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27
The Integral

The two questions, the first that of finding the description of the
curve from its elements, the second that of finding the figure from
the given differences, both reduce to the same thing. From this it
can be taken that the whole of the theory of the inverse method of
the tangents is reducible to quadratures. (Leibniz 1673)

Utile erit scribit
∫

pro omnia. (Leibniz, October 29 1675)

27.1 Primitive Functions and Integrals

In this chapter, we begin the study of the subject of differential equations,
which is one of the common ties binding together all areas of science and
engineering, and it would be hard to overstate its importance. We have been
preparing for this chapter for a long time, starting from the beginning with
Chapter A very short course in Calculus, through all of the chapters on
functions, sequences, limits, real numbers, derivatives and basic differential
equation models. So we hope the gentle reader is both excited and ready
to embark on this new exploration.

We begin our study with the simplest kind of differential equation, which
is of fundamental importance:

Given the function f : I → R defined on the interval I = [a, b],
find a function u(x) on I, such that the derivative u′(x) of u(x)
is equal to f(x) for x ∈ I.
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We can formulate this problem more concisely as: given f : I → R find
u : I → R such that

u′(x) = f(x) (27.1)

for all x ∈ I. We call the solution u(x) of the differential equation u′(x) =
f(x) for x ∈ I, a primitive function of f(x), or an integral of f(x). Some-
times the term antiderivative is also used.

To understand what we mean by “solving” (27.1), we consider two simple
examples. If f(x)=1 for x ∈ R, then u(x) = x is a solution of u′(x) = f(x)
for x ∈ R, since Dx = 1 for all x ∈ R. Likewise if f(x) = x, then u(x) =
x2/2 is a solution of u′(x) = f(x) for x ∈ R, since Dx2/2 = x for x ∈ R.
Thus the function x is a primitive function of the constant function 1, and
x2/2 is a primitive function of the function x.

x x

xx

y

yy

y
y = x

y = x

y = 1

y = 1
2
x2

Dx = 1 D 1
2
x2 = x

Fig. 27.1. Dx = 1 and D(x2/2) = x

We emphasize that the solution of (27.1) is a function defined on an
interval. We can interpret the problem in physical terms if we suppose that
u(x) represents some accumulated quantity like a sum of money in a bank,
or an amount of rain, or the height of a tree, while x represents some
changing quantity like time. Then solving (27.1) amounts to computing
the total accumulated quantity u(x) from knowledge of the rate of growth
u′(x) = f(x) at each instant x. This interpretation suggests that finding
the total accumulated quantity u(x) amounts to adding little pieces of
momentary increments or changes of the quantity u(x). Thus we expect
that finding the integral u(x) of a function f(x) satisfying u′(x) = f(x)
will amount to some kind of summation.
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A familiar example of this problem occurs when f(x) is a velocity and
x represents time so that the solution u(x) of u′(x) = f(x), represents the
distance traveled by a body moving with instantaneous velocity u′(x) =
f(x). As the examples above show, we can solve this problem in simple
cases, for example when the velocity f(x) is equal to a constant v for all
x and therefore the distance traveled during a time x is u(x) = vx. If we
travel with constant velocity 4 miles/hour for two hours, then the distance
traveled is 8 miles. We reach these 8 miles by accumulating distance foot-
by-foot, which would be very apparent if we are walking!

An important observation is that the differential equation (27.1) alone
is not sufficient information to determine the solution u(x). Consider the
interpretation when f represents velocity and u distance traveled by a body.
If we want to know the position of the body, we need to know only the
distance traveled but also the starting position. In general, a solution u(x)
to (27.1) is determined only up to a constant, because the derivative of
a constant is zero. If u′(x) = f(x), then also (u(x) + c)′ = f(x) for any
constant c. For example, both u(x) = x2 and u(x) = x2 + 1 satisfy u′(x) =
2x. Graphically, we can see that there are many “parallel” functions that
have the same slope at every point. The constant may be specified by
specifying the value of the function u(x) at some point. For example, the
solution of u′(x) = x is u(x) = x2 + c with c a constant, and specifying
u(0) = 1 gives that c = 1.

x
x

y

c u(x)

u(x) + c

slope f(x)

Fig. 27.2. Two functions that have the same slope at every point

More generally, we now formulate our basic problem as follows: Given
f : [a, b] → R and ua, find u : [a, b] → R such that

{
u′(x) = f(x) for a < x ≤ b,

u(a) = ua,
(27.2)
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where ua is a given initial value. The problem (27.2) is the simplest example
of an initial value problem involving a differential equation and an initial
value. The terminology naturally couples to situations in which x represents
time and u(a) = ua amounts to specifying u(x) at the initial time x = a.
Note that we often keep the initial value terminology even if x represents
a quantity different from time, and in case x represents a space coordinate
we may alternatively refer to (27.2) as a boundary value problem with now
u(a) = ua representing a given boundary value.

We shall now prove that the initial value problem (27.2) has a unique
solution u(x) if the given function f(x) is Lipschitz continuous on [a, b]. This
is the Fundamental Theorem of Calculus, which stated in words says that
a Lipschitz continuous function has a (unique) primitive function. Leibniz
referred to the Fundamental Theorem as the “inverse method of tangents”
because he thought of the problem as trying to find a curve y = u(x) given
the slope u′(x) of its tangent at every point x.

We shall give a constructive proof of the Fundamental Theorem, which
not only proves that u : I → R exists, but also gives a way to compute
u(x) for any given x ∈ [a, b] to any desired accuracy by computing a sum
involving values of f(x). Thus the version of the Fundamental Theorem we
prove contains two results: (i) the existence of a primitive function and (ii)
a way to compute a primitive function. Of course, (i) is really a consequence
of (ii) since if we know how to compute a primitive function, we also know
that it exists. These results are analogous to defining

√
2 by constructing

a Cauchy sequence of approximate solutions of the equation x2 = 2 by
the Bisection algorithm. In the proof of the Fundamental Theorem we
shall also construct a Cauchy sequence of approximate solutions of the
differential equation (27.2) and show that the limit of the sequence is an
exact solution of (27.2).

We shall express the solution u(x) of (27.2) given by the Fundamental
Theorem in terms of the data f(x) and ua as follows:

u(x) =
∫ x

a

f(y) dy + ua for a ≤ x ≤ b, (27.3)

where we refer to ∫ x

a

f(y) dy

as the integral of f over the interval [a, x], a and x as the lower and upper
limits of integration respectively, f(y) as the integrand and y the integration
variable. This notation was introduced on October 29 1675 by Leibniz, who
thought of the integral sign

∫
as representing “summation” and dy as the

“increment” in the variable y. The notation of Leibniz is part of the big
success of Calculus in science and education, and (like a good cover of
a record) it gives a direct visual expression of the mathematical content of
the integral in very suggestive form that indicates both the construction of
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the integral and how to operate with integrals. Leibniz choice of notation
plays an important role in making Calculus into a “machine” which “works
by itself”.

We recapitulate: There are two basic problems in Calculus. The first
problem is to determine the derivative u′(x) of a given function u(x). We
have met this problem above and we know a set of rules that we can use to
attack this problem. The other problem is to find a function u(x) given its
derivative u′(x). In the first problem we assume knowledge of u(x) and we
want to find u′(x). In the second problem we assume knowledge of u′(x)
and we want to find u(x).

As an interesting aside, the proof of the Fundamental Theorem also shows
that the integral of a function over an interval may be interpreted as the
area underneath the graph of the function over the interval. This couples the
problem of finding a primitive function, or computing an integral, to that
of computing an area, that is to quadrature. We expand on this geometric
interpretation below.

Note that in (27.2), we require the differential equation u′(x) = f(x)
to be satisfied for x in the half-open interval (a, b] excluding the left end-
point x = a, where the differential equation is replaced by the specification
u(a) = ua. The proper motivation for this will become clear as we develop
the proof of the Fundamental Theorem. Of course, the derivative u′(b) at
the right end-point x = b, is taken to be the left-hand derivative of u. By
continuity, we will in fact have also u′(a) = f(a), with u′(a) the right-hand
derivative.

27.2 Primitive Function of f(x) = xm

for m = 0, 1, 2, . . .

For some special functions f(x), we can immediately find primitive func-
tions u(x) satisfying u′(x) = f(x) for x in some interval. For example, if
f(x) = 1, then u(x) = x + c, with c a constant, for x ∈ R. Further, if
f(x) = x, then u(x) = x2/2 + c for x ∈ R. More generally, if f(x) = xm,
where m = 0, 1, 2, 3, . . .TS

h , then u(x) = xm+1/(m + 1) + c. Using the
notation (27.3) for x ∈ R we write

∫ x

0

1 dy = x,

∫ x

0

y dy =
x2

2
, (27.4)

and more generally for m = 0, 1, 2, . . . ,
∫ x

0

ym dy =
xm+1

m+ 1
, (27.5)

because both right and left hand sides vanish for x = 0.

TS
h I have changed 2 dots to 3 dots.
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27.3 Primitive Function of f(x) = xm

for m = −2,−3, . . .

We recall that if v(x) = x−n, where n = 1, 2, 3, . . . ,TS
h then v′(x) =

−nx−(n+1), where now x �= 0. Thus a primitive function of f(x) = xm

for m = −2,−3, . . .TS
h is given by u(x) = xm+1/(m+1) for x > 0. We can

state this fact as follows: For m = −2,−3, . . . ,

∫ x

1

ym dy =
xm+1

m+ 1
− 1
m+ 1

for x > 1, (27.6)

where we start the integration arbitrarily at x = 1. The starting point
really does not matter as long as we avoid 0. We have to avoid 0 because
the function xm with m = −2,−3, . . . , tends to infinity as x tends to zero.
To compensate for starting at x = 1, we subtract the corresponding value
of xm+1/(m+1) at x = 1 from the right hand side. We can write analogous
formulas for 0 < x < 1 and x < 0.

Summing up, we see that the polynomials xm with m = 0, 1, 2, . . . , have
the primitive functions xm+1/(m + 1), which again are polynomials. Fur-
ther, the rational functions xm for m = −2,−3, . . . , have the primitive
functions xm+1/(m+ 1), which again are rational functions.

27.4 Primitive Function of f(x) = xr for r �= −1

Given our success so far, it would be easy to get overconfident. But we
encounter a serious difficulty even with these early examples. Extending
the previous arguments to rational powers of x, since Dxs = sxs−1 for
s �= 0 and x > 0, we have for r = s− 1 �= −1,

∫ x

1

yr dy =
xr+1

r + 1
− 1
r + 1

for x > 1. (27.7)

This formula breaks down for r = −1 and therefore we do not know a prim-
itive function of f(x) = xr with r = −1 and moreover we don’t even know
that one exists. In fact, it turns out that most of the time we cannot solve
the differential equation (27.2) in the sense of writing out u(x) in terms of
known functions. Being able to integrate simple rational functions is spe-
cial. The Fundamental Theorem of Calculus will give us a way past this
difficulty by providing the means to approximate the unknown solution to
any desired accuracy.
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27.5 A Quick Overview of the Progress So Far

Any function obtained by linear combinations, products, quotients and
compositions of functions of the form xr with rational power r �= 0 and
x > 0, can be differentiated analytically. If u(x) is such a function, we thus
obtain an analytical formula for u′(x). If we now choose f(x) = u′(x), then
of course u(x) satisfies the differential equation u′(x) = f(x), so that we
can write recalling Leibniz notation:

u(x) =
∫ x

0

f(y) dy + u(0) for x ≥ 0,

which apparently states that the function u(x) is a primitive function of
its derivative f(x) = u′(x) (assuming that u(x) is defined for all x ≥ 0 so
that no denominator vanishes for x ≥ 0).

We give an example: Since D(1+x3)
1
3 = (1+x3)−

2
3x2 for x ∈ R, we can

write

(1 + x3)
1
3 =

∫ x

0

y2

(1 + y3)
2
3
dy + 1 for x ∈ R.

In other words, we know primitive functions u(x) satisfying the differ-
ential equation u′(x) = f(x) for x ∈ I, for any function f(x), which itself
is a derivative of some function v(x) so that f(x) = v′(x) for x ∈ I. The
relation between u(x) and v(x) is then

u(x) = v(x) + c for x ∈ I,

for some constant c.
On the other hand, if f(x) is an arbitrary function of another from, then

we may not be able to produce an analytical formula for the corresponding
primitive function u(x) very easily or not at all. The Fundamental The-
orem now tells us how to compute a primitive function of an arbitrary
Lipschitz continuous function f(x). We shall see that in particular, the
function f(x) = x−1 has a primitive function for x > 0 which is the famous
logarithm function log(x). The Fundamental Theorem therefore gives in
particular a constructive procedure for computing log(x) for x > 0.

27.6 A “Very Quick Proof”
of the Fundamental Theorem

We shall now enter into the proof of the Fundamental Theorem. It is a good
idea at this point to review the Chapter A very short course in Calculus. We
shall give a sequence of successively more complete versions of the proof of
the Fundamental Theorem with increasing precision and generality in each
step.
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The problem we are setting out to solve has the following form: given
a function f(x), find a function u(x) such that u′(x) = f(x) for all x
in an interval. In this problem, we start with f(x) and seek a function
u(x) such that u′(x) = f(x). However in the early “quick” versions of
the proofs, it will appear that we have turned the problem around by
starting with a given function u(x), differentiating u to get f(x) = u′(x),
and then recovering u(x) as a primitive function of f(x) = u′(x). This
naturally appears to be quite meaningless circular reasoning, and some
Calculus books completely fall into this trap. But we are doing this to
make some points clear. In the final proof, we will in fact start with f(x)
and construct a function u(x) that satisfies u′(x) = f(x) as desired!

Let now u(x) be differentiable on [a, b], let x ∈ [a, b], and let a = y0 <
y1 < . . . < ym = x be a subdivision of [a, x] into subintervals [a, y1),
[y1, y2), . . . , [ym−1, x). By repeatedly subtracting and adding u(yj), we ob-
tain the following identity which we refer to as a telescoping sum with the
terms cancelling two by two:

u(x) − u(a) = u(ym) − u(y0)
= u(ym) − u(ym−1) + u(ym−1) − u(ym−2) + u(ym−2)

− · · · + u(y2) − u(y1) + u(y1) − u(y0). (27.8)

We can write this identity in the form

u(x) − u(a) =
m∑

i=1

u(yi) − u(yi−1)
yi − yi−1

(yi − yi−1), (27.9)

or as

u(x) − u(a) =
m∑

i=1

f(yi−1)(yi − yi−1), (27.10)

if we set

f(yi−1) =
u(yi) − u(yi−1)

yi − yi−1
for i = 1, . . . ,m. (27.11)

Recalling the interpretation of the derivative as the ratio of the change
in a function to a change in its input, we obtain our first version of the
Fundamental Theorem as the following analog of (27.10) and (27.11):

u(x) − u(a) =
∫ x

a

f(y) dy where f(y) = u′(y) for a < y < x.

In the integral notation, the sum
∑

corresponds to the integral sign
∫

,
the increments yi − yi−1 correspond to dy, the yi−1 to the integration vari-
able y, and the difference quotient u(yi)−u(yi−1)

yi−yi−1
corresponds to the deriva-

tive u′(yi−1).
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This is the way that Leibniz was first led to the Fundamental Theorem
at the age of 20 (without having studied any Calculus at all) as presented
in his Art of Combinations from 1666.

Note that (27.8) expresses the idea that “the whole is equal to the sum of
the parts” with “the whole” being equal to u(x)−u(a) and the “parts” being
the differences (u(ym)−u(ym−1)), (u(ym−1)−u(ym−2)),. . . ,(u(y2)−u(y1))
and (u(y1) − u(y0)). Compare to the discussion in Chapter A very short
Calculus course including Leibniz’ teen-age dream.

27.7 A “Quick Proof”
of the Fundamental Theorem

We now present a more precise version of the above “proof”. To exercise
flexibility in the notation, which is a useful ability, we change notation
slightly. Let u(x) be uniformly differentiable on [a, b], let x̄ ∈ [a, b], and let
a = x0 < x1 < . . . < xm = x̄ be a partition of [a, x̄]. We thus change from
y to x and from x to x̄. With this notation x serves the role of a variable
and x̄ is a particular value of x. We recall the identity (27.9) in its new
dress:

u(x̄) − u(a) =
m∑

i=1

u(xi) − u(xi−1)
xi − xi−1

(xi − xi−1). (27.12)

By the uniform differentiability of u:

u(xi) − u(xi−1) = u′(xi−1)(xi − xi−1) + Eu(xi, xi−1),

where
|Eu(xi, xi−1)| ≤ Ku(xi − xi−1)2, (27.13)

with Ku a constant, we can write the identity as follows:

u(x̄) − u(a) =
m∑

i=1

u′(xi−1)(xi − xi−1) +
m∑

i=1

Eu(xi, xi−1). (27.14)

Setting h equal to the largest increment xi − xi−1, so that xi − xi−1 ≤ h
for all i, we find

m∑

i=1

|Eu(xi, xi−1)| ≤
m∑

i=1

Ku(xi − xi−1)h = Ku(x̄− a)h.

The formula (27.14) can thus be written

u(x̄) − u(a) =
m∑

i=1

u′(xi−1)(xi − xi−1) + Eh, (27.15)
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where
|Eh| ≤ Ku(x̄− a)h. (27.16)

The Fundamental Theorem is the following analog of this formula:

u(x̄) − u(a) =
∫ x̄

a

u′(x) dx, (27.17)

with the sum
∑

corresponding to the integral sign
∫

, the increments
xi − xi−1 corresponding to dx, and xi corresponding to the integration
variable x. We see by (27.16) that the additional term Eh in (27.15) tends
to zero as the maximal increment h tends to zero. We thus expect (27.17)
to be a limit form of (27.15) as h tends to zero.

27.8 A Proof of the Fundamental Theorem
of Calculus

We now give a full proof of the Fundamental theorem. We assume for
simplicity that [a, b] = [0, 1] and the initial value u(0) = 0. We comment on
the general problem at the end of the proof. So the problem we consider is:
Given a Lipschitz continuous function f : [0, 1] → R, find a solution u(x)
of the initial value problem,

{
u′(x) = f(x) for 0 < x ≤ 1,
u(0) = 0.

(27.18)

We shall now construct an approximation to the solution u(x) and give
a meaning to the solution formula

u(x̄) =
∫ x̄

0

f(x) dx for 0 ≤ x̄ ≤ 1.

To this end, let n be a natural number and let 0 = x0 < x1 < . . . < xN = 1
be the subdivision of the interval [0, 1] with nodes xn

i = ihn, i = 0, . . . , N ,
where hn = 2−n and N = 2n. We thus divide the given interval [0, 1] into
subintervals In

i = (xn
i−1, x

n
i ] of equal lengths hn = 2−n, see Fig. 27.3.

0 1Ini
x

xn0 xn1 xn2 xni−1 xni xnN

Fig. 27.3. Subintervals Ini of lengths hn = 2−n

The approximation to u(x) is a continuous piecewise linear function
Un(x) defined by the formula

Un(xn
j ) =

j∑

i=1

f(xn
i−1)hn for j = 1, . . . , N, (27.19)
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where Un(0) = 0. This formula gives the values of Un(x) at the nodes
x = xn

j and we extend Un(x) linearly between the nodes to get the rest of
the values, see Fig. 27.4.

0 1Ini
x

xn0 xn1 xn2 xni−1 xni xnN

Un(x)

Fig. 27.4. Piecewise linear function Un(x)

We see that Un(xn
j ) is a sum of contributions f(xn

i−1)hn for all inter-
vals In

i with i ≤ j. By construction,

Un(xn
i ) = Un(xn

i−1) + f(xn
i−1)hn for i = 1, . . . , N, (27.20)

so given the function f(x), we can compute the function Un(x) by using the
formula (27.20) successively with i = 1, 2, . . . , N , where we first compute
Un(xn

1 ) using the value Un(xn
0 ) = Un(0) = 0, then Un(xn

2 ) using the value
Un(xn

1 ) and so on. We may alternatively use the resulting formula (27.19)
involving summation, which of course just amounts to computing the sum
by successively adding the terms of the sum.

The function Un(x) defined by (27.19) is thus a continuous piecewise
linear function, which is computable from the nodal values f(xn

i ), and we
shall now motivate why Un(x) should have a good chance of being an
approximation of a function u(x) satisfying (27.18). If u(x) is uniformly
differentiable on [0, 1], then

u(xn
i ) = u(xn

i−1) + u′(xn
i−1)hn + Eu(xn

i , x
n
i−1) for i = 1, . . . , N, (27.21)

where |Eu(xn
i , x

n
i−1)| ≤ Ku(xn

i − xn
i−1)

2 = Kuh
2
n, and consequently

u(xn
j ) =

j∑

i=1

u′(xn
i−1)hn + Eh for j = 1, . . . , N, (27.22)

where |Eh| ≤ Kuhn, since
∑j

i=1 hn = jhn ≤ 1. Assuming that u′(x) = f(x)
for 0 < x ≤ 1, the connection between (27.20) and (27.21) and (27.19) and
(27.22) becomes clear considering that the terms Eu(xn

i , x
n
i−1) and Eh are

small. We thus expect Un(xn
j ) to be an approximation of u(xn

j ) at the nodes
xn

j , and therefore Un(x) should be an increasingly accurate approximation
of u(x) as n increases and hn = 2−n decreases.

To make this approximation idea precise, we first study the convergence
of the functions Un(x) as n tends to infinity. To do this, we fix x̄ ∈ [0, 1]
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x

x2i−2n+1

y = f(x)

xni−1 xni

xn+1
2i−1 xn+1

2i

area |f(xni−1) − f(xn+1
2i−1|hn+1

Fig. 27.5. The difference between Un+1(x) and Un(x)

TS
i

and consider the sequence of numbers {Un(x̄)}∞n=1. We want to prove that
this is a Cauchy sequence and thus we want to estimate |Un(x̄) − Um(x̄)|
for m > n.

We begin by estimating the difference |Un(x̄)−Un+1(x̄)| for two consec-
utive indices n and m = n + 1. Recall that we used this approach in the
proof of the Contraction Mapping theorem. We have

Un(xn
i ) = Un(xn

i−1) + f(xn
i−1)hn,

and since xn+1
2i = xn

i and xn+1
2i−2 = xn

i−1,

Un+1(xn
i ) = Un+1(xn+1

2i ) = Un+1(xn+1
2i−1) + f(xn+1

2i−1)hn+1

= Un+1(xn
i−1) + f(xn+1

2i−2)hn+1 + f(xn+1
2i−1)hn+1.

Subtracting and setting en
i = Un(xn

i ) − Un+1(xn
i ), we have

en
i = en

i−1 + (f(xn
i−1)hn − f(xn+1

2i−2)hn+1 − f(xn+1
2i−1)hn+1),

that is, since hn+1 = 1
2hn,

en
i − en

i−1 = (f(xn
i−1) − f(xn+1

2i−1))hn+1. (27.23)

Assuming that x̄ = xn
j and using (27.23) and the facts that en

0 = 0 and
|f(xn

i−1) − f(xn+1
2i−1)| ≤ Lfhn+1, we get

|Un(x̄) − Un+1(x̄)| = |en
j | = |

j∑

i=1

(en
i − en

i−1)|

≤
j∑

i=1

|en
i − en

i−1| =
j∑

i=1

|f(xn
i−1) − f(xn+1

2i−1)|hn+1

≤
j∑

i=1

Lfh
2
n+1 =

1
4
Lfhn

j∑

i=1

hn =
1
4
Lf x̄hn,

(27.24)

TS
i

Please check the x in Fig. 27.5 on the right side.
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where we also used the fact that
∑j

i=1 hn = x̄. Iterating this estimate and
using the formula for a geometric sum, we get

|Un(x̄) − Um(x̄)| ≤ 1
4
Lf x̄

m−1∑

k=n

hk =
1
4
Lf x̄(2−n + . . .+ 2−m+1)

=
1
4
Lf x̄2−n 1 − 2−m+n

1 − 2−1
≤ 1

4
Lf x̄2−n2 =

1
2
Lf x̄hn,

that is
|Un(x̄) − Um(x̄)| ≤ 1

2
Lf x̄hn. (27.25)

This estimate shows that {Un(x̄)}∞n=1 is a Cauchy sequence and thus
converges to a real number. We decide, following Leibniz, to denote this
real number by ∫ x̄

0

f(x) dx,

which thus is the limit of

Un(x̄) =
j∑

i=1

f(xn
i−1)hn

as n tends to infinity, where x̄ = xn
j . In other words,

∫ x̄

0

f(x) dx = lim
n→∞

j∑

i=1

f(xn
i−1)hn.

Letting m tend to infinity in (27.25), we can express this relation in quan-
titative form as follows:

∣
∣
∣
∣
∣

∫ x̄

0

f(x) dx −
j∑

i=1

f(xn
i−1)hn

∣
∣
∣
∣
∣
≤ 1

2
Lf x̄hn.

At this point, we have defined the integral
∫ x̄

0
f(x) dx for a given Lipschitz

continuous function f(x) on [0, 1] and a given x̄ ∈ [0, 1], as the limit of the
sequence {Un(x̄)}∞n=1 as n tends to infinity. We can thus define a function
u : [0, 1] → R by the formula

u(x̄) =
∫ x̄

0

f(x) dx for x̄ ∈ [0, 1]. (27.26)

We now proceed to check that the function u(x) defined in this way
indeed satisfies the differential equation u′(x) = f(x). We proceed in two
steps. First we show that the function u(x) is Lipschitz continuous on [0, 1]
and then we show that u′(x) = f(x).



440 27. The Integral

Before plunging into these proofs, we need to address a subtle point.
Looking back at the construction of u(x), we see that we have defined u(x̄)
for x̄ of the form x̄ = xn

j , where j = 0, 1, . . . , 2n, n = 1, 2, . . . , . These are
the rational numbers with finite decimal expansion in the base of 2, and
they are dense in the sense that for any real number x ∈ [0, 1] and any
ε > 0, there is a point of the form xn

j so that |x − xn
j | ≤ ε. Recalling the

Chapter Real numbers, we understand that if we can show that u(x) is
Lipschitz continuous on the dense set of numbers of the form xn

j , then we
can extend u(x) as a Lipschitz function to the set of real numbers [0, 1].

We thus assume that x̄ = xn
j and ȳ = xn

k with j > k, and we note that

Un(x̄) − Un(ȳ) =
j∑

i=1

f(xn
i−1)hn −

k∑

i=1

f(xn
i−1)hn =

j∑

i=k+1

f(xn
i−1)hn

and using the triangle inequality

|Un(x̄) − Un(ȳ)| ≤
j∑

i=k+1

|f(xn
i−1)|hn ≤Mf

j∑

i=k+1

hn = Mf |x̄− ȳ|,

where Mf is a positive constant such that |f(x)| ≤ Mf for all x ∈ [0, 1].
Letting n tend to infinity, we see that

u(x̄) − u(ȳ) =
∫ x̄

0

f(x) dx −
∫ ȳ

0

f(x) dx =
∫ x̄

ȳ

f(x) dx, (27.27)

where of course,

∫ x̄

ȳ

f(x) dx = lim
n→∞

j∑

i=k+1

f(xn
i−1)hn,

and also

|u(x̄) − u(ȳ)| ≤
∣
∣
∣
∣

∫ x̄

ȳ

f(x) dx
∣
∣
∣
∣ ≤

∫ x̄

ȳ

|f(x)| dx ≤Mf |x̄− ȳ|, (27.28)

where the second inequality is the so-called triangle inequality for integrals
to be proved in the next section. We thus have

|u(x̄) − u(ȳ)| ≤Mf |x̄− ȳ|, (27.29)

which proves the Lipschitz continuity of u(x).
We now prove that the function u(x) defined for x ∈ [0, 1] by the formula

u(x) =
∫ x

a

f(y) dy,
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where f : [0, 1] → R is Lipschitz continuous, satisfies the differential equa-
tion

u′(x) = f(x) for x ∈ [0, 1],

that is
d

dx

∫ x

0

f(y) dy = f(x). (27.30)

To this end, we choose x, x̄ ∈ [0, 1] with x ≥ x̄ and use (27.27) and (27.28)
to see that

u(x) − u(x̄) =
∫ x

0

f(z)dz −
∫ x̄

0

f(y)dy =
∫ x

x̄

f(y)dy,

and

|u(x) − u(x̄) − f(x̄)(x − x̄)| =
∣
∣
∣

∫ x

x̄

f(y) dy − f(x̄)(x− x̄)
∣
∣
∣

=
∣
∣
∣

∫ x

x̄

(f(y) − f(x̄)) dy
∣
∣
∣ ≤

∫ x

x̄

|f(y) − f(x̄)| dy

≤
∫ x

x̄

Lf |y − x̄| dy =
1
2
Lf (x− x̄)2,

where we again used the triangle inequality for integrals. This proves that
u is uniformly differentiable on [0, 1], and that Ku ≤ 1

2Lf .
Finally to prove uniqueness, we recall from (27.15) and (27.16) that

a function u : [0, 1] → R with Lipschitz continuous derivative u′(x) and
u(0) = 0, can be represented as

u(x̄) =
m∑

i=1

u′(xi−1)(xi − xi−1) + Eh,

where
|Eh| ≤ Ku(x̄− a)h.

