
1

Constructing a High Performance Robot from
Commercially Available Parts

Christian Smith and Henrik I Christensen
Centre for Autonomous Systems

Royal Institute of Technology
Stockholm, Sweden

Email: {ccs,hic}@kth.se

Index Terms— ball catching, robot design, teleoperation.

I. INTRODUCTION

A large number of robot manipulators have been designed
over the last half century, and several of these have become
standard platforms for R&D efforts. The most widely used
is without a doubt the Unimate PUMA 5xx series. The
general availability of a platform, at a reasonable price, is
important to allow design of systems that can be replicated
and further developed by others. Recently there have been
attempts to utilize standard platforms as exemplified by the
LAGR program organized by DARPA [1]. The RobotCub
project has also made a few robots available to the research
community [2].

As actuation systems have become more powerful and
miniaturized it has become possible to build dynamical robot
systems to perform dynamic tasks. Early examples of dynamic
robot control include the ping-pong playing robot at Bell
Labs [3], and the juggling robot developed by Koditschek et
al [4], [5]. Another example of dynamic systems are walking
robots [6].

However, for research work it is often a challenge to get
access to a high performance robot which is also available
to other researchers. In many respects robotics has lacked
standard systems based upon which comparative research
could be performed. Too much research is performed on a
basis that cannot be replicated, reproduced or reused. For basic
manipulation there has until recently been but limited access
to lightweight manipulators with good dynamics.

KUKA and DLR has announced a new manipulator that
is scheduled to be on the market by late 2008, but so far the
system is only marketed in Europe and the price is expected to
be high. In this paper we describe design of high performance
robot manipulator that is built from components of the shelf
(COTS) to allow easy replication. In addition it was designed
to have enough dynamics to allow ball catching, which in
reality implies that the system has adequate dynamics for most
tasks.

In Section II we present an application requiring signifi-
cant dynamic performance and the design of a platform that
fulfills the requirements. The construction of the platform is
described in Section III, and in Section IV we present our first
experimental evaluation. A photo of the final implementation
is shown in Fig. 1.

Fig. 1. The high-performance manipulator.

II. DESIGN PROCEDURE

This section provides an initial analysis of the requirements
for a system to perform teleoperated ball-catching. A design
for the system is developed from the analysis of requirements.
The performance of the design is verified in simulation.

A. Experimental Requirements

The main type of experiments that we want to perform
involve catching a ball thrown across a room. We anticipate
a normal, slow, underhand throw from a distance of approxi-
mately 5 m. In an indoor environment, a ball can be thrown
with reasonable accuracy along a parabolic path with an apex
of 2.3 m, with both the thrower and the catcher situated at a
height of approximately 1 m (see Figure 2). Simple studies
of human performance indicates that the system must be able
to accommodate variations in thrower accuracy corresponding
to catching the ball within a 60×60 cm window. From these
basic requirements it is possible to compute flight time and
velocities for the scenario, as summarized below:

• Throwing distance will be approximately 5 m.
• Flight time will be up to 1 s, the typical time is expected

to be 0.8 s.
• The ball will travel with an approximate velocity of 6 m/s

at time of arrival.
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Fig. 2. Schematic of ballcatching experiment.

• The ball should be caught if it arrives within a 0.6 m ×
0.6 m window.

B. Platform Requirements

The experimental requirements stated in the previous section
impose requirements on the platform. One desired feature is
the use of standard video cameras for trajectory estimation.
With normal 50 Hz cameras, the frame time is approximately
20 ms, and a similar time window is expected to be needed
for segmentation and position estimation. In addition, at least
three frames are required for trajectory estimation, but limited
accuracy of the cameras will mean that more, probably as
many as 10 images might be necessary (c.f. [7]). Thus, the
time delay from the initiation of a throw to the initial trajectory
estimate might be 200 ms. This particular setup is also
intended to be used for teleoperated catching, were a human
operator steers the robot towards the predicted trajectory, so
we have to allow for the operator’s reaction time as well. This
might be around 100 ms, so a window of 300 ms is reserved
for initial reaction to a throw, leaving 500 ms in which the
arm has to move into position. In the worst-case scenario, the
arm has to move against gravity from one opposing corner of
the operational window to another, a distance of almost 0.9
m. Since the initial experiments will not be concerned with
grasping, a simple passive end effector like a small bucket
will be employed, and the positioning error has to be smaller
than the radius of the bucket, preferably less than 1 cm. These
requirements can be summarized as:
• End effector has to be able to move 0.9 m in 0.5 s,

