th degree MJ velocity profile fitted to Kalman filtered velocity data. The solid
line is the data used for fitting, the dotted lined is the (unused) remainder of the measured
velocity, and the dashed line represents the fit MJ velocity profile.
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Figure 6.15: A schematic of the combined MJ-EKF predictor. The selector enclosed in
the dashed box chooses signal ZMJ when there is an MJ prediction available, and ZEKF

otherwise. The estimate X is sent to the robot controller as a setpoint.

The filter state X is defined as

X = {x, y, v, θ, v̇}, (6.5)

where x and y are the cartesian position coordinates in the plane of the paper, v is
the tangential velocity, θ is the direction of motion, and v̇ is the tangential acceleration.
The motivation for this polar representation of velocity is that the MJ trajectories are
defined by 4th degree polynomials in tangential velocity, making the implementation more
straightforward.

In this case, we assume that the direction of motion remains unchanged for each MJ
submotion, so that the observation ZMJ will be the value of the MJ polynomial added to
the last measured position in the direction of motion:

ZMJ(t) =


x(t− τ) + (xMJ(t)− xMJ(t− τ)) · cos(θ)
y(t− τ) + (xMJ(t)− xMJ(t− τ)) · sin(θ)

ẋMJ(t)
ẍMJ(t)

 (6.6)
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where ẋMJ and ẍMJ are the first and second derivatives of xMJ with respect to time.
The observation matrix HMJ is then

HMJ =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

 (6.7)

For cases when there are no MJ predictions available, an ordinary EKF extrapolation
from the (delayed) measured position data is used as observation. Given the delayed meas-
urements Yd:

Yd(t) =


yd,1

yd,2

yd,3

yd,4

yd,5

yd,6

 =


x(t− τ) + w1

y(t− τ) + w2

ẋ(t− τ) + w3

ẏ(t− τ) + w4

ẍ(t− τ) + w5

ÿ(t− τ) + w6

 (6.8)

where wi is measurement noise, we model the observation ZEKF as:

ZEKF (t) =


yd,1 + yd,3τ + yd,5τ

2/2
yd,2 + yd,4τ + yd,6τ

2/2√
(yd,3 + yd,5τ)2 + (yd,4 + yd,6τ)2

tan−1((yd,4 + yd,6τ)/(yd,3 + yd,5τ))

 (6.9)

The observation matrix HEKF is then:

HEKF =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 (6.10)

Results

This proposed model was then applied offline to the measured inputs. For comparison,
we also applied a predictor using the same EKF tracking but no MJ predictions, just the
extrapolations from measured data. This is a near-optimal predictor without human motion
models.

During the experiment, a total of 317 distinct MJ motions were detected by the sys-
tem. As described above, a valid prediction is available after 1

3 of the submotion has been
observed. With a time delay τ , this means that it is available at time t0 + 1

3 t1 + τ , and
will remain valid until it is possible for a new submotion to dominate the trajectory, which
according to empiric study of operator input was determined to be approximately 200 ms
after the peak of the current MJ submotion. Observed submotions on this setup are typ-
ically 200–400 ms in length, so the upper limit for τ where we will still have meaningful
prediction will be expected to be around 100 ms, if we assume the lower limit of 200 ms for
motions.

Setting τ to 100 ms, we observe that the MJ prediction errors are smaller than the errors
caused by the delay, or the errors we get by applying the EKF predictor based purely on
input measurements, See Table 6.5. The errors were measured at points were a valid MJ
prediction was available, and the error measurement Ei for each predictor function Pi was
defined as follows:
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Table 6.5: Comparison of mean square errors of the MJ model and pure EKF predictions.

Delayed signal Non-MJ EKF MJ Predictor
Mean square 145.63 mm2 13.609mm2 8.372mm2

error Ei

Ei ≡ 1
n

n∑
k=1

‖X(tk)− Pi(tk)‖2 (6.11)

Where X(t) is the true input signal at time t, with position given in millimeters, and
tk, k = {1 . . . n} are all time points where a valid MJ prediction exists. In order to quantify
the error that was caused by the delayed signal without a predictor, a predictor function
defined as the position at the time t− τ was used:

Pdelay(t) ≡ X(t− τ) (6.12)

where τ is the time delay, in this case 100 ms.
The difference in the magnitude of the error between the pure EKF approach and the MJ

is not very large, but there is a difference in the quality of the error. Figure 6.16 shows both
predictions as compared to the real signal and the delayed signal of the x coordinate. With
the MJ curves there is only a small amount of oscillations as the input slows down after
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Figure 6.16: A comparison between MJ curves and pure EKF prediction. The MJ trajectory
in the plot contains two submotions. The arrows pointing from the left show where each
submotion would become available to an online prediction system, the arrows pointing from
the right show where each prediction would lose validity, as it would be possible for a new
submotion to dominate the trajectory.
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a period of higher velocity. This is where one of the strengths of the MJ-based prediction
is shown as it enforces an MJ trajectory, which by construction does not oscillate. In this
particular setup, this is an important property, as oscillations at higher frequencies may
be transformed into low-frequency oscillations with magnitudes several times higher by the
manipulator controller.

Note that while Figure 6.16 shows two entire superimposed MJ submotions, in online
usage, due to the time dely, only the later part of each submotion would be available as
a prediction. In the figure, the arrows pointing from the left show where each prediction
would become available, and the arrows from the right show where the prediction would
lose validity as a new submotion could possible become dominant. Since the MJ trajectory
is also tracked with a Kalman filter, the influence of the MJ prediction remains for some
time after this point.

An example of the final result of the compound prediction, using MJ predictions when
these are available, and simple EKF type extrapolation from the delayed signal when no
MJ predictions are available is shown in Figure 6.17. This plot shows the x coordinate as
Track 4 is traced one lap clockwise.

Observations and Conclusions

The results from the predictions made by applying the MJ model to the offline data are
promising. Time delays up to 100 ms can potentially be bridged with this predictive ap-
proach. Longer delays are mostly untractable, and a theoretical upper limit that will never
be breached with this approach is of course the total length of a MJ submotion, or 200 ms.
These figures correspond to roundtrip delay times on trans-atlantic internet connections.

Another observation to be made is that a regular EKF without any human motion
models can also be used for meaningful prediction of user input at these timescales, at the
cost of more high-frequency noise, which may or may not constitute a problem, depending on
the remainder of the controlled system. However, one should not expect a straight-forward
EKF implementation to perform well at predicting over any longer time delays.

6.4 Conclusions

As shown in the three offline experiments in this chapter, it is possible with simple means
to use minimum jerk models to estimate the input from a human operator. Offline, with
the freedom to tune parameters to fit recorded data, these estimates can be used to make
reasonably accurate predictions for time delays of up to approximately 100 ms.

The predictor performance depends heavily on how well the user input fits the model.
In these experiments, this corresponds to whether the input can be accurately described by
one single MJ submotion, or if several submotions are needed. This is especially noticable
in the comparison between the ballcatching experiment and the wiimote experiment. In
the former, the reaction time is short, and many subjects make an erroneous first estimate
of where to catch the ball, and one or several subsequent corrections are necessary. In the
wiimote reaching case, the target is stationary and visible to the subject for a long time
before the reaching motion is initiated. Thus, the subject has no difficulty in making a
correct first estimate, and no corrections are needed. These observations are in accordance
with the theory, as described in Section 3.2.

For the third experiment, with continuous free motion input by the operator, the the-
oretical support for applying the MJ model is weaker than with the other two experiments,
as the motion is constrained to two dimensions, and there is no single target to reach for.
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(a) Predictor performance with 100 ms delay.
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(b) Predictor performance with 100 ms delay, closeup.