Letting n tend to infinity, we find that

u(x̄) =
∫ x̄

0

u′(x) dx for x̄ ∈ [0, 1], (27.31)

which expresses the fact that a uniformly differentiable function with Lip-
schitz continuous derivative is the integral of its derivative. Suppose now
that u(x) and v(x) are two uniformly differentiable functions on [0, 1] sat-
isfying u′(x) = f(x), and v′(x) = f(x) for 0 < x ≤ 1, and u(0) = u0,
v(0) = u0, where f : [0, 1] → R is Lipschitz continuous. Then the difference
w(x) = u(x)−v(x) is a uniformly differentiable function on [0, 1] satisfying
w′(x) = 0 for a < x ≤ b and w(0) = 0. But we just showed that

w(x) =
∫ x

a

w′(y) dy,
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and thus w(x) = 0 for x ∈ [0, 1]. This proves that u(x) = v(x) for x ∈ [0, 1]
and the uniqueness follows.

Recall that we proved the Fundamental Theorem for special circum-
stances, namely on the interval [0, 1] with initial value 0. We can directly
generalize the construction above by replacing [0, 1] by an arbitrary bound-
ed interval [a, b], replacing hn by hn = 2−n(b − a), and assuming instead
of u(0) = 0 that u(a) = ua, where ua is a given real number. We have now
proved the formidable Fundamental Theorem of Calculus.

Theorem 27.1 (Fundamental Theorem of Calculus) If f : [a, b] → R

is Lipschitz continuous, then there is a unique uniformly differentiable func-
tion u : [a, b] → R, which solves the initial value problem

{
u′(x) = f(x) for x ∈ (a, b],
u(a) = ua,

(27.32)

where ua ∈ R is given. The function u : [a, b] → R can be expressed as

u(x̄) = ua +
∫ x̄

a

f(x) dx for x̄ ∈ [a, b],

where
∫ x̄

0

f(x) dx = lim
n→∞

j∑

i=1

f(xn
i−1)hn,

with x̄ = xn
j , xn

i = a+ihn, hn = 2−n(b−a). More precisely, if the Lipschitz
constant of f : [a, b] → R is Lf , then for n = 1, 2, . . . ,

∣
∣
∣

∫ x̄

a

f(x) dx −
j∑

i=1

f(xn
i−1)hn

∣
∣
∣ ≤

1
2
(x̄− a)Lfhn. (27.33)

Furthermore if |f(x)| ≤Mf for x ∈ [a, b], then u(x) is Lipschitz continuous
with Lipschitz constant Mf and Ku ≤ 1

2Lf , where Ku is the constant of
uniform differentiability of u : [a, b] → R.

27.9 Comments on the Notation

We can change the names of the variables and rewrite (27.26) as

u(x) =
∫ x

0

f(y) dy. (27.34)

We will often use the Fundamental Theorem in the form
∫ b

a

u′(x) dx = u(b) − u(a), (27.35)
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which states that the integral
∫ b

a f(x) dx is equal to the difference u(b) −
u(a), where u(x) is a primitive function of f(x). We will sometimes use the
notation [u(x)]x=b

x=a = u(b)−u(a) or shorter [u(x)]ba = u(b)−u(a), and write

∫ b

a

u′(x) dx =
[
u(x)

]x=b

x=a
=

[
u(x)

]b
a
.

Sometimes the notation ∫

f(x) dx,

without limits of integration, is used to denote a primitive function of f(x).
With this notation we would have for example

∫

dx = x+ C,

∫

xdx =
x2

2
+ C,

∫

x2 dx =
x3

3
+ C,

where C is a constant. We will not use this notation in this book. Note that
the formula x =

∫
dx may be viewed to express that “the whole is equal to

the sum of the parts”.

27.10 Alternative Computational Methods

Note that we might as well compute Un(xn
i ) from knowledge of Un(xn

i−1),
using the formula

Un(xn
i ) = Un(xn

i−1) + f(xn
i )hn, (27.36)

obtained by replacing f(xn
i−1) by f(xn

i ), or

Un(xn
i ) = Un(xn

i−1) +
1
2
(f(xn

i−1) + f(xn
i ))hn (27.37)

using the mean value 1
2 (f(xn

i−1)+f(xn
i )). These alternatives may bring cer-

tain advantages, and we will return to them in Chapter Numerical quadra-
ture. The proof of the Fundamental Theorem is basically the same with
these variants and by uniqueness all the alternative constructions give the
same result.

27.11 The Cyclist’s Speedometer

An example of a physical situation modeled by the initial value problem
(27.2) is a cyclist biking along a straight line with u(x) representing the po-
sition at time x, u′(x) being the speed at time x and specifying the position
u(a) = ua at the initial time x = a. Solving the differential equation (27.2)
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amounts to determining the position u(x) of the cyclist at time a < x ≤ b,
after specifying the position at the initial time x = a and knowing the
speed f(x) at each time x. A standard bicycle speedometer may be viewed
to solve this problem, viewing the speedometer as a device which measures
the instantaneous speed f(x), and then outputs the total traveled distance
u(x). Or is this a good example? Isn’t it rather so that the speedometer
measures the traveled distance and then reports the momentary (average)
speed? To answer this question would seem to require a more precise study
of how a speedometer actually works, and we urge the reader to investigate
this problem.

27.12 Geometrical Interpretation of the Integral

In this section, we interpret the proof of the Fundamental Theorem as
saying that the integral of a function is the area underneath the graph of
the function. More precisely, the solution u(x̄) given by (27.3) is equal to
the area under the graph of the function f(x) on the interval [a, x̄], see
Fig. 27.6. For the purpose of this discussion, it is natural to assume that
f(x) ≥ 0.

u(x)−
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x

y

x̄

y = f(x)

Fig. 27.6. Area under y = f(x)

Of course, we also have to explain what we mean by the area under
the graph of the function f(x) on the interval [a, x̄]. To do this, we first
interpret the approximation Un(x̄) of u(x̄) as an area. We recall from the
previous section that

Un(xn
j ) =

j∑

i=1

f(xn
i−1)hn,
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where xn
j = x̄. Now, we can view f(xn

i−1)hn as the area of a rectangle with
base hn and height f(xn

i−1), see Fig. 27.7.

x

xn0 xn1 xn2 xni−1 xni xnj

y = f(x)

area f(xni−1)hn

Fig. 27.7. Area f(xni−1)hn of rectangle

We can thus interpret the sum

j∑

i=1

f(xn
i−1)hn

as the area of a collection of rectangles which form a staircase approxi-
mation of f(x), as displayed in Fig. 27.8. The sum is also referred to as
a Riemann sum.

x

xn0 xn1 xn2 xni−1 xni xnj

y = f(x)

area
∑j
i=1 f(xni−1)hn

Fig. 27.8. Area
∑j
i=1 f(xni−1)hn under a staircase approximation of f(x)

Intuitively, the area under the staircase approximation of f(x) on [a, x̄],
which is Un(x̄), will approach the area under the graph of f(x) on [a, x̄] as n
tends to infinity and hn = 2−n(b−a) tends to zero. Since limn→∞ Un(x̄) =
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u(x̄), this leads us to define the area under f(x) on the interval [0, x̄] as
the limit u(x̄).

Note the logic used here: The value Un(x̄) represents the area under
a staircase approximation of f(x) on [a, x̄]. We know that Un(x̄) tends
to u(x̄) as n tends to infinity, and on intuitive grounds we feel that the
limit of the area under the staircase should be equal to the area under the
graph of f(x) on [a, x̄]. We then simply define the area under f(x) on [a, x̄]
to be u(x̄). By definition we thus interpret the integral of f(x) on [0, x̄]
as the area under the graph of the function f(x) on [a, x̄]. Note that this
is an interpretation. It is not a good idea to say the integral is an area.
This is because the integral can represent many things, such as a distance,
a quantity of money, a weight, or some thing else. If we interpret the integral
as an area, then we also interpret a distance, a quantity of money, a weight,
or some thing else, as an area. We understand that we cannot take this
interpretation to be literally true, because a distance cannot be equal to
an area, but it can be interpreted as an area. We hope the reader gets the
(subtle) difference.

As an example, we compute the area A under the graph of the function
f(x) = x2 between x = 0 and x = 1 as follows

A =
∫ 1

0

x2 dx =
[
x3

3

]x=1

x=0

=
1
3
.

This is an example of the magic of Calculus, behind its enormous success.
We were able to compute an area, which in principle is the sum of very
many very small pieces, without actually having to do the tedious and
laborious computation of the sum. We just found a primitive function u(x)
of x2 and computed A = u(3)−u(0) without any effort at all. Of course we
understand the telescoping sum behind this illusion, but if you don’t see
this, you must be impressed, right? To get a perspective and close a circle,
we recall the material in Leibniz’ teen-age dream in Chapter A very short
course in Calculus.

27.13 The Integral as a Limit of Riemann Sums

The Fundamental Theorem of Calculus states that the integral of f(x) over
the interval [a, b] is equal to a limit of Riemann sums:

∫ b

a

f(x) dx = lim
n→∞

2n
∑

i=1

f(xn
i−1)hn,

where xn
i = a+ ihn, hn = 2−n(b − a), or more precisely, for n = 1, 2, . . . ,

∣
∣
∣

∫ b

a

f(x) dx−
2n
∑

i=1

f(xn
i−1)hn

∣
∣
∣ ≤

1
2
(b− a)Lfhn, TS

j

TS
j In the hardcopy, this equation is labelled (27.38), please check it.

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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where Lf is the Lipschitz constant of f . We can thus define the integral
∫ b

a f(x) dx as a limit of Riemann sums without invoking the underlying dif-
ferential equation u′(x) = f(x). This approach is useful in defining integrals
of functions of several variables (so-called multiple integrals like double in-
tegrals and triple integrals), because in these generalizations there is no
underlying differential equation.

In our formulation of the Fundamental Theorem of Calculus, we em-
phasized the coupling of the integral

∫ x

a f(y) dy to the related differential
equation u′(x) = f(x), but as we just said, we could put this coupling in
the back-ground, and define the integral as a limit of Riemann sums with-
out invoking the underlying differential equation. This connects with the
idea that the integral of a function can be interpreted as the area under
the graph of the function, and will find a natural extension to multiple
integrals in Chapters Double integrals and Multiple integrals.

Defining the integral as a limit of Riemann sums poses a question of
uniqueness: since there are different ways of constructing Riemann sums
one may ask if all limits will be the same. We will return to this question in
Chapter Numerical quadrature and (of course) give an affirmative answer.

27.14 An Analog Integrator

James Thompson, brother of Lord Kelvin, constructed in 1876 an ana-
log mechanical integrator based on a rotating disc coupled to a cylinder
through another orthogonal disc adjustable along the radius of the first
disc, see Fig. 27.9.TS

k The idea was to get around the difficulties of realiz-
ing the Analytical Engine, the mechanical digital computer envisioned by
Babbage in the 1830s. Lord Kelvin tried to use a system of such analog in-
tegrators to compute different problems of practical interest including that
of tide prediction, but met serious problems to reach sufficient accuracy.
Similar ideas ideas were taken up by Vannevar Bush at MIT Massachus-
setts Institute of Technology in the 1930s, who constructed a Differential
Analyzer consisting of a collection of analog integrators, which was pro-
grammable to solve differential equations, and was used during the Second
World War for computing trajectories of projectiles. A decade later the dig-
ital computer took over the scene, and the battle between arithmetic and
geometry initiated between the Pythagorean and Euclidean schools more
than 2000 years ago, had finally come an end.

TS
k In the hardcopy, is here a reference of Fig. 27.10, please check it.

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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Fig. 27.9. The principle of an Analog Integrator

Chapter 27 Problems

27.1. Determine primitive functions on R to (a) (1 + x2)−22x, (b) (1 + x)−99,
(c) (1 + (1 + x3)2)−22(1 + x3)3x2.

27.2. Compute the area under the graph of the function (1+x)−2 between x = 1
and x = 2.

27.3. A car travels along the x-axis with speed v(t) = t
3
2 starting at x = 0 for

t = 0. Compute the position of the car for t = 10.

27.4. Carry out the proof of the Fundamental Theorem for the variations (27.36)
and (27.37).

27.5. Construct a mechanical integrator solving the differential equation u′(x) =
f(x) for x > 0, u(0) = 0 through an analog mechanical devise. Hint: Get hold of
a rotating cone and a string.

27.6. Explain the principle behind Thompson’s analog integrator.

27.7. Construct a mechanical speedometer reporting the speed and traveled
distance. Hint: Check the construction of the speedometer of your bike.

27.8. Find the solutions of the initial value problem u′(x) = f(x) for x > 0,
u(0) = 1, in the following cases: (a) f(x) = 0, (b) f(x) = 1, (c) f(x) = xr, r > 0.

27.9. Find the solution to the second order initial value problem u′′(x) = f(x)
for x > 0, u(0) = u′(0) = 1, in the following cases: (a) f(x) = 0, (b) f(x) = 1,
(c) f(x) = xr, r > 0. Explain why two initial conditions are specified.
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27.10. Solve initial value problem u′(x) = f(x) for x ∈ (0, 2], u(0) = 1, where
f(x) = 1 for x ∈ [0, 1) and f(x) = 2 for x ∈ [1, 2]. Draw a graph of the solution
and calculate u(3/2). Show that f(x) is not Lipschitz continuous on [0, 2] and
determine if u(x) is Lipschitz continuous on [0, 2].

27.11. The time it takes for a light beam to travel through an object is t = d
c/n

,
where c is the speed of light in vacuum, n is the refractive index of the object and
d is its thickness. How long does it take for a light beam to travel the shortest
way through the center of a glass of water, if the refractive index of the water
varies as a certain function nw(r) with the distance r from the center of glass,
the radius of the glass is R and the thickness and that the walls have constant
thickness h and constant refractive index equal to ng .

27.12. Assume that f and g are Lipschitz continuous on [0, 1]. Show that∫ 1

0
|f(x) − g(x)|dx = 0 if and only if f = g on [0, 1]. Does this also hold if

∫ 1

0
|f(x) − g(x)|dx is replaced by

∫ 1

0
(f(x) − g(x))dx?

Fig. 27.10. David Hilbert (1862–1943) at the age of 24: “A mathematical theory
is not to be considered complete until you have made it so clear that you can
explain it to the first man whom you meet on the street”





28
Properties of the Integral

For more than two thousand years some familiarity with mathemat-
ics has been regarded as an indispensable part of the intellectual
equipment of every cultured person. Today the traditional place of
mathematics in education is in great danger. Unfortunately, profes-
sional representatives of mathematics share the responsibility. The
teaching of mathematics has sometimes degenerated into empty drill
in problem solving, which may develop formal ability but does not
lead to real understanding or to greater intellectual independence. . .
Teachers, students and the general public demand constructive re-
form, not resignation along the lines of least resistance. (Richard
Courant, in Preface to What is Mathematics?, 1941)

28.1 Introduction

In this chapter, we gather together various useful properties of the integral.
We may prove these properties in two ways: (i) by using the connection be-
tween the integral and the derivative and using properties of the derivative,
or (ii) using that the integral is the limit of Riemann sum approximations,
that is, using the area interpretation of the integral. We indicate both types
of proofs to help the reader getting familiar with different aspects of the
integral, and leave some of the work to the problem section.
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Throughout the chapter we assume that f(x) and g(x) are Lipschitz
continuous on the interval [a, b], and we assume that

N∑

i=1

f(xn
i−1)hn and

N∑

i=1

g(xn
i−1)hn

are Riemann sum approximations of
∫ b

a f(x) dx and
∫ b

a g(x) dx with step
length hn = 2−n(b − a) and xn

i = a + ihn, i = 0, 1, . . . , N = 2n, as in the
previous chapter.

28.2 Reversing the Order
of Upper and Lower Limits

So far we have defined the integral
∫ b

a
f(x) dx assuming that a ≤ b, that is

that the upper limit of integration b is larger than (or equal to) the lower
limit a. It is useful to extend the definition to cases with a > b by defining

∫ b

a

f(x) dx = −
∫ a

b

f(x) dx. (28.1)

In other words, we decide that switching the limits of integration should
change the sign of an integral. As a motivation we may consider the case
f(x) = 1 and a > b, and recall that

∫ a

b 1 dx = a − b > 0. Using the
same formula with a and b interchanged, we would have

∫ b

a
1 dx = b− a =

−(a − b) = −
∫ a

b
1 dx, which motivates the sign change under the switch

of upper and lower limits. The motivation carries over to the general case
using the Riemann sum approximation. Notice that here we do not prove
anything, we simply introduce a definition. Of course we seek a definition
which is natural, easy to remember and which allows efficient symbolic
computation. The definition we chose fulfills these conditions.

Example 28.1. We have
∫ 1

2

2xdx = −
∫ 2

1

2xdx = −
[
x2
]2
1

= −(4 − 1) = −3.

28.3 The Whole Is Equal to the Sum of the Parts

We shall now prove that if a ≤ c ≤ b, then

∫ b

a

f(x) dx =
∫ c

a

f(x) dx +
∫ b

c

f(x) dx. (28.2)
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One way to do this is to use the area interpretation of the integral and
simply notice that the area under f(x) from a to b should be equal to the
sum of the area under f(x) from a to c and the area under f(x) from c
to b.

We can also give an alternative proof using that that
∫ b

a f(x) dx = u(b),
where u(x) satisfies u′(x) = f(x) for a ≤ x ≤ b, and u(a) = 0. Letting
now w(x) satisfy w′(x) = f(x) for c ≤ x ≤ b, and w(c) = u(c), we have by
uniqueness that w(x) = u(x) for c ≤ x ≤ b, and thus

u(b) = w(b) = u(c) +
∫ b

c

f(y) dy =
∫ c

a

f(y) dy +
∫ b

c

f(y) dy,

which is the desired result.

Example 28.2. We have
∫ 2

0

xdx =
∫ 1

0

xdx+
∫ 2

1

xdx,

which expresses the identity

2 =
(

1
2

)

+
(

2 − 1
2

)

.

Note that by the definition (28.1), (28.2) actually holds for any a, b and c.

28.4 Integrating Piecewise Lipschitz Continuous
Functions

A functions is said to be piecewise Lipschitz continuous on a finite interval
[a, b] if [a, b] can be divided up into a finite number of sub-intervals on
which the function is Lipschitz continuous, allowing the function to have
jumps at the ends of the subintervals, see Fig. 28.1.

We now extend (in the obvious way) the definition of the integral
∫ b

a
f(x) dx to a piecewise Lipschitz continuous function f(x) on an inter-

val [a, b] starting with the case of two subintervals with thus f(x) Lipschitz
continuous separately on two adjoining intervals [a, c] and [c, b], where
a ≤ c ≤ b. We define

∫ b

a

f(x) dx =
∫ c

a

f(x) dx +
∫ b

c

f(x) dx,

which obviously fits with (28.2). The extension is analogous for several
subintervals with the integral over the whole interval being the sum of the
integrals over the subintervals.



454 28. Properties of the Integral

x

y

y = f(x)

Fig. 28.1. A piecewise Lipschitz continuous function

28.5 Linearity

We shall now prove the following property of linearity of the integral: If α
and β are real numbers then,

∫ b

a

(αf(x) + βg(x)) dx = α

∫ b

a

f(x) dx + β

∫ b

a

g(x) dx. (28.3)

With α = β = 1 this property expresses that the area (from a to b) under-
neath the sum of two functions is equal to the sum of the areas underneath
each function. Further, with g(x) = 0 and α = 2 say, the property expresses
that the area under the function 2f(x) is equal to 2 times the area under
the function f(x).

More generally, the linearity of the integral is inherited from the linearity
of the Riemann sum approximation, which we may express as

N∑

i=1

(αf(xn
i−1) + βg(xn

i−1)hn = α

N∑

i=1

f(xn
i−1)hn + β

N∑

i=1

g(xn
i−1)hn, (28.4)

and which follows from basic rules for computing with real numbers.
A differential equation proof goes as follows: Define

u(x) =
∫ x

a

f(y) dy and v(x) =
∫ x

a

g(y) dy, (28.5)

that is, u(x) is a primitive function of f(x) satisfying u′(x) = f(x) for
a < x ≤ b and u(a) = 0, and v(x) is a primitive function of g(x) satisfying
v′(x) = g(x) for a < x ≤ b and v(a) = 0. Now, the function w(x) =
αu(x) + βv(x) is a primitive function of the function αf(x) + βg(x), since
by the linearity of the derivative, w′(x) = αu′(x)+βv′(x) = αf(x)+βg(x),
and w(a) = αu(a) + βv(a) = 0. Thus, the left hand side of (28.3) is equal
to w(b), and since w(b) = αu(b) + βv(b), the desired equality follows from
setting x = b in (28.5).
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Example 28.3. We have

∫ b

0

(2x+ 3x2) dx = 2
∫ b

0

xdx+ 3
∫ b

0

x2 dx = 2
b2

2
+ 3

b3

3
= b2 + b3.

28.6 Monotonicity

The monotonicity property of the integral states that if f(x) ≥ g(x) for
a ≤ x ≤ b, then

∫ b

a

f(x) dx ≥
∫ b

a

g(x) dx. (28.6)

This is the same as stating that if f(x) ≥ 0 for x ∈ [a, b], then

∫ b

a

f(x) dx ≥ 0, (28.7)

which follows from the fact that all Riemann sum approximations
∑j

i=1 f(xn
i−1)hn of

∫ b

a f(x) dx are all non-negative if f(x) ≥ 0 for x ∈ [a, b].

28.7 The Triangle Inequality for Integrals

We shall now prove the following triangle inequality for integrals:

∣
∣
∣

∫ b

a

f(x) dx
∣
∣
∣ ≤

∫ b

a

|f(x)| dx, (28.8)

stating that moving the absolute value inside the integral increases the
value (or leaves the value unchanged). This property follows from applying
the usual triangle inequality to Riemann sum approximations to get

∣
∣
∣

N∑

i=1

f(xn
i−1)hn

∣
∣
∣ ≤

N∑

i=1

∣
∣
∣f(xn

i−1)
∣
∣
∣hn

and then passing to the limit. Evidently there may be cancellations on the
left hand side if f(x) has changes sign, while on the right hand side we
always add nonnegative contributions, making the right hand side at least
as big as the left hand side.

Another proof uses the monotonicity as follows: Apply (28.7) to the func-
tion |f | − f ≥ 0 to obtain

∫ x̄

a

f(x) dx ≤
∫ x̄

a

|f(x)| dx.
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Replacing f by the function −f we obtain

−
∫ x̄

a

f(x) dx =
∫ x̄

a

(−f(x)) dx ≤
∫ x̄

a

| − f(x)| dx =
∫ x̄

a

|f(x)| dx,

which proves the desired result.

28.8 Differentiation and Integration
are Inverse Operations

The Fundamental Theorem says that integration and differentiation are in-
verse operations in the sense that first integrating and then differentiating,
or first differentiating and then integrating, gives the net result of doing
nothing! We make this clear by repeating a part of the proof of the Funda-
mental Theorem to prove that if f : [a, b] → R is Lipschitz continuous then
for x ∈ [a, b],

d

dx

∫ x

a

f(y) dy = f(x). (28.9)

In other words, integrating a function f(x) and then differentiating the
primitive function, gives back the function f(x). Surprise? We illustrate in
Fig. 28.2. To properly understand the equality (28.9), it is important to
realize that

∫ x

a f(y) dy is a function of x and thus depends on x. The area
under the function f from a to x, of course depends on the upper limit x.

y

x
x

x̄

u(x̄)

y = f(x)

u(x) − u(x̄) = f(x̄)(x− x̄) + E

Fig. 28.2. The derivative of
∫ x
0
f(y) dy at x = x̄ is f(x̄): |E| ≤ 1

2
Lf |x− x̄|2

We may express (28.9) in words as follows: Differentiating an integral
with respect to the upper limit of integration gives the value of the inte-
grand at the upper limit of integration.

To prove (28.9) we now choose x and x̄ in [a, b] with x ≥ x̄, and use
(28.2) to see that

u(x) − u(x̄) =
∫ x

a

f(z) dz −
∫ x̄

a

f(y)dy =
∫ x

x̄

f(y) dy
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so that

|u(x) − u(x̄) − f(x̄)(x − x̄)| =
∣
∣
∣

∫ x

x̄

f(y) dy − f(x̄)(x− x̄)
∣
∣
∣

=
∣
∣
∣

∫ x

x̄

(f(y) − f(x̄)) dy
∣
∣
∣

≤
∫ x

x̄

|f(y) − f(x̄)| dy

≤
∫ x

x̄

Lf |y − x̄| dy =
1
2
Lf(x − x̄)2.

This proves that u(x) is uniformly differentiable on [a, b] with derivative
u′(x) = f(x) and constant Ku ≤ 1

2Lf .
We also note that (28.1) implies

d

dx

∫ a

x

f(y) dy = −f(x). (28.10)

which we may express in words as: Differentiating an integral with respect
to the lower limit of integration gives minus the value of the integrand at
the lower limit of integration.

Example 28.4. We have

d

dx

∫ x

0

1
1 + y2

dy =
1

1 + x2
.

Example 28.5. Note that we can combine (27.30) with the Chain Rule:

d

dx

∫ x3

0

1
1 + y2

dy =
1

1 + (x3)2
d

dx

(
x3
)

=
3x2

1 + x6
.

28.9 Change of Variables or Substitution

We recall that the Chain rule tells us how to differentiate the composition
of two functions. The analogous property of the integral is known as the
change of variables, or substitution formula and plays an important role.
For example, it can be used to compute many integrals analytically. The
idea is that an integral may be easier to compute analytically if we change
scales in the independent variable.

Let now g : [a, b] → I, be uniformly differentiable on an interval [a, b],
where I is an interval, and let f : I → R be Lipschitz continuous. Typically,
g is strictly increasing (or decreasing) and maps [a, b] onto I, so that g :
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[a, b] → I corresponds to a change of scale, but more general situations are
allowed. The change of variables formula reads

∫ x

a

f(g(y))g′(y) dy =
∫ g(x)

g(a)

f(z) dz for x ∈ [a, b]. (28.11)

This is also called substitution since the left hand side L(x) is formally
obtained by in the right hand hand sideH(x) setting z = g(y) and replacing
dz by g′(y) dy motivated by the relation

dz

dy
= g′(y),

and noting that as y runs from a to x then z runs from g(a) to g(x).
To verify (28.11), we now prove that H ′(x) = L′(x) and use the fact that

H(a) = L(a) = 0 and the uniqueness of the integral. The Chain rule and
(27.30) imply that

H ′(x) = f(g(x)) g′(x).

Further,
L′(x) = f(g(x)) g′(x),

which thus proves the desired equality.
We now give a two examples. We will meet many more examples below.

Example 28.6. To integrate
∫ 2

0

(1 + y2)−22y dy

we make the observation that

d

dy
(1 + y2) = 2y.

Thus, if we set z = g(y) = 1+y2, then applying (28.11) noting that g(0) = 1
and g(2) = 5 and formally dz = 2ydy, we have that

∫ 2

0

(1 + y2)−22y dy =
∫ 2

0

(g(y))−2g′(y) dy =
∫ 5

1

z−2 dz.