(partially) against gravity, from stand-still to stand-still.
• The precision of positioning the end effector should be

within 1 cm
Given constant acceleration and deceleration, a distance of

0.9 m can be traveled in 0.5 s if the acceleration is at least 14.4
m/s2, and the maximum velocity is at least 3.6 m/s. This also
has to be achieved when working against gravity. These are the
minimum dynamic requirements — the actual implementation
should have some margin to allow for uncertainties.

To enable flexibility in the design of future experiments,
it is desirable to allow for different types of sensors to be
mounted in the end effector reference frame, so this should
be freely orientable in a dexterous manner. The end effector
therefore has to have 6 degrees of freedom, and should be
freely orientable within the entire operation window.

The system thus requires significant dynamics and the
control has to be performed in real-time. This implies that

it is desirable to have closed form solutions for kinematics,
which in turn imposes constraints on the design of the overall
kinematic structure. Without a closed form kinematic/dynamic
solution it would be much more challenging to guarantee the
real-time performance.

A highly dynamic robot arm will pose a potential hazard
to both its operator and itself unless sufficient precautions are
taken. Therefore, the control of the arm has to be sufficiently
exact so that safe paths can be accurately followed, and
precautions against malfunctions have to be taken. The former
requires control loops running at a high frequency/low latency,
the latter that software and hardware malfunctions are kept
at a minimum, and that the negative effects of malfunctions
should be minimized. Thus, the software environment has to
be a stable real-time system, while the hardware contains fail-
safe fallback for dealing with software failure.

These further requirements a solution imposed on the design
are summarized below:
• Closed form analytical kinematics and dynamics are

necessary for speed.
• At least 6 degrees of freedom.
• Acceleration of at least 14.4 m/s2 for end effector.
• Velocity of end effector of at least 3.6 m/s.
• Safety for operator and machinery requires a stable real-

time system, as well as fault-tolerant hardware.

C. Designed Solution

There are a number of fairly fast robotic manipulators com-
mercially available, like for instance the Kuka Light Weight
Arm [8]. It has been shown to be fast enough to catch thrown
balls autonomously [7], but needs a very early ballistic path
estimate to be able to do this. In our experiments we also
want to include a human operator in the control loop to do
semi-autonomous teleoperated catching, so we require even
faster movements to compensate for slow human reactions.
With perhaps only half the time to get into position, twice the
speed is needed.

In order to cater to the special needs of our experiments, we
decided to construct our own 6 DoF arm, and to examine if this
could be done using PowerCube modules from Amtec. These
modules are available off the shelf and allow rapid prototyping.
The range of modules clearly include some that have speci-
fications which are adequate for the target application (See
Section III-A). These modules also have a built-in controller
that can be used for embedded safety functions.

The actual performance depends on the configuration that
the modules are assembled in, so a few different configurations
were examined more closely in computer simulation, where
a 10 % uncertainty was added to the maker specifications.
The configuration that showed the most promising results
is one that is kinematically very similar to a Puma560 arm
(and to many other commercially available robots). This is
not only a configuration that allows for very good dynamic
performance (see Section II-D), but as it has been widely
used and studied, several implementation issues are already
solved, thus making the design process considerably faster.
For example, the closed form solution for inverse kinematics
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Fig. 3. The first design of the manipulator, using Amtec PowerCubes.

and dynamics are well-known. Keeping the moments of inertia
as low as possible in the moving parts, and placing heavier,
more powerful modules where their impact on the inertial load
is lower, very fast dynamics can be achieved. In the final
design, three 1.5 kW motors are used to position moving parts
weighing approximately 10 kg. Also, the arm is designed so
that the center of mass of the moving parts will be close to the
rotational axis of the first joint when working in the intended
window of operation. This will balance the system and keep
down the strains on the first joint.