Figure 6.17: Example performance of prediction.

The results show that accurate predictions can be made using the model, but the there is
no conclusive support for the performance being more accurate than a model-free Kalman
filter approach. However, the predictions made by the MJ model produces a smoother path,
which may be preferable for some applications.

As predictors, the methods implemented here may seem unecessarily crude. However,
it should be noted that for linear processes, such as tracking motion in cartesian space, a
Kalman filter (which is an optimal estimator) is equivalent to minimizing the square of the
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error [149], which in turn is equivalent to performing a least square fit to the measured
data.

All in all, the results of all three offline experiments are promising, and the following
chapter will test these approaches in online implementations.



Chapter 7

Online Experiments

In this chapter, we present the results of online experiments. By this, we mean that
estimation and prediction is done in real time, and that the estimated or predicted values
are used directly in the control of the robot system. Performing experiments with human
subjects on a physical setup and not only in simulation is important as a proof of concept
— showing that the models and techniques can be applied in reality, without simplifying
assumptions about signal quality or subject behavior. Online implementations also enforce
strict causality for all filters and estimators. To show generality of results we always try to
repeat experiments over several subjects.

7.1 Ballcatching Experiment I

This experiment has multiple objectives. First, we want to examine the task of teleoperated
ball catching, which to our knowledge has not been previously attempted. We want to
acquire a baseline of typical performance figures for the task, in order to assess its difficulty,
and have a basis for comparison for different user aids or time delay compensation systems
using human motion models. We also want to see if the task difficulty and user performance
can be altered with the help of user aids, and to assess the performance of an online
implementation of a minimum jerk based estimator for user input.

Initial Prototype Study

To get an initial indication of the difficulty of the problem, a trial where a subject in Pisa,
Italy controlled the robot in Stockholm, Sweden was performed using a portable version
of the 3D monitor interface installed on a laptop computer and the Omega haptic device.
Otherwise, the interface setup was identical to the one described as setup 1 in Section 6.1.

In this experiment, due to time limits, only a few tries could be made, and of these
only a single ball was successfully caught — probably the first ever instance of successful
transcontinental teleoperated ballcatching. However, the difficulty was evident. Even with
a robot arm as fast as the one we had at our disposal, it could not match all the fast motions
the user could make with the haptic interface. The input from the device was scaled by a
factor of 7.7 before being relayed to the robot, and the robot is not 7.7 times faster than
a human subject. This led to ideas concerning different types of aid systems that could be
applied in order to simplify the task.

71
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Predictive User Aids

As shown in Section 6.1, the robot is fast enough to catch a thrown ball when it gets an
early, correctly predicted intercept point from the stereo camera tracking system. If it can
be given an early prediction of where the user aims to move, it could move there in a smooth
trajectory in equal or less time than it takes for the user to move to the same point after
executing a number of corrective submotions.

Therefore, we propose two different kinds of predictive user aids to be tried in the
experiments, alongside a straightforward implementation where the user has unaided direct
control of the robot. The control systems used in the experiment are:

• System A - Direct Control

In the direct control setup, position and velocity data from user input is transmitted
directly as setpoints to the robot controller, at 50 Hz. The controller then accurately
mimics the user’s movements up to the dynamical limits of the robot. This should
provide us with a baseline for the performance of teleoperated catching.

• System B - Minimum Jerk Prediction Based Control

The minimum jerk (MJ) prediction based control system fits MJ trajectories to the
user input data whenever a velocity threshold is exceeded. This was empirically set
to 0.07 m/s. The MJ model is then used to predict the goal in time and space of the
current user motion. A prediction is made when a velocity peak has been detected,
leaving the second half of the motion to be predicted using data from the first half.
The predicted goal of the user motion is sent as a setpoint for the robot arm instead
of the current motion. The prediction is done with least square fitting, as described
for the offline experiment in Section 6.1.

• System C - Semi-Autonomous Control

In this setup, the predicted ball trajectory from the stereo camera tracker is also
given to the controller. The system is based on system B, and works identically, until
a predicted user input is found to be within 10 cm of the expected ball trajectory, when
the user is assumed to attempt to catch the ball, and an autonomous ball-catching
system is engaged. The autonomous system sets the robot controller setpoint to the
point on the expected ball trajectory that is the closest to the present position.

Experiment 1 - Online Prediction

The robot was fitted with a cylindrical end effector for catching balls, see Figure 7.1. The
diameter of the cylinder is 14 cm, and the balls are soft juggling balls with a diameter
of 6.6 cm. To ensure repeatability of the experiment, and to ensure that the difficulty
is unchanged between subjects and setups, the balls were launched using a mechanical
launcher with a precision of ±10 cm for this distance (see Fig 7.2). The balls were sent
according to a pregenerated pattern that was the same for all trials.

For this experiment, we use the user interface designated as setup 1 in Section 6.1. Each
subject was first shown the simulator version of the teleoperation system to allow him or
her to get acquainted with the user interface. The relevant features of the graphics display
were explained. These include the ball flying toward the robot, and the projected trajectory
of the ball as in earlier experiments, but also a home position that the end-effector must
be brought to before each throw. The latter was introduced to ensure that all subjects
started in the same position before attempting to catch a ball. The system was designed
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Figure 7.1: The robot arm with ball-catching end effector.

so that ball catching could not commence before the robot had been brought to the home
position. Successful homing was indicated by a short sound signal. After the introduction,
the subject was allowed 20 practice throws with simulated robot dynamics and prerecorded
balls, as in the offline experiment.

Before engaging the robot hardware, further instructions regarding the operation of the
physical robot were given. The subject was also informed that the audiovisual feedback of
the user interface would be the same for catches as for rim hits, but that the result of each
throw, catch, rim or miss, would be called out by one of the experiment leaders.

The sequence of throws with the different tested control systems was explained to the
subject, along with the question to be answered after trying out each system, and the fact
that there would be more detailed questions after the experiment. The subjects were not
informed of the underlying control model for each of the systems. In this way, we hoped
to be able see whether there was a significant difference between the systems, and also if
unbiased subjects would prefer a system that catches more balls or a system that gives more
control to the user.

The sequence repeated for each control system was as follows:

• Twelve unrecorded practice throws followed by a pause while the balls were collected.

• Three times twelve recorded throws with a pause after each series of twelve.

• The question “How well did you perceive that you could control the robot with this
system?” with possible answers being an integer score ranging from zero (worst) to
five (best).

The order in which the systems were presented was permuted between subjects as to not
introduce a bias from learning curve effects. After the last control system was tested, the
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Figure 7.2: The mechanical ball launcher

subjects were asked a set of more detailed questions to which there were no fixed ranges of
allowed answers:

• “What system was the easiest to use?”

• “What did you perceive to be the difference between the systems?”

• “What was good or bad with each version?”

• “General comments. What improvements would you like to see?”

All user input via the Omega device, ball trajectory data from the tracking system, and
actual robot position were logged. Also, all experiments were recorded with a video camera,
so that all subject actions and comments as well as actual ball and robot behaviors could
be studied post-experiment.

Also noted were the subject’s age, sex, and familiarity with ball sports, video games, and
radio controlled models. A total of 25 subjects were used. These had no prior experience
of robot control. 12 were female, 13 male, and the ages ranged from 19 to 63 years. All the
subjects were persons unaffiliated with our lab that had responded to an advertisement.

Experiment 1 - Results

The first performance measure considered is the performance of the online MJ predictor.
The overall performance is summarized in Table 7.1. The first MJ trajectory that has been
found is evaluated. We define a measure we call improvement factor, which shows how much
a prediction has improved the knowledge of the final position. We define the improvement
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Table 7.1: The performance of MJ prediction in experiment 1.