Now, the right hand integral can easily be evaluated:
∫ 5

1

z−2 dz = [−z−1]z=5
z=1 = −

(
1
5
− 1

)

,

and thus ∫ 2

0

(1 + y2)−22y dy =
4
5
.
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Example 28.7. We have setting y = g(x) = 1+x4 noting that then formally
dy = g′(x)dx = 4x3dx and g(0) = 1 and g(1) = 2, to get

∫ 1

0

(1 + x4)−1/2x3 dx =
1
4

∫ 1

0

(g(x))−1/2g′(x) dx =
1
4

∫ 2

1

y−1/2 dy

=
1
2
[y1/2]21 =

√
2 − 1
2

.

28.10 Integration by Parts

We recall that the Product rule is a basic property of the derivative, showing
how to compute the derivative of a product of two functions. The corre-
sponding formula for integration is called integration by parts. The formula
is

∫ b

a

u′(x)v(x) dx = u(b)v(b) − u(a)v(a) −
∫ b

a

u(x)v′(x) dx. (28.12)

The formula follows by applying the Fundamental Theorem to the function
w(x) = u(x)v(x), in the form

∫ b

a

w′(x) dx = u(b)v(b) − u(a)v(a),

together with the product formula w′(x) = u′(x)v(x)+u(x)v′(x) and (28.3).
Below we often write

u(b)v(b) − u(a)v(a) =
[
u(x)v(x)

]x=b

x=a
,

and we can thus state the formula for integration by parts as
∫ b

a

u′(x)v(x) dx =
[
u(x)v(x)

]x=b

x=a
−
∫ b

a

u(x)v′(x) dx. (28.13)

This formula is very useful and we will use many times below.

Example 28.8. Computing
∫ 1

0

4x3(1 + x2)−3 dx

by guessing at a primitive function for the integrand would be a pretty
daunting task. However we can use integration by parts to compute the
integral. The trick here is to realize that

d

dx
(1 + x2)−2 = −4x(1 + x2)−3.
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If we rewrite the integral as

∫ 1

0

x2 × 4x(1 + x2)−3 dx

then we can apply integration by parts with u(x) = x2 and v′(x) = 4x(1 +
x2)−3, so u′(x) = 2x and v(x) = −(1 + x2)−2, to get

∫ 1

0

4x3(1 + x2)−3 dx =
∫ 1

0

u(x)v′(x) dx

=
[
x2(−(1 + x2)−2)

]x=1

x=0
−
∫ 1

0

2x(−(1 + x2)−2) dx

= −1
4
−
∫ 1

0

(−(1 + x2)−2)2x dx.

To do the remaining integral, we use the substitution z = 1 + x2 with
dz = 2xdx to get

∫ 1

0

4x3(1 + x2)−3 dx = −1
4

+
∫ 2

1

z−2 dz

= −1
4

+
[
− z−1

]z=2

z=1
= −1

4
− 1

2
+ 1 =

1
4
.

28.11 The Mean Value Theorem

The Mean Value theorem states that if u(x) is a differentiable function on
[a, b] then there is a point x̄ in (a, b) such that the slope u′(x̄) of the tangent
of the graph of u(x) at x̄ is equal to the slope of the secant line, or chord,
connecting the points (a, u(a)) and (b, u(b)). In other words,

u(b) − u(a)
b− a

= u′(x̄). (28.14)

This is geometrically intuitive, see Fig. 28.3, and expresses that the average
velocity over [a, b] is equal to momentary velocity u′(x̄) at some intermedi-
ate point x̄ ∈ [a, b].

To get from the point (a, u(a)) to the point (b, u(b)), f has to “bend”
around in such a way that the tangent becomes parallel to the secant line
at least at one point.

Assuming that u′(x) is Lipschitz continuous on [a, b], we shall now prove
that there is a real number x̄ ∈ [a, b] such that

u(b) − u(a) = (b − a)u′(x̄)
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y = u(x)

slope u′(x̄)

slope u(b)−u(a)
b−a

x
x̄a b

y

Fig. 28.3. Illustration of the Mean Value theorem

which is equivalent to (28.14). The proof is based on the formula

u(b) = u(a) +
∫ b

a

u′(x) dx (28.15)

which holds if u(x) is uniformly differentiable on [a, b]. If for all x ∈ [a, b],
we would have

u(b) − u(a)
b− a

> u′(x),

then we would have (explain why)

u(b) − u(a) =
∫ a

b

u(b) − u(a)
b− a

dx >

∫ a

b

u′(x) dx = u(b) − u(a),

which is a contradiction. Arguing in the same way, we conclude it is also
impossible that

u(b) − u(a)
b − a

< u′(x)

for all x ∈ [a, b]. So there must be numbers c and d in [a, b] such that

u′(c) ≤ u(b) − u(a)
b− a

≤ u′(d).

Since u′(x) is Lipschitz continuous for x ∈ [a, b], it follows by the Interme-
diate Value theorem that there is a number x̄ ∈ [a, b] such that

u′(x̄) =
u(b) − u(a)

b − a
.

We have now proved:
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Theorem 28.1 (Mean Value theorem) If u(x) is uniformly differen-
tiable on [a, b] with Lipschitz continuous derivative u′(x), then there is a (at
least one) x̄ ∈ [a, b], such that

u(b) − u(a) = (b− a)u′(x̄). (28.16)

The Mean Value Theorem is often written in terms of an integral by
setting f(x) = u′(x) in (28.16), which gives

Theorem 28.2 (Mean Value theorem for integrals) If f(x) is Lips-
chitz continuous on [a, b], then there is some x̄ ∈ [a, b] such that

∫ b

a

f(x) dx = (b− a)f(x̄). (28.17)

The Mean Value theorem turns out to be very useful in several ways. To
illustrate, we discuss two results that can be proved easily using the Mean
Value Theorem.

28.12 Monotone Functions and the Sign
of the Derivative

The first result says that the sign of the derivative of a function indicates
whether the function is increasing or decreasing in value as the input in-
creases. More precisely, the Mean Value theorem implies that if f ′(x) ≥ 0
for all x ∈ [a, b] then f(b) ≥ f(a). Moreover if x1 ≤ x2 are in [a, b], then
f(x1) ≤ f(x2). A function with this property is said to be non-decreasing
on [a, b]. If in fact f ′(x) > 0 for all x ∈ (a, b), then f(x1) < f(x2) for
x1 < x2 in [a, b] (with strict inequalities), and we say that f(x) is (strictly)
increasing on the interval [a, b]. Corresponding statements hold if f ′(x) ≤ 0
and f ′(x) < 0, with non-decreasing and (strictly) increasing replaced with
non-increasing and (strictly) decreasing, respectively. Functions that are
either (strictly) increasing or (strictly) decreasing on an interval [a, b] are
said to be (strictly) monotone on [a, b].

28.13 A Function with Zero Derivative is Constant

As a particular consequence of the preceding section, we conclude that if
f ′(x) = 0 for all x ∈ [a, b], so that f(x) is both non-increasing and non-
decreasing on [a, b], then f(x) is constant on [a, b]. Thus, a function with
derivative vanishing everywhere is a constant function.
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28.14 A Bounded Derivative Implies Lipschitz
Continuity

As a second consequence of the Mean Value Theorem, we give an alternate,
and shorter, proof that a function with a Lipschitz continuous derivative is
Lipschitz continuous. Assume that u : [a, b] → R has a Lipschitz continuous
derivative u′(x) on [a, b] satisfying |u′(x)| ≤M for x ∈ [a, b]. By the Mean
Value theorem, we have

|u(x) − u(x̄)| ≤M |x− x̄| for x, x̄ ∈ [a, b].

We conclude that u(x) is Lipschitz continuous on [a, b] with Lipschitz con-
stant M = maxx∈[a,b] |u′(x)|.

28.15 Taylor’s Theorem

In earlier chapters, we analyzed a linear approximation to a function u,

u(x) ≈ u(x̄) + u′(x̄)(x − x̄), (28.18)

as well as a quadratic approximation

u(x) ≈ u(x̄) + u′(x̄)(x− x̄) +
u′′(x̄)

2
(x− x̄)2. (28.19)

These approximations are very useful tools for dealing with nonlinear func-
tions. Taylor’s theorem, invented by Brook Taylor (1685-1731), see Fig. 28.4,
generalizes these approximations to any degree.Taylor sided up with New-
ton in a long scientific fight with associates of Leibniz about “who’s best
in Calculus?”.

Theorem 28.3 (Taylor’s theorem) If u(x) is n+1 times differentiable
on the interval I with u(n+1) Lipschitz continuous, then for x, x̄ ∈ I, we
have

u(x) = u(x̄) + u′(x̄)(x− x̄) + · · · + u(n)(x̄)
n!

(x− x̄)n

+
∫ x

x̄

(x− y)n

n!
u(n+1)(y) dy. (28.20)

The polynomial

Pn(x) = u(x̄) + u′(x̄)(x − x̄) + · · · + u(n)(x̄)
n!

(x− x̄)n

is called the Taylor polynomial, or Taylor expansion, of u(x) at x̄ of de-
gree n,
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Fig. 28.4. Brook Taylor, inventor of the Taylor expansion: “I am the best”

The term

Rn(x) =
∫ x

x̄

(x− y)n

n!
u(n+1)(y) dy

is called the remainder term of order n. We have for x ∈ I,

u(x) = Pn(x) +Rn(x).

It follows directly that
(
dk

dxk

)

Pn(x̄) =
(
dk

dxk

)

u(x̄) for k = 0, 1 · · · , n.

Thus Taylor’s theorem gives a polynomial approximation Pn(x) of degree n
of a given function u(x), such that the derivatives of order ≤ n of Pn(x)
and u(x) agree at x = x̄.

Example 28.9. The Taylor polynomial of order 2 at x = 0 for u(x) =
√

1 + x
is given by

P2(x) = 1 +
1
2
− 1

8
x2,

since u(0) = 1, u′(0) = 1
2 , and u′′(0) = − 1

4 .

The proof of Taylor’s theorem is a wonderful application of integration
by parts, discovered by Taylor. We start by noting that Taylor’s theorem
with n = 0 is just the Fundamental Theorem

u(x) = u(x̄) +
∫ x

x̄

u′(y) dy,
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Using that d
dy (y − x) = 1, we get integrating by parts

u(x) = u(x̄) +
∫ x

x̄

u′(y) dy

= u(x̄) +
∫ x

x̄

d

dy
(y − x)u′(y) dy

= u(x̄) + [(y − x)u′(y)]y=x
y=x̄ −

∫ x

x̄

(y − x)u′′(y) dy

= u(x̄) + (x− x̄)u′(x̄) +
∫ x

x̄

(x− y)u′′(y) dy,

which is Taylor’s theorem with n = 1. Continuing in this manner, integrat-
ing by parts, using the notation kn(y) = (y − x)n/n!, and noting that for
n ≥ 1

d

dy
kn(y) = kn−1(y),

we get

∫ x

x̄

(x− y)n−1

(n− 1)!
u(n)(y) dy = (−1)n−1

∫ x

x̄

kn−1(y)u(n)(y) dy

= (−1)n−1

∫ x

x̄

d

dy
kn(y)u(n)(y) dy

= [(−1)n−1kn(y)u(n)(y)]y=x
y=x̄ − (−1)n−1

∫ x

x̄

kn(y)u(n+1)(y) dy

=
u(n)(x̄)
n!

(x− x̄)n +
∫ x

x̄

(x− y)n

n!
u(n+1)(y) dy.

This proves Taylor’s theorem.

Example 28.10. We compute a fourth order polynomial approximation to
f(x) = 1

1−x near x = 0. We have

f(x) =
1

1 − x
=⇒ f(0) = 1,

f ′(x) =
1

(1 − x)2
=⇒ f ′(0) = 1,

f ′′(x) =
2

(1 − x)3
=⇒ f ′′(0) = 2,

f ′′′(x) =
6

(1 − x)4
=⇒ f ′′′(0) = 6,

f ′′′′(x) =
24

(1 − x)5
=⇒ f ′′′′(0) = 24,
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and therefore

P4(x) = 1 + 1(x− 0)1 +
2
2
(x− 0)2 +

6
6
(x− 0)3 +

24
24

(x− 0)4

= 1 + x+ x2 + x3 + x4.

We plot the function and the polynomial in Fig. 28.5. Characteristically,
the Taylor polynomial is a very accurate approximation near the x̄ but the
error becomes larger as x moves further away from x̄.

−0.5# −0.3# −0.1# 0.1# 0.3# 0.5#
0.5#

0.9#

1.3#

1.7#

2.1#

x

1
1−x

1 + x+ x2 + x3 + x4

Fig. 28.5. Plots of f(x) = 1/(1−x) and its Taylor polynomial 1+x+x2+x3+x4

28.16 October 29, 1675

OnOctober29,1675,Leibnizgotabright ideawhile sittingathisdesk inParis.
He wrote “Utile erit scribit

∫
pro omnia”, which translates to “It is useful to

write
∫

instead of omnia”. This is the moment when the modern notation
of calculus was created. Earlier than this date, Leibniz had been working
with a notation based on a, l and “omnia” which represented in modern
notation dx, dy and

∫
respectively. This notation resulted in formulas like

omn.l = y, omn.yl =
y2

2
, omn.xl = xomn.l − omn.omn.la,

where “omn.”, short for omnia, indicated a discrete sum and l and a de-
noted increments of finite size (often a = 1). In the new notation, these
formulas became

∫

dy = y,

∫

y dy =
y2

2
,

∫

xdy = xy −
∫

y dx. (28.21)

This opened up the possibility of dx and dy being arbitrarily small and the
sum being replaced by the “integral”.
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28.17 The Hodometer

The Romans constructed many roads to keep the Empire together and the
need of measuring distances between cities and traveled distance on the
road, became very evident. For this purpose the Hodometer was constructed
by Vitruvius, see Fig. 28.6. For each turn of the wagon wheel, the vertical
gear is shifted one step, and for each turn of the vertical gear the horizontal
gear is shifted one step. The horizontal gear has a set of holes with one stone
in each, and for each shift one stone drops down to a box under the wagon;
at the end of the day one computes the number of stones in the box, and the
device is so calibrated that this number is equal to the number of traveled
miles. Evidently, one may view the hodometer as a kind of simple analog
integrator.

Fig. 28.6. The principle of the Hodometer
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Chapter 28 Problems

28.1. Compute the following integrals: a)
∫ 1

0
(ax + bx2)dx, b)

∫ 1

−1
|x|dx,

c)
∫ 1

−1
|x− 1|dx, d)

∫ 1

−1
|x+ a|dx, e)

∫ 1

−1
(x− a)10dx.

28.2. Compute the following integrals by integration by parts. Verify that you get
the same result by directly finding the primitive function. a)

∫ 1

0
x2dx =

∫ 1

0
x ·xdx,

b)
∫ 1

0
x3dx =

∫ 1

0
x · x2dx, c)

∫ 1

0
x3dx =

∫ 1

0
x3/2 · x3/2dx, d)

∫ 1

0
(x2 − 1)dx =

∫ 1

0
(x+ 1) · (x− 1)dx.

28.3. For computing the integral
∫ 1

0
x(x− 1)1000dx, what would you rather do;

find the primitive function directly or integrate by parts?

28.4. Compute the following integrals: a)
∫ 2

−1
(2x − 1)7dx, b)

∫ 1

0
f ′(7x)dx,

c)
∫ −7

−10
f ′(17x+ 5)dx.

28.5. Compute the integral
∫ 1

0
x(x2 − 1)10dx in two ways, first by integration

by parts, then by a clever substitution using the chain rule.

28.6. Find Taylor polynomials at x of the following functions: a) f(x) = x,

x = 0, b) f(x) = x+ x2 + x3, x = 1, c) f(x) =
√√

x+ 1 + 1, x = 0.

28.7. Find a Taylor expansion of the function f(x) = xr − 1 around a suitable
choice of x, and use the result to compute the limit limx→1

xr−1
x−1

. Compare this to
using l’Hopital’s rule to compute the limit. Can you see the connection between
the two methods?

28.8. Motivate the basic properties of linearity and subinterval additivity of the
integral using the area interpretation of the integral.

28.9. Prove the basic properties of linearity and subinterval additivity of the
integral using that the integral is a limit of discrete sums together with basic
properties of discrete sums.

28.10. Make sense out of Leibniz formulas (28.21). Prove, as did Leibniz, the
second from a geometrical argument based on computing the area of a right-
angled triangle by summing thin slices of variable height y and thickness dy, and
the third from computing similarly the area of a rectangle as the sum of the two
parts below and above a curve joining two opposite corners of the rectangle.

28.11. Prove the following variant of Taylor’s theorem: If u(x) is n + 1 times
differentiable on the interval I , with u(n+1)(x) Lipschitz continuous, then for
x̄ ∈ I , we have

u(x) = u(x̄) + u′(x̄)(x− x̄) + · · · + u(n)(x̄)

n!
(x− x̄)n

+
u(n+1)(x̂)

(n+ 1)!
(x− x̄)n+1

where x̂ ∈ [x̄, x]. Hint: Use the Mean Value theorem for integrals.
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28.12. Prove that if x = f(y) with inverse function y = f−1(x), and f(0) = 0,
then ∫ ȳ

0

f(y) dy = ȳx̄−
∫ x̄

0

f−1(x) dx.

Compare with (28.21) Hint: use integration by parts.

28.13. Show that x → F (x) =
∫ x
0
f(x)dx is Lipschitz continuous on [0, a] with

Lipschitz constant LF if |f(x)| ≤ LF for x ∈ [0, a].

28.14. Why can we think of the primitive function as being “nicer” than the
function itself?

28.15. Under what conditions is the following generalized integration by parts
formula valid

∫

I

dnf

dxn
ϕdx = (−1)n

∫

I

f
dnϕ

dxn
dx, n = 0, 1, 2, . . .?

28.16. Show the following inequality:

|
∫

I

u(x)v(x) dx| ≤
√∫

I

u2(x) dx

√∫

I

v2(x) dx,

which is referred to as Cauchy’s inequality. Hint: Let u = u/
√∫

I
u2(x) dx,

v = v/
√∫

I
v2(x) dx, and show that |

∫
I
u(x)v(x) dx| ≤ 1 by considering the

expression
∫
I
(u(x) −

∫
I
u(y)v(y) dy v(x)) dx. Would it be helpful to use the

notation (u, v) =
∫
I
u(x)v(x) dx, and ‖u‖ =

√∫
I
u2(x) dx?

28.17. Show that if v is Lipschitz continuous on the bounded interval I and
v = 0 at one of the endpoints of the interval, then

‖v‖L2(I) ≤ CI‖v′‖L2(I),

for some constant CI , where the so-called L2(I) norm of a function v is defined

as ‖v‖L2(I) =
√∫

I
v2(x)dx. What is the value of the constant? Hint: Express v

in terms of v′ and use the result from the previous problem.

28.18. Check that the inequality from the previous problem holds for the
following functions on I = [0, 1]: a) v(x) = x(1 − x), b) v(x) = x2(1 − x),
c) v(x) = x(1 − x)2.

28.19. Prove quadratic convergence of Newton’s method (25.5) for computing
a root x̄ of the equation f(x) = 0 using Taylor’s theorem. Hint: Use the fact that

xi+1 − x̄ = xi − x̄+ f(xi)−f(x̄)
f ′(xi)

and Taylor’s theorem to see that f(xi) − f(x̄) =

f ′(xi)(xi − x̄) + 1
2
f ′′(x̃i)(xi − x̄)2 for some x̃i ≈ xi.

28.20. Prove (28.3) from (28.4).





29
The Logarithm log(x)

Nevertheless technicalities and detours should be avoided, and the
presentation of mathematics should be just as free from emphasis
on routine as from forbidding dogmatism, which refuses to disclose
motive or goal and which is an unfair obstacle to honest effort. (R.
Courant)

29.1 The Definition of log(x)

We return to the question of the existence of a primitive function of f(x) =
1/x for x > 0 posed above. Since the function f(x) = 1/x is Lipschitz
continuous on any given interval [a, b] with 0 < a < b, we know by the
Fundamental Theorem that there is a unique function u(x) which satisfies
u′(x) = 1/x for a ≤ x ≤ b and takes on a specific value at some point in
[a, b], for example u(1) = 0. Since a > 0 may be chosen as small as we
please and b as large as we please, we may consider the function u(x) to
be defined for x > 0. We now define the natural logarithm log(x) (or ln(x))
for x > 0 as the primitive function u(x) of 1/x vanishing for x = 1, i.e.,
log(x) satisfies

d

dx
(log(x)) =

1
x

for x > 0, log(1) = 0. (29.1)

Using the definition of the integral, we may express log(x) as an integral:

log(x) =
∫ x

1

1
y
dy for x > 0. (29.2)
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In the next chapter we shall use this formula to compute approximations of
log(x) for a given x > 0 by computing approximations of the corresponding
integral. We plot log(x) in Fig. 29.1.
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y = log(x)

x

y

Fig. 29.1. Plot of log(x)

29.2 The Importance of the Logarithm

The logarithm function log(x) is a basic function in science, simply because
it solves a basic differential equation, and thus occurs in many applications.
More concretely, the logarithm has some special properties that made pre-
vious generations of scientists and engineers use the logarithm intensely,
including memorizing long tables of its values. The reason is that one can
compute products of real numbers by adding logarithms of real numbers,
and thus the operation of multiplication can be replaced by the simpler
operation of addition. The slide rule is an analog computing device built
on this principle, that used to be sign of the engineer visible in the waist-
pocket, recall Fig. 1.5. Today the modern computer has replaced the slide
rule and does not use logarithms to multiply real numbers. However, the
first computer, the mechanical Difference Machine by Babbage from the
1830s, see Fig. 1.2, was used for computing accurate tables of values of the
logarithm. The logarithm was discovered by John Napier and presented in
Mirifici logarithmorum canonis descriptio in 1614. A illuminating citation
from the foreword is given in Fig. 29.2.



29.3 Important Properties of log(x) 473

Fig. 29.2. Napier, Inventor of the Logarithm: “Seeing there is nothing (right
well-beloved Students of the Mathematics) that is so troublesome to mathemati-
cal practice, nor that doth more molest and hinder calculators, than the multipli-
cations, divisions, square and cubical extractions of great numbers, which besides
the tedious expense of time are for the most part subject to many slippery errors,
I began therefore to consider in my mind by what certain and ready art I might
remove those hindrances. And having thought upon many things to this purpose,
I found at length some excellent brief rules to be treated of (perhaps) hereafter.
But amongst all, none more profitable than this which together with the hard and
tedious multiplications, divisions, and extractions of roots, doth also cast away
from the work itself even the very numbers themselves that are to be multiplied,
divided and resolved into roots, and putteth other numbers in their place which
perform as much as they can do, only by addition and subtraction, division by
two or division by three”

29.3 Important Properties of log(x)

We now derive the basic properties of the logarithm function log(x) using
(29.1) or (29.2). We first note that u(x) = log(x) is strictly increasing for
x > 0, because u′(x) = 1/x is positive for x > 0. This can be seen in
Fig. 29.1. Recalling (29.1), we conclude that for a, b > 0,

∫ b

a

dy

y
= log(b) − log(a).

Next we note that the Chain rule implies that for any constant a > 0

d

dx
(log(ax) − log(x)) =

1
ax

· a− 1
x

= 0,

and consequently log(ax) − log(x) is constant for x > 0. Since log(1) = 0,
we see by setting x = 1 that the constant value is equal to log(a), and so

log(ax) − log(x) = log(a) for x > 0.
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Choosing x = b > 0, we thus obtain the following fundamental relation
satisfied by the logarithm log(x):

log(ab) = log(a) + log(b) for a, b > 0 (29.3)

We can thus compute the logarithm of the product of two numbers by
adding the logarithms of the two numbers. We already indicated that this
is the principle of the slide rule or using a table of logarithms for multiplying
two numbers. More precisely (as first proposed by Napier), to multiply two
numbers a and b we first find their logarithms log(a) and log(b) from the
table, then add them to get log(ab) using the formula (29.3), and finally we
find from the table which real number has the logarithm equal to log(ab),
which is equal to the desired product ab. Clever, right?

The formula (29.3) implies many things. For example, choosing b = 1/a,
we get

log(a−1) = − log(a) for a > 0. (29.4)

Choosing b = an−1 with n = 1, 2, 3, . . . , we get

log(an) = log(a) + log(an−1),

so that by repeating this argument

log(an) = n log(a) for n = 1, 2, 3, . . . (29.5)

By (29.4) the last equality holds also for n = −1,−2, . . .
More generally, we have for any r ∈ R and a > 0,

log(ar) = r log(a). (29.6)

We prove this using the change of variables x = yr with dx = ryr−1dy:

log(ar) =
∫ ar

1

1
x
dx =

∫ a

1

ryr−1

yr
dy = r

∫ a

1

1
y
dy = r log(a).

Finally, we note that 1/x also has a primitive function for x < 0 and for
a, b > 0, setting y = −x,

∫ −b

−a

dy

y
=
∫ b

a

−dx
−x =

∫ b

a

dx

x
= log(b) − log(a)

= log(−(−b)) − log(−(−a)).

Accordingly, we may write for any a �= 0 and b �= 0 that have the same
sign,

∫ b

a

dx

x
= log(|b|) − log(|a|). (29.7)

It is important to understand that (29.7) does not hold if a and b have
opposite signs.
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Chapter 29 Problems

29.1. Prove that log(4) > 1 and log(2) ≥ 1/2.

29.2. Prove that

log(x) → ∞ as x→ ∞,

log(x) → −∞ as x→ 0+.

Hint: Using that log(2) ≥ 1/2 it follows from (29.5) that log(2n) tends to infinity
as n tends to infinity.

29.3. Give an alternative proof of (29.3) using that

log(ab) =

∫ ab

1

1

y
dy =

∫ a

1

1

y
dy +

∫ ab

a

1

y
dy = log(a) +

∫ ab

a

1

y
dy,

and changing the variable y in the last integral to z = ay.

29.4. Prove that log(1 + x) ≤ x for x > 0, and that log(1 + x) < x for x �= 0 and
x > −1. Hint: Differentiate.

29.5. Show using the Mean Value theorem, that log(1 + x) ≤ x for x > −1.
Can prove this directly from the definition of the logarithm by sketching the area
under the graph?

29.6. Prove that log(a) − log(b) = log
(a

b

)
for a, b > 0.

29.7. Write down the Taylor polynomial of order n for log(x) at x = 1.

29.8. Find a primitive function of
1

x2 − 1
. Hint: use that

1

x2 − 1
=

1

(x− 1)(x+ 1)
=

1

2

(
1

x− 1
− 1

x+ 1

)

.

29.9. Prove that log(xr) = r log(x) for r =
p

q
rational by using (29.5) cleverly.

29.10. Solve the initial value problem u′(x) = 1/xa for x > 0, u(1) = 0, for
values of the exponent a close to 1. Plot the solutions. Study for which values
of a the solution u(x) tends to infinity when x tends to infinity.

29.11. Solve the following equations: (a) log(x2) + log(3) = log(
√
x) + log(5),

(b) log(7x) − 2 log(x) = log(3), (c) log(x3) − log(x) = log(7) − log(x2).

29.12. Compute the derivatives of the following functions: a) f(x) = log(x3+6x),
b) f(x) = log(log(x)), c) f(x) = log(x + x2), d) f(x) = log(1/x), e) f(x) =
x log(x) − x.





30
Numerical Quadrature

“And I know it seems easy”, said Piglet to himself, “but it isn’t
everyone who could do it”. (House at the Pooh Corner, Milne)

Errare humanum est.

30.1 Computing Integrals

In some cases, we can compute a primitive function (or antiderivative or
integral) of a given function analytically, that is we can give give a formula
for the primitive function in terms of known functions. For example we can
give a formula for a primitive function of a polynomial as another polyno-
mial. We will return in Chapter Techniques of integration to the question
of finding analytical formulas for primitive functions of certain classes of
functions. The Fundamental Theorem states that any given Lipschitz con-
tinuous function has a primitive function, but does not give any analytical
formula for the primitive function. The logarithm,

log(x) =
∫ x

1

dy

y
, where x > 0,

is the first example of this case we have encountered. We know that the
logarithm function log(x) exists for x > 0, and we have derived some of
its properties indirectly through its defining differential equation, but the
question remains how to determine the value of log(x) for a given x > 0.
Once we have solved this problem, we may add log(x) to a list of “elemen-
tary” functions that we can play with. Below we will add to this list the
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exponential function, the trigonometric functions, and other more exotic
functions.