The choice of gearings and link lengths induce a trade-
off between acceleration and end effector velocities. The
balancing of this trade-off has been made to minimize the time
needed to move the end effector from one stationary position to
another within the operation window. Since there is a limited,
discrete amount of possible combinations of actuators, it was
possible to find the optimum through an exhaustive search. The
resulting configuration that performed the best in simulation is
specified in Table II. The design and dimensions can be seen
in Figure 3. The design allows for a workspace that is more
than large enough to accommodate for the specified 60 cm
× 60 cm window for ballcatching, though the manipulator’s
dynamic performance deteriorates somewhat at the edges of
the workspace. A cross-section of the workspace can be seen
in Fig. 3(c). The arm has rotational symmetry as viewed from
above, but is for safety reasons limited to a half-circle to avoid
collisions with any objects behind it.

The control setup for the manipulator should be a realtime
system with as short a looptime as possible. The PowerCube
modules support several different communication protocols,
but for robustness and responsiveness, the option of a 1 Mbit/s
CAN bus was deemed optimal. The hardware design can be
implemented in several different ways. In principle all modules
could be on a single CAN bus or each module could have a
bus of its own. The end-effector joint is a combined pan-tilt
which requires use of a single bus to control both degrees

of freedom. Depending on the number of modules per bus,
the lengths of the control cycle will vary (see Section IV-C).
This means that the control computer could be equipped with
either 1, 2, or 3 CAN controllers for symmetric loads, or 4
or 5 controllers for assymetric loads, where the inner joints
that control positioning are run at a higher frequency than the
outermost controlling orientation. Simulations where the inner
joints were controlled at 500 Hz and the outer joints at 200 Hz
show that this is a viable option. In simulation, the inner joints
can be stably controlled at full power output using frequencies
from approximately 400 Hz and upwards, but the real world
implementation may have slightly different requirements.

The first choice for the computer performing the direct low-
level control of the robot was RTAI, a real time GNU/Linux
system that has showed good performance in previous stud-
ies [9], but some testing led to the choice of GNU/Linux
patched to high resolution timers1, as this not only showed
better realtime performance but allows for easier implemen-
tations in user space. The control computer will also perform
the trajectory generation and be responsible for dynamic and
kinematic calculations.

Teleoperation should be enabled by allowing connection
to an external computer that runs the user interface (UI).
The communication to the UI computer should be in carte-
sian space, since the kinematic structure of the arm allows
for up to eight different joint-space configurations for each
cartesian position, and the choice of configuration should be
made locally by the real-time low-level controller for best
performance. The connection is made over UDP/IP, as this has
been shown to give significantly better control performance
than TCP/IP over an internet connection (see e.g [10] for a
complete evaluation). The connection to the UI will not need
hard realtime performance, but the smaller the time lag can be
made, the better the performance. In early experiments over

1http://www.tglx.de/hrtimers.html
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Fig. 4. Schematic of the connection architecture for a teleoperation scenario.

the LAN in our lab, the total roundtrip time from the UI input
via the manipulator controller to UI feedback has been shown
to be in the range of 10–20 ms. A schematic of the connection
architecture is shown in Figure 4.

1) Specifications: The basic design specification is outlined
below:
• 6 DoF arm made with Amtec PowerCubes
• Kinematic configuration of Puma560 type
• GNU/Linux, preferably with high resolution timers, for

control computer
• Communication over several parallel CAN connections.

D. Simulated Performance

The performance of the proposed arm was first calculated
using the specifications from Amtec and numerical simula-
tions. The results for the travel times are of course dependent
on the type of controller used, and in this particular case, the
controller included a dynamic model for feed-forward control,
and the torques in each individual joint were set in order
to achieve a target velocity as quick as possible. The target
velocity was chosen as the minimum of the actuators maxi-
mum velocity and the highest velocity from which stopping
at the desired position was achievable. This latter factor was
calculated using the maximum torque of the actuators and
the inertial load of the current configuration, a figure that
was multiplied with a factor slightly less than 1 to achieve
a margin. Using this simple controller, the simulated arm had
more than adequate performance, as is summarized in Table I.
Note that the first acceleration figure given is the maximum
achievable for small movements, and the second figure for
larger, cross-workspace movements.

III. IMPLEMENTATION

This section describes the technical details of the actual
implementation of the robot arm.