Quantity average std

Movement Duration 0.249 s 0.0895 s
Improvement Factor 17.2% 82.3%

Improvement Trials
Factor within ratio

>25% 44.9%
>50% 26.0%
>75% 5.9%

factor IF as the portion of the remaining distance that is correctly bridged by a prediction,
as in Equation 7.1:

IF =
|x(tp)− x(t1)| − |x̂(t1)− x(t1)|

|x(tp)− x(t1)|
(7.1)

where tp is the time when the prediction is made, x̂(t1) is the predicted endpoint of
the motion, and x(t1) is the actual endpoint of the motion. The improvement factor thus
shows how much closer the predicted position at t1 is to the later measured position at t1,
compared to the remaining distance when the prediction is made. Thus an improvement
factor of 0 would mean no improvement, and 100% would mean that the system had made a
prediction that was exactly the same as the actual value. Note that predictions in the wrong
direction give negative improvement factors. The number of tries for which the predictor
improves the position by at least 25, 50, and 75% are also given.

Comparing the catching performance of system A, where the MJ predictions were not
used to control the robot, but merely logged, with the MJ predictor performance, we find
that good MJ prediction correlates to successful catching, with p = 0.010. If we only
examine the successful catches from system A, we find that the average improvement of MJ
predictions is 32.2%. There was also a significant correlation between the reaction time and
the performance of the MJ predictor, with p = 0.0124. The faster the reaction, the better
the MJ prediction.

The second performance measure considered is the number of balls that were caught
with the different systems, as shown in Table 7.2. The figures here are the average over all
tries in each experiment, i.e. 900 tries for each system in experiment 1. The unexpected
result in experiment 1 is that subjects performed worse with the semi-automatic system C
than with the other systems.

For reference, the robot system was also run in fully autonomous mode without any user
interaction, for 108 balls in the same pattern as with the human subjects. In this case, the
reaction time is on the order of 100 ms, and the initial error that needs to be corrected is
minimal. The catching performance was that 73% of the balls were caught, 19% bounced
off the rim of the end effector and the remaining 8% were missed completely. This is the
hardware limit on performance for the set of ball trajectories used in the experiments.

Defining the performance as the ratio of balls actually caught is an aggregate measure
of the performance of human and machine. In order to discriminate between the subject’s
and the system’s performance, each subject’s logged input signals were examined. There
are two major components of the quality of user input, the spatial precision of the input,
and the reaction time, good input being both fast and accurate.

Since the spatial accuracy depends on the initial distance from the manipulator and
thus the user’s hand position to the ball trajectory [39], we formulate the accuracy A as in
Equation 7.2:
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Table 7.2: The percentage of balls caught in experiment 1.

Trial Balls Caught

System A 20.6%
System B 16.4%
System C 15.7%

A =
dc

di
(7.2)

Where dc is the distance between the ball trajectory and the setpoint for end effector
when the ball was the closest to the manipulator, and di is the initial distance between the
setpoint of the end effector and the trajectory, before the motion begins. In Figure 7.3 we
see that the subjects produce more accurate input with system A than with system C.
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Figure 7.3: The distribution of accuracies for the different systems in Experiment 1. The
plot shows the accumulated ratio of attempts that were better than a certain accuracy.

With system C, the earlier a catch attempt was recognized and the autonomous system
was engaged, the higher the probability for catching. This relationship is illustrated in
Figure 7.4. The plot shows an almost linear relationship between the distance left for the
ball to travel and the probability for the ball to be caught.

One way to measure reaction time that is relevant to the current setup is to see when
a prediction within 10 cm of the final intercept point was made with system C. Figure 7.5
shows the distribution of remaining distances to the interception point when such a predic-
tion was made, and the autonomous mode engaged.
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Figure 7.4: The probability that a ball was caught as a function of the remaining distance
(from the ball to the interception point along the ball trajectory) when the autonomous
system was engaged. The dashed line shows a linear fit to the data.
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Figure 7.5: The distribution of the ratio of trials where a catch attempt has been detected
at different distances to the interception point.
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Table 7.3: The performance of MJ prediction in experiment 2.

Quantity average std

Movement Duration 0.248 s 0.0875 s
Improvement Factor 19.6% 71.3%

Improvement Trials
Factor within ratio

>25% 46.0%
>50% 23.9%
>75% 5.8%

Experiment 2 - User Instruction

The results from Experiment 1 were not as expected, as the most direct control system, A,
was more effective than the others in terms of the number of caught balls. We found that
the raw user input was worse when using system C than when using system A, indicating
that, at least when the subject was uninformed about them, autonomous catching mo-
tions degraded the subject’s performance, as the subject tries to compensate for perceived
discrepancies between user input and robot motion.

To investigate whether the same effect would be present even for subjects who know what
to expect from each control system, Experiment 2 was performed with ten new subjects who
had been given a brief explanation of the different systems. Because time constraints forced
a smaller number of subjects, the number of possible permutations of the order presentation
of three systems was too large. Therefore system B, which is neither the most faithful to
user commands, nor potentially most effective, was eliminated from Experiment 2.

Compared to Experiment 1, the modifications in Experiment 2 were:

• 10 subjects, only systems A, and C.

• Subjects were informed about the differences between the systems. They were told
that system A would give them direct control of the robot, and that system C would
make autonomous corrections if necessary to catch the ball.

• In system C, the motions needed for autonomous catching was aborted after the ball
had passed, eliminating irrelevant differences between user input and robot motion.
In the previous version, the robot would keep moving towards the intercept point until
it was reached, regardless of if the ball was still possible to catch or not.

• Also in system C, autonomous catching was indicated in the user interface whenever
it subsumed user input, by changing the color of the end effector to green. This was
expected to make it easier to understand what was happening.

• The only question asked was a general request for comments after the completion of
the tests.

For experiment 2, the performance of the online MJ predictor is summarized in Table 7.3.
The first MJ trajectory that has been found is evaluated. The average duration is given, and
also the average improvement, as explained in the previous section. These figures do not
differ much from experiment 1, except the average relative improvement which is slightly
better, with a slightly smaller standard deviation.

As in experiment 1, there was a significant correlation between the reaction time and
the performance of the MJ predictor, with p = 0.0029, but good predictions and successful
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Table 7.4: The percentage of balls caught in experiment 2.

Trial Balls Caught

System A 18.0%
System C 24.2%

catching in system A only correlates with p = 0.14, with an average improvement factor
of 30.0% for successful catches.

The second performance measure considered is the number of balls that were caught
with the different systems, as shown in Table 7.4. The figures here are the average over all
tries in each experiment, i.e. 360 tries for each system in experiment 2. The noteworthy
result is seen in comparison with experiment 1: the number of caught balls varies with
the information given to the subject. For system C, there is an increase in the number of
balls caught when the subject is told that (s)he will be assisted by the system, while for
system A, there is a smaller decrease in performance when the subjects are told that they
will not be assisted.

In experiment 1, we find that the subjects’ inputs had noticeably lower accuracy for
system C than for the other two systems. Therefore, the poor performance of system C
is assumed to be due to this poor performance in the user input. The distributions of
accuracies for the different systems in experiments 1 and 2 are shown in Figure 7.6. Several
subjects in experiment 1 complained that system C was difficult to understand and did not
perform as they expected, and tried to overcompensate when they perceived the robot to
move erroneoulsy. Examining the experimental logs, we found several cases of a subject
moving the robot to miss the ball by about 9 cm, with the semi-autonomous system being
activated too late to catch the ball, only moving the robot a few centimeters closer to the
ball trajectory before the ball had passed. The user would then complain that they would
have caught the ball if the robot had not made “that strange jerky motion just before the
ball passed”.