This situation is completely analogous to solving algebraic equations for
numbers. Some equations have rational roots and in that case, we feel that
we can solve the equation “exactly” by analytic (symbolic) computation.
We have a good understanding of rational numbers, even when they have in-
finite decimal expansions, and we can determine their values, or the pattern
in the decimal expansion, with a finite number of arithmetic operations.
But most equations have irrational roots with infinite, non-repeating deci-
mal expansions that we can only approximate to a desired level of accuracy
in practice. Likewise in a situation in which a function is known only as
a primitive function of a given function, the best we can do is to seek to
compute its values approximately to a desired level of accuracy. One way to
compute values of such a function is through the definition of the integral
as a Riemann sum. This is known as numerical quadrature or numerical
integration, and we now explore this possibility.

Suppose thus that we want to compute the integral
∫ b

a

f(x) dx, (30.1)

where f : [a, b] → R is Lipschitz continuous with Lipschitz constant Lf .
If we can give a formula for the primitive function F (x) of f(x), then the
integral is simply F (b) − F (a). If we cannot give a formula for F (x), then
we turn to the Fundamental Theorem and compute an approximate the
value of the integral using a Riemann sum approximation

∫ b

a

f(x) dx ≈
N∑

i=1

f(xn
i−1)hn, (30.2)

where xn
i = a + ihn, hn = 2−n(b − a), and N = 2n describes a uniform

partition of [a, b], with the quadrature error

Qn =
∣
∣
∣

∫ b

a

f(x) dx−
N∑

i=1

f(xn
i−1)hn

∣
∣
∣ ≤

b − a

2
Lfhn, (30.3)

which tends to zero as we increase the number of steps and hn → 0. Put
another way, if we desire the value of the integral to within a tolerance
TOL > 0 and we know the Lipschitz constant Lf , then we will have Qn ≤
TOL if the mesh size hn satisfies the stopping criterion

hn ≤ 2TOL
(b − a)Lf

. (30.4)

We refer to the Riemann sum approximation (30.2), compare also with
Fig. 30.1, as the rectangle rule, which is the simplest method for approx-
imating an integral among many possible methods. The search for more
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sophisticated methods for approximating an integral is driven by consider-
ation of the computational cost associated to computing the approximation.
The cost is typically measured in terms of time because there is a limit on
the time we are willing to wait for a solution. In the rectangle rule, the
computer spends most of the time evaluating the function f and since each
step requires one evaluation of f , the cost is determined ultimately by the
number of steps. Considering the cost leads to the optimization problem
of trying to compute an approximation of a given accuracy at a relatively
low cost.

To reduce the cost, we may construct more sophisticated methods for
approximating integrals. But even if we restrict ourselves to the rectangle
rule, we can introduce variations that can lower the computational cost of
computing an approximation. There are two quantities that we can vary:
the point at which we evaluate the function on each interval and the size of
the intervals. To understand how these changes could help, consider the il-
lustration of the rectangle rule in Fig. 30.1. Here f varies quite a bit on part
of [a, b] and is fairly constant on another part. Consider the approximation
to the area under f on the first subinterval on the left. By evaluating f at
the left-hand point on the subinterval, we clearly overestimate the area to
the maximum degree possible. Choosing to evaluate f at some point inside
the subinterval would likely give a better approximation. The same is true
of the second subinterval, where choosing the left-hand point clearly leads
to an underestimate of the area. On the other hand, consider the approx-
imations to the area in the last four subintervals on the right. Here f is
nearly constant and the approximation is very accurate. In fact, we could
approximate the area underneath f on this part of [a, b] using one rect-
angle rather than four. In other words, we would get just as accurate an
approximation by using one large subinterval instead of four subintervals.
This would cost four times less.

a b

f(x)

large error small error

Fig. 30.1. An illustration of the rectangle rule
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So we generalize the rectangle rule to allow non-uniform partitions and
different points at which to evaluate f . We choose a partition a = x0 <
x1 < x2 · · · < xN = b of [a, b] into N subintervals Ij = [xj−1, xj ] of lengths
hj = xj − xj−1 for j = 1, . . . , N . Note that N can be any integer and the
subintervals may vary in size. By the Mean Value theorem for integrals
there is x̄j ∈ Ij such that

∫ xj

xj−1

f(x) dx = f(x̄j)hj , (30.5)

and thus we have

∫ b

a

f(x) dx =
N∑

i=1

∫ xj

xj−1

f(x) dx =
N∑

j=1

f(x̄j)hj .

Since the x̄j are not known in general, we replace x̄j by a given point
x̂j ∈ Ij . For example, in the original method we use the left end-point
x̂j = xj−1, but we could choose the right end-point x̂j = xj or the mid-
point x̂j = 1

2 (xj−1 + xj). We then get the approximation

∫ b

a

f(x) dx ≈
N∑

j=1

f(x̂j)hj . (30.6)

We call
N∑

j=1

f(x̂j)hj (30.7)

a quadrature formula for computing the integral
∫ b

a f(x) dx. We recall that
we refer to (30.7) as a Riemann sum. The quadrature formula is char-
acterized by the quadrature points x̂j and the weights hj . Note that if
f(x) = 1 for all x then the quadrature formula is exact and we conclude
that

∑N
j=1 hj = b− a.

We now estimate the quadrature error

Qh =
∣
∣
∣

∫ b

a

f(x) dx −
N∑

j=1

f(x̂j)hj

∣
∣
∣,

where the subscript h refers to the sequence of step sizes hj. Recalling
(30.5), we can do this by estimating the error over each subinterval and
then summing. We have

∣
∣
∣

∫ xj

xj−1

f(x) dx− f(x̂j)hj

∣
∣
∣ = |f(x̄j)hj − f(x̂j)hj | = hj |f(x̄j) − f(x̂j)|.
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We assume that f ′(x) is Lipschitz continuous on [a, b]. The Mean Value
theorem implies that for x ∈ [xj−1, xj ],

f(x) = f(x̂j) + f ′(y)(x− x̂j),

for some y ∈ [xj−1, xj ]. Integrating over [xj−1, xj ] we obtain

∣
∣
∣

∫ xj

xj−1

f(x) dx− f(x̂j)hj

∣
∣
∣ ≤ max

y∈Ij

|f ′(y)|
∫ xj

xj−1

|x− x̂j | dx.

To simplify the sum on the right, we use the fact that
∫ xj

xj−1

|x− x̂j | dx

is maximized if x̂j is the left (or right) endpoint, in which case
∫ xj

xj−1

(x− xj−1) dx =
1
2
h2

j .

We find that
∣
∣
∣

∫ xj

xj−1

f(x) dx − f(x̂j)hj

∣
∣
∣ ≤

1
2

max
y∈Ij

|f ′(y)|h2
j .

Summing, we conclude

Qh =
∣
∣
∣

∫ b

a

f(x) dx −
N∑

j=1

f(x̂j)hj

∣
∣
∣ ≤

1
2

N∑

j=1

(

max
y∈Ij

|f ′(y)|hj

)

hj . (30.8)

This generalizes the estimate of the Fundamental Theorem to non-uniform
partitions. We can see that (30.8) implies that Qh tends to zero as the
maximal step size tends to zero by estimating further:

Qh ≤ 1
2

max
[a,b]

|f ′|
N∑

j=1

hj max
1≤j≤N

hj =
1
2
(b− a)max

[a,b]
|f ′| max

1≤j≤N
hj . (30.9)

So Qh tends to zero at the same rate that max hj tends to zero.

30.2 The Integral as a Limit of Riemann Sums

We now return to the (subtle) question posed at the end of the Chapter The
Integral: Will all limits of Riemann sum approximations (as the maximal
subinterval tends to zero) of a certain integral be the same? We recall that
we defined the integral using a particular uniform partition and we now
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ask if any limit of non-uniform partitions will be the same. The affirmative
answer follows from the last statement of the previous section: The quadra-
ture error Qh tends to zero as maxhj tends to zero, under the assumption
that max[a,b] |f ′| is finite, that is |f ′(x)| is bounded on [a, b]. This proves the
uniqueness of limits of Riemann sum approximations of a certain integral
as the maximal subinterval tends to zero, under the assumption that the
derivative of the integrand is bounded. This assumption can naturally be
relaxed to assuming that the integrand is Lipschitz continuous. We sum
up:

Theorem 30.1 The limit (as the maximal subinterval tends to zero) of
Riemann sum approximations of an integral of a Lipschitz continuous func-
tion, is unique.

30.3 The Midpoint Rule

We now analyze the quadrature formula in which the quadrature point
is chosen to be the midpoint of each subinterval, x̂j = 1

2 (xj−1 + xj). It
turns out that this choice gives a formula that is more accurate than any
other rectangle rule on a given mesh provided f has a Lipschitz continuous
second derivative. Taylor’s theorem implies that for x ∈ [xj−1, xj ],

f(x) = f(x̂j) + f ′(x̂j)(x− x̂j) +
1
2
f ′′(y)(x− x̂j)2,

for some y ∈ [xj−1, xj ] if we assume that f ′′ is Lipschitz continuous. We
argue as above by integrating over [xj−1, xj ]. Now however we use the fact
that ∫ xj

xj−1

(x− x̂j) dx =
∫ xj

xj−1

(x− (xj + xj−1)/2) dx = 0

which holds only when x̂j is the midpoint of [xj−1, xj ]. This gives
∣
∣
∣

∫ xj

xj−1

f(x) dx− f(x̂j)hj

∣
∣
∣ ≤

1
2

max
y∈Ij

|f ′′(y)|
∫ xj

xj−1

(x− x̂j)2 dx

≤ 1
24

max
y∈Ij

|f ′′(y)|h3
j .

Now summing the errors on each subinterval, we obtain the following
estimate on the total error

Qh ≤ 1
24

N∑

j=1

(

max
y∈Ij

|f ′′(y)|h2
j

)

hj . (30.10)

To understand the claim that this formula is more accurate than any other
rectangle rule, we estimate further

Qh ≤ 1
24

(b − a)max
[a,b]

|f ′′| maxh2
j
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which says that the error decreases as maxhj decreases like maxh2
j . Com-

pare this to the general result (30.9), which says that the error decreases
like maxhj for general rectangle rules. If we halve the step size maxhj

then in a general rectangle rule the error decreases by a factor of two but
in the midpoint rule the error decreases by a factor of four. We say that
the midpoint rule converges at a quadratic rate while the general rectangle
rule converges at a linear rate.

We illustrate the accuracy of these methods and the error bounds by
approximating

log(4) =
∫ 4

1

dx

x
≈

N∑

j=1

hj

x̂j

both with the original rectangle rule with x̂j equal to the left-hand end-
point xj−1 of each subinterval and the midpoint rule. In both cases, we use
a constant stepsize hi = (4−1)/N for i = 1, 2, · · · , N . It is straightforward
to evaluate (30.8) and (30.10) because |f ′(x)| = 1/x2 and |f ′′(x)| = 2/x3

are both decreasing functions. We show the results for four different values
of N .

Rectangle rule Midpoint rule
N
25
50
100
200

True error Error bound
.046 .049
.023 .023
.011 .011
.0056 .0057

True error Error bound
.00056 .00056
.00014 .00014
.000035 .000035
.0000088 .0000088

These results show that the error bounds (30.8) and (30.10) can give quite
accurate estimates of the true error. Also note that the midpoint rule is
much more accurate than the general rectangle rule on a given mesh and
moreover the error in the midpoint rule goes to zero quadratically with the
error decreasing by a factor of 4 each time the number of steps is doubled.

30.4 Adaptive Quadrature

In this section, we consider the optimization problem of trying to compute
an approximation of an integral to within a given accuracy at a relatively
low cost. To simplify the discussion, we use the original rectangle rule
with x̂j equal to the left-hand endpoint xj−1 of each subinterval to com-
pute the approximation. The optimization problem becomes to compute
an approximation with error smaller than a given tolerance TOL using the
least number of steps. Since we do not know the error of the approximation,
we use the quadrature estimate (30.8) to estimate the error. The optimiza-
tion problem is therefore to find a partition {xj}N

j=0 using the smallest
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number of points N that satisfies the stopping criterion

N∑

j=1

(

max
y∈Ij

|f ′(y)|hj

)

hj ≤ TOL. (30.11)

This equation suggests that we should adjust or adapt the stepsizes hj

depending on the size of maxIj |f ′|. If maxIj |f ′| is large, then hj should
be small, and vice versa. Trying to find such an optimized partition is
referred to as adaptive quadrature, because we seek a partition suitably
adapted to the nature of the integrand f(x).

There are several possible strategies for finding such a partition and we
consider two here.

In the first strategy, or adaptive algorithm, we estimate the sum in
(30.11) as follows

N∑

j=1

(

max
Ij

|f ′|hj

)

hj ≤ (b− a) max
1≤j≤N

(

max
Ij

|f ′|hj

)

,

where we use the fact that
∑N

j=1 hj = b − a. It follows that (30.11) is
satisfied if the steps are chosen by

hj =
TOL

(b − a) max
Ij

|f ′| for j = 1, . . . , N. (30.12)

In general, this corresponds to a nonlinear equation for hj since maxIj |f ′|
depends on hj .

We apply this adaptive algorithm to the computation of log(b) and obtain
the following results

TOL b Steps Approximate Area Error
.05 4.077 24 1.36 .046
.005 3.98 226 1.376 .0049
.0005 3.998 2251 1.38528 .0005
.00005 3.9998 22501 1.3861928 .00005

The reason b varies slightly in these results is due to the strategy we use
to implement (30.12). Namely, we specify the tolerance and then search for
the value of N that gives the closest b to 4.

We plot the sequence of mesh sizes for TOL = .01 in Fig. 30.2, where
the adaptivity is plainly visible. In contrast, if we compute with a uniform
mesh, we find using (30.11) that we need N = 9/TOL points to guarantee
an accuracy of TOL. For example, this means using 900 points to guarantee
an accuracy of .01, which is significantly more than needed for the adapted
mesh.
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The second adaptive algorithm is based on an equidistribution of error
in which the steps hj are chosen so that the contribution to the error
from each sub-interval is roughly equal. Intuitively, this should lead to the
least number of intervals since the largest error reduction is gained if we
subdivide the interval with largest contribution to the error. In this case,
we estimate the sum on the left-hand side of (30.11) by

N∑

j=1

(

max
Ij

|f ′|hj

)

hj ≤ N max
1≤j≤N

(

max
Ij

|f ′|h2
j

)

and determine the steps hj by

h2
j =

TOL
N max

Ij

|f ′| for j = 1, . . . , N. (30.13)

As above, we have to solve a nonlinear equation for hj , now with the addi-
tional complication of the explicit presence of the total number of steps N .

We implement (30.13) to compute of log(b) with b ≈ 4 and obtain the
following results:

TOL b Steps Appr. Area Error
.05 4.061 21 1.36 .046
.005 4.0063 194 1.383 .005
.0005 3.9997 1923 1.3857 .0005
.00005 4.00007 19220 1.38626 .00005

We plot the sequence of step sizes for TOL = .01 in (30.2). We see that at
every tolerance level, the second adaptive strategy (30.13) gives the same
accuracy at xN ≈ 4 as (30.12) while using fewer steps. It thus seems that
the second algorithm is more efficient.

We compare the efficiency of the two adaptive algorithms by estimating
the number of steps N required to compute log(x) to a given tolerance
TOL in each case. We begin by noting that the equality

N =
h1

h1
+
h2

h2
+ · · · + hN

hN
,

implies that, assuming xN > 1,

N =
∫ xN

1

dy

h(y)
,

where h(y) is the piecewise constant mesh function with the value h(s) = hj

for xj−1 < s ≤ xj . In the case of the second algorithm, we substitute the
value of h given by (30.13) into the integral to get, recalling that f(y) = 1/y
so that f ′(y) = −1/y2,

N ≈
√
N√

TOL

∫ xN

1

dy

y
,
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Fig. 30.2. On the left, we plot the step sizes generated by two adaptive algorithms
for the integration of log(4) using TOL = .01. On the right, we plot the errors of
the same computations versus x

or

N ≈ 1
TOL

(log(xN ))2 . (30.14)

Making a similar analysis of the first adaptive algorithm, we get

N ≈ xN−1

TOL

(

1 − 1
xN

)

. (30.15)

We see that in both cases, N is inversely proportional to TOL. However,
the number of steps needed to reach the desired accuracy using the first
adaptive algorithm increases much more quickly as xN increases than the
number needed by the second algorithm, i.e. at a linear rate as opposed to
a logarithmic rate. Note that the case 0 < xN < 1 may be reduced to the
case xN > 1 by replacing xN by 1/xN since log(x) = − log(1/x).

If we use (30.12) or (30.13) to choose the steps hj over the interval [a, xN ],
then of course the quadrature error over any smaller interval [a, xi] with
i ≤ N , is also smaller than TOL. For the first algorithm (30.12), we can
actually show the stronger estimate

∣
∣
∣
∣
∣
∣

∫ xi

a

f(y) dy −
i∑

j=1

f(xj)hj

∣
∣
∣
∣
∣
∣
≤ xi − a

xN − a
TOL, 1 ≤ i ≤ N, (30.16)

i.e., the error grows at most linearly with xi as i increases. However, this
does not hold in general for the second adaptive algorithm. In Fig. 30.2,
we plot the errors versus xi for xi ≤ xN resulting from the two adaptive
algorithms with TOL = .01. We see the linear growth predicted for the
first algorithm (30.12) while the error from the second algorithm (30.13) is
larger for 1 < xi < xN .
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Chapter 30 Problems

30.1. Estimate the error using endpoint and midpoint quadrature for the fol-
lowing integrals: (a)

∫ 2

0
2s ds, (b)

∫ 2

0
s3 ds, and (c)

∫ 2

0
exp(−s) ds using h = .1,

.01, .001 and .0001. Discuss the results.

30.2. Compute approximations of the following integrals using adaptive quadra-
ture (a)

∫ 2

0
2s ds, (b)

∫ 2

0
s3 ds, and (c)

∫ 2

0
exp(−s) ds. Discuss the results.

30.3. Compare theoretically and experimentally the number of steps of (30.12)
and (30.13) for the computation of integrals of the form

∫ 1

x
f(y) dy for x > 0,

where f(y) ∼ y−α with α > 1.

30.4. The trapezoidal rule takes the form

∫ xj

xj−1

f(x)dx ≈ (xj − xj−1)(f(xj−1) + f(xj))/2. (30.17)

Show that the quadrature is exact if f(x) is a first order polynomial, and give an
estimate of the quadrature error analogous to that of the midpoint rule. Compare
the the midpoint and the trapezoidal method.

30.5. Design different adaptive quadrature algorithms based on the midpoint
rule and make comparisons.

30.6. Consider a quadrature formula of the form

∫ b

a

f(x)dx ≈ (b− a)(f(x̂1) + f(x̂2))/2. (30.18)

Determine the quadrature points x̂1 and x̂2, so that the quadrature formula is
exact for f(x) a second order polynomial. This quadrature rule is called the two-
point Gauss rule. Check for which order of polynomials the resulting quadrature
formula is exact.

30.7. Compute the value of

∫ 1

0

1

1 + x2
dx by quadrature. Multiply the result

by 4. Do you recognize this number?





31
The Exponential Function exp(x) = ex

The need for mathematical skills is greater than ever, but it is widely
recognized that, as a consequence of computer developments, there
is a need for a shift in emphasis in the teaching of mathematics
to students studying engineering. This shift is away from the simple
mastery of solution techniques and towards development of a greater
understanding of mathematical ideas and processes together with ef-
ficiency in applying this understanding to the formulation and anal-
ysis of physical phenomena and engineering systems. (Glyn James,
in Preface to Modern Engineering Mathematics, 1992)

Because of the limitations of human imagination, one ought to say:
everything is possible - and a bit more. (Horace Engdahl)

31.1 Introduction

In this chapter we return to study of the exponential function exp(x), which
we have met above in Chapter A very short course in Calculus and Chapter
Galileo, Newton, Hooke, Malthus and Fourier, and which is one of the basic
functions of Calculus, see Fig. 31.1. We have said that exp(x) for x > 0
is the solution to the following initial value problem: Find a function u(x)
such that

u′(x) = u(x) for x > 0,
u(0) = 1. (31.1)

Evidently, the equation u′(x) = u(x) states that the rate of growth u′(x) is
equal to the quantity u(x) itself, that is, the exponential function exp(x)=ex
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is characterized by the property that its derivative is equal to itself:
D exp(x) = exp(x). What a wonderful almost divine property! We also
denote the exponential function by ex, that is, ex = exp(x) and Dex = ex.

In this chapter, we give a constructive proof of the existence of a unique
solution to the initial value problem (31.1), that is, we prove the existence
of the exponential function exp(x) = ex for x > 0. Note that above, we
just claimed the existence of solutions. As always, a constructive proof also
shows how we may compute exp(x) for different values of x.

Below we extend exp(x) to x < 0 by setting exp(x) = (exp(−x))−1 for
x < 0, and show that exp(−x) solves the initial value problem u′(x) =
−u(x) for x > 0, u(0) = 1. We plot the functions exp(x) and exp(−x) for
x ≥ 0 in Fig. 31.1. We notice that exp(x) is increasing and exp(−x) is de-
creasing with increasing x, and that exp(x) is positive for all x. Combining
exp(x) and exp(−x) for x ≥ 0 defines exp(x) for −∞ < x < ∞. Below we
show that D exp(x) = exp(x) for −∞ < x <∞.
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Fig. 31.1. The exponential functions exp(x) and exp(−x) for x ≥ 0

The problem (31.1) is a special case of the Malthus population model
(26.17), which also models a large variety of phenomena in e.g. physics and
economy: {

u′(x) = λu(x) for x > 0,
u(0) = u0.

(31.2)

where λ is a constant and u0 is a given initial value. The solution of this
problem can be expressed in terms of the exponential function as

u(x) = exp(λx)u0 for x ≥ 0. (31.3)

This follows directly from the fact that by the Chain rule, D exp(λx) =
exp(λx)λ, where we used that D exp(x) = exp(x). Assuming u0 > 0 so
that u(x) > 0, evidently the sign of λ determines if u decreases (λ < 0)
or increases (λ > 0). In Fig. 31.1, we plotted the solutions of (31.2) with
λ=±1 and u0 = 1.
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Before going into the construction of the exponential function exp(x),
we recall two of the key applications of (31.2): population dynamics and
banking. Here x represents time and we change notation, replacing x by t.

Example 31.1. We consider a population with constant birth and death
rates β and δ, which are the numbers of births and deaths per individual
creature per unit time. With u(t) denoting the population at time t, there
will be during the time interval from t to t+∆t with ∆t a small increment,
approximately βu(t)∆t births and δu(t)∆t deaths. Hence the change in
population over the time interval is approximately

u(t+ ∆t) − u(t) ≈ βu(t)∆t− δu(t)∆t

and therefore
u(t+ ∆t) − u(t)

∆t
≈ (β − δ)u(t),

where the approximation improves as we decrease ∆t. Taking the limit as
∆t → 0, assuming u(t) is a differentiable function, we obtain the model
u′(t) = (β− δ)u(t). Assuming the initial population at t = 0 is equal to u0,
leads to the model (31.2) with λ = β − δ, with solution u(x) = exp(λx)u0.

Example 31.2. An investment u in a saving account earning 5% interest
compounded continuously and beginning with $2000 at time t = 0, satisfies

{
u′ = 1.05u, t > 0,
u(0) = 2000,

and thus u(t) = exp(1.05t)2000 for t ≥ 0.

31.2 Construction of the Exponential exp(x) for
x ≥ 0

In the proof of the Fundamental Theorem, we constructed the solution u(x)
of the initial value problem

{
u′(x) = f(u(x), x) for 0 < x ≤ 1,
u(0) = u0,

(31.4)

in the case that f(u(x), x) = f(x) depends only on x and not on u(x).
We constructed the solution u(x) as the limit of a sequence of functions
{Un(x)}∞n=1, where Un(x) is a piecewise linear function defined at a set of
nodes xn

i = ihn, i = 0, 1, 2, . . . , N = 2n, hn = 2−n, by the relations

Un(xn
i ) = Un(xn

i−1) + hnf(xn
i−1) for i = 1, 2, . . . , N, Un(0) = u0.

(31.5)
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We shall now apply the same technique to construct the solution of (31.1),
which has the form (31.4) with f(u(x), x) = u(x) and u0 = 1. We carry
out the proof in a form which generalizes in a straight-forward way to any
system of equations of the form (31.4), which really includes a very wide
range of problems. We hope this will motivate the reader to carefully follow
every step of the proof, to get properly prepared for the highlight Chapter
The general initial value problem.

We construct the solution u(x) of (31.1) for x ∈ [0, 1] as the limit of
a sequence of piecewise linear functions {Un(x)}∞n=1 defined at the nodes
by the formula

Un(xn
i ) = Un(xn

i−1) + hnU
n(xn

i−1) for i = 1, 2, . . . , N, (31.6)

with Un(0) = 1, which is an analog of (31.5) obtained by replacing f(xn
i−1)

by Un(xn
i−1) corresponding to replacing f(x) by f(x, u(x)) = u(x). Using

the formula we can compute the values Un(xn
i ) one after the other for

i = 1, 2, 3, . . ., starting from the initial value Un(0) = 1, that is marching
forward in time with x representing time.

We can write (31.6) in the form

Un(xn
i ) = (1 + hn)Un(xn

i−1) for i = 1, 2, . . . , N, (31.7)

and conclude since Un(xn
i ) = (1 + hn)Un(xn

i−1) = (1 + hn)2Un(xn
i−2) =

(1 + hn)3Un(xn
i−3) and so on, that the nodal values of Un(x) are given by

the formula

Un(xn
i ) = (1 + hn)i, for i = 0, 1, 2, . . . , N, (31.8)

where we also used that Un(0) = 1. We illustrate in Fig. 31.2. We may
view Un(xn

i ) as the capital obtained at time xn
i = ihn starting with a unit

capital at time zero, if the interest rate at each capitalization is equal to
hn.

x
0 1

xn0 xn1 xn2 xni−1 xni xnN

Un(x)

Un(xni ) = (1 + hn)
i

Fig. 31.2. The piecewise linear approximate solution Un(x) = (1 + hn)i
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To analyze the convergence of Un(x) as n → ∞, we first prove a bound
on the nodal values Un(xn

i ), by taking the logarithm of (31.8) and using
the inequality log(1 + x) ≤ x for x > 0 from Problem 29.4, to obtain

log(Un(xn
i ) = i log(1 + hn) ≤ ihn = xn

i ≤ 1 for i = 1, 2, . . . , N.

It follows that

Un(xn
i ) = (1 + hn)i ≤ 4 for i = 1, 2, . . . , N, (31.9)

since log(4) > 1 according to Problem 29.1, and log(x) is increasing. Since
Un(x) is linear between the nodes, and obviously Un(x) ≥ 1, we find that
1 ≤ Un(x) ≤ 4 for all x ∈ [0, 1].

We now show that {Un(x)}∞n=1 is a Cauchy sequence for each fixed x∈
[0, 1]. To see this, we first estimate |Un(x) − Un+1(x)| at the node points
x = xn

i = ihn = 2ihn+1 = xn+1
2i for i = 0, 1, . . . , N , see Fig. 31.3. Notice

that hn+1 = hn/2 so that two steps with mesh size hn+1 corresponds to
one step with mesh size hn. We start by subtracting

Un+1(xn+1
2i ) = (1 + hn+1)Un+1(xn+1

2i−1) = (1 + hn+1)2Un+1(xn+1
2i−2),

from (31.6), using that xn
i = xn+1

2i , and setting en
i = Un(xn

i ) − Un+1(xn
i ),

to get
en

i = (1 + hn)Un(xn
i−1) − (1 + hn+1)2Un+1(xn

i−1),

which we may rewrite using that (1 + hn+1)2 = 1 + 2hn+1 + h2
n+1 and

2hn+1 = hn, as

en
i = (1 + hn)en

i−1 − h2
n+1U

n+1(xn
i−1).