A. Hardware implementation

The arm proposed and specified in the earlier sections was
constructed and mounted on a sturdy industrial work table (see
photo in Figure 1). The lower three actuators have a maximum

TABLE I
SIMULATED PERFORMANCE OF ROBOT ARM

Since performance is highly dependent of arm position, all values are given as
their lower limit within the window, and are thus equal to or better than this
in the entire window. The first acceleration given is the maximum possible
for small movements, the second (in braces) is the maximum acceleration
achievable for large movements.

Endpoint acceleration > 100 m/s2 (> 30m/s2)

Endpoint velocity > 5 m/s

Traveltime across window ver-
tically, from standstill to stand-
still

< 0.36 s

Traveltime across window diag-
onal, from standstill to standstill

< 0.37 s

Traveltime from window center
to upper corner, from standstill
to standstill

< 0.22 s

Repeatability of position ±1 mm

output of almost 1.5 kW each, harmonic drive gearboxes and
incorporated brakes to lessen motor strain when not moving.
The fourth actuator is similar, but considerably smaller as it
carries a lighter inertial load. The maximum output is 0.36
kW. The last two joints are contained in a combined pan/tilt
unit. This is less powerful, but has lower weight per joint than
other solutions. This also incorporates the same gearbox and
brakes as the other modules. Specifications can be found in
Tables II, III and IV

TABLE II
SPECIFICATIONS FOR THE PARTS USED IN THE MANIPULATOR.

Part Product name mass Comment
1st joint PowerCube PR110 5.6 kg 51:1 reduction gear
1st link PAM104 0.2 kg 55mm cylindrical rigid link
2nd joint PowerCube PR110 5.6 kg 101:1 reduction gear
2nd link PAM108 0.8 kg 200mm cylindrical rigid link
3rd joint PowerCube PR110 5.6 kg 51:1 reduction gear
3rd link PAM119 0.2 kg 45mm conical rigid link
4th joint PowerCube PR070 1.7 kg 51:1 reduction gear
4th link PAM106 0.6 kg 200mm cylindrical rigid link
5th,6th joint PowerCube PW070 1.8 kg 2DoF wrist joint

TABLE III
MANUFACTURER’S SPECIFICATIONS FOR THE JOINT ACTUATORS.

Joint no. max torque max angular velocity repeatability
1 134 Nm 8.2 rad/s (470o/s) ±0.00035 rad
2 267 Nm 4.1 rad/s (238o/s) ±0.00035 rad
3 134 Nm 8.2 rad/s (470o/s) ±0.00035 rad
4 23 Nm 8.2 rad/s (470o/s) ±0.00035 rad
5 35 Nm 4.3 rad/s (248o/s) ±0.00035 rad
6 8 Nm 6.2 rad/s (356o/s) ±0.00035 rad

The PowerCube modules have a simple onboard controller
that implements basic security features. They will not allow
motion beyond certain angle limits (that can be set by the
user), and will perform an emergency stop if these limits are
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TABLE IV
THE DENAVIT-HARTENBERG PARAMETERS FOR THE ARM, USING J.J.

CRAIG’S NOTATION.

i αi−1 ai−1 di θi

1 0◦ 0 m 0 m θ1

2 −90◦ 0 m 0 m θ2

3 0◦ 0.31 m 0 m θ3

4 −90◦ 0 m 0.51 m θ4

5 −90◦ 0 m 0 m θ5

6 90◦ 0 m 0 m θ6

exceeded, or if no watchdog signal has been transmitted over
the CAN bus for 50 ms.

In order to avoid collisions, both with itself and environ-
ment, the angles of the different joints have been limited to
the values shown in Table V. There are two sets of limits, each
set prohibiting collisions in itself but with a limited workspace.
The system will switch limit sets when moving out of range
of one set and into range of another, with an intermediate
limit set that consists of the tighter limits of the two sets. This
means that even if communication would break down in the
middle of a limit switch, the individual modules will always
be limited to safe intervals, while at the same time allowing
for use of a large part of the robot’s potential workspace.

To test these safety measures, two experiments were con-
ducted. In the first experiment, the communication link was
severed between the computer and the robot. This results
in a termination of the watchdog update, and the modules
finish their last command and engage the brakes. In the
second security experiment, illegal position commands were
intently issued by the control program. The modules’ onboard
controller correctly identified these as violating joint limits.
The arm moved into the legal position that was closest to the
commanded position and stopped. This should account for safe
handling of an unexpected breakdown of control algorithms,
the control computer, or the CAN communication link.