Also, as can be seen in Figures 7.6 and 7.5, the user input performance is better for
system C in experiment 2. Regarding reaction speed, since the velocity is close to constant,
this figure can also be expressed in terms of time. For experiment 1, the median time left
when a catch attempt was detected was 185 ms, in experiment 2, the median remaining
time was 225 ms, which is 22% longer.

Observations

Apart from the aforementioned results, there are some further observations of interest that
were made in the experiments that help to put the results in context.

In experiment 1, the users were asked to rate the different systems by answering the
question “how well did you perceive that you could control the robot with this system?”,
on a scale from 1 to 5. System A and B scored an average of 3.3, while C was given a 2.6
on average. They were also asked to state which system was the easiest to use. Here, 12
subjects stated system A, 8 preferred system B, and 3 preferred system C. Two subjects
failed to notice any difference between the systems. The relationship between preferred
system and the performance of the subject on the different systems can be seen in Table 7.5.
The correlation between preferred system and best performing system is noticeably weak.
Specifically, we note that out of the 6 subjects who performed best with system C in terms
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Figure 7.6: The distribution of accuracies for the different trials. The plot shows the
accumulated ratio of attempts that were better than a certain accuracy.

Table 7.5: The relationship between preferred system and performance

Subjects who per-
Subjects who formed best with

system preferred system A B C

A 12 8 1 3
B 8 2 4 2
C 3 1 1 1

of the number of balls successfully caught, only one subject actually preferred system C.
We assume that the dislike of system C contributed to the subjects’ poor performance with
this system.

When given a chance to describe their preferences freely, many subjects stated that
they felt that system C reacted slower, was less precise and had a tendency to exaggerate
movements. A was in most cases perceived as faster and more precise. When told how they
had performed with the different systems after the experiments, the 3 subjects who had
performed better with C but preferred A expressed surprise at this, as they were convinced
that they had caught more balls with system A.

Also, many subjects were frustrated by their overall poor performance, and their en-
thusiasm for the experimental task decreased visibly after a sequence of several missed
attempts.

Data concerning age, sex, and experience of computer games, ball sports and, remote
controlled models was collected from the subjects. Of these, age was the only one found to
have a significant (p<0.05) correlation to ball catching performance, with younger subjects
performing better.
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7.2 Ballcatching Experiment II

The objective of this experiment is to see if minimum jerk (MJ) based estimation models can
enhance the performance of time-delayed teleoperation of a dynamic task (ball catching).

In the previous experiment, we used input prediction to generate straight paths towards
the intercept point in order to allow the robot to have enough time to move there. A
drawback of this approach was that the motions that needed the aid the most, i.e. the
ones that contained large subsequent corrections, were also the most difficult to predict,
resulting in little or no performance gain.

In this experiment, we instead focus on a scenario where we assume that a prediction
will be more relevant, teleoperation under time delay.

Control Structure

For comparison, we implement a classical delay compensation system and compare this to
our approach using model based prediction of user input.

As detailed in Chapter 2, a classical approach to delay compensation for teleoperation
systems is prediction of the feedback signal, commonly using Smith prediction. For our
implementation, which we refer to as system A, we apply both a Smith predictor and
Kalman filtering (to predict the ball trajectory) as in [105]. With the Smith predictor
approach, the remote slave site is simulated locally at the master site, and measurements
are used to correct the simulation to prevent it from diverging from the actual state of the
remote site. In the employed scheme, everything displayed to the operator through the user
interface is generated interacting exclusively with the dynamic simulation running on the
operator interface computer. Since this interaction does not involve a time delay, the risk of
instabilities is significantly reduced. This limits the approach to tasks where all significant
aspects of the environment can be modeled with sufficient accuracy.

To close the control loop over the robot via the communication link, we use a non-linear,
multivariate Smith predictor control structure (depicted in Figure 7.7). Robot motion is
predicted by feeding the user input into a simulated model of the robot that also uses the
same code as the real robot controller, allowing very accurate prediction. The ball trajectory
is predicted using the same Kalman filter as is implemented in the ball tracking system.

The command and measurement communication delays, τc and τm respectively, are
handled in two parts. The first part handles the stochastic aspect of the delay by adding
an artificial delay τa to the command delay τc when a command packet arrives at the robot
so that their sum, the virtual delay τv, is constant, as described in [84, 21]. In effect, the
stochastic delay is exchanged for a slightly longer deterministic delay. The internet time
delay is stochastic, with a high variation. The communication packets are transmitted at
100 Hz, or at 10 ms intervals, so it is expected that a small portion of packets will be delayed
more than τv, or even long enough to arrive after the succeeding packet, c.f. Section 5.4.
These packets are treated as dropped and ignored. Since the average time delay may vary
slowly over time, τv is continuously recalculated. The allowed rate of change is very slow
compared to other time constants in the system, typically τv can change with a millisecond
or less over several hundred packets.

The simulation result ysim(t + τv) is then delayed by τv + τm before it is compared to
the measured state y(t − τm) to form the simulation correction δ. This means that when
a measurement packet arrives from the robot, the current value of τm is calculated from
timestamps and an old simulation result ysim(t−τm) retrieved from memory for comparison.

The net effect of this compensation is that the simulation, the haptic controller, and
the operator all perceive time τv ahead of real time. That allows the generated command
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Figure 7.7: Control structure A, with Smith predictor only (skewed boxes represent delays).

signal u to travel to the robot before it is needed by the robot controller. Values of τv upto
200 ms have been tested successfully on the setup without instability.

The correction signal δ is low pass filtered to reduce zero order hold noise that would
otherwise be felt by the operator as vibrations of the same frequency as the communication
link, 100 Hz, given that the local controller in the UI runs at 2.2 kHz.

The largest drawback with this approach is the need to simulate the entire roundtrip
delay, including the artificial padding. The time difference between the simulation and the
measurements is thereby τv + τm. This does not pose a large problem for aspects of the
remote site that are easy to simulate, such as the robot dynamics or ball in ballistic flight.
However, it is problematic when unexpected events occur. For instance, there is no advance
warning for when a new ball is launched, and the trajectory can therefore not be simulated
until the ball has already been in flight for a time corresponding to τv + τm. Thus, the
operator’s reactions will be delayed by the entire roundtrip delay.

We therefore also propose a slightly different control structure, which we call system B.
Instead of handling the entire roundtrip delay when predicting the remote state with a sim-
ulation, the delay handling is split into two separate predictors, as suggested in Section 3.1.
The simulation of the remote site needs only bridge the shorter delay τm, while the delay
in the outgoing signal τv is handled by predicting the future control signal, û(t + τv). The
principal structure for this approach is shown in Figure 7.8. With this approach, the oper-
ator’s reaction to an unexpected event will only be delayed by the one-way delay τm. The
design of the input predictor is described in the following section.

Experimental Setup

The setup was modified slightly as compared to the previous experiment. Where not expli-
citely stated to differ, the setup was identical to the previous experiment. First, the motion
controller of the robot arm was modified to become faster. This was possible by limiting
the robot’s allowed workspace to a smaller area (50×50×40 cm) centered on the homing
position, and then optimizing the controller for the dynamics of this limited region. In the
4560 attempts (including practice sessions) recorded in the previous experiment, no balls
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had been successfully caught outside of this area, so this limit should not have any effect
on ballcatching performance. This optimization allowed the robot to accelerate up to 50%
faster in the limited workspace making it easier for the robot to keep up with the input
from the human operator.