It follows using the bound 1 ≤ Un+1(x) ≤ 4 for x ∈ [0, 1], that

|en
i | ≤ (1 + hn)|en

i−1| + 4h2
n+1.

x
xni−2 xni−1 xni

xn+1
2i−4 xn+1

2i−3 xn+1
2i−2 xn+1

2i−1 xn+1
2i

Un(x)

Un+1(x)
eni

Fig. 31.3. Un(x) and Un+1(x)
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Inserting the corresponding estimate for en
i−1, we get

|en
i | ≤(1 + hn)

(
(1 + hn)|en

i−2| + 4h2
n+1

)
+ 4h2

n+1

=(1 + hn)2|en
i−2| + 4h2

n+1

(
1 + (1 + hn)

)
.

Continuing this way and using that en
0 = 0, we obtain for i = 1, . . . , N ,

|en
i | ≤ 4h2

n+1

i−1∑

k=0

(1 + hn)k = h2
n

i−1∑

k=0

(1 + hn)k.

Using now the fact that
i−1∑

k=0

zk =
zi − 1
z − 1

(31.10)

with z = 1 + hn, we thus obtain for i = 1, . . . , N ,

|en
i | ≤ h2

n

(1 + hn)i − 1
hn

= hn((1 + hn)i − 1) ≤ 3hn,

where we again used that (1 + hn)i = Un(xn
i ) ≤ 4. We have thus proved

that for x̄ = xn
j , j = 1, . . . , N ,

|Un(x̄) − Un+1(x̄)| = |en
j | ≤ 3hn,

which is analogous to the central estimate (27.24) in the proof of the Fun-
damental Theorem.

Iterating this estimate over n as in the proof of (27.25), we get for m > n,

|Un(x̄) − Um(x̄)| ≤ 6hn, (31.11)

which shows that {Un(x̄)}∞n=1 is a Cauchy sequence and thus converges
to a real number u(x̄), which we choose to denote by exp(x̄) = ex̄. As
in the proof of the Fundamental Theorem we can extend to a function
u(x) = exp(x) = ex defined for x ∈ [0, 1]. Letting m tend to infinity in
(31.11), we see that

|Un(x) − exp(x)| ≤ 6hn for x ∈ [0, 1]. (31.12)

By the construction, we have if x̄ = jhn so that hn = x̄
j , noting that

j → ∞ as n→ ∞:

exp(x̄) = lim
n→∞

(1 + hn)j = lim
j→∞

(

1 +
x̄

j

)j

,

that is,

exp(x) = lim
j→∞

(

1 +
x

j

)j

for x ∈ [0, 1]. (31.13)



31.2 Construction of the Exponential exp(x) for x ≥ 0 495

In particular, we define the number e by

e ≡ exp(1) = lim
j→∞

(

1 +
1
j

)j

. (31.14)

We refer to e as the base of the exponential function. We will prove below
that log(e) = 1.

It remains to verify that the function u(x) = exp(x) = ex constructed
above, indeed satisfies (31.1) for 0 < x ≤ 1. We note that choosing x̄ = jhn

and summing over i in (31.6), we get

Un(x̄) =
j∑

i=1

Un(xn
i−1)hn + 1,

which we can write as

Un(x̄) =
j∑

i=1

u(xn
i−1)hn + 1 +En,

where u(x) = exp(x), and using (31.12),

|En| =

∣
∣
∣
∣
∣

j∑

i=1

(Un(xn
i−1) − u(xn

i−1))hn

∣
∣
∣
∣
∣
≤ 6hn

j∑

i=1

hn ≤ 6hn,

since obviously
∑j

i=1 hn ≤ 1. Letting n tend to infinity and using
limn→∞En = 0, we see that u(x̄) = exp(x̄) satisfies

u(x̄) =
∫ x̄

0

u(x) dx + 1.

Differentiating this equality with respect to x̄, we get u′(x̄) = u(x̄) for
x̄∈ [0, 1], and we have now proved that the constructed function u(x) indeed
solves the given initial value problem.

We conclude the proof by showing uniqueness. Thus, assume that we have
two uniformly differentiable functions u(x) and v(x) such that u′(x) = u(x)
and v′(x) = v(x) for x ∈ (0, 1], and u(0) = v(0) = 1. The w = u−v satisfies
w′(x) = w(x) and w(0) = 0, and thus by the Fundamental Theorem,

w(x) =
∫ x

0

w′(y) dy =
∫ x

0

w(y) dy for x ∈ [0, 1].

Setting a = max0≤x≤0.5 |w(x)|, we thus have

a ≤
∫ 0.5

0

a dy = 0.5a
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which is possible only if a = 0 showing uniqueness for 0 ≤ x ≤ 0.5. Re-
peating the argument on [0.5, 1] proves that w(x) = 0 for x ∈ [0, 1] and the
uniqueness follows.

The proof immediately generalizes to x ∈ [0, b] where b is any positive
real number. We now summarize:

Theorem 31.1 The initial value problem u′(x) = u(x) for x > 0, and
u(0)=1, has a unique solution u(x) = exp(x) given by (31.13).

31.3 Extension of the Exponential exp(x) to x < 0

If we define
exp(−x) =

1
exp(x)

for x ≥ 0,

then we find that

D exp(−x) = D
1

exp(x)
= −D exp(x)

(exp(x))2
= − 1

exp(x)
= − exp(−x). (31.15)

We conclude that exp(−x) solves the initial value problem

u′(x) = −u(x) for x > 0, u(0) = 1.

31.4 The Exponential Function exp(x) for x ∈ R

Piecing together the functions exp(x) and exp(−x) with x ≥ 0, we obtain
the function u(x) = exp(x) defined for x ∈ R, which satisfies u′(x) = u(x)
for x ∈ R and u(0) = 1, see Fig. 31.4 and Fig. 31.5.

To see that d
dx exp(x) for x < 0, we set y = −x > 0 and compute

d
dx exp(x) = d

dy exp(−y) dy
dx = − exp(−y)(−1) = exp(x), where we

used (31.15).
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Fig. 31.4. The exponential exp(x) for x ∈ [−2.5, 2.5]
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Fig. 31.5. The exponential exp(x) for x ∈ [−8, 8]

31.5 An Important Property of exp(x)

We now prove the basic property of the exponential function exp(x) using
the fact that exp(x) satisfies the differential equation D exp(x) = exp(x).
We start considering the initial value problem

u′(x) = u(x) for x > a, u(a) = ua, (31.16)

with initial value at some point a other than zero. Setting x = y + a and
v(y) = u(y + a) = u(x), we obtain by the Chain rule

v′(y) =
d

dy
u(y + a) = u′(y + a)

d

dy
(y + a) = u′(x),

and thus v(y) satisfies the differential equation

v′(y) = v(y) for y > 0, v(0) = ua.

This means that
v(y) = exp(y)ua for y > 0.

Going back to the original variables, using that y = x− a, we find that the
solution of (31.16) is given by

u(x) = exp(x− a)ua for x ≥ a. (31.17)

We now prove that for a, b ∈ R,

exp(a+ b) = exp(a) exp(b) or ea+b = eaeb, (31.18)

which is the basic property of the exponential function. We do this by using
the fact that u(x) = exp(x) satisfies the differential equation u′(x) = u(x)
and exp(0) = 1. We have on the one hand that u(a+ b) = exp(a+ b) is the
value of the solution u(x) for x = a+b. We may reach to x = a+b, assuming
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0 < a, b to start with, by first computing the solution u(x) = exp(x) from
x = 0 up to x = a, which gives u(a) = exp(a). We next consider the
following problem

v′(x) = v(x) for x > a, v(a) = exp(a)

with solution v(x) = exp(x − a) exp(a) for x ≥ a. We have v(x) = u(x)
for x ≥ a, since u(x) also solves u′(x) = u(x) for x > a, and u(a) =
exp(a). Thus v(b+a) = u(a+ b), which translates into the desired equality
exp(b) exp(a) = exp(a+ b). The proof extends to any a, b ∈ R.

31.6 The Inverse of the Exponential
is the Logarithm

We shall now prove that

log(exp(x)) = x for x ∈ R, (31.19)

and conclude that

y = exp(x) if and only if x = log(y), (31.20)

which states that the inverse of the exponential is the logarithm.
We prove (31.19) by differentiation to get by the Chain rule for x ∈ R,

d

dx
(log(exp(x)) =

1
exp(x)

d

dx
(exp(x)) =

1
exp(x)

exp(x) = 1,

and noting that log(exp(0)) = log(1) = 0, which gives (31.19). Setting
x = log(y) in (31.19), we have log

(
exp(log(y))

)
= log(y), that is

exp(log(y)) = y for y > 0. (31.21)

We note in particular that

exp(0) = 1 and log(e) = 1 (31.22)

since 0 = log(1) and e = exp(1) respectively.
In many Calculus books the exponential function exp(x) is defined as the

inverse of the logarithm log(x) (which is defined as an integral). However,
we prefer to directly prove the existence of exp(x) through its defining
initial value problem, since this prepares the construction of solutions to
general initial value problems.
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31.7 The Function ax with a > 0 and x ∈ R

We recall that in Chapter The function y = xr we defined the function xr

for r = p/q rational with p and q �= 0 integers, and x is a positive real
number, as the solution y to the equation yq = xp.

We thus are familiar with ax with a > 0 and x rational, and we may
extend to x ∈ R by defining:

ax = exp(x log(a)). (31.23)

We now prove the basic properties of ax with x ∈ R, that is, the positive
number a raised to the power x ∈ R, extending our previous experience
with x rational. We note that by the Chain rule the function u(x) = ax

satisfies the differential equation

u′(x) = log(a)u(x)

and u(0) = 1. In particular, choosing a = e = exp(1), we find that ax =
ex = exp(x), and we thus conclude that the exponential function exp(x)
indeed equals the number e raised to the power x. Note that before we just
used ex just as a another notation for exp(x).

Using now the exponential law (31.18) for exp(x), we obtain with a direct
computation using the definition (31.23) the following analog for ax:

ax+y = axay. (31.24)

The other basic rule for ax reads:

(ax)y = axy, (31.25)

which follows from the following computation:

(ax)y = exp(y log(ax)) = exp(y log(exp(x log(a)))) = exp(yx log(a)) = axy.
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y = xr for r=−1, 1/2 and 2 y = ax for a = 2 and 1/2

Fig. 31.6. Examples of functions xr and ax
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As indicated, the rules (31.24) and (31.25) generalize the corresponding
rules with x and y rational proved above.

We conclude computing the derivative of the function ax from the defi-
nition (31.23) using the Chain rule:

d

dx
ax = log(a)ax. (31.26)

Chapter 31 Problems

31.1. Define Un(xni ) alternatively by Un(xni ) = Un(xni−1)±hnUn(xni ), and prove
that the corresponding sequence {Un(x)} converges to exp(±x).

31.2. Prove that for x > 0
(
1 +

x

n

)n
< exp(x) for n = 1, 2, 3 . . . . (31.27)

Hint: Take logarithm and use that log(1+x) < x for x > 0, and that the logarithm
is increasing.

31.3. Prove directly the existence of a unique solution of u′(x) = −u(x) for
x > 0, u(0) = 1, that is construct exp(−x) for x ≥ 0.

31.4. Show that the more often the bank capitalizes your interest, the better off
you are, that is verify that

(
1 +

a

n

)n
≤

(

1 +
a

n+ 1

)n+1

. (31.28)

Hint: Use the Binomial theorem.

31.5. Assume a bank offers “continuous capitalization” of the interest, cor-
responding to the (annual) interest rate a. What is then the “effective annual
interest rate”?

31.6. Prove the differentiation formula
d

dx
xr = rxr−1 for r ∈ R.

31.7. Prove the basic properties of the exponential function using that it is the
inverse of the logarithm and use properties of the logarithm.

31.8. Given that the equation u′(x) = u(x) has a solution for x ∈ [0, 1] with
u(0) = 1, construct a solution for all x ≥ 0. Hint: use that if u(x) satisfies u′(x) =
u(x) for 0 < x ≤ 1, then v(x) = u(x− 1) satisfies v′(x) = v(x) for 1 < x ≤ 2 and
v(1) = u(0).

31.9. Give the Taylor polynomial of order n with error term for exp(x) at x = 0.

31.10. Find a primitive function to (a) x exp(−x2), (b) x3 exp(−x2).
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31.11. Compute the derivatives of the following functions: a) f(x) = ax, a > 0,
b) f(x) = exp(x + 1), c) f(x) = x exp(x2), d) f(x) = x3 exp(x2), e) f(x) =
exp(−x2).

31.12. Compute the integrals
∫ 1

0
f(x)dx of the functions in the previous exercise,

except for the one in e), f(x) = exp(−x2). Why do you think we left this one
out?

31.13. Try to find the value of
∫∞
−∞ exp(−x2)dx numerically by quadrature.

Square the result. Do you recognize this number?

31.14. Show that exp(x) ≥ 1 + x for all x, not just for x > −1.

31.15. Show, by induction, that

dn

dxn
(exf(x)) = ex

(

1 +
d

dx

)n
f(x).

31.16. Prove (31.24) using the basic property (31.18) of the exponential and the
definition (31.23).

31.17. Construct directly, without using the exponential function, the solution
to the initial value problem u′(x) = au(x) for x ≥ 0 with u(0) = 1, where a
is a real constant. Call the solution aexp(x). Prove that the function aexp(x)
satisfies aexp(x+ y) = aexp(x)aexp(y) for x, y ≥ 0.

31.18. Define with a > 0 given, the function y = loga(x) for x > 0 as the
solution y to the equation ay = x. With a = e we get loge(x) = log(x), the
natural logarithm. With a = 10 we get the so-called 10-logarithm. Prove that (i)
loga(xy) = loga(x) + loga(y) for x, y > 0, (ii) loga(x

r) = rloga(x) for x > 0 and
r ∈ R, and (iii) loga(x) log(a) = log(x) for x > 0.

31.19. Give the details of the proof of (31.26).





32
Trigonometric Functions

When I get to the bottom, I go back to the top of the slide where I
stop and I turn and I go for a ride ’til I get to the bottom and I see
you again. (Helter Skelter, Lennon-McCartney, 1968)

32.1 The Defining Differential Equation

In this chapter, we shall study the following initial value problem for a sec-
ond order differential equation: Find a function u(x) defined for x ≥ 0
satisfying

u′′(x) = −u(x) for x > 0, u(0) = u0, u
′(0) = u1, (32.1)

where u0 and u1 are given initial data. We here require two initial con-
ditions because the problem involves a second order derivative. We may
compare with the first order initial value problem: u′(x) = −u(x) for x > 0,
u(0) = u0, with the solution u(x) = exp(−x), which we studied in the pre-
vious chapter.

We shall demonstrate below, in Chapter The general initial value prob-
lem, that (32.1) has a unique solution for any given values of u0 and u1,
and we shall in this chapter show that the solution with initial data u0 = 0
and u1 = 1 is an old friend, namely, u(x) = sin(x), and the solution with
u0 = 1 and u1 = 0 is u(x) = cos(x). Here sin(x) and cos(x) are the usual
trigonometric functions defined geometrically in Chapter Pythagoras and
Euclid, with the change that we measure the angle x in the unit of radians
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instead of degrees, with one radian being equal to 180
π degrees. In particular,

we shall explain why one radian equals 180
π degrees.

We may thus define the trigonometric functions sin(x) and cos(x) as the
solutions of (32.1) with certain initial data if we measure angles in the
unit of radian. This opens a fresh route to understanding properties of the
trigonometric functions by studying properties of solutions the differential
equation (32.1), and we shall now explore this possibility.

We start by rewriting (32.1) changing the independent variable from x
to t, since to aid our intuition we will use a mechanical interpretation
of (32.1), where the independent variable represents time. We denote the
derivative with respect to t with a dot, so that u̇ = du

dt , and ü = d2u
dt2 . We

thus rewrite (32.1) as

ü(t) = −u(t) for t > 0, u(0) = 0, u̇(0) = 1, (32.2)

where we chose u0 = 0 and u1 = 1 anticipating that we are looking for
sin(t).

We now recall that (32.2) is a model of the motion of unit mass along
a friction-less horizontal x-axis with the mass connected to one end of
a Hookean spring with spring constant equal to 1 and with the other end
connected to the origin, see Fig. 26.3. We let u(t) denotes the position
(x−coordinate) of the mass at time t, and we assume that the mass is
started at time t = 0 at the origin with speed u̇(0) = 1, that is, u0 = 0
and u1 = 1. The spring exerts a force on the mass directed towards the
origin, which is proportional to the length of the spring, since the spring
constant is equal to 1, and the equation (32.2) expresses Newton’s law: the
acceleration ü(t) is equal to the spring force −u(t). Because there is no
friction, we would expect the mass to oscillate back and forth across the
equilibrium position at the origin. We plot the solution u(t) to (32.2) in
Fig. 32.1, which clearly resembles the plot of the sin(t) function.
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Fig. 32.1. The solution of (32.2). Is it the function sin(t)?
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Let’s now prove that our intuitive feeling indeed is correct, that is, let
us prove that the solution of (32.2) indeed is our old friend sin(t). The key
step then turns out to be to multiply our equation ü+ u = 0 by u̇, to get

d

dt
(u̇2 + u2) = 2u̇ü+ 2uu̇ = 2u̇(ü + u) = 0.

We conclude that u̇2(t)+u2(t) is constant for all t, and since u̇2(0)+u2(0) =
1 + 0 = 1, we have found that the solution u(t) of (32.2) satisfies the
conservation property

u̇2(t) + u2(t) = 1 for t > 0, (32.3)

which states that the point (u̇(t), u(t)) ∈ R
2 lies on the unit circle in R

2,
see Fig. 32.2.

We remark that in mechanical terms, the relation (32.3) expresses that
the total energy

E(t) ≡ 1
2
u̇2(t))TS

l +
1
2
u2(t), (32.4)

is preserved (= 1/2) during the motion. The total energy at time t is the
sum of the kinetic energy u̇2(t)/2, and the potential energy u2(t)/2. The
potential energy is the energy stored in the spring, which is equal to the
work W (u(t)) to stretch the spring the distance u(t):

W (u(t)) =
∫ u(t)

0

v dv =
1
2
u2(t),

where we used the principle that to stretch the spring from v to v+∆v, the
work is v∆v since the spring force is v. At the extreme points with u̇(t) = 0,
the kinetic energy is zero and all energy occurs as potential energy, while
all energy occurs as kinetic energy when the body passes the origin with
u(t) = 0. During the motion of the body, the energy is thus periodically
transferred from kinetic energy to potential energy an back again.

Going now back to (32.3), we thus see that the point (u̇(t), u(t)) ∈ R
2

moves on the unit circle and the velocity of the motion is given by (ü(t),
u̇(t)), which we obtain by differentiating each coordinate function with
respect to t. We will return to this issue in Chapter Curves below. Using
the differential equation ü+ u = 0, we see that

(ü(t), u̇(t)) = (−u(t), u̇(t)),

and conclude recalling (32.3) that the modulus of the velocity is equal to 1
for all t. We conclude that the point (u̇(t), u(t)) moves around the unit circle
with unit velocity and at time t = 0 the point is at position (1, 0). But this
directly connects with the usual geometrical definition of (cos(t), sin(t)) as
the coordinates of a point on the unit circle at the angle t, see Fig. 32.2, so
that we should have (u̇(t), u(t)) = (cos(t), sin(t)). To make this connection

TS
l Is there an opening parenthesis missing here?
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506 32. Trigonometric Functions

straight, we of course need to measure angles properly, and the proper
measure is radians with 2π radians corresponding to 360 degrees. This is
because the time for one revolution with speed 1 should be equal to 2π,
that is the length of the circumference of the unit circle.

In fact, we can use the solution sin(t) of the initial value problem (32.2) to
define the number π as the smallest positive root t̄ of sin(t), corresponding
to one half revolution with u(t̄) = 0 and u̇(t̄) = −1.

t x

y

x2+y2 =1

(cos(t), sin(t))

(− sin(t), cos(t))

Fig. 32.2. Energy conservation

We may now conclude that the solution u(t) of (32.2) satisfies (u̇(t), u(t))
= (cos(t), sin(t)), so that in particular u(t) = sin(t) and d

dt sin(t) = cos(t),
where (cos(t), sin(t)) is defined geometrically as the point on the unit circle
of angle t radians.

We can now turn the argument around, and simply define sin(t) as the
solution u(t) to (32.2) with u0 = 0 and u1 = 1, and then define cos(t) =
d
dt sin(t). Alternatively, we can define cos(t) as the solution of the problem

v̈(t) = −v(t) for t > 0, v(0) = 1, v̇(0) = 0, (32.5)

which we obtain by differentiation of (32.2) with respect to t and using
the initial conditions for sin(t). Differentiating once more, we see that
d
dt cos(t) = − sin(t).

Both sin(t) and cos(t) will be periodic with period 2π, because the point
(u̇(t), u(t)) moves around the unit circle with velocity one and comes back
the same point after a time period of 2π. As we said, we may in particular
define π as the first value of t > 0 for which sin(t) = 0, which corresponds
the point (u̇, u) = (−1, 0), and 2π will then be time it takes for the point
(u̇, u) to make one complete revolution starting at (1, 0), moving to (−1, 0)
following the upper semi-circle and then returning to (1, 0) following the
lower semi-circle. The periodicity of u(t) with period 2π is expressed as

u(t+ 2nπ) = u(t) for t ∈ R, n = 0,±1,±2, . . . (32.6)
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The energy conservation (32.3) translates into the most well known of
all trigonometric formulas:

sin2(t) + cos2(t) = 1 for t > 0. (32.7)
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Fig. 32.3. The function cos(t)!

To compute the values of sin(t) and cos(t) for a given t, we may compute
the solution to the corresponding defining differential initial value problem.
We return to this topic below.

We summarize:

Theorem 32.1 The initial value problem u′′(x) + u(x) = 0 for x > 0 with
u0 = 0 and u1 = 1, has a unique solution, which is denoted by sin(x). The
initial value problem u′′(x) + u(x) = 0 for x > 0 with u0 = 1 and u1 = 0,
has a unique solution, which is denoted by cos(x). The functions sin(x) and
cos(x) extend to x < 0 as solutions of u′′(x) + u(x) = 0 and are periodic
with period 2π, and sin(π) = 0, cos(π

2 ) = 0. We have d
dx sin(x) = cos(x)

and d
dx cos(x) = − sin(x). Further cos(−x) = cos(x), cos(π−x) = − cos(x),

sin(π − x) = sin(x), sin(−x) = − sin(x), cos(x) = sin(π
2 − x), sin(x) =

cos(π
2 − x), sin(π

2 + x) = cos(x), and cos(π
2 + x) = − sin(x).

32.2 Trigonometric Identities

Using the defining differential equation u′′(x)+u(x) = 0, we can verify the
following basic trigonometric identities for x, y ∈ R:

sin(x+ y) = sin(x) cos(y) + cos(x) sin(y) (32.8)

sin(x− y) = sin(x) cos(y) − cos(x) sin(y) (32.9)

cos(x + y) = cos(x) cos(y) − sin(x) sin(y) (32.10)

cos(x− y) = cos(x) cos(y) + sin(x) sin(y). (32.11)

TS
m In the hardcopy, this equation is labelled (41.12), please check.
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For example, to prove (32.8),TS
m we note that both the right hand and left

hand side satisfy the equation u′′(x) + u(x) = 0, and the initial conditions
u(0) = sin(y), u′(0) = cos(y), with y acting as a parameter, and thus are
equal.

We note the particular special cases:

sin(2x) = 2 sin(x) cos(x) (32.12)

cos(2x) = cos2(x) − sin2(x) = 2 cos2(x) − 1 = 1 − 2 sin2(x). (32.13)

Adding (32.8)TS
m and (32.9)TS

m , we obtain

sin(x+ y) + sin(x− y) = 2 sin(x) cos(y).

Setting x̄ = x+ y and ȳ = x− y we obtain the first of the following set of
formulas, all proved similarly,

sin(x̄) + sin(ȳ) = 2 sin
(
x̄+ ȳ

2

)

cos
(
x̄− ȳ

2

)

(32.14)

sin(x̄) − sin(ȳ) = 2 cos
(
x̄+ ȳ

2

)

sin
(
x̄− ȳ

2

)

(32.15)

cos(x̄) + cos(ȳ) = 2 cos
(
x̄+ ȳ

2

)

cos
(
x̄− ȳ

2

)

(32.16)

cos(x̄) − cos(ȳ) = −2 sin
(
x̄+ ȳ

2

)

sin
(
x̄− ȳ

2

)

. (32.17)

32.3 The Functions tan(x) and cot(x)
and Their Derivatives

We define

tan(x) =
sin(x)
cos(x)

, cot(x) =
cos(x)
sin(x)

, (32.18)

for values of x such that the denominator is different from zero. We compute
the derivatives

d

dx
tan(x) =

cos(x) cos(x) − sin(x)(− sin(x))
cos2(x)

=
1

cos2(x)
, (32.19)

and similarly
d

dx
cot(x) = − 1

sin2(x)
. (32.20)

Dividing (32.8)TS
m by (32.10)TS

m , and dividing both numerator and de-
nominator by cos(x) cos(y), we obtain

tan(x+ y) =
tan(x) + tan(y)
1 − tan(x) tan(y)

, (32.21)
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and similarly,

tan(x− y) =
tan(x) − tan(y)
1 + tan(x) tan(y)

. (32.22)

32.4 Inverses of Trigonometric Functions

Inverses of the basic trigonometric functions sin(x), cos(x), tan(x) and
cot(x), are useful in applications. We now introduce and give names to
these inverses and derive their basic properties.

The function f(x) = sin(x) is strictly increasing from −1 to 1 on [−π
2 ,

π
2 ],

because the derivative f ′(x) = cos(x) is positive on (−π
2 ,

π
2 ). Thus the

function y = f(x) = sin(x) with D(f) = [−π
2 ,

π
2 ] and R(f) = [−1, 1],

therefore has an inverse x = f−1(y), which we denote by

x = f−1(y) = arcsin(y), (32.23)

and D(f−1) = D(arcsin) = [−1, 1] and R(f−1) = R(arcsin) = [−π
2 ,

π
2 ],

see Fig. 32.4.

x

y

y

−1

1

−π/2
π/2

y = sin(x)

x = arcsin(y)

Fig. 32.4. The function x = arcsin(y)

We thus have

sin(arcsin(y)) = y arcsin(sin(x)) = x for x ∈
[
−π
2
,
π

2

]

, y ∈ [−1, 1].

(32.24)
We next compute the derivative of arcsin(y) with respect to y:

d

dy
arcsin(y) =

1
d
dx sin(x)

=
1

cos(x)
=

1
√

1 − sin2(x)
=

1
√

1 − y2
.

Similarly, the function y = f(x) = tan(x) is strictly increasing onD(f) =
(−π

2 ,
π
2 ) and R(f) = R, and thus has an inverse, which we denote by

x = f−1(y) = arctan(y),
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with D(arctan) = R and R(arctan) = (−π
2 ,

π
2 ), see Fig. 32.5.

x

y

y

−π/2
π/2

y = tan(x)

x = arctan(y)

Fig. 32.5. The function x = arctan(y)

We compute the derivative of arctan(y):

d

dy
arctan(y) =

1
d
dx tan(x)

= cos2(x)

=
cos2(x)

cos2(x) + sin2(x)
=

1
1 + tan2(x)

=
1

1 + y2
.

We define similarly the inverse of y = f(x) = cos(x) with D(f) = [0, π]
and denote the inverse by x = f−1(y) = arccos(y) with D(arccos) = [−1, 1]
and R(arccos) = [0, π]. We have

d

dy
arccos(y) =

1
d
dx cos(x)

= − 1
sin(x)

= − 1
√

1 − cos2(x)
= − 1

√
1 − y2

.

Finally, we define the inverse of y = f(x) = cot(x) with D(f) = (0, π)
and denote the inverse by x = f−1(y) = arccot(y) with D(arccot) = R and
R(arccot) = (0, π). We have

d

dy
arccot(y) =

1
d
dx cot(x)

= − sin2(x) = − sin2(x)
cos2(x) + sin2(x)

= − 1
1 + cot2(x)

= − 1
1 + y2

.
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We summarize:
d

dx
arcsin(x) =

1√
1 − x2

for x ∈ (−1, 1)

d

dx
arccos(x) = − 1√

1 − x2
for x ∈ (−1, 1)

d

dx
arctan(x) =

1
1 + x2

for x ∈ R

d

dx
arccot(x) = − 1

1 + x2
for x ∈ R.