TABLE V
LIMITS ON JOINT ANGLES.

Joint no set 1 set 2

1 −90o – +90o −90o – +90o

2 −100o – −40o −130o – −70o

3 −60o – 50o −40o – 90o

4 −160o – +160o −160o – +160o

5 −120o – +120o −120o – +120o

6 −180o – +180o −180o – +180o

A power supply unit capable of delivering the required 30A
@48V to each module was constructed using PBA-1500F
power converters from Cosel. An emergency stop controller
that acts directly on cutting the power was implemented so
that the power unit cannot be activated without the emergency
controller present. The emergency stop has been tested and
works well, as a power cut will stop the modules and engage
the brakes.

The communication interface was designed to be imple-
mented over 4 separate CAN buses, one each for the 3 inner

(position controlling) joints, and one common bus for the 3
outer (orientation controlling) joints. Two 2-channel PCI CAN
controllers from Kvaser were chosen, as these had open source
device drivers for Linux that where deemed plausible to port
to real-time usage.

A Dell PowerEdge 1800 server with a 3.6 GHz Intel Xeon
processor was acquired to use as control unit. This choice was
based upon a balance of requirements for processing power
and reliability.

B. Software implementation

A Linux 2.6.19 Kernel was patched with high resolution
timers for low latency realtime performance. A customized
communications API was implemented to guarantee low-
latency communication with the PowerCube modules, as well
as customized libraries for fast vector manipulations optimized
for calculating arm dynamics. The control loop is run in soft
real-time. Experiments have shown that this gives a worst case
latency of less than 100 µs, which is sufficient. The average
jitter for the main loop of the control algorithm is 6 µs, which
is significantly less than the modules’ latency of up to 600 µs.
This soft real-time performance is comparable to that of hard
real-time systems like RTAI, but with the advantage of simple
straight-forward userspace implementation.

Inverse kinematics and dynamics are calculated using a C
implementation of the analytical solution for a Puma arm
in [11], and the forward dynamics are calculated using the
second algorithm in [12]. As a result, inverse kinematics
can be calculated in 1.7µs, and dynamics in 41µs, so that
all calculations needed in the control loop take less than
50µs. This means that virtually all latency in the control loop
originates from the CAN bus communication path and the
PowerCube modules response times.

Combined position and velocity control has been imple-
mented on the system using a combined feed-forward com-
puted torque control (CTC) scheme and a feed-back PI con-
troller. When a new setpoint enters the controller, a velocity
ramp trajectory is calculated in joint space. This trajectory
is limited by a preset top velocity (presently 4 rad/s) and
a maximum acceleration, but otherwise is the shortest path
towards reaching the desired position θd and velocity θ̇d

from the actual position θa, without exceeding the maximum
allowable acceleration amax, see Equation 1. This ramp works
under the assumption that the desired position is frequently
updated to new positions in accordance with the desired
velocity.

θ̇ramp =
√
|θd − θa| · amax · sign(θd − θa) + θ̇d (1)

The maximum acceleration amax is limited by a preset limit
value2 and the maximum achievable acceleration, computed by
calculating the resulting acceleration with maximum torque
and taking away a small safety margin. The desired acceler-
ation fed to the the CTC controller is then the acceleration

2The limits on velocity, acceleration, and jerk are chosen to limit the
mechanical stress on the system, while still being able to reach a given point
in the workspace in less than 0.5 s.
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necessary to achieve the target velocity θ̇ramp as soon as
possible, without violating the limits on acceleration or jerk.
For evaluation purposes, the acceleration has been limited to
16 rad/s2, and jerk to 400 rad/s3.

The ramp trajectory is recalculated in each iteration of
the control loop. The current position and velocity, and the
acceleration prescribed by the ramp, are fed to the inverse
dynamics function that determines the necessary torques to
follow the trajectory. These torques are converted to currents
and sent to the actuator modules.

A corrective term consisting of a PI controller monitors
the difference between desired velocity and actual velocity,
and corrects the controller current accordingly. This term is
necessary as the feedforward CTC controller does not contain
an accurate enough model of friction, the movements of
the power cords or the nonlinearities in the current/torque
relationship. For a schematic of the control scheme, see Fig 5.
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+

+
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+desired
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CTC

acceleration
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Calculate

measured velocitySetpoint u
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Fig. 5. Schematic of controller

IV. PERFORMANCE

There is still some fine tuning remaining to be done for
the robot arm, but even so, it already fulfills all the specified
requirements that can be measured, and has a performance
similar to the simulation.