Third, after noting that balls that hit more than 4 cm from the center of the ball-
catching cylindrical end effector had a tendency to bounce off the rim and not be caught
by the robot, we added a small corrective function to the robot controller to ensure more
successful catches. By using the predicted ball trajectory, we had the robot automatically
center on the trajectory if it was brought within 5 cm of it. This effectually increases the
radius of the target to hit for guaranteed catches from 4 to 5 cm, and the effective target
area is increased by 56%. This was effective at all times, independently of other user aids
or delay compensation.

The performance in the presence of time delays was tested using actual internet time
delays, for maximum realism. For practical reasons, both the slave and master sides were
located in the same laboratory, but all communication signals between the two were delayed
according to actual internet delays (including completely dropped packets) sampled during
24 hours starting from 11:40 GMT, Sep 25 2008. Since we have seen in Section 6.1 that the
upper limit for successful prediction of user input using a skilled subject is approximately
70 ms, we use internet connections with average delays no greater than this magnitude.

One sample set consisted of delays measured between the Royal Institute of Technology
(KTH) in Stockholm, Sweden and the University of Genua (UGE) in Italy. The median
one-way delay time for these packets was 26.6 ms, and the standard deviation was 59.1 ms.
The other sample set was generated by timing packet travel times from KTH to Georgia
Institute of Technology (GT), in Atlanta, Georgia, USA. These packets had a median travel
time of 63.0 ms, but with a much lower standard deviation of 0.2 ms. A deterministic one-
way time delay of approximately 2.5 ms was added by the rest of the communication loop.
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Table 7.6: Results from ball catching experiment

Setup Success rate (±2σ)

No delay 0.288 (±0.045)
System A, UGE delay 0.256 (±0.062)
System A, GT delay 0.160 (±0.052)
System B, UGE delay 0.275 (±0.063)
System B, GT delay 0.280 (±0.065)

Experimental Procedure

10 Novice subjects were asked to catch thrown balls using the teleoperation setup. The
subjects were student volunteers, all male, ages from 23 to 30. They had no prior experience
with the setup, and were not told any details of the control systems prior to the experiments.
The subjects were given a brief instruction to the user interface and the ball catching task,
and were allowed to get acquainted with the setup by practicing catching balls until they
felt comfortable with the task. This took between 30 and 50 tries for most subjects.

In the experiment, for each subject 5 different settings were tried, with 20 throws per
setting. The ordering of the settings were randomly permuted between subjects. The
settings were:

• No delay, used for comparison.

• System A, UGE delays

• System A, GT delays

• System B, UGE delays

• System B, GT delays

To ensure repeatability of the experiment, the balls were launched using the same mech-
anical launcher as in the previous experiment. The balls were sent according to a pregen-
erated random pattern that was the same for all trials.

Results

The performance results are presented in Table 7.6. With the longer GT delay times, the
performance with System A drops to approximately half the success rate that was achieved
with zero delays, while the success rate of system B drops by less than 0.01 compared to
the zero delay baseline. This result is statistically significant at p < 0.05.

With the shorter UGE delays, the success rate of System A drops by 0.03, while the
success rate of System B drops by 0.01 as compared to the zero delay baseline. However,
here the difference in performance is not large enough to be statistically significant.

The average virtual delay τv used by the system was 31.8 ms for the University of Genua
delays, and 69.3 ms for the Georgia Tech delays. In practice, this meant that 20% of the
University of Genua packets were dropped, c.f. Figure 5.13(a), and less than 0.1% of the
Georgia Tech packets. Given the inertia and reaction times of the robot, and the frequency
content of the human control signal (which is typically less than 10 Hz), dropping 20% of
all packets does not have a significant effect on performance.



7.3. WIIMOTE CONTROL EXPERIMENT 85

Observations and Conclusions

These results show that the MJ predictor approach can successfully bridge time delays of
more than 60 ms, while a traditional Smith predictor approach encounters problems. A
probable cause for this is that, with the Smith predictor, transient events such as the firing
of a ball with the ball launcher will be delayed the entire roundtrip time, or approximately
130 ms in the case of GT delays. Given that the subject only has a few hundred milliseconds
to react, this delay is too large for successful task completion. On the other hand, with
the MJ approach, the transients will only be delayed by half as much, giving the user just
enough time to react. As shown previously, user input can be predicted successfully up to
70 ms, so this is close to the limit of what the MJ predictor approach would be expected
to cope with. In geographic terms, the difference of the two approaches is if a dynamic
internet-based teleoperation task is limited to the same continent (within Europe), or if it
is feasable to perform it intercontinentally (between Europe and North America).

7.3 Wiimote Control Experiment

In this experiment we test if a robot manipulator can be controlled in position space using
a wiimote game controller if we apply a minimum jerk (MJ) model to the input. The goal is
to find out how the MJ based input tracker performs when applied online, and to examine
how well an untrained subject can use this potentially intuitive input device.

Based on the results from the offline analysis in Section 6.2, we assume that applying
naive integration of the acceleration measures, or even Kalman filtering of the same, will
not make safe control of the robot possible, and therefore we only try MJ based approaches.

Experimental Setup

The subjects used the robot to carry out the same target-touching tasks that were done
directly with the wiimote in the offline experiment described in Section 6.2. The colored
ball targets described in the same Section were placed so that they were reachable by the
robot. The target balls were mounted on PVC pipes so that they were situated at 25 cm
intervals 30 cm above the robots centered default position. The targets will move when
hit, but come att rest in the original position within a few seconds. See Figure 7.9 for an
illustration of the setup.

The end effector used in this experiment is a floorball mounted on a 10 cm piece of PVC
pipe. Since the targets are contained within the limited 50×50×40 cm space used for the
experiment in Section 7.2, the same optimized, faster motion controller was used.

Aid systems

In the offline experiment we had ideal conditions for the MJ model assumptions with the
subjects physically touching a clearly visible target. In the present experiment, the subjects
need to perform a correct mapping of their hand motion to the robot workspace. We assume
that errors in this mapping may potentially decrease the precision. Since the diameter of
the floorballs is 6 cm, the center of the end effector needs to come within 6 cm of the center
of a target in order to hit it, and the average precision in the offline experiment was ±
6.1 cm. Therefore, two types of aid systems were also implemented and evaluated. These
systems grant the user less freedom of motion, but give higher precision for the task. The
result of using unconstrained MJ tracking will be compared to the results with the different
aid systems.
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Figure 7.9: The manipulator and targets. From left to right, the target colors are yellow,
gray, and red.

The first aid system used virtual fixtures. The resulting motion from the MJ based
system is projected onto a straight line from the starting point to each of the possible goal
points. The line with the shortest euclidian distance to the estimated position is chosen.
Using this approach, the possible motion trajectories of the robot arm are along a straight
line towards one of the three goal points, and the user can control which goal to move
towards, when and how fast to do this, and how far towards the goal to move.

The second aid system implemented task control, for the highest possible precision. In
this control mode, the user’s input is used to choose between 4 possible predefined tasks:

1 Touch red target

2 Touch gray target

3 Touch yellow target

4 Stay in start position

In order to choose which task to execute, a polynomial trajectory estimate is calculated
as in the MJ control system, and the endpoint of the motion is extrapolated. The target
closest to the endpoint is then touched. If the endpoint of the motion is not close enough
(within 15 cm) to any of the targets, task 4 is chosen and the arm remains motionless. In
the first few centimeters of a motion, before an accurate target estimate is available, the
arm will follow the directly tracked position of the wiimote. The arm will therefore start
moving almost at the same time as the user, long before the user’s motion is completed, and
if the user moves straight towards one of the possible target postions, the result will be an
exact mimic of the user’s motion in real time. If the extrapolated endpoint is recalculated
to be closer to another target during the execution of a motion, the task will be changed in
mid-motion.
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Table 7.7: The percentage of hits with each of the three systems.