(32.25)

In other words,

arcsin(x) =
∫ x

0

1
√

1 − y2
dy for x ∈ (−1, 1)

arccos(x) =
π

2
−
∫ x

0

1
√

1 − y2
dy for x ∈ (−1, 1)

arctan(x) =
∫ x

0

1
1 + y2

dy for x ∈ R

arccot(x) =
π

2
−
∫ x

0

1
1 + y2

dy for x ∈ R.

(32.26)

We also note the following analog of (32.21) obtained by setting x =
arctan(u) and y = arctan(v), so that u = tan(x) and v = tan(y), and
assuming that x+ y ∈ (−π

2 ,
π
2 ):

arctan(u) + arctan(v) = arctan
(
u+ v

1 − uv

)

. (32.27)

32.5 The Functions sinh(x) and cosh(x)

We define for x ∈ R

sinh(x) =
ex − e−x

2
and cosh(x) =

ex + e−x

2
. (32.28)

We note that

Dsinh(x) = cosh(x) and Dcosh(x) = sinh(x). (32.29)

We have y = f(x) = sinh(x) is strictly increasing and thus has an in-
verse x = f−1(y) = arcsinh(y) with D(arcsinh) = R and R(arcsinh) = R.
Further, y = f(x) = cosh(x) is strictly increasing on [0,∞), and thus
has an inverse x = f−1(y) = arccosh(y) with D(arccosh) = [1,∞) and
R(arccosh) = [0,∞). We have

d

dy
arcsinh(y) =

1
√
y2 + 1

,
d

dy
arccosh(y) =

1
√
y2 − 1

. (32.30)
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32.6 The Hanging Chain

Consider a hanging chain fixed at (−1, 0) and (1, 0) in a coordinate system
with the x-axis horizontal and y-axis vertical. Let us seek the curve y = y(x)
described by the chain. Let (Fh(x), Fv(x)) be the two components of the
force in the chain at x. Vertical and horizontal equilibrium of the element
of the chain between x and x+ ∆x gives

Fh(x+ ∆x) = Fh(x), Fv(x) +m∆s = Fv(x+ ∆x),

where ∆s ≈
√

(∆x)2 + (∆y)2 ≈
√

1 + (y′(x))2∆x, and m is the weight of
the chain per unit length. We conclude that Fh(x) = Fh is constant, and

F ′
v(x) = m

√
1 + (y′(x))2.

Momentum equilibrium around the midpoint of the element of the chain
between x and x+ ∆x, gives

Fh∆y =
1
2
Fv(x+ ∆x)∆x +

1
2
Fv(x)∆x ≈ Fv(x)∆x,

which leads to
y′(x) =

Fv(x)
Fh

. (32.31)

Assuming that Fh = 1, we are thus led to the differential equation

F ′
v(x) = m

√
1 + (Fv(x))2.

We can check by direct differentiation that this differential equation is
satisfied if Fv(x) solves the equation

arcsinh(Fv(x)) = mx,

and we also have Fv(0) = 0. Therefore

Fv(x) = sinh(mx),

and thus by (32.31),

y(x) =
1
m

cosh(mx) + c

with the constant c to be chosen so that y(±1) = 0. We thus obtain the
following solution

y(x) =
1
m

(cosh(mx) − cosh(m)). (32.32)

The curve y(x) = cosh(mx)+c withm and c constants, is called the hanging
chain curve, or the catenaria.
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32.7 Comparing u′′ + k2u(x) = 0
and u′′ − k2u(x) = 0

We summarize some experience from above. The solutions of the equation
u′′ + k2u(x) = 0 are linear combinations of sin(kx) and cos(kx). The solu-
tions of u′′ − k2u(x) = 0 are linear combinations of sinh(kx) and cosh(kx).

Chapter 32 Problems

32.1. Show that the solution of ü(t) + u(t) = 0 for t > 0 with u(0) = sin(α) and
u′(0) = cos(α) is given by u(t) = cos(t) sin(α) + sin(t) cos(α) = sin(t+ α).

32.2. Show that the solution of ü(t)+u(t) = 0 for t > 0 with u(0) = r cos(α) and
u′(0) = r sin(α) is given by u(t) = r(cos(t) cos(α) + sin(t) sin(α)) = r cos(t− α).

32.3. Show that the solution to ü(t) + ku(t) = 0 for t > 0 with u(0) =
r cos(α) and u′(0) = r sin(α), where k is a given positive constant, is given by
r cos(

√
k(t− α)). Give a mechanical interpretation of this model.

32.4. Show that the function sin(nx) solves the boundary value problem u′′(x)+
n2u(x) = 0 for 0 < x < π, u(0) = u(π) = 0.

32.5. Solve u′(x) = sin(x), x > π/4, u(π/4) = 2/3.

32.6. Show that (a) sin(x) < x for x > 0, (b) x < tan(x) for 0 < x < π/2.

32.7. Show that lim
x→0

sin(x)

x
= 1.

32.8. Show the following relations from the definition, i.e. from the differential
equation defining sin(x) and cos(x): (a) sin(−x) = − sin(x), (b) cos(−x) = cos(x),
(c) sin(π − x) = sin(x), (d) cos(π − x) = − cos(x), (e) sin(π/2 − x) = cos(x),
(f) cos(π/2 − x) = sin(x).

32.9. Prove the product formulas show that

sin(x) sin(y) =
1

2
(cos(x− y) − cos(x+ y)) ,

cos(x) cos(y) =
1

2
(cos(x− y) + cos(x+ y)) ,

sin(x) cos(y) =
1

2
(sin(x− y) + sin(x+ y)) .

32.10. Compute the following integrals by integrating by parts:

(a)
∫ 1

0
x3 sin(x)dx, (b)

∫ 1

0
exp(x) sin(x)dx, (c)

∫ 1

0
x2 cos(x)dx.

32.11. Determine Taylor’s formula for arctan(x) at x = 0 and use your result
to calculate approximations of π. Hint: arctan(1) = π/4.
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32.12. Show that arctan(1) = arctan(1/2) + arctan(1/3). Try to find other ra-
tional numbers a and b such that arctan(1) = arctan(a)+arctan(b). In particular
seek to find a and b as small as possible.

32.13. Combine your results from the previous two exercises to construct a better
algorithm for computing π. Even more efficient methods may be obtained using
the identity π/4 = 4 arctan(1/5) − arctan(1/239). Compare the two algorithms
and explain why the second is more efficient.

32.14. Show that: (a) arcsin(−x) = − arcsin(x), (b) arccos(−x) = π−arccos(x),
(c) arctan(−x) = − arctan(x), (d) arccot(−x) = π − arccot(x), (e) arcsin(x) +
arccos(x) = π/2, (f) arctan(x) + arccot(x) = π/2.

32.15. Calculate analytically: (a) arctan(
√

2−1), (b) arctan(1/8)+arctan(7/9),
(c) arcsin(1/7) + arcsin(11/4), (d) tan(arcsin(3/5)/2), (e) sin(2 arcsin(0.8)),
(f) arctan(2) + arcsin(3/

√
10).

32.16. Solve the equation: (a) arccos(2x) = arctan(x), (b) arcsin(cos(x)) = x
√

3.

32.17. Calculate the derivative, if possible, of (a) arctan(
√
x − x5),

(b) arcsin(1/x2) arcsin(x2), (c) tan(arcsin(x2)), (d) 1/ arctan(
√
x).

32.18. Compute numerically for different values of x, (a) arcsin(x), (b) arccos(x),
(c) arctan(x), (d) arccot(x).

32.19. Prove (32.30).

32.20. Verify that cosh2(x) − sinh2(x) = 1.

32.21. (a) Find the inverse x = arcsinh(y) of y = sinh(x) = 1
2
(ex − e−x) by

solving for x in terms of y. Hint: Multiply by ex and solve for z = ex. Then take
logarithms. (b) Find a similar formula for arccosh(y).

32.22. Compute analytically the area of a disc of radius 1 by computing the
integral ∫ 1

−1

√
1 − x2 dx.

How do you handle the fact that
√

1 − x2 is not Lipschitz continuous on [−1, 1]?
Hint: Use the substitution x = sin(y) and the fact the cos2(y) = 1

2
(1 + cos(2y)).



33
The Functions exp(z), log(z), sin(z)
and cos(z) for z ∈ C

The shortest path between two truths in the real domain passes
through the complex domain. (Hadamard 1865-1963)

33.1 Introduction

In this chapter we extend some of the elementary functions to complex
arguments. We recall that we can write a complex number z in the form
z = |z|(cos(θ) + i sin(θ)) with θ = arg z the argument of z, and 0 ≤ θ =
Arg z < 2π the principal argument of z.

33.2 Definition of exp(z)

We define, writing z = x+ iy with x, y ∈ R,

exp(z) = ez = ex(cos(y) + i sin(y)), (33.1)

which extends the definition of ez with z ∈ R to z ∈ C. We note that in
particular for y ∈ R,

eiy = cos(y) + i sin(y), (33.2)

which is also referred to as Euler’s formula. We note that

sin(y) =
eiy − e−iy

2i
, cos(y) =

eiy + e−iy

2
, for y ∈ R, (33.3)
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and
|eiy| = 1 for y ∈ R. (33.4)

We can now express a complex number z = r(cos(θ) + i sin(θ)) in the
form

z = reiθ (33.5)

with θ = arg z and r = |z|.
One can prove (using the basic trigonometric formulas) that exp(z) sat-

isfies the usual law for exponentials so that in particular for z, ζ ∈ C,

ezeζ = ez+ζ . (33.6)

In particular, the rule for multiplication of two complex numbers z = |z|eiθ

and ζ = |ζ|eiϕ can be expressed as follows:

zζ = |z|eiθ|ζ|eiϕ = |z||ζ|ei(θ+ϕ). (33.7)

33.3 Definition of sin(z) and cos(z)

We define for z ∈ C

sin(z) =
eiz − e−iz

2i
, cos(z) =

eiz + e−iz

2
, (33.8)

which extends (33.3) to C.

33.4 de Moivres Formula

We have for θ ∈ R and n an integer

(eiθ)n = einθ,

that is,
(cos(θ) + i sin(θ))n = cos(nθ) + i sin(nθ), (33.9)

which is referred to as de Moivres formula. In particular,

(cos(θ) + i sin(θ))2 = cos(2θ) + i sin(2θ),

from which follows separating into real and complex parts

cos(2θ) = cos2(θ) − sin2(θ), sin(2θ) = 2 cos(θ) sin(θ).

Using de Moivres formula gives a quick way of deriving some of the basicTS
n

trigonometric formulas (in case one has forgotten these formulas).

TS
n Please check it.

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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33.5 Definition of log(z)

We have defined above log(x) for x > 0 and we now pose the problem of
defining log(z) for z ∈ C. We recall that w = log(x) can be viewed as the
unique solution to the equation ew = x, where x > 0. We consider therefore
the equation

ew = z,

with z = |z|(cos(θ)+ i sin(θ)) ∈ C being given assuming z �= 0, and we seek
w = Re w + iIm w ∈ C, with the intention to call a solution w = log(z).
Here Re w and Im w denote the real and imaginary parts of w. Equating
the modulus of both sides of the equation ew = z, we get

eRe w = |z|,

and thus
Re w = log(|z|).

Further, equating the argument of both sides, we get

Im w = θ = arg z,

and thus
w = log(|z|) + i arg z.

We are thus led to define

log(z) = log(|z|) + i arg z, (33.10)

which extends the definition of the natural logarithm from the positive real
numbers to non-zero complex numbers. We see that the imaginary part
log(z) is not uniquely defined up to multiples of 2π, since arg z is not, and
thus log(z) is multi-valued: the imaginary part of log(z) is not uniquely
defined up to multiples of 2π. Choosing θ = Arg z with 0 ≤ Arg z < 2π,
we obtain the principal branch of log(z) denoted by

Log(z) = log(|z|) + iArg z.

We see that if we let arg z increase from 0 beyond 2π, the function Log (z)
will be discontinuous at Im z = 2π. We thus have to remember that the
imaginary part of log(z) is not uniquely defined.

Chapter 33 Problems

33.1. Describe in geometrical terms the mappings f : C → C given by (a)
f(z) = exp(z), (b) f(z) = Log(z), (c) sin(z).





34
Techniques of Integration

A poor head, having subsidiary advantages, . . . can beat the best,
just as a child can draw a line with a ruler better than the greatest
master by hand. (Leibniz)

34.1 Introduction

It is not generally possible to find an explicit formula for a primitive func-
tion of a given arbitrary function in terms of known elementary functions,
by which we mean the polynomials, rational functions, root functions, ex-
ponentials and trigonometric functions along with their inverses and com-
binations. It is not even true that the primitive function of an elementary
function is another elementary function. A famous example is given by the
function f(x) = exp(−x2), whose primitive function F (x) (with F (0) = 0),
which exists by the Fundamental Theorem, is known not to be an elemen-
tary function (by a tricky proof by contradiction). To compute values of
F (x) =

∫ x

0
exp(y) dy for different values of x we therefore have to use nu-

merical quadrature just as in the case of the logarithm. Of course we can
give F (x) a name, for example we may agree to call it the error function
F (x) = erf(x) and add it to our list of known functions that we can use.
Nevertheless there will be other functions (such as sin(x)

x ) whose primitive
function cannot be expressed in the known functions.

The question of how to handle such functions (including also log(x),
exp(x), sin(x). . . ) of course arises: should we pre-compute long tables of
values of these functions and print them in thick books or store them in



520 34. Techniques of Integration

the computer, or should we compute each required value from scratch using
numerical quadrature? The first option was favored in earlier times when
computing power was sparse, and the second one is favored today (even in
the pocket calculator).

Despite the impossibility to reach generality, it is it is possible (and
useful) to compute primitive functions analytically in certain cases, and in
this chapter, we collect some tricks that have proved useful for doing this.
The tricks we present are basically various clever substitutions together
with integration by parts. We have no ambition to be encyclopedic. We
refer to Mathematics Handbook for Science and Engineering for further
development.

We start with rational functions, and then proceed to various combina-
tions of polynomials, logarithms, exponentials and trigonometric functions.

34.2 Rational Functions: The Simple Cases

Integration of rational functions depends on three basic formulas
∫ x

x0

1
s− c

ds = log |x− c| − log |x0 − c|, c �= 0 (34.1)

∫ x

x0

s− a

(s− a)2 + b2
dx =

1
2

log((x− a)2 + b2) − 1
2

log((x0 − a)2 + b2) (34.2)

and
∫ x

x0

1
(s− a)2 + b2

ds =
[
1
b

arctan
(
x− a

b

)]

−
[
1
b

arctan
(
x0 − a

b

)]

, b �= 0.

(34.3)
These formulas can be verified by differentiation. Using the formulas can
be straightforward as in

Example 34.1.
∫ 8

6

ds

s− 4
= log 4 − log 2 = log 2.

Or more complicated as in

Example 34.2.
∫ 4

2

ds

2(s− 2)2 + 6
=

1
2

∫ 4

2

ds

(s− 2)2 + 3

=
1
2

∫ 4

2

ds

(s− 2)2 + (
√

3)2

=
1
2

(
1√
3

arctan
(

4 − 2√
3

)

− 1√
3

arctan
(

2 − 2√
3

))

.
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Of course we may combine these formulas with substitution:

Example 34.3.

∫ x

0

cos(s) ds
sin(s) + 2

=
∫ sin(x)

0

du

u+ 2
= log | sin(x) + 2| − log 2.

Using (34.2) and (34.3) may require completing the square, as we now show
in

Example 34.4. For example, consider
∫ 3

0

ds

s2 − 2s+ 5
.

We want to get s2 − 2s+ 5 into the form (s− a)2 + b2 if possible. We set

(s− a)2 + b2 = s2 − 2as+ a2 + b2 = s2 − 2s+ 5.

Equating the coefficients of s on both sides gives a = 1. Equating the
constant terms on both sides gives b2 = 5 − 1 = 4 and therefore we may
take b = 2. After a little practice with completing the square, we can often
argue directly, as

s2 − 2s+ 5 = s2 − 2s+ 12 − 12 + 5 = (s− 1)2 + 22.

Returning to the integral, we have
∫ 3

0

ds

s2 − 2s+ 5
=

∫ 3

0

ds

(s− 1)2 + 22

=
1
2

arctan
(

3 − 2
2

)

− 1
2

arctan
(

0 − 2
2

)

.

34.3 Rational Functions: Partial Fractions

We now investigate a systematic method for computing integrals of rational
functions f(x), i.e. functions of the form f(x) = p(x)/q(x), where p(x) and
q(x) are polynomials. The method is based manipulating the integrand so
that the basic formulas (34.1)–(34.3) can be used. The manipulation is
based on the observation that it is possible to write a complicated rational
function as a sum of relatively simple rational functions.

Example 34.5. Consider the integral
∫ 5

4

s2 + s− 2
s3 − 3s2 + s− 3

ds.
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The integrand can be expanded

s2 + s− 2
s3 − 3s2 + s− 3

=
1

s2 + 1
+

1
s− 3

which we can verify by adding the two fractions on the right after computing
a common denominator,

1
s2 + 1

+
1

s− 3
=
s− 3
s− 3

× 1
s2 + 1

+
s2 + 1
s2 + 1

× 1
s− 3

=
s− 3 + s2 + 1
(s2 + 1)(s− 3)

=
s2 + s− 2

s3 − 3s2 + s− 3
.

Therefore we can integrate

∫ 5

4

s2 + s− 2
s3 − 3s2 + s− 3

ds =
∫ 5

4

1
s2 + 1

ds+
∫ 5

4

1
s− 3

ds

= (arctan (5) − arctan (4)) + (log(5 − 3) − log(4 − 3)).

The general technique of partial fractions is based on a systematic method
for writing a rational function as a sum of simple rational functions that can
be integrated with the basic formulas (34.1)–(34.3). The method is analo-
gous to “reversing” the addition of rational functions by finding a common
denominator.

Applying the technique of partial fractions to a general rational function
has several steps, which we explain in “reverse” order. So we begin by
assuming that the numerator p(x) of the rational function p(x)/q(x) has
smaller degree than the denominator q(x), i.e. deg p(x) < deg q(x), and
that q(x) has the form

p(x)
q(x)

=
p(x)

k(x− c1) · · · (x − cn)((x − a1)2 + b21) · · · ((x − am)2 + b2m)
, (34.4)

where k is a number, the ci are the real roots of q(x), and the second degree
factors (x− aj)2 + b2j correspond to the complex roots aj ± ibj of q(x) that
necessarily come in pairs of complex conjugates. We call polynomials of the
form (x− aj)2 + b2j irreducible because we cannot factor them as a product
of linear polynomials with real coefficients.

In the first instance, we assume that the zeroes {ci} and {aj ± ibj} are
distinct. In this case, we rewrite p(x)/q(x) as the sum of partial fractions

p(x)
q(x)

=
C1

x− c1
+ · · · + Cn

x− cn

+
A1(x− a1) +B1

(x− a1)2 + b21
+ · · · + Am(x− am) +Bm

(x − am)2 + b2m
, (34.5)
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for some constants Ci, 1 ≤ j ≤ n, and Aj , Bj , 1 ≤ j ≤ m that we have to
determine. The motivation to rewrite p(x)/q(x) in this way is that we can
then compute an integral of p(x)/q(x) by applying the formulas (34.1)–
(34.3) to integrate the individual terms on the right-hand side of (34.5) as
in the example above.

Example 34.6. For p(x) = q(x) = (x − 1)/(x2 − x − 2) with q(x) =
(x− 2)(x+ 1) we have

x− 1
x2 − x− 2

=
x− 1

(x − 2)(x+ 1)
=

1/3
x− 2

+
2/3
x+ 1

,

and thus
∫ x

x0

s− 1
s2 − s− 2

ds =
1
3

∫ x

x0

1
s− 2

ds+
2
3

∫ x

x0

1
s+ 1

ds

=
1
3
[log(s− 2)]s=x

s=x0
+

2
3
[log(s+ 1)]s=x

s=x0
.

The rationale for the expansion (34.5) is simply that if we ask for the
most general sum of rational functions with denominators of degrees 1 and 2
that can yield p(x)/q(x), where q(x) is the common denominator for the
sum, then we get precisely the right-hand side of (34.5). In particular if the
terms on the right had numerators of any higher degree, then p(x) would
have to have degree greater than q(x).

The constants Ci, Aj and Bj in (34.5) can be found by rewriting the
right-hand side of (34.5) with a common denominator.

Example 34.7. In the last example with q(x) = (x−2)(x+1), we find that

C1

x− 2
+

C2

x+ 1
=
C1(x+ 1) + C2(x− 2)

(x− 2)(x+ 1)
=

(C1 + C2)x+ (C1 − 2C2)
(x− 2)(x+ 1)

,

which equals
x− 1

(x− 2)(x+ 1)

if and only if
C1 + C2 = 1 and C1 − 2C2 = −1,

that is if C1 = 1/3 and C2 = 2/3.

Since it is cumbersome to compute the constants by dealing with the frac-
tions, we usually rewrite the problem by multiplying both sides of (34.5)
by the common denominator.

Example 34.8. We multiply both sides of

x− 1
(x− 2)(x+ 1)

=
C1

x− 2
+

C2

x+ 1
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by (x− 2)(x+ 1) to get

x− 1 = C1(x+ 1)C2(x− 2) = (C1 + C2)x+ (C1 − 2C2).

Equating coefficients, we find C1 +C2 = 1 and C1−2C2 = −1, which yields
C1 = 1/3 and C2 = 2/3.

Example 34.9. To integrate f(x) = (5x2−3x+6)/((x−2)(TS
o (x+1)2+22)),

we begin by writing the partial fraction expansion

5x2 − 3x+ 6
(x− 2)((x+ 1)2 + 22)

=
C

x− 2
+
A(x + 1) +B

(x+ 1)2 + 22
.

To determine the constants, we multiply both sides by (x−2)((x+1)2+22))
to obtain

5x2 − 3x+ 6 = C((x + 1)2 + 22) + (A(x + 1) +B)(x− 2)

= (C +A)x2 + (2C − 2A+B)x+ (4C − 2A− 2B).

Equating coefficients, we find that C + A = 0, 2C − 2A + B = 1 and
5C − 2A − 2B = 0, that is C = 2, A = 3 and B = −1. Therefore we find
that

∫ x

x0

5s2 − 3s+ 6
(s− 2)((s+ 1)2 + 22))TS

p ds

= 2
∫ x

x0

1
s− 2

ds+
∫ x

x0

3(s+ 1) − 1
(s+ 1)2 + 22

ds

= 2
∫ x

x0

1
s− 2

ds+ 3
∫ x

x0

s+ 1
(s+ 1)2 + 22

ds−
∫ x

x0

1
(s+ 1)2 + 22

ds

= 2
(
log |x− 2| − log |x0 − 2|

)

+
3
2
(
log((x+ 1)2 + 4) − log((x0 + 1)2 + 4)

)

− 1
2

(

arctan
(
x+ 1

2

)

− arctan
(
x0 + 1

2

))

.

In the case that some of the factors in the factorization of the denomi-
nator (34.4) are repeated, i.e. some of the roots have multiplicity greater
than one, then we have to modify the partial sum expansion (34.5). We do
not write out a general case because it is a mess and nearly unreadable,
we just note that the principle for determining the correct partial fractions
is always to write down the most general sum that can give the indicated
common denominator.

Example 34.10. The general partial fraction expansion of f(x) = x2/
((x− 2)(x+ 1)2) has the form

x2

(x− 2)(x+ 1)2
=

C1

x− 2
+

C2,1

x+ 1
+

C2,2

(x+ 1)2
,

TS
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for constants C1, C2,1 and C2,2 because all of the terms on the right-hand
will yield the common denominator (x− 2)(x+1)2. Multiplying both sides
by the common denominator and equating coefficients as usual, we find
that C1 = 4/9, C2,1 = 5/9 and C2,2 = −3/9.

In general if q(x) has the multiple factor (x− ci)L the term Ci

x−ci
in the

partial fraction expansion (34.5) should be replaced by the sum of fractions
∑l=L

l=1
Ci,l

(x−c)l . There is a corresponding procedure for multiple factors of the
form ((x− a)2 + b2)L.

We have discussed how to integrate rational functions p(x)/q(x) where
deg p < deg q and q is factored into a product of linear and irreducible
quadratic polynomials. Now we discuss removing these restrictions. First
we deal with the factorization of the denominator q(x). The Fundamen-
tal Theorem of Algebra says that a polynomial q of degree n with real
coefficients has exactly n roots and hence it can be factored into a prod-
uct of n linear polynomials with possibly complex coefficients. However,
because the polynomial q has real coefficients, the complex roots always
come in complex conjugate pairs, i.e. if r is a root of q then so is r̄.
This means that there are an even number of linear factors of q corre-
sponding to complex roots and furthermore we can combine the factors
corresponding to conjugate roots to get quadratic factors with real co-
efficients. For example, (x − 3 + i)(x − 3 − i) = (x − 3)2 + 1. There-
fore every polynomial q(x) can theoretically be factored into a product
k(x− c1) · · · (x− cn)((x − a1)2 + b21) · · · ((x− am)2 + b2m).

However, we caution that this theoretical result does not carry over in
practice to situations in which the degree of q is large. To determine the
factorization of q, we must determine the roots of q. In the problems and
examples, we stick to cases in which the roots are simple, relatively small
integers. But in general we know that the roots can be any kind of algebraic
number which we can only approximate. Unfortunately it turns out that it
is extremely difficult to determine the roots of a polynomial of high degree,
even using Newton’s method. So the method of partial fractions is used only
for low degree polynomials in practice, though it is a very useful theoretical
tool.

Finally we remove the restriction that deg p < deg q. When the degree
of the numerator polynomial p(x) is ≥ the degree of the denominator poly-
nomial q(x), we first use polynomial division to rewrite f(x) as the sum of
a polynomial s(x) and a rational function r(x)

q(x) for which the degree of the
numerator r(x) is less than the degree of the denominator q(x).

Example 34.11. For f(x) = (x3 − x)/(x2 + x+ 1), we divide to get f(x) =
x− 1 + (1 − x)/(x2 + x+ 1), so that

∫ x̄

0

x3

x2 + x+ 1
dx =

[
1
2
x2 − x

]x=x̄

x=0

+
∫ x̄

0

1 − x

x2 + x+ 1
dx.
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34.4 Products of Polynomial and Trigonometric
or Exponential Functions

To integrate the product of a polynomial and a trigonometric or exponential
function, we use integration by parts repeatedly to reduce the polynomial
to an constant.

Example 34.12. To compute a primitive function of x cos(x), we inte- grate
by parts once

∫ x

0

y cos(y) dy = [y sin(y)]y=x
y=0 −

∫ x

0

sin(y) dy = x sin(x) + cos(x) + 1.

To handle higher order polynomials, we use integration by parts several
times.

Example 34.13. We have

∫ x

0

s2es ds = s2(es)s=x
s=0 − 2

∫ x

0

ses ds

= [s2es]s=x
s=0 − 2

(

[ses]s=x
s=0 −

∫ x

0

es ds

)

= [s2es)TS
q s=x

s=0 − 2
(
[ses]s=x

s=0 − [es]s=x
s=0

)

= x2ex − 2xex + 2ex − 2.

34.5 Combinations of Trigonometric
and Root Functions

To compute a primitive function of sin(
√
y) for x > 0, we set y = t2 and

obtain by using partial integration

∫ x

0

sin(
√
y) dy =

∫ √
x

0

2t sin(t) dt = [−2t cos(t)]t=
√

x
t=0 + 2

∫ √
x

0

cos(t) dt

= −2
√
x cos(

√
x) + 2 sin(

√
x).
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34.6 Products of Exponential and Trigonometric
Functions

To compute a primitive function of ey sin(y), we use repeated integration
by parts as follows

∫ x

0

ey sin(y) dy = [ey sin(y)]y=x
y=0 −

∫ x

0

ey cos(y) dy

= ex sin(x) − [ey cos(y)]y=x
y=0 −

∫ x

0

ey sin(y) dy,

which shows that
∫ x

0

ey sin(y) dy =
1
2
(ex sin(x) − ex cos(x) + 1)

34.7 Products of Polynomials and Logarithm
Functions

To compute a primitive function of x2 log(x), we integrate by parts:

∫ x

1

y2 log(y) dy =
[
y3

3
log(y)

]y=x

y=1

−
∫ x

1

y3

3
1
y
dy =

x3

3
log(x) − x3

9
+

1
9
.