A. Precision

In order to measure the repeatability of positioning of the
arm, a paper ”target” with a millimeter scale was fixed to
the last joint of the arm. The arm was stopped in a position
in the center of the workspace. A laser pointer capable of
producing a light point approximately 1 mm in diameter was
fixed to point to the center of the target. The arm was then
taken around a complicated path traversing and circling the
workspace for approximately one minute. The arm was then
sent back to the original position. To the precision of the scale
and the observer’s perception, the pointer was in the middle of
the target. This was repeated for several different positions and
angles, with the laser pointer mounted both horizontally and
vertically, with the same results. The repeatability is therefore
deemed to be better than ±1 mm. The arm has also been
tested to follow a straight path with sub-millimeter accuracy,

but this has only been performed at very low speeds for safety
reasons, so there are no experimental results for the accuracy
at higher velocities.

B. Dynamic performance

The arm has been timed to traverse the operational win-
dow shown in Figure 3 vertically (distance 60 cm) in both
directions within 0.39 s from standstill to standstill, which
was predicted in the simulations. As for other movements
— horizontal (60 cm) and diagonal (90 cm) traversion —
only times of 0.5 s have been verified, as this is enough for
our application and we want to minimize mechanical stress
on the equipment. However, this implies that any point-to-
point motion in the operational window takes at most 0.5 s
to execute. The outermost joints are slightly slower then the
inner ones, so the final angular alignment of the end effector
rather than the positioning is the limiting factor for many
configurations.

C. Control loop times

Although the PowerCube modules are specified by the man-
ufacturer to handle CAN bus communication up to 1 Mbit/s,
experiments showed that this rate can not be maintained con-
tinuously. Especially when controlling several modules on a
single CAN bus, there is a tendency for CPU overload/overheat
in the modules. This results in an unrecoverable error that
requires a shutdown and cooldown before operation can be
resumed. The communication frequencies anticipated from
the specifications can be seen in Table VI). The time to
complete a communication loop consists of the 0.134 ms
needed to send a CAN message at 1 Mbit/s (or 0.268 ms
at 500 kbit/s), and the approximately 0.25 ms a module needs
to respond to a request. The response time is somewhat
dependent on the nature of the request. When performing
several read/writes over the same bus to different modules,
the time spent waiting for one module’s response can to
some extent be used to communicate with another module,
hence the slight nonlinearity of loop times as a function of
number of connected modules. The tables show two different
speeds for each setup — with or without velocity polling. The
modules have internal velocity measurements that are more
accurate than just differentiating two position measurements.
On the other hand, if these velocity measurements are used,
the temporal resolution will be lower due to the extra time
needed for communicating this additional data. Experiments
have yet to show which strategy will yield the best overall
performance.

In the implementation, a control loop frequency of 600 Hz
for the inner 3 cubes and 200 Hz for the outer 3 cubes was
used. This is with velocity polling, at 1 Mbit/s, and using
one CAN bus per card for the inner cubes, and a joint bus
for the outer ones. The lower frequency is obtained by only
communicating with one of the outer cubes in each iteration
of the control loop. Due to their limited inertia and power,
the outer cubes have a very limited influence on the overall
dynamic performance of the arm, and thus the error induced
by scarce measurements from the outer cubes is negligible.
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TABLE VI
THEORETICAL CONTROL LOOP SPEEDS OVER THE CAN BUS

Modules per CAN controller card
1 2 3 6

Cycle periods at 1 Mbit/s
with velocity polling 1.04 ms 1.30 ms 1.87 ms 3.22 ms
without velocity polling 0.52 ms 0.65 ms 0.8 ms 1.61 ms
Cycle periods at 500 kbit/s
with velocity polling 1.57 ms 2.14 ms 3.22 ms 6.43 ms
without velocity polling 0.79 ms 1.07 ms 1.61 ms 3.22 ms
Control freq. at 1 Mbit/s
with velocity polling 961 Hz 769 Hz 535 Hz 311 Hz
without velocity polling 1923 Hz 1538 Hz 1250 Hz 621 Hz
Control freq. at 500 kbit/s
with velocity polling 637 Hz 467 Hz 311 Hz 156 Hz
without velocity polling 1265 Hz 935 Hz 621 Hz 311 Hz

The communication frequency is approximately 37.5% lower
than the theoretical maximum, but this frequency allows the
control loop to run for hours uninterupted without overheat.
Also, since the lower-than-specified frequency is accomplished
by padding the loop, the padding also absorbs the variations
in module response time, resulting in virtually no variations
in loop cycle times.