MJ Control MJ + Virtual Fixtures MJ + Task Control
median 37.5% 72.5% 85%

best 75% 97.5% 100%
worst 17.5% 37.5% 42.5%

Experimental Procedure

15 subjects were used for this experiment, 12 male and 3 female. All subjects were right-
handed and had normal or corrected to normal vision. They were given a brief instruction
in how the control system worked, and were asked to hold the wiimote so that its position
paralleled the position of the robot. Before the experiment started, they were given a few
minutes free practice to become acquainted with controlling the robot.

Each subject was then asked to touch the colored balls according to an order called out
by the experiment leader. This was the same order as used in the offline experiment. 40
ball-touching motions were carried out for each control system, and the control systems
were tested in the same order for each subject, beginning with the unaided MJ controller,
and continuing with the virtual fixtures and ending with the task based controller. Since
we have observed in the ballcatching experiment that user instruction may have a large
impact on performance, all subjects were given a brief instruction telling them that the first
system would follow their motions directly, the second would use virtual fixtures to limit
the possible directions of motion and the third would be task-based, autonomously touching
the ball that the user had been identified as trying to touch.

Results

The wall-mounted motion caption system we employ is only usable within the robot work-
space, and it was therefore not possible to use this for ground truth measurements when
users were controlling the robot. We assume, however, that the precision of the MJ based
tracker in this experiment is similar to what was shown for the experiments in Section 6.2.
If we isolate the three best performing users, we see that their average errors — as measured
as the distance from the actual target position — are only slightly larger than the inherent
error in the tracker. Their average error was 11 cm.

The average error over all 15 subjects was 19 cm in total, but the error in the horizontal
plane was smaller than the error in the vertical direction, 11 cm as opposed to 16 cm. A
probable reason for this is that moving too far in the vertical direction would still score a
“hit”, while a miss in a horizontal direction resulted in a “miss”, and the subjects would
take more care to correct this. We assume that the error mostly comes from the subjects
finding it difficult to map the wiimote position space to the robot position space with high
precision, as they receive no haptical feedback.

The task completion performance was measured in a “hit-or-miss” fashion. That is, each
time the user would hit the indicated target in one try without hitting any other targets
counted as a hit, and a failure to do this, however close, counted as a miss. This means
that the allowed margin of error is the diameter of the balls, 6 cm. The results are given in
Table 7.7.

While the “hit-or-miss” metric gives an overview of the performance, analyzing the
tracked positions of the wiimote controller gives quantitative measure of precision. Fig-
ure 7.10 shows the cumulative percentage of tries that came closer than given distance of
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the targets. The most eye-catching result is that the performance is significantly worse for
the yellow target, which had the right-handed subjects reaching to their left, which seems
to be a less natural motion for many subjects. However, the lack of motion capture data
for this experiment makes it difficult to state of this caused the subjects to reach with less
precision, or if the resulting motion was less accurately described by the MJ model.

Another observation is that for the most part, the user input has higher precision for
the MJ mode. This is to be expected, as the subjects are likely to notice that they can
complete the tasks with less effort when different levels of aids are added.
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(b) Cumulative performance for gray target.
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Figure 7.10: User performance

Some subjects were fairly close to the targets when they missed in MJ control mode.
The performance of these subjects improved greatly from the added aid of virtual fixtures
or task control, the largest improvement being from 22.5% success without aids to 87.5%
and 92.5% success rates for the two aided modes.

Other subjects, with a larger standard deviation in their input, did not improve their
performance with added aids. Indeed, some subjects’ performance even degraded. They
made motions that were too large and rapid, in effect saturating the acceleration sensors.
They thus miss the targets by more than 15 cm. The effect of this is that the robot does not
move as they expect it too. They make the false assumption that the motion was too small
for the control system to register, and adjust by making even more exaggerated motions,
further worsening the performance.

After a post-experimental brief reminder to use motions of the same magnitude as they
want the robot to use, these subjects were able to perform as well as the rest. However, that
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they did not manage this on their own is an indication that the lack of intuitive feedback
when in task mode is a likely cause of this behavior.

Conclusions

When estimating hand trajectories from the accelerometer data gathered from a wiimote,
imposing minimum jerk motion models improves performance significantly over simpler
approaches, enabling position control. However, the precision is still not good enough
for any but the simplest of manipulation tasks. Adding virtual fixtures greatly improves
precision while retaining enough sense of direct control to allow users to improve their input
motions. Even the completely novice users in the experiment could achieve good success
rates after a few minutes of operation.

Giving more control to the robot — as in task control mode — raises the success rates
further for most users. However, this control mode is less intuitive and users that have poor
performance with this mode do not understand how to improve.

Given these results, it is reasonable to expect future applications utilizing these types
of intuitive controllers for manipulation tasks. Several simple modifications could also be
added to the approach described here in order to raise precision. The major drawback of
accelerometers is the inherent position drift. This problem can be greatly reduced by adding
sensors that give absolute position measures, even if these are of very low signal quality.

As suggested for other applications, a tetrahedronal IR array can be used to give absolute
6 DOF pose measurements when the wiimote is centered on the array [87]. Using sensor
fusion, this could be combined with the approach described here to cover a large range
of possible poses. Also, it is highly probable that the newly announced wii MotionPlus, a
gyroscope sensor extension for the wiimote, can be used to further improve motion tracking,
as it would provide information on angular velocity. If we assume other input devices than
the wiimote, many cell phones, PDAs, and other portable devices that have accelerometers
are also equipped with cameras, that can be used to attain simple measures of motion or
position.

7.4 Drawing Experiment

In this experiment we test the effects of time delays and minimum jerk (MJ) based prediction
on teleoperated drawing, using the same setup as in Section 6.3. Here, we predict the entire
roundtrip delay time using user input prediction, instead of splitting the prediction in half
between input and feedback as in the experiment described in Section 7.2. The fundamental
difference between these approaches is illustrated in Figure 3.1.

Motivation

The motivation for using only input prediction is that there are cases when feedback predic-
tion may be difficult to obtain, perhaps due to difficulties modelling the remote environment.
A typical case is when the only feedback we have of the remote site is a video signal from a
camera that is arbitrarily placed. If the remote camera is mounted in an unknown position,
which may not even be stationary, it can be very difficult to accurately model the robot in
the image, as needs to be done in systems for feedback prediction.
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Experimental Procedure

Experiments were carried out where subjects were asked to trace the path clockwise. First
10 laps for practice, then 10 laps that were recorded. This was repeated 3 times, with a
different setting each time. Possible settings were:

A No communication delays added, no predictions. This is the control case that the
other settings are compared to.

B 100 ms roundtrip time delay added, no predictions. This case is used to determine
the effects of delays on the completion time of this particular task.

C 100 ms roundtrip time delay added, input prediction system active. This case is used
to determine how well the predictions can cancel the negative effects of the time delay.

The order in which the three settings were presented to the subjects was permuted
between subjects to cancel out overall learning effects. The subjects were told that “three
different settings” would be evaluated, but not what those settings were. They were asked
to trace the track as fast as they could without making mistakes. A mistake is defined here
as drawing outside the lines that define the track. A total of 12 subjects were used. The
subjects were all male, ages 23–31, and did not have prior experience with the experimental
setup.

We measure “Objective telepresence”, as defined in [5]. This means that the task com-
pletion time is used as the performance measure. Of the measured tries, the median time
for successful trials was recorded. The median is chosen to eliminate outliers. Results for
subjects who did not successfully complete at least 5 laps with each setting was not con-
sidered. Success is defined as never drawing outside the borders of the track for the duration
of the lap.