Chapter 34 Problems

34.1. Compute (a)
∫ x
0
t sin(2t) dt (b)

∫ x
0
t2 cos(t) dt (c) intx0 t exp(−2t) dt.

Hint: Integrate by parts.

34.2. Compute (a)
∫ x
1
y log(y) dy (b)

∫ x
1

log(y) dy (c)
∫ x
0

arctan(t) dt
(d)

∫ x
0

exp(−t) cos(2t) dt. Hint: Integrate by parts.

34.3. Compute using the formula
∫ x
0

g′(y)
g(y)

dy = log(g(x))−log(g(0)) the following

integrals. (a)
∫ x
0

y
y2+1

dy (b)
∫ x
0

et

et+1
dt.

34.4. Compute by a suitable change of variable (a)
∫ x
0
y exp(y2) dy

(b)
∫ x
0
y
√
y − 1 dy (c)

∫ x
0

sin(t) cos2(t) dt.

34.5. Compute (a)
∫ x
0

dy
y2−y−2

dy (b)
∫ x
0

y3

y2+2y−3
dy (c)

∫ x
0

dy
y2+2y+5

dy

(d)
∫ x
0

x−x2

(y−1)(y2+2y+5)
dy (e)

∫ x
0

x4

(x−1)(x2+x−6)
dy.
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34.6. Recalling that a function is called even if f(−x) = f(x) and odd if f(−x) =
−f(x) for all x, (a) give examples of even and odd functions (b) sketch their
graphs, and (c) show that

∫ a

−a
f(x) dx = 2

∫ a

0

f(x) dx if f is even,

∫ a

−a
f(x) dx = 0 if f is odd. (34.6)

34.7. Compute (a)
∫ π
−π |x| cos(x) dx (b)

∫ π
−π sin2(x) dx (c)

∫ π
−π x sin2(x) dx

(d)
∫ π
−π arctan(x+ 3x3) dx.



35
Solving Differential Equations Using
the Exponential

. . . he climbed a little further. . . and further. . . and then just a little
further. (Winnie-the-Pooh)

35.1 Introduction

The exponential function plays a fundamental role in modeling and analysis
because of its basic properties. In particular it can be used to solve a variety
of differential equations analytically as we show in this chapter. We start
with generalizations of the initial value problem (31.2) from Chapter The
exponential function:

u′(x) = λu(x) for x > a, u(a) = ua, (35.1)

where λ ∈ R is a constant, with solution

u(x) = exp(λ(x − a))ua for x ≥ a. (35.2)

Analytic solutions formulas may give very important information and
help the intuitive understanding of different aspects of a mathematical
model, and should therefore be kept as valuable gems in the scientist and en-
gineer’s tool-bag. However, useful analytical formulas are relatively sparse
and must be complemented by numerical solutions techniques. In the Chap-
ter The General Initial Value Problem we extend the constructive numeri-
cal method for solving (35.1) to construct solutions of general initial value
problems for systems of differential equations, capable of modeling a very
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large variety of phenomena. We can thus numerically compute the solution
to just about any initial value problem, with more or less computational
work, but we are limited to computing one solution for each specific choice
of data, and getting qualitative information for a variety of different data
may be costly. On the other hand, an analytical solution formula, when
available, may contain this qualitative information for direct information.

An analytical solution formula for a differential equation may thus be
viewed as a (smart and beautiful) short-cut to the solution, like evaluating
an integral of a function by just evaluating two values of a corresponding
primitive function. On the other hand, numerical solution of a differen-
tial equation is like a walk along a winding mountain road from point A
to point B, without any short-cuts, similar to computing an integral by
numerical quadrature. It is useful to be able to use both approaches.

35.2 Generalization to u′(x) = λ(x)u(x) + f(x)

The first problem we consider is a model in which the rate of change of
a quantity u(x) is proportional to the quantity with a variable factor of
proportionality λ(x), and moreover in which there is an external “forcing”
function f(x). The problem reads:

u′(x) = λ(x)u(x) + f(x) for x > a, u(a) = ua, (35.3)

where λ(x) and f(x) are given functions of x, and ua is a given initial value.
We first describe a couple physical situations being modeled by (35.3).

Example 35.1. Consider for time t > 0 the population u(t) of rabbits
in West Virginia with inital value u(0) = u0 given, which we assume has
time dependent known birth rate β(t) and death rate δ(t). In general, we
would expect that rabbits will migrate quite freely back and forth across
the state border and that the rates of the migration would vary with the
season, i.e. with time t. We let fi(t) and fo(t) denote the rate of migration
into and out of the state respectively at time t, which we assume to be
known (realistic?). Then the population u(t) will satisfy

u̇(t) = λ(t)u(t) + f(t), for t > a, u(a) = ua, (35.4)

with λ(t) = β(t)− δ(t) and f(t) = fi(t)− fo(t), which is of the form (35.3).
Recall that u̇ = du

dt .

Example 35.2. We model the amount of solute such as salt in a solvent such
as water in a tank in which there is both inflow and outflow, see Fig. 35.1.
We let u(t) denote the amount of solute in the tank at time t and suppose
that we know the initial amount u0 at t = 0. We suppose that a mixture
of solute/solvent, of concentration Ci in say grams per liter, flows into the
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Fig. 35.1. An illustration of a chemical mixing tank

tank at a rate σi liters per second. We assume there is also outflow at a rate
of σo liters per second, and we assume that the mixture in the tank is well
mixed with a uniform concentration C(t) at any time t.

To get a differential equation for u(t), we compute the change u(t+ ∆t)−
u(t) during the interval [t, t+∆t]. The amount of solute that flows into the
tank during that time interval is σiCi∆t, while the amount of solute that
flows out of the tank during that time equals σoC(t)∆t, and thus

u(t+ ∆t) − u(t) ≈ σiCi∆t− σoC(t)∆t, (35.5)

where the approximation improves when we decrease ∆t. Now the concen-
tration at time t will be C(t) = u(t)/V (t) where V (t) is the volume of fluid
in the tank at time t. Substituting this into (35.5) and dividing by ∆t gives

u(t+ ∆t) − u(t)
∆t

≈ σiCi − σo
u(t)
V (t)

and taking the limit ∆t → 0 assuming u(t) is differentiable gives the fol-
lowing differential equation for u,

u̇(t) = − σo

V (t)
u(t) + σiCi.

The volume V (t) is determined simply by the flow rates of fluid in and
out of the tank. If there is initially V0 liters in the tank then at time t,
V (t) = V0 + (σi − σo)t because the flow rates are assumed to be constant.
This gives again a model of the form (35.3):

u̇(t) = − σo

V0 + (σi − σo)t
u(t) + σiCi for t > 0, u(0) = u0. (35.6)
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The Method of Integrating Factor

We now return to derive an analytical solution formula for (35.3), using the
method of integrating factor. To work out the solution formula, we begin
with the special case

u′(x) = λ(x)u(x) for x > a, u(a) = ua, (35.7)

where λ(x) is a given function of x. We let Λ(x) be a primitive function
of λ(x) such that Λ(a) = 0, assuming that λ(x) is Lipschitz continuous on
[a,∞). We now multiply the equation 0 = u′(x)−λ(x)u(x) by exp(−Λ(x)),
and we get

0 = u′(x) exp(−Λ(x)) − u(x) exp(−(x))λ(x) =
d

dx
(u(x) exp(−Λ(x))),

where we refer to exp(−Λ(x)) as an integrating factor because it brought
the given equation to the form d

dx of something, namely u(x) exp(−Λ(x)),
equal to zero. We conclude that u(x) exp(−Λ(x)) is constant and is there-
fore equal to ua since u(a) exp(−Λ(a)) = u(a) = ua. In other words, the
solution to (35.7) is given by the formula

u(x) = exp(Λ(x))ua = eΛ(x)ua for x ≥ a. (35.8)

We can check by differentiation that this function satisfies (35.7), and thus
by uniqueness is the solution. To sum up, we have derived a solution formula
for (35.7) in terms of the exponential function and a primitive function Λ(x)
of the coefficient λ(x).

Example 35.3. If λ(x) = r
x and a = 1 then Λ(x) = r log(x) = log(xr), and

the solution of

u′(x) =
r

x
u(x) for x �= 1, u(1) = 1, (35.9)

is according to (35.8) given by u(x) = exp(r log(x)) = xr. We may define xr

for

Duhamel’s Principle

We now continue with the general problem to (35.3). We multiply by e−Λ(x),
where again Λ(x) is the primitive function of λ(x) satisfying Λ(a) = 0, and
get

d

dx

(
u(x)e−Λ(x)

)
= f(x)e−Λ(x).

Integrating both sides, we see that the solution u(x) satisfying u(a) = ua

can be expressed as

u(x) = eΛ(x)ua + eΛ(x)

∫ x

a

e−Λ(y)f(y) dy. (35.10)
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This formula for the solution u(x) of (35.3), expressing u(x) in terms of the
given data ua and the primitive function Λ(x) of λ(x) satisfying Λ(a) = 0,
is referred to as Duhamel’s principle or the variation of constants formula.

We can check the validity of (35.10) by directly computing the derivative
of u(x):

u′(x) = λeΛ(x)ua + f(x) +
∫ x

0

(TS
rλ(x)eΛ(x)−Λ(y)f(y) dy

= λ(x)
(

eΛ(x)ua +
∫ x

0

eΛ(x)−Λ(y)f(y) dy
)

+ f(x).

Example 35.4. If λ(x) = λ is constant, f(x) = x, a = 0 and u0 = 0, the
solution of (35.3) is given by

u(x) =
∫ x

0

eλ(x−y)y dy = eλx

∫ x

0

ye−λy dy

= eλx

([
− y
λ
e−λy

]y=x

y=0
+
∫ x

0

1
λ
e−λy dy

)

= −x
λ

+
1
λ2

(
eλx − 1

)
.

Example 35.5. In the model of the rabbit population (35.4), consider a sit-
uation with an initial population of 100, the death rate is greater than the
birth rate by a constant factor 4, so λ(t) = β(t) − δ(t) = −4, and there
is a increasing migration into the state, so f(t) = fi(t) − fo(t) = t. Then
(35.10) gives

u(t) = e−4t100 + e−4t

∫ t

0

e4ss ds

= e−4t100 + e−4t

(
1
4
se4s|t0 −

1
4

∫ t

0

e4s ds

)

= e−4t100 + e−4t

(
1
4
te4t − 1

16
e4t +

1
16

)

= 100.0625e−4t +
t

4
− 1

16
.

Without the migration into the state, the population would decrease ex-
ponentially, but in this situation the population decreases only for a short
time before beginning to increase at a linear rate.

Example 35.6. Consider a mixing tank in which the input flow at a rate of
σi = 3 liters/sec has a concentration of Ci = 1 grams/liter, and the outflow
is at a rate of σo = 2 liters/sec, the initial volume is V0 = 100 liters with
no solute dissolved, so u0 = 0. The equation is

u̇(t) = − 2
100 + t

u(t) + 3.

TS
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We find Λ(t) = 2 ln(100 + t) and so

u(t) = 0 + e2 ln(100+t)

∫ t

0

e−2 ln(100+s)3 ds

= (100 + t)2
∫ t

0

(100 + s)−23 ds

= (100 + t)2
(

−3
100 + t

+
3

100

)

=
3

100
t(100 + t).

As expected from the conditions, the concentration increases steadily until
the tank is full.

35.3 The Differential Equation u′′(x) − u(x) = 0

Consider the second order initial value problem

u′′(x) − u(x) = 0 for x > 0, u(0) = u0, u
′(0) = u1, (35.11)

with two initial conditions. We can write the differential equation u′′(x) −
u(x) = 0 formally as

(D + 1)(D − 1)u = 0,

where D = d
dx , since (D + 1)(D − 1)u = D2u −Du +Du − u = D2u− u.

Setting w = (D−1)u, we thus have (D+1)w = 0, which gives w(x) = ae−x

with a = u1−u0, since w(0) = u′(0)−u(0). Thus, (D−1)u = (u1−u0)e−x,
so that by Duhamel’s principle

u(x) = exu0 +
∫ x

0

ex−y(u1 − u0)e−y dy

=
1
2
(u0 + u1)ex +

1
2
(u0 − u1)e−x.

We conclude that the solution u(x) of u′′(x) − u(x) = 0 is a linear combi-
nation of ex and e−x with coefficients determined by the initial conditions.
The technique of “factoring” the differential equation (D2 − 1)u = 0 into
(D + 1)(D − 1)u = 0, is very powerful and we now proceed to follow up
this idea.
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35.4 The Differential Equation
∑n

k=0 akD
ku(x) = 0

In this section, we look for solutions of the linear differential equation with
constant coefficients:

n∑

k=0

akD
ku(x) = 0 for x ∈ I, (35.12)

where the coefficients ak are given real numbers, and I is a given interval.
Corresponding to the differential operator

∑n
k=0 akD

k, we define the poly-
nomial p(x) =

∑n
k=0 akx

k in x of degree n with the same coefficients ak as
the differential equation. This is called the characteristic polynomial of the
differential equation. We can now express the differential operator formally
as

p(D)u(x) =
n∑

k=0

akD
ku(x).

For example, if p(x) = x2 − 1 then p(D)u = D2u− u.
The technique for finding solutions is based on the observation that the

exponential function exp(λx) has the following property:

p(D) exp(λx) = p(λ) exp(λx), (35.13)

which follows from repeated use of the Chain rule. This translates the
differential operator p(D) acting on exp(λx) into the simple operation of
multiplication by p(λ). Ingenious, right?

We now seek solutions of the differential equation p(D)u(x) = 0 on an
interval I of the form u(x) = exp(λx). This leads to the equation

p(D) exp(λx) = p(λ) exp(λx) = 0, for x ∈ I,

that is, λ should be a root of the polynomial equation

p(λ) = 0. (35.14)

This algebraic equation is called the characteristic equation of the differ-
ential equation p(D)u = 0. To find the solutions of a differential equa-
tion p(D)u = 0 on the interval I, we are thus led to search for the roots
λ1, . . . λn, of the algebraic equation p(λ) = 0 with corresponding solutions
exp(λ1x), . . . , exp(λnx). Any linear combination

u(x) = α1 exp(λ1x) + . . .+ αn exp(λnx), (35.15)

with αi real (or complex) constants, will then be a solution of the differential
equation p(D)u = 0 on I. If there are n distinct roots λ1, . . . , λn, then the
general solution of p(D)u = 0 has this form. The constants αi will be
determined from initial or boundary conditions in a specific situation.
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If the equation p(λ) = 0 has a multiple roots λi of multiplicity ri, then the
situation is more complicated. It can be shown that the solution is a sum
of terms of the form q(x) exp(λix), where q(x) is a polynomial of degree at
most ri − 1. For example, if p(D) = (D − 1)2, then the general solution of
p(D)u = 0 has the form u(x) = (α0 + α1x) exp(x). In the Chapter N-body
systems below we study the the constant coefficient linear second order
equation a0 + a1Du+ a2D

2u = 0 in detail, with interesting results!
The translation from a differential equation p(D)u = 0 to an algebraic

equation p(λ) = 0 is very powerful, but requires the coefficients ak of p(D)
to be independent of x and is thus not very general. The whole branch of
Fourier analysis is based on the formula (35.13).

Example 35.7. The characteristic equation for p(D) = D2−1 is λ2 − 1 = 0
with roots λ1 = 1, λ2 = −1, and the corresponding general solution is given
by α1 exp(x) + α2 exp(−x). We already met this example just above.

Example 35.8. The characteristic equation for p(D) = D2 +1 is λ2 +1 = 0
with roots λ1 = i, λ2 = −i, and the corresponding general solution is given
by

α1 exp(ix) + α2 exp(−ix).

with the αi complex constants. Taking the real part, we get solutions of
the form

β1 cos(x) + β2 sin(x)

with the βi real constants.

35.5 The Differential Equation∑n
k=0 akD

ku(x) = f(x)

Consider now the nonhomogeneous differential equation

p(D)u(x) =
n∑

k=0

akD
ku(x) = f(x), (35.16)

with given constant coefficients ak, and a given right hand side f(x). Sup-
pose up(x) is any solution of this equation, which we refer to as a particular
solution. Then any other solution u(x) of p(D)u(x) = f(x) can be written

u(x) = up(x) + v(x)

where v(x) is a solution of the corresponding homogeneous differential
equation p(D)v = 0. This follows from linearity and uniqueness since
p(D)(u− up) = f − f = 0.
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Example 35.9. Consider the equation (D2 − 1)u = f(x) with f(x) = x2.
A particular solution is given by up(x) = −x2 − 2, and thus the general
solution is given by

u(x) = −x2 − 2 + α1 exp(x) + α2 exp(−x).

35.6 Euler’s Differential Equation

In this section, we consider Euler’s equation

a0u(x) + a1xu
′(x) + a2x

2u′′(x) = 0, (35.17)

which has variable coefficients aix
i of a very particular form. Following

a grand mathematical tradition, we guess, or make an Ansatz on the form
of the solution, and assume that u(x) = xm for some m to be determined.
Substituting into the differential equation, we get

a0x
m + a1x(xm)′ + a2x

2(xm)′′ = (a0 + (a1 − 1)m+ a2m
2)xm,

and we are thus led to the auxiliary algebraic equation

a0 + (a1 − 1)m+ a2m
2 = 0

in m. Letting the roots of this equation be m1 and m2, assuming the roots
are real, any linear combination

α1x
m1 + α2x

m2

Fig. 35.2. Leonard Euler: “. . . I soon found an opportunity to be introduced to
a famous professor Johann Bernoulli. . . True, he was very busy and so refused
flatly to give me private lessons; but he gave me much more valuable advice to
start reading more difficult mathematical books on my own and to study them
as diligently as I could; if I came across some obstacle or difficulty, I was given
permission to visit him freely every Sunday afternoon and he kindly explained to
me everything I could not understand. . . ”
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is a solution of (35.17). In fact the general solution of (35.17) has this form
if m1 and m2 are distinct and real.

Example 35.10. The auxiliary equation for the differential equation x2u′′−
3
2xu

′ − 2u = 0 is m2 − 7
2m − 2 = 0 with roots m1 = − 1

2 and m2 = 4 and
thus the general solution takes the form

u(x) = α1
1√
x

+ α2x
4.

Leonard Euler (1707-83) is the mathematical genius of the 18th century,
with an incredible production of more than 800 scientific articles half of
them written after he became completely blind in 1766, see Fig. 35.2.

Chapter 35 Problems

35.1. Solve the initial value problem (35.7) with λ(x) = xr, where r ∈ R, and
a = 0.

35.2. Solve the following initial value problems: a) u′(x) = 8xu(x), u(0) = 1,

x > 0, b) (15x+1)u(x)
u′(x) = 3x, u(1) = e, x > 1, c) u′(x) + x

(1−x)(1+x)u = 0,

u(0) = 1, x > 0.

35.3. Make sure that you got the correct answer in the previous problem, part c).
Will your solution hold for x > 1 as well as x < 1?

35.4. Solve the following initial value problems: a) xu′(x)+u(x) = x, u(1) = 3
2
,

x > 1, b) u′(x) + 2xu = x, u(0) = 1, x > 0, c) u′(x) = x+u
2
, u(0) = 0, x > 0.

35.5. Describe the behavior of the population of rabbits in West Virginia
in which the birth rate exceeds the death rate by 5, the initial population is
10000 rabbits, and (a) there is a net migration out of the state at a rate of 5t
(b) there is a net migration out of the state at a rate of exp(6t).

35.6. Describe the concentration in a mixing tank with an initial volume of
50 liters in which 20 grams of solute are dissolved, there is an inflow of 6 liters/sec
with a concentration of 10 grams/liter and an outflow of 7 liters/sec.



36
Improper Integrals

All sorts of funny thoughts, run around my head. (When We Were
Very Young, Milne)

36.1 Introduction

In some applications, it is necessary to compute integrals of functions that
are unbounded at isolated points or to compute integrals of functions over
unbounded intervals. We call such integrals improper, or sometimes (more
properly) generalized integrals. We compute these integrals using the basic
results on convergence of sequences that we have already developed.

We now consider these two kinds of improper integrals: integrals over
unbounded intervals and integrals of unbounded functions.

36.2 Integrals Over Unbounded Intervals

We start considering the following example of an integral over the un-
bounded interval [0,∞):

∫ ∞

0

1
1 + x2

dx.
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The integrand f(x) = (1 + x2)−1 is a smooth (positive) function that we
can integrate over any finite interval [0, n] to get,

∫ n

0

1
1 + x2

dx = arctan (n). (36.1)

Now we consider what happens as n increases, that is we integrate f over
increasingly longer intervals. Since limn→∞ arctan (n) = π/2, we may write

lim
n→∞

∫ n

0

1
1 + x2

dx =
π

2
,

and we are thus led to define
∫ ∞

0

1
1 + x2

dx = lim
n→∞

∫ n

0

1
1 + x2

dx =
π

2
.

We generalize in the obvious way to an arbitrary (Lipschitz continuous)
function f(x) defined for x > a, and thus define

∫ ∞

a

f(x) dx = lim
n→∞

∫ n

a

f(x) dx (36.2)

granted that the limit is defined and is finite. In this case, we say the
improper integral is convergent (or is defined) and that the function f(x)
is integrable over [a,∞). Otherwise, we say the integral is divergent (or is
undefined), and that f(x) is not integrable over [a,∞).

If the function f(x) is positive, then in order for the integral
∫∞

a f(x) dx
to be convergent, the integrand f(x) has to get sufficiently small for large
values of x, since otherwise limn→∞

∫ n

a f(x) dx = ∞ and the integral is
divergent. We saw above that the function 1

1+x2 was decaying to zero suf-
ficiently quickly for large values of x to be integrable over [a,∞).

Consider now the function 1
1+x with a less quick decay as x → ∞. Is it

integrable on [0,∞)? Well, we have
∫ n

0

1
1 + x

dx =
[
log(1 + x)

]n

0
= log(1 + n),

and since
log(1 + n) → ∞ as n→ ∞

although the divergence is slow, we understand that
∫∞
0

1
1+x dx is divergent.

Example 36.1. The improper integral
∫ ∞

1

dx

xα

is convergent for α > 1, since

lim
n→∞

∫ n

1

dx

x−α
= lim

n→∞

[

−x
−(α−1)

α− 1

]n

1

=
1

α− 1
.
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We can sometimes show that an improper integral exists even when we
can not compute its value.

Example 36.2. Consider the improper integral
∫ ∞

1

e−x

x
dx.

Since f(x) = e−x

x > 0 for x > 1, we see that the sequence {In}∞n=1, with

In =
∫ n

1

e−x

x
dx

is increasing. By Chapter Optimization we know that {In}∞n=1 will have
a limit if we only can show that {In}∞n=1 is bounded above. Since trivially
1/x ≤ 1 if x ≤ 1, we have for all n ≥ 1

In ≤
∫ n

1

e−x dx = e−1 − e−n ≤ e−1.

We conclude that
∫∞
1

e−x

x dx converges. Note that we may restrict n to
take integer values because the integrand e−x/x tends to zero as x tends
to infinity.

We may also compute integrals of the form
∫ ∞

−∞
f(x) dx.

We do this by choosing an arbitrary point −∞ < a <∞ and defining
∫ ∞

−∞
f(x) dx =

∫ a

−∞
f(x) dx +

∫ ∞

a

f(x) dx

= lim
m→−∞

∫ a

m

f(x) dx + lim
n→∞

∫ n

a

f(x) dx,
(36.3)

where we compute the two limits independently and both must be defined
and finite for the integral to exist.

36.3 Integrals of Unbounded Functions

We begin this section by considering the integral

∫ b

a

f(x) dx,
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where f(x) is unbounded at a, i.e. limx↓a f(x) = ±∞. We consider the
following example: ∫ 1

0

1√
x
dx.

The function 1√
x

is unbounded on (0, 1], but bounded and Lipschitz con-
tinuous on [ε, 1] for any 1 ≥ ε > 0. This means that the integrals

Iε =
∫ 1

ε

1√
x
dx = 2 − 2

√
ε (36.4)

are defined for any 1 ≥ ε > 0, and evidently

lim
ε↓0→∞

Iε = 2,

where we recall that ε ↓ 0 means that ε tends to zero through positive
values. It is thus natural to define

∫ 1

0

1√
x
dx = lim

ε↓0

∫ 1

ε

1√
x
dx = 2.

In general if f(x) is unbounded close to a, then we define

∫ b

a

f(x) dx = lim
s↓a

∫ b

s

f(x) dx, (36.5)

and if f(x) is unbounded at b then we define

∫ b

a

f(x) dx = lim
s↑a

∫ s

a

f(x) dx (36.6)

when these limits are defined and finite. As above, we say the improper
integrals are convergent and defined if the limits exist and are finite, and
otherwise say the integrals are divergent and not defined.

We may naturally extend this definition to the case when f(x) is un-
bounded at a point a < c < b by defining

∫ b

a

f(x) dx = lim
∫ c

a

f(x) dx+ lim
∫ b

c

f(x) dx

= lim
s↑c

∫ s

a

f(x) dx + lim
t↓c

∫ b

t

f(x) dx

(36.7)

where the two limits are computed independently and must both be defined
and finite for the integral to converge.
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Chapter 36 Problems

36.1. If possible, compute the following integrals

1.

∫ ∞

0

x

(1 + x2)2
dx

2.

∫ ∞

−∞
xe−x

2
dx

3.

∫ 1

0

1√
1 − x

dx

4.

∫ π

0

cos(x)

(1 − sin(x))1/3
dx

36.2. Prove that if
∫ ∞
0

|f(x)| dx is convergent, then so is
∫∞
0
f(x) dx, that is,

absolute convergence implies convergence.

36.3. Prove that
∫
B
‖x‖−α dx, where B = {x ∈ R

d : ‖x‖ < 1}, is convergent if
α < d for d = 1, 2, 3.





37
Series

If you disregard the very simplest cases, there is in all of mathematics
not a single series whose sum has been rigorously determined. In
other words, the most important part of mathematics stand without
a foundation. (Abel 1802–1829)

37.1 Introduction

In this chapter we consider the concept of series, which is a sum of numbers.
We distinguish between a finite series, where the sum has a finite number
of terms, and an infinite series with an infinite number of terms. A finite
series does not pose any mysteries; we can, at least in principle, compute
the sum of a finite series by adding the terms one-by-one, given enough
time. The concept of an infinite series requires some explanation, since we
cannot actually add an infinite number of terms one-by-one, and we thus
need to define what we mean by an “infinite sum”.

The concept of infinite series has a central role in Calculus, because
a basic idea has been to seek to express “arbitrary” functions in terms
of series as sums of simple terms. This was the grand idea of Fourier who
thought of representing general functions as sums of trigonometric functions
in the form of Fourier series, and Weierstrass who tried to do the same with
monomials or polynomials in the form of power series. There are limitations
to both Fourier and power series and the role of such series is today largely
being taken over by computational methods. We therefore do not go into



546 37. Series

any excessive treatment of series, but we do present some important basic
facts, which are useful to know.

We recall that we already met one infinite series, namely the geometric
series

∞∑

i=0

ai = 1 + a+ a2 + a3 + · · · ,

where a is a real number. We determined the sum of this infinite series in
the case |a| < 1 by first computing the partial sum of order n:

sn =
n∑

i=0

ai = 1 + a+ a2 + · · · + an =
1 − an+1

1 − a
.

by summing the terms ai with i ≤ n. We then made the observation that
if |a| < 1, then

lim
n→∞

sn = lim
n→∞

1 − an+1

1 − a
=

1
1 − a

,

and so we defined for |a| < 1 the sum of the infinite geometric series to be

∞∑

i=0

ai = lim
n→∞

n∑

i=0

ai =
1

1 − a
.