D. Calibration Loss

When using the robot for our ball catching experiments,
the movements are fast, but they are centered in the designed
work space (the square operational window shown in Fig II-
C), and the typical duration in time is not very long. In
teleoperation experiments, we have repeatedly let users move
the manipulator freely for durations of up to 30 minutes.
In these longer, freer sessions, we have noticed a tendency
for the encoders in the joints to lose calibration. The faster
the movement is, and the farther it is from the designated
workspace, the larger this tendency is.

Some simple experiments were performed to verify this
behavior. When only moving within the designed workspace,
there was no measurable loss of calibration, even for move-
ments at full capacity. For motions far outside the workspace,
there was no measurable loss when moving at angular acceler-
ations below 3 rad/s2. With higher acceleration settings when
moving outside the work space, loss of up to a few degress
of calibration has been observed in the three lower modules.
This is especially found in irregular motions. Recalibration
of the encoders is a simple matter that only requires the
manipulator to be returned to a predefined “home” position,
but this disrupts whatever other motion was being performed.

V. BALL CATCHING EXPERIMENTS

In order to verify the performance of the manipulator, a
setup allowing for an autonomous ball catching scenario was
constructed. These experiments are still at an early stage, but
the early results are promising.

A. Control Server

A first prototype server application has been implemented. It
receives cartesian coordinates from a client computer over an

UDP/IP connection and tracks these coordinates as closely as
possible, while returning information on present position and
velocity in both cartesian and joint space. All commands and
measurements are time-stamped in order to enable correction
for time-lags over the communication link.

B. Experimental Setup

The manipulator was fitted with an end effector consisting
of a passively damped cardboard cylinder with a diameter of
14 cm (see Fig. 6). We launched soft juggling balls from a
distance of approximately 4 m. To ensure repeatability, the ball
was launched using a mechanical launcher with a precision of
±10 cm for this distance (see Fig 7). The ball has to hit within
4 cm of the center of the cylinder in order to be caught.

Fig. 6. The manipulator with cameras and ball-catching end effector.

Fig. 7. The mechanical ball launcher

Using this setup, the flight time of the ball was approxi-
mately 0.8 s. The ball position was measured with a stereo
vision system consisting of two Firewire cameras mounted on
a 60 cm baseline approximately 0.5 m behind and slightly
above the robot (see Fig 6). The ball tracking was done by
using an extended Kalman filter (EKF), as described in [7].

The ball was detected in each image using simple color
segmentation. First, the 24 bit RGB image was converted to



8

24 bit HSV using a lookup table. The ball was found to have
a hue value of 3, and a (largely varying) saturation value of
approximately 160, so all pixels that were in the range 1–5 for
hue and 120–200 for saturation were preliminary marked as
ball pixels. A second pass that only kept marked pixels with at
least 3 other marked neighbors eliminated noise. The center
of mass for the marked pixels was calculated and used as
the ball centroid. A subwindowing scheme was applied, since
these have shown to be very efficient to significantly reduce the
time needed in segmenting moving objects (c.f. [13]). After
the ball has been detected the first time, only a subwindow
where the ball should be expected to be found was processed.
This subwindow was calculated using the state estimate from
the EKF, and the size of the window is set to cover several
times the standard deviation in position. Using this approach,
the ball can be segmented and localized with a reasonable
accuracy at less than 4 ms processing time per stereo image
pair, giving sufficient real-time performance.

The actual catching position was decided by interpolating
the point were the predicted ball trajectory intersects the plane
of the robot’s workspace. This position was then sent via
the UDP/IP connection to the control computer, that sent the
manipulator to the position. Launching 108 balls that hit within
the operating window, with an average distance of 24 cm from
the manipulator’s starting position, 73% were caught, 19%
bounced off the rim of the end effector, and 8% were missed.
The main cause of missed catches was errors in the early
predictions of the ball path, causing the robot to start motion
in the wrong direction.