It should be noted that even in setting A, with no added communication delay, there are
some inherent delays in the system. The time needed to process input data and calculate
predictions is less than one millisecond, but the robot processes commands at 100 Hz, giving
the “current” commanded setpoint a delay that varies from 0 to 10 ms. Similarly, the video
display is updated at 15 Hz, so that the image being displayed will have a varying delay of
0–67 ms, plus the overhead for image acquisition and processing. None of these delays were
treated in any special way, but were added to the total delay of the system for all three
settings.

Results

For all subjects but one (subject 10), the median completion time was lower for setting C,
with the predictor, than for setting B. One subject even performed times that where better
than the control setting A, See Figure 7.11. This is possibly the effect of some overall
learning, with subjects performing relatively better on the last setting they were presented
with. A small overall trend for improvement over time was observed. When corrected for
setting differences, the subjects were on average 2% faster on the second trial, and 6%
faster on the third. The average completion time was 12.86 s for setup A, 19.3% longer
for setup C and 40.0% longer for setup B. We examine the statistical significance of the
results by performing a Student’s T-test on the results, and find that the performance with
setup A is significantly better than those of both setup B (with p = 1.83·10−12) and setup C
(with p = 3.54 · 10−6). The performance with setup C was significantly better than that of
setup B (with p = 0.000187).
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Figure 7.11: Task completion times for the 12 subjects. The plot shows median completion
times and 90% confidence intervals. Note that subjects 5 and 9 did not complete the task
for setup B, and are not included when calculating statistics.

Two subjects, 5 and 9, were only able to complete one successful lap with setting B,
and are therefore excluded from these results. All others were able to complete at least 5
successful laps with each setting. Comments from several subjects stated that the main
difficulties they perceived with settings B and C were oscillations, most subjects did not
explicitly notice that there was a time delay.

Observations

One strength of using the relatively simple MJ model for predicting human input is that
since we do not use any knowledge of the particular task being performed, it should gener-
alize to most possible vision guided tasks.

However, there are several limitations to this approach. The first is that since new MJ
submotions can be generated as often as every 100 ms, it is not realistic to make predictions
much further into the future than this, as there is a real possibility that the operator will
be moving along a trajectory that we have not yet detected. A 100 ms roundtrip delay is
comparable to the internet roundtrip delay between Stockholm, Sweden and New York City,
USA. However, when using the Internet, time delays can behave stochastically, something
that would have to be considered and dealt with in an implementation over an internet
connection, possibly using an approach similar to that in Section 7.2.

In the presence of longer delays, but where we have a plausible model for predicting
the feedback from the remote environment, it is possible that the input predictor model
described here could be combined with a feedback predictor as in Section 7.2. Then, one
could successfully predict both input and measurements, and thus bridge larger time delays
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than when just predicting one of the two.
Another limitation is that the MJ model assumes free motion. Its assumptions do not

hold under the presence of outer forces, e.g. contact forces. Therefore, this approach is not
applicable without modification for tasks that require haptic interaction with the remote
environment. However, as shown in Section 6.3, even without the MJ predictions, a pure
EKF predictor has similar magnitude of tracking errors. It remains as future work to
examine how this type of approach can be extended to tasks that include contact. It is
possible that hybrid approaches, utilizing parts of this approach and parts of traditional
delay-handling approaches may be the solution. One could conceive of using simple remote
autonomy to avoid unwanted collisions. If an operator’s typical reaction to contact forces
is known, it could be possible to incorporate this in a predictor at the remote site.

Finally, there this is yet no treatment of stability issues for the MJ prediction approach.
Although empirical trials have not shown any unstable behavior, a more rigorous analysis
remains to be done.

Conclusions

In this section, we have described a method that uses predictions of user input to cancel
the negative effects of time-delays on teleoperation. The experimental results show that
this is a valid approach, as the performance of all but one of the 10 subjects who completed
the task improved as compared to the control case with the same delay but no predictive
system. The main strength of this approach is that we only need a model of the master
side of the telerobotic system, while the slave side can be left completely unmodeled. This
means that once we have designed the master system, we can deploy a slave system in
novel environments to perform novel tasks without the need for recalibration or redesign of
the control system. Furthermore, once the predictive system is calibrated for one master
system, it could be used with any slave system that works in the same coordinates. This
also allows for easy-to-deploy remote sensors, such as arbitrarily positioned uncalibrated
cameras.

In the implementation presented here, the prediction system relies on MJ models, but
any model that sufficiently well describes human motion could conceivably be used.

7.5 Conclusions

These applied experiments have shown successful implementations of MJ model based es-
timators. Hereby, we have proven the viability of such approaches. By using several different
subjects for each experiment, we have shown the generality of the models.

It should be noted that the experiments presented here represents proof of concept, and
not final applications. For the input estimation models used here to be truly viable as
functioning systems, a complete systems integration aspect should be taken, adding error
detection and fallback when the model-based estimator does not track correctly. Also,
there is a need for thorough user studies, where aspects of user learning and interface
accustomization are also taken into account, as results are likely to differ between novices
and experienced users.



Chapter 8

Conclusions

In this chapter we provide a short summary of the thesis, present the general conclusions,
and suggest some interesting problems that remain for future investigation.

8.1 Summary

This thesis treats the subject of using human motion models to create estimators for the
input signals of human operators controlling a telerobotic system.

Problem

In telerobotic systems, the control signal input by the operator is often treated as a known
quantity. However, there are instances where this is not the case. For example, a well-
studied problem is teleoperation under time delay, where the robot at the remote site does
not have access to current operator input due to time delays in the communication channel.
Another is where the sensors in the input device have low accuracy. Both these cases are
studied in this thesis.

Approach

A solution to these types of problems is to apply an estimator to the input signal. There
exist several models that describe human hand motion, and these can be used to create
a model-based estimator. In the present work, we propose the use of the minimum jerk
(MJ) model. This choice of model is based mainly on the simplicity of the MJ model,
which can be described as a fifth degree polynomial in the cartesian space of the position
of the subject’s hand. This allows us to use simple input devices that only track the
position of the operator’s hand, as opposed to measuring, modelling, and tracking the
entire arm configuration. Also, as the polynomial formulation is very fast to calculate,
real-time implementation is simplified.

Offline Experiments

An initial series of experiments is conducted where subjects perform different tasks, and
the data from the input devices are recorded. This recorded data is then used to evaluate
different implementations of MJ-based estimators.

In the first experiment, we let users try to catch balls with a robot arm in a simulated
environment. We compare the performance of a virtual reality (VR) setup, where the
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subjects are allowed free motion, to the performance of a simpler setup consisting of a 3D
screen and joystick. The VR setup was expected to comply with the required assumptions
made by the MJ model.

The results show that the subjects perform similarly with both setups, and that MJ
models can be used to make a more accurate description of the subject’s input than simpler
polynomial curves. We also see that the MJ model is a more accurate description of user
input when the subject’s initial attempt at catching is successful and does not not need
major subsequent corrections. Allowing a subject to train with the system in order to
increase the initial accuracy, we see that the MJ model fits well enough to allow accurate
predictions of input trajectories on average 70 ms into the future.

In the second experiment, we let subjects touch physical targets with a wiimote video
game controller. We implement an MJ-based tracking algorithm by fitting MJ polynomials
to observed accelerometer readings using least squares. We see that this approach gives
higher accuracy and much less position drift than using simple double integration or Kalman
filter based target tracking methods.