We note that if |a| ≥ 1, then we had to leave the sum of the geometric se-
ries

∑∞
i=0 a

i undefined. If |a| ≥ 1, then |sn−sn−1| = |an| ≥ 1, and therefore
{sn}∞n=0 is not a Cauchy sequence, and thus limn→∞ sn = limn→∞

∑n
i=0 a

i

does not exist. Evidently, a necessary condition for convergence is that the
terms ai tend to zero as i tends to infinity.

37.2 Definition of Convergent Infinite Series

We now generalize these ideas to arbitrary infinite series. Thus let {an}∞n=0

denote a sequence of real numbers and consider the sequence of partial sums
{sn}∞n=0, where

sn =
n∑

i=0

ai = a0 + a1 + · · · + an (37.1)

is the partial sum of order n. We now say that the series
∑∞

i=0 ai is con-
vergent if the corresponding sequence of partial sums {sn}∞n=0 converges,
and we then write

∞∑

i=0

ai = lim
n→∞

sn = lim
n→∞

n∑

i=0

ai, (37.2)

which we refer to as the sum of the series. The convergence of a series∑∞
i=1 ai is thus reduced to the convergence of the sequence of it’s partial
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sums. All convergence issues for a series are handled in this way by reduc-
tion to convergence of sequences. This chapter therefore may be viewed as
a direct gives a direct continuation of Chapters Sequences and limits and
Real numbers. In particular, we understand as in the case of a geometric
series, that a necessary condition for convergence of a series

∑∞
i=0 ai is

that the terms ai tend to zero as i tends to infinity. However, this condi-
tion is not sufficient, as we should know from our previous experience with
sequences, and as we will see again below.

Note that we can similarly consider series of the form
∑∞

i=1 ai or
∑∞

i=m ai

for any integer m.
Note that in a few special cases like the geometric series, we can actually

find an analytic formula for the sum of the series. However, for most series∑∞
i=0 ai this is not possible, or may be so be tricky that we can’t make

it. Of course, we can then usually compute an approximation by directly
computing a partial sum sn =

∑n
i=0 ai for some appropriate n, that is,

if n is not too big and the terms ai not too difficult to evaluate. To then
estimate the error, we are led to estimate the remainder

∑∞
i=n+1 ai. Thus

we see a need to be able to analytically estimate the sum of a series, which
may be easier than to analytically compute the exact sum.

In particular, such estimation may be used to decide if a series is conver-
gent or not, which of course is an important issue because playing around
with divergent series cannot have any meaning. In this pursuit, it is nat-
ural to distinguish between series in which all of the terms have the same
sign and those in which the terms can have different signs. It may be more
difficult to determine convergence for a series in which the terms can have
different signs because of the possibility of cancellation between the terms.

Further, if we bound a series remainder
∑∞

i=n+1 ai by using the triangle
inequality, we get

|
∞∑

i=n+1

ai| ≤
∞∑

i=n+1

|ai|,

where the series on the right hand side is positive. So, positive series are of
prime importance and we now turn to this topic.

37.3 Positive Series

A series
∑∞

i=1 ai is said to be a positive series, if ai ≥ 0 for i = 1, 2, . . . .
The important point about a positive series is that the sequence of partial
sums is non-decreasing, because

sn+1 − sn =
n+1∑

i=1

ai −
n∑

i=1

ai = an+1 ≥ 0. (37.3)
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In Chapter Optimization below we shall prove that a nondecreasing se-
quence converges if and only if the sequence is bounded above. If we accept
this as a fact, we understand that a positive series is convergent if and only
if the sequence of partial sums is bounded above, that is there is a con-
stant C such that

n∑

i=1

ai ≤ C for n = 1, 2, . . . , . (37.4)

This gives a definite way to check convergence, which we state as a theorem:

Theorem 37.1 A positive series converges if and only if the sequence of
partial sums is bounded above.

This result does not apply if the series has terms with different signs. For
example, the series

∑∞
i=0(−1)i = 1 − 1 + 1 − 1 + 1 . . . has bounded partial

sums, but is not convergent since (−1)i does not tend to zero as i tends to
infinity.

Example 37.1. We can sometimes use an integral to bound the partial sums
of a positive series and thus to prove convergence or estimate remainders.
As an example, consider the positive series

∑∞
i=2

1
i2 . The partial sum

sn =
n∑

i=2

1
i2

may be viewed as a quadrature formula for the integral of
∫ n

1
x−2 dx, see

Fig. 37.1.

More precisely, we see that

∫ n

1

x−2 dx =
∫ 2

1

x−2 dx+
∫ 3

2

x−2 dx+ · · · +
∫ n

n−1

x−2 dx

≥
∫ 2

1

1
22
dx+

∫ 3

2

1
32
dx + · · · +

∫ n

n−1

1
n2

dx

≥ 1
22

+
1
32

+ · · · + 1
n2

= sn.

Since ∫ n

1

x−2 dx =
(

1 − 1
n

)

≤ 1,

we conclude that sn ≤ 1 for all n and therefore the series
∑∞

i=2
1
i2 is conver-

gent. To compute an approximation of the sum of the series, we of course
compute a partial sum sn with n sufficiently large. To estimate the remain-
der we may of course use a similar comparison, see Problem 37.5.
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1 2 3

f(x) = x−2

area 2−2

area 3−2

Fig. 37.1. The relation between
∫ n
1
x−2 dx and

∑n
i=2 i

−2

Example 37.2. The positive series
∑∞

i=1
1

i+i2 converges because for all n

sn =
n∑

i=1

1
i+ i2

≤
n∑

i=1

1
i2

≤ 2

by the previous example.

Similarly, a negative series with all terms non-positive, converges if and
only if its partial sums are bounded below.

Example 37.3. For the alternating series

∞∑

i=1

(−1)i

i
,

we have that the difference between two successive partial sums

sn − sn−1 =
(−1)n

n

alternates in sign, and thus the sequence of partial sums is not monotone,
and therefore we cannot decide convergence or not from the above theorem.
We shall return to this series below and prove that it is in fact convergent.
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37.4 Absolutely Convergent Series

Now we turn to series with terms of different signs. We begin by first
considering series that converge regardless of any cancellation between the
terms. We are motivated by the convergence results for positive series.
A series

∑∞
i=1 ai is said to be absolutely convergent if the series

∞∑

i=1

|ai|

converges. By the previous result we know that a series
∑∞

i=1 ai is abso-
lutely convergent if and only if the sequence {ŝn} with

ŝn =
n∑

i=1

|ai|, (37.5)

is bounded above.
We shall now prove that an absolutely convergent series

∑∞
i=1 ai is con-

vergent. By the triangle inequality we have for m > n,

|sm − sn| =

∣
∣
∣
∣
∣

m∑

n

ai

∣
∣
∣
∣
∣
≤

m∑

n

|ai| = |ŝm − ŝn|. (37.6)

Now, since we can make |ŝm− ŝn| arbitrarily small by taking m and n large,
because

∑∞
i=1 ai is absolutely convergent and thus {ŝn}∞n=1 is a Cauchy se-

quence, we conclude that {sn}∞n=1 is a Cauchy sequence and therefore con-
verges and thus the series

∑∞
i=1 ai is convergent. We state this fundamental

result as a theorem:

Theorem 37.2 An absolutely convergent series is convergent.

Example 37.4. The series
∑∞

i=1
(−1)i

i2 is convergent because
∑∞

i=1
1
i2 is

convergent.

37.5 Alternating Series

The convergence of a general series with terms of “random” sign may be
very difficult to analyze because of cancellation of terms. We now consider
a special case with a regular pattern to the signs of the terms:

∞∑

i=0

(−1)iai (37.7)

where ai ≥ 0 for all i. This is called an alternating series since the signs of
the terms alternate. We shall now prove that if ai+1 ≤ ai for i = 0, 1, 2 . . .
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and limi→∞ ai = 0, then the alternating series converges. The key obser-
vation is that the sequence {sn} of partial sums satisfies

s1 ≤ s3 ≤ s5 ≤ . . . s2j+1 ≤ s2i ≤ . . . ≤ s4 ≤ s2 ≤ s0, (37.8)

which shows that both limits limj→∞ s2j+1 and limi→∞ s2i exist. Since
ai → 0 as i tends to infinity, limj→∞ s2j+1 = limi→∞ s2i, and thus
limn→∞ sn exists and convergence of the series

∑∞
i=0(−1)iai follows. We

summarize in the following theorem first stated and proved by Leibniz:

Theorem 37.3 An alternating series with the property that the modulus
of its terms tends monotonically to zero, converges.

Example 37.5. The harmonic series

∞∑

i=1

(−1)i−1

i
= 1 − 1

2
+

1
3
− 1

4
+ · · ·

converges. We now proceed to show that this series is not absolutely con-
vergent.

37.6 The Series
∑∞

i=1
1
i Theoretically Diverges!

We shall now show that the harmonic series
∑∞

i=1
(−1)i

i is not absolutely
convergent, i.e. we shall prove that the series

∞∑

i=1

1
i

= 1 +
1
2

+
1
3

+
1
4

+ · · ·

diverges. We do this by proving that the sequence {sn}∞n=1 of partial sums

sn =
n∑

i=1

1
i

can become arbitrarily large if n is large enough. To see this we group the
terms of a partial sum as follows:

1 +
1
2

+
1
3

+
1
4

+
1
5

+
1
6

+
1
7

+
1
8

+
1
9

+
1
10

+
1
11

+
1
12

+
1
13

+
1
14

+
1
15

+
1
16

+
1
17

+ · · · + 1
32

+ · · ·
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The first “group” is 1/2. The second group is

1
3

+
1
4
≥ 1

4
+

1
4

=
1
2
.

The third group is

1
5

+
1
6

+
1
7

+
1
8
≥ 1

8
+

1
8

+
1
8

+
1
8

=
1
2
.

The fourth group

1
9

+
1
10

+
1
11

+
1
12

+
1
13

+
1
14

+
1
15

+
1
16

has 8 terms that are larger than 1/16, so it also gives a sum larger than
8/16 = 1/2. We can continue in this way, taking the next 16 terms, all of
which are larger than 1/32, then the next 32 terms, all of which are larger
than 1/64, and so on. Each time we take a group, we get a contribution to
the overall sum that is larger than 1/2.

When we take n larger and larger, we can combine more and more terms
in this way, making the sum larger in increments of 1/2 each time. The
partial sums therefore just become larger and larger as n increases, which
means the partial sums diverge to infinity.

Note that by the arithmetic rules, the partial sum sn should be the same
whether we compute the sum in the “forward” direction

sn = 1 +
1
2

+
1
3

+ · · · 1
n− 1

+
1
n

or the “backward” direction

sn =
1
n

+
1

n− 1
+ · · · + 1

3
+

1
2

+ 1.

In Fig. 37.2, we list various partial sums in both the forward and back-
ward directions computed using FORTRAN with single precision variables
with about 7 digits of accuracy. Note two things about these results:

First, the computed partial sums sn all become equal when n is large
enough, even though theoretically they should keep increasing to infinity
as n increases. This is because in finite precision the new terms we add
eventually get so small that they effectively give zero contribution. Thus,
although in principle the series diverges, in practice the series appears to
converge on the computer. This gives an illustration of idealism vs realism
in mathematics!

Second, the backward sum is strictly larger than the forward sum! This
is because in the summation a term effectively adds zero when the term is
sufficiently small compared to the current partial sum, and the size of the
partial sums is vastly different if we add in a forward or backward manner.
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n forward sum backward sum

10000 9.787612915039062 9.787604331970214
100000 12.090850830078120 12.090151786804200

1000000 14.357357978820800 14.392651557922360
2000000 15.311032295227050 15.086579322814940
3000000 15.403682708740240 15.491910934448240
5000000 15.403682708740240 16.007854461669920

10000000 15.403682708740240 16.686031341552740
20000000 17.390090942382810
30000000 17.743585586547850
40000000 18.257812500000000
50000000 18.807918548583980

100000000 15.403682708740240 18.807918548583980
200000000 18.807918548583980

1000000000 18.807918548583980

Fig. 37.2. Forward 1 + 1
2

+ · · ·+ 1
n

and backward 1
n

+ 1
n−1

+ · · · + 1
2

+ 1 partial
harmonic sums for various n computed with double precision

37.7 Abel

Niels Henrik Abel (1802–1829), the great mathematical genius of Norway, is
today world famous for his half-page proof from 1824 of the impossibility of
solving polynomial equations of degree larger or equal to five by root-extrac-
tion. This settled a famous problem which had haunted many generations
of mathematicians. However, Abel’s life was short and tragic and his fame
came only after his sudden death at the age of 27. Gauss in Göttingen

Fig. 37.3. Niels Henrik Abel (1802–1829):“ The divergent series are the invention
of the devil, and it is a shame to base on them any demonstration whatsoever.
By using them, one may draw any conclusion he pleases and that is why these
series have produced so many fallacies and so many paradoxes. . . ”



554 37. Series

was indifferent to the proof when it was first presented, based on his view
expressed in his thesis of 1801 that the algebraic solution of an equation
was no better than devising a symbol for the root of the equation and
then saying that the equation had a root equal to the symbol (compare the
square root of two).

Abel tried also unsuccessfully to convince Cauchy on a trip to Paris 1825,
which ended in misery, and he then left for Berlin on borrowed money
but succeeded to produce another master-piece now on so called elliptic
integrals. After returning to a modest position in Christiania he continued
to pour out high quality mathematics while his health was deteriorating.
After a sled journey to visit his girl friend for Christmas 1828 he became
seriously ill and died quickly after.

37.8 Galois

Abel is contemporary with Evariste Galois (1811–32), who independently
1830 proved the same fifth order equation result as Abel, again with no re-
action from Cauchy. Galois was refused twice in the entrance exam to Ecole
Polytechnique apparently after accusing the examiner for posing questions
incorrectly. Galois was imprisoned for a revolutionary speech against King

Fig. 37.4. Evariste Galois: (1811–1832):“ Since the beginning of the century,
computational procedures have become so complicated that any progress by those
means has become impossible, without the elegance which modern mathemati-
cians have brought to bear on their research, and by means of which the spirit
comprehends quickly and in one step a great many computations. It is clear that
elegance, so vaunted and so aptly named, can have no other purpose. . . Go to
the roots, of these calculations! Group the operations. Classify them according to
their complexities rather than their appearances! This, I believe, is the mission of
future mathematicians. This is the road on which I am embarking in this work”
(from the preface to Galois’ final manuscript)
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Louis Philippe 1830, was released in 1832 but soon died after wounds from
a duel about his girl friend, at the age of 21.

Chapter 37 Problems

37.1. Prove that the series
∞∑

i=1

i−α converges if and only if α > 1. Hint: Compare

with a primitive function of x−α.

37.2. Prove that the series

∞∑

i=1

(−1)ii−α converges if and only if α > 0.

37.3. Prove that the following series converges: (a)
∞∑

i=1

e−i. (b)
∞∑

i=1

1 + (−1)i

i2
.

(c)
∞∑

i=1

e−i

i
. (d)

∞∑

i=1

1

(i+ 1)(i+ 4)
.

37.4. Prove that

∞∑

i=1

1

i2 − i
converges. Hint: first show that

1

2
i2− i ≥ 0 for i ≥ 2.

37.5. Estimate the remainder
∞∑

i=n

1

i2
for different values of n.

37.6. Prove that
∞∑

i=1

(−1)i sin(1/i) converges. More difficult: prove that it is not

absolutely convergent.

37.7. Explain in detail why the backward partial sum of the series
∞∑

i=1

1

i
is larger

than the forward sum.





38
Scalar Autonomous Initial Value
Problems

He doesn’tTS
s use long, difficult words, like Owl. (The House at Pooh

Corner, Milne)

38.1 Introduction

In this chapter, we consider the initial value problem for a scalar au-
tonomous non-linear differential equation: Find a function u : [0, 1] → R

such that
u′(x) = f(u(x)) for 0 < x ≤ 1, u(0) = u0, (38.1)

where f : R → R is a given function and u0 a given initial value. We
assume that f : R → R is bounded and Lipschitz continuous, that is, there
are constants Lf and Mf such that for all v, w ∈ R,

|f(v) − f(w)| ≤ Lf |v − w|, and |f(v)| ≤Mf . (38.2)

For definiteness, we choose the interval [0, 1], and we may of course gener-
alize to any interval [a, b].

The problem (38.1) is in general non-linear, since f(v) in general is non-
linear in v, that is, f(u(x)) depends non-linearly on u(x). We have already
in Chapter The exponential function considered the basic case with f linear,
which is the case f(u(x)) = u(x) or f(v) = v. Now we pass on to nonlinear
functions such as f(v) = v2 and others.

Further, we call (38.1) autonomous because f(u(x)) depends on the value
of the solution u(x), but not directly on the independent variable x. A non-
autonomous differential equation has the form u′(x) = f(u(x), x), where
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f(u(x), x) depends on both u(x) and x. The differential equation u′(x) =
xu2(x) is non-autonomous and non-linear with f(v, x) = xv2, while the
equation u′(x) = u(x) defining the exponential is autonomous and linear
with f(v) = v.

Finally, we refer to (38.1) as a scalar problem since f : R → R is a real
valued function of one real variable, that is, v ∈ R and f(v) ∈ R, and
thus u(x) takes real values or u : [0, 1] → R. Below we shall consider
systems of equations with f : R

d → R
d and u : [0, 1] → R

d, where d > 1,
which models a very large range of phenomena.

We hope the reader (like Owl) is now at ease with the terminology: In
this chapter we thus focus on scalar autonomous non-linear differential
equations.

The initial value problem for a scalar autonomous differential equation
is the simplest of all initial value problems and the solution (when it ex-
ists) can be expressed analytically in terms of a primitive function F (v) of
the function 1/f(v). In the next chapter we present an extension of this
solution formula to a certain class of scalar non-autonomous differential
equations referred to as separable differential equations. The analytical so-
lution formula does not generalize to an initial value problems for a system
of differential equations, and is thus of very very limited use. However, the
solution formula is really a beautiful application of Calculus, which may
give valuable information in compact form in the special cases when it is
applicable.

We also present a direct constructive proof of existence of a solution to
the scalar autonomous problem, which generalizes to the very general case
of a initial value problems for (autonomous and non-autonomous) systems
of differential equations, as presented in Chapter The general initial value
problem below.

38.2 An Analytical Solution Formula

To derive the analytical solution formula, we let F (v) be a primitive func-
tion of the function 1/f(v), assuming v takes values so that zeros of f(v)
are avoided. Observe that here F (v) is a primitive function of the function
1/f(v), and not of f(v). We can then write the equation u′(x) = f(u(x))
as

d

dx
F (u(x)) = 1,

since by the Chain rule d
dxF (u(x)) = F ′(u(x))u′(x) = u′(x)

f(u(x)) . We conclude
that

F (u(x)) = x+ C,

TS
s I changed doesn’ to doesn’t, please check it.
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where the constant C is to be determined by the initial condition by setting
F (u0) = C at x = 0. Formally, we can carry out the calculus as follows:
We write the differential equation du

dx = f(u) in the form

du

f(u)
= dx

and integrate to get

F (u) = x+ C,

which gives the solution formula

u(x) = F−1(x + F (u0)), (38.3)

where F−1 is the inverse of F .

The Model u′ = un for n > 1

We use this example to show that the nonlinear nature of (38.1) allows the
interesting behavior of finite-time-blow-up of the solution. First consider
the case n = 2, that is, the initial value problem

u′(x) = u2(x) for x > 0, u(0) = u0 > 0, (38.4)

with f(v) = v2. In this case F (v) = −1/v with F−1(w) = −1/w, and we
obtain the solution formula

u(x) =
1

u−1
0 − x

=
u0

1 − u0x
.

We see that that u(x) → ∞ as x→ u−1
0 , that is, the solution u(x) of (38.1)

with f(u) = u2 tends to infinity as x increases to u−1
0 and the solution does

not exist beyond this point, see Fig. 38.1. We say that the solution u blows
up in finite time or exhibits finite time blow-up.

If we consider u′(x) = u2(x) as a model for the growth of a quantity u(x)
with time x in which the rate of growth is proportional to u2(x) and com-
pare with the model u′(x) = u(x) with solution u0 exp(x) showing expo-
nential growth. In the model u′(x) = u2(x) the growth is eventually much
quicker than exponential growth since u2(x) > u(x) as soon as u(x) > 1.

We now generalize to

u′(x) = un(x) for x > 0, u(0) = u0,

where n > 1. In this case f(v) = v−n and F (v) = − 1
n−1v

−(n−1), and we
find the solution formula

u(x) =
1

(u−n+1
0 − (n− 1)x)1/(n−1)

.

Again the solution exhibits finite time blow-up.
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u
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u(x) = 1 / ( 1
u0

− x), u0 = 0.6

Fig. 38.1. Solution of the equation u′ = u2

The Logistic Equation u′ = u(1 − u)

We now consider the initial value problem for the logistic equation

u′(x) = u(x)(1 − u(x)) for x > 0, u(0) = u0,

which was derived by the mathematician and biologist Verhulst as a model
of a population with the growth rate decreasing with the factor (1 − u), as
compared with the basic model u′ = u, as the population approaches the
value 1. Typically we assume 0 < u0 < 1 and expect to have 0 ≤ u(x) ≤ 1.

In this case we have f(u) = 1
u(1−u) and using that f(u) = 1

u + 1
1−u , we

find that

F (u) = log(u) − log(1 − u) = log
(

u

1 − u

)

,

so that

log
(

u

1 − u

)

= x+ C,

or
u

1 − u
= exp(C) exp(x).

Solving for u and using the initial condition we find that

u(x) =
1

1−u0
u0

exp(−x) + 1
.

We see that the solution u(x) increases from u0 < 1 to 1 as x increases
to infinity, see Fig. 38.2, which gives the famous logistic S-curve modeling
growth with decreasing growth rate.
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u(x) = 1/(( 1
u0

− 1) exp(−x) + 1), u0 = 0.5 and u0 = 0.05

Fig. 38.2. Solution of the logistic equation

38.3 Construction of the Solution

For the direct construction of a solution of (38.1), we shall use the same
technique as that used for the linear problem f(u(x)) = u(x) considered in
Chapter The exponential function. Of course, one may ask why we should
worry about constructing the solution, when we already have the solution
formula (38.3). We may reply that the solution formula involves the (in-
verse of) the primitive function F (v) of 1/f(v), which we may have to
construct anyway, and then a direct construction of the solution may in
fact be preferable. In general, a solution formula when available may give
valuable information about qualitative properties of the solution such as
dependence of parameters of the problem, even if it is not necessarily the
most effective way of actually computing the solution.

To construct the solution we introduce meshes with nodes xn
i = ihn for

i = 1, · · · , N , where hn = 2−n and N = 2n, and for n = 1, 2, · · · . we
then define an approximate continuous piecewise linear solution Un(x) for
0 < x ≤ 1 by the formula

Un(xn
i ) = Un(xn

i−1) + hnf(Un(xn
i−1)) for i = 1, · · · , N, (38.5)

with Un(0) = u0.
We want to prove that {Un(x)} is a Cauchy sequence for x ∈ [0, 1] and we

start by estimating Un(xn
i )−Un+1(xn

i ) for i = 1, · · · , N . Taking two steps
with step size hn+1 = 1

2hn to go from time xn
i−1 = xn+1

2i−2 to xn
i = xn+1

2i , we
get

Un+1(xn+1
2i−1) = Un+1(xn+1

2i−2) + hn+1f(Un+1(xn+1
2i−2)),

Un+1(xn+1
2i ) = Un+1(xn+1

2i−1) + hn+1f(Un+1(xn+1
2i−1)).
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Inserting now the value of Un+1(xn+1
2i−1) at the intermediate step xn+1

2i−1 from
the first equation into the second equation gives

Un+1(xn+1
2i ) = Un+1(xn+1

2i−2) + hn+1f(Un+1(xn+1
2i−2))

+ hn+1f
(
Un+1(xn+1

2i−2) + hn+1f(Un+1(xn+1
2i−2))

)
. (38.6)

Setting en
i ≡ Un(xn

i )−Un+1(xn+1
2i ) and subtracting (38.6) from (38.5), we

get

en
i = en

i−1 + hn

(
f(Un(xn

i−1)) − f(Un+1(xn+1
2i−2))

)

+ hn+1

(

f(Un+1(xn+1
2i−2)) − f

(
Un+1(xn+1

2i−2) + hn+1f(Un+1(xn+1
2i−2))

)
)

≡ en
i−1 + F1,n + F2,n,

with the obvious definition of F1,n and F2,n. Using the Lipschitz continuity
and boundedness (38.2), we have

|F1,n| ≤ Lfhn|en
i−1|,

|F2,n| ≤ Lfh
2
n+1|f(Un+1(xn+1

2i−2))| ≤ LfMfh
2
n+1.

Thus for i = 1, · · · , 2N ,

|en
i | ≤ (1 + Lfhn)|en

i−1| + LfMfh
2
n+1.

Iterating this inequality over i and using that en
0 = 0, we get

|en
i | ≤ LfMfh

2
n+1

i−1∑

k=0

(1 + Lfhn)k for i = 1, · · · , N.

Now recalling (31.10) and (31.27), we have

i−1∑

k=0

(1 + Lfhn)k ≤ exp(Lf ) − 1
Lfhn

,

and thus we have proved that for i = 1, · · · , N ,

|en
i | ≤

1
2
Mf exp(Lf )hn+1,

that is, for x̄ = ihn with i = 0, . . . , N,

|Un(x̄) − Un+1(x̄)| ≤ 1
2
Mf exp(Lf)hn+1.
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Iterating this inequality as in the proof of the Fundamental Theorem, we
get for m > n and x̄ = ihn with i = 0, . . . , N,

|Un(x̄) − Um(x̄)| ≤ 1
2
Mf exp(Lf )hn.

Again as in the proof of the Fundamental Theorem, we conclude that
{Un(x)} is a Cauchy sequence for each x ∈ [0, 1], and thus converges to
a function u(x), which by the construction satisfies the differential equation
u′(x) = f(u(x)) for x ∈ (0, 1] and u(0) = u0, and thus the limit u(x) is
a solution of the initial value problem (38.1).

It remains to prove uniqueness. Assume that v(x) satisfies v′(x) = f(v(x))
for x ∈ (0, 1] and v(0) = u0, and consider the function w = u − v. Since
w(0) = 0,

|w(x)| =
∣
∣
∣
∣

∫ x

0

w′(y) dy
∣
∣
∣
∣ =

∣
∣
∣
∣

∫ x

0

f(u(y)) − f(v(y)) dy
∣
∣
∣
∣

≤
∫ x

0

|f(u(y)) − f(v(y))| dy ≤
∫ x

0

Lf |w(y)| dy.

Setting a = max0≤x≤(2Lf)−1 |w(x)|, we have

a ≤
∫ (2Lf )−1

0

Lfa dy ≤ 1
2
a

which proves that w(x) = 0 for 0 ≤ x ≤ (2Lf )−1. We now repeat the
argument for x ≥ (2Lf )−1 to get uniqueness for 0 ≤ x ≤ 1.

We have now proved:

Theorem 38.1 The initial value problem (38.1) with f : R → R Lipschitz
continuous and bounded has a unique solution u : [0, 1] → R, which is
the limit of the sequence of continuous piecewise linear functions {Un(x)}
constructed from (38.5) and satisfying |u(x) − Un(x)| ≤ 1

2Mf exp(Lf)hn

for x ∈ [0, 1].

The attentive reader will note that the existence proof does not seem
to apply to e.g. the initial value problem (38.4), because the function
f(v) = v2 is not Lipschitz continuous and bounded on R. In fact, the
solution u(x) = u0

1−u0x only exists on the interval [0, u−1
0 ] and blows up at

x = u−1
0 . However, we can argue that before blow-up with say |u(x)| ≤ M

for some (large) constant M , it suffices to consider the function f(v) = v2

on the interval [−M,M ] where the assumption of Lipschitz continuity and
boundedness is satisfied. We conclude that for functions f(v) which are Lip-
schitz continuous and bounded on bounded intervals of R, the constructive
existence proof applies as longs as the solution does not blow up.
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Chapter 38 Problems

38.1. Solve the following initial value problem analytically: u′(x) = f(u(x)) for
x > 0, u(0) = u0, with (a) f(u) = −u2, (b) f(u) =

√
u, (c) f(u) = u log(u),

(d) f(u) = 1 + u2, (e) f(u) = sin