VI. CONCLUSION

In this article we have presented the requirement for a
highly dynamic robotic system to be used in studies for ball-
catching. From these requirements and a number of secondary
goals a system has been designed using off-the-shelf actuation
modules. Associated software for real-time control has been
designed and implemented on a commercially available com-
puter platform. The system operates at 600 Hz and satisfies all
the requirements specified for the design. Results from early
experiments demonstrate that the system fulfills the static and
dynamic requirements to allow ball catching.

APPENDIX

A. Cost Breakdown

The total cost of hardware used in the setup described in
this paper was just below 50 000 euros. For a detailed cost
breakdown, see Table VII. Please note that these are the actual
prices paid, and that there is no guarantee for future availability
at these same prices.

B. Comparison to Alternatives

Table VIII shows a summary of alternative manipulators
in more or less the same performance and/or price segment.
Performance figures are taken from manuals provided by the
manufacturers. Prices are either qoutes or actual paid prices.
It should be noted that pricing may vary significantly.

TABLE VII
PRICES (IN EURO) FOR THE SETUP USED IN THE PRESENT PAPER

Part(s) Price (e)
Actuators 38,000
Rigid Links 3,400
CAN System 1,600
Mountings 500
Power Supply 4,400
Control Computer 1,600
Total 49,500

The proposed manipulator compares well to other options.
The KR5 may have a more attractive performance/price ratio,
but the proprietary interface limits control to high-level posi-
tion or velocity control at 80 Hz with no low-level interface,
meaning that it may not be suitable for some research applica-
tions. In contrast, the KUKA LBR has an accessible interface
and torque sensors in all joints [8], but is substantially more
expensive.

Different manufacturers provide different performance met-
rics, especially concerning velocity wich is given in either joint
or cartesian space, making comparison less straight-forward.
Power-to-mass ratios may give an indication of performance,
but it is also worth to bear in mind that power also inversly
correlates to safety, and that less powerful models may often
be better suited for operation in close human proximity.

C. Other Applications

Apart from the automated ballcatching task described in
Section V-B, the manipulator has been also been succesfully
applied to other tasks, such as teleoperated ball catching, robot
control using a Wiimote video game controller, and positioning
visual targets used for automated camera calibration. Since the
platform was designed for a task requiring high velocities,
it has adequate performance for tasks that require lower
velocities as well. The strength of the setup has been shown
to be the ease at with which it can be applied to new tasks,
given the completely open interface. An obvious weakness is
the high power consumption, making it unsuitable for mobile
applications in spite of the relaitively low weight. Planned
future applications include adding force and torque sensors to
enable teleoperated force control.

D. Project Webpage

As part of the effort to increase the availability of the pro-
posed platform, there is a webpage with information regarding
the platform, as well as downloadable media and source code
at www.cas.kth.se/∼ccs/Robot arm.
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TABLE VIII
COMPARISON TO SOME ALTERNATIVE MANIPULATORS. DATA AS GIVEN IN MANUFACTURERS’ DOCUMENTATION.

name: price(e)a: dof: reach: weight: power(peak)b: payload: API: velocity:
Puma 560 —c 6 0.86m 63 kg 1.5 kW 2.5kg RT joint 0.5 m/s
Neuronics Katana 20 000 5 60 cm 4.3 kg 96 W 0.4 kg RT traj/joint 90 deg/sec
KUKA KR5 850 22 000 6 0.85m 29 kg 2.3 kW 5 kg 80 Hz pos/vel 250 deg/s
Schunk LWA3 45 000 7 —d ≈10 kgd 0.48 kW 5 kg joint traj/current 70 deg/s
Proposed Manipulator 50 000 6 91 cm 23 kg 5.5 kW —e 600 Hz position/velocity 7m/s
Barret WAM 70 000 7 1 m 27 kg 250 W 3 kg 500 Hz traj/force 1 m/s
KUKA LBR 120 000 6 0.94m 14 kg 720 W 14 kg 1 kHz torque/force/traj 120 deg/s

(a) Actual prices paid or as quoted by supplier.
(b) Rated power consumption.
(c) Used, price varies with condition.
(d) Available in different configurations.
(e) Not tested for durability.
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