In the third experiment we let subjects use a pen mounted on a robot arm to trace
a predetermined track on a piece of paper. We apply an extended kalman filter (EKF)
to the recorded input data, and compare the accuracy of predicting future input when
including an MJ-based predictor in the EKF framework. We see that although the MJ-
based predictor only gives a marginal improvement to the EKF in terms of mean square
error, the oscillations in the error are decreased, resulting in smoother predictions. Using
this approach, predictions up to 100 ms are achievable.

Online Experiments

In the final series of experiments, we use MJ-based estimators to generate control signals to
a robot manipulator, evaluating the performance in real-time scenarios, and showing proof
of concept. Each experiment in this section is related to one of the three experiments in
the previous section.

In the first experiment, we use an MJ-based predictor to generate control signals to the
robot arm, which the subjects use to catch real balls thrown across the laboratory room
using a mechanical ballistic launcher. Here, we compare the performance when using the
unfiltered user input to control the robot, to the performance when using the predicted
endpoint of the user motion. We also evaluate an approach where let the robot perform
autonomous catching when the predicted input is close enough to the predicted trajectory
of the ball. As an unexpected result of this experiment, we see that subjects react poorly
to the two kinds of predictive control and generate lower quality input as a result. When
instructing the subjects on the different types of control systems used, they perform better
when the predicted signal is used. However, we see that overall, using the predictions in
this way is not very helpful, as the predictor performed the worst for the cases when it is
needed the most, i.e. when the subject’s initial attempt is far from catching the ball, and
the subject needs to correct the motion one or more times.

In the second experiment, we tune the robot controller for faster motions, allowing the
robot to catch up with the subjects’ motion even when given a late start, and perform
teleoperated catching with delayed communication signals. We measure the percentage
of successfully caught balls and see that when the round-trip communication delays reach
120 ms, using an MJ-based predictor to predict the operator’s input will outperform a more
conventional controller that only uses prediction on the observations.

In the third experiment, we let subjects use the wiimote to control the robot to touch
physical targets. A real-time implementation of the MJ-based estimator is used to filter the
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signal. We also evaluate further constraints on the signal by using virtual fixtures and task
control. We see that novice users can use this interface to perform successful reaching, and
that the extra constraints improve performance. However, we also observe that placing too
large constraints on the operator’s input reduces the intuitiveness of the interface, and a
few subjects have difficulties controlling the robot in semi-autonomous task control mode
without detailed instructions.

In the last experiment, we use an input predictor based on an extended kalman filter
(EKF) and the MJ model to bridge time delays as subjects perform a teleoperated line
tracing task. We let the subjects perform the task both without and with a 100 ms time
delay. When we include the time delay, we let the subjects perform the task both with
and without input prediction. We measure the time needed to perform error-free task
completion, and find that subjects need 37% longer times to complete the task with the
delay, but that completion times with the input predictor present are only 19% longer than
for the undelayed case.

8.2 Conclusions

There are several conclusions to be drawn from the experiments. The main, overall con-
clusion is that MJ motion models can be used to construct estimators for the input from a
human operator, when the input is made in position space, with the operator performing
visually guided reaching motions.

If we make a more detailed analysis, we find the following major results from the exper-
iments.

• It is possible to use a human motion estimator to construct a predictor for future
input. This extends the existing toolbox of available methods for dealing with time
delays of different types, by adding a new possible place in the control scheme were
prediction can be performed. This opens up teleoperation for scenarios where it is
impossible or too resource consuming to predict the observations from the remote site.

• The MJ model is a valid model to use for such an input predictor for several different
types of tasks and operator motions.

• An MJ estimator can be used to track position using only low-quality acceleration
measurements, enabling position space input with devices where this would otherwise
be impossible.

We also find the following minor results:

• The MJ model is a valid description of the hand motions of an operator controlling
a robot with a haptic interface if there are no feedback forces. If the user does not
make an initial error in reaching for a target, the model fits well using only a single
submotion.

• When we introduce a predictor to enhance the performance of a teleoperator, it is
important to inform the operator of the details of the system. Otherwise, the oper-
ator may be frustrated by not understanding why the robot seems to disobey direct
commands, resulting in poorer performance.

• The limits of how far into the future it is possible to predict operator input using MJ
models depends on the allowable error, but the error is relatively small up to 70 ms,
where there is a significant increase, making this the practical upper limit for most
cases.
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The last point can also be generalized to all conceivable approaches toward predicting
operator input. Even using other approaches, we would not expect that it is possible to
make accurate predictions significantly longer than with the MJ models, as long as the
operator is free to change his/her mind and switch trajectories or targets at will.

Perhaps the most significant limitation of using MJ models is that they are not valid
in the presence of interaction forces. Thus, the methods described here can not be used
when the operator needs to be presented with force feedback via a haptic interface. This
means that the methods may not be applicable to tasks where the operator directly manip-
ulates objects and/or experiences contact forces. Even teleoperation tasks requiring object
interaction with tangible forces may contain components of free motion, for example when
the subject is reaching for an object to manipulate, or moving an object from one place
to another. It is conceivable that the MJ models could be applied to these types of free
motion parts of interaction, while the parts that include contact forces are handled differ-
ently. This may result in worse dynamic performance while performing the parts of the task
that require physical contact, but we would expect these parts to require higher precision,
and therefore necessarily be carried out att lower velocities, where time delays are more
neglectable.

Another limitation of the MJ-based approaches is that it is inherently difficult to accur-
ately detect superimposed submotions when we have noisy signals. Thus, a tracker relying
on only accelerometer readings is not able to track any possible human motion, but requires
that the operator makes a complete stop before moving towards a new target. It is possible
to practice this type of motion and learn to perform position control using this method, but
since it is different from natural unhindered motion, the intuitiveness of the interface may
be lost, limiting the field of possible applications.

8.3 Open Questions and Future Work

The methods described in the present thesis are only implemented and tested at a prototype
level. Therefore, there remains several possibilities to study more advanced implementa-
tions, including implementations of more advanced estimation algorithms. An interesting
and important study that remains is to examine how these methods work when applied
to tasks taken from the real world, as integrated parts of complete systems, preferably
compared to state-of-the art solutions for the same problems.

As stated above, it is not likely that the length of predictions can be extended greatly
using only primitive motion models, as the free will of the operator implies that his/her
intentions and objectives may change at any time during operation, and this is not likely
to be predictable, at least not with pure motion analysis. Other work has been done on
identifying user intent on a higher level, and it is possible that these approaches, combined
with understanding of the remote environment and the possible tasks, can bridge longer
timespans, at the expense of giving the user direct control. An interesting question for
further study is how we can combine the relatively low-level estimators based motion models
presented in this thesis with higher-level models of the task context. This could be used both
by switching estimators to handle scenarios where we have varying time delays or periods
of contingent loss of communication packets, as well as designing a combined estimator that
uses high level task models to extend the prediction time of low-level motion models.

Another limitation mentioned above, that MJ does not handle interaction forces, can
possibly be approached by extending the human motion models. However, it is unlikely that
a purely kinematic description in cartesian space, such as the MJ model can be extended
with interaction forces. A more likely candidate for future study would be minimum torque
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change models, where interaction forces could be mapped to joint torques using knowledge
of the kinematic structure and configuration of the ooperator’s limbs, along with an accurate
description of the dynamics involved. In many cases this would require much more tuning
to and knowledge of the individual operator, but we can imagine scenarios, like space
teleoperation, robot prosthetics use, or telesurgery, where the possible gains could motivate
the extra resources needed.

The present work only examines one single model of human motion, the MJ model,
but many of the ideas presented here regarding constrol structures could still be valid with
other operator input estimators. An open question that remains to examine, is how other
— either simpler or more complex — estimators inserted into the control structure would
compare to the MJ-based estimators.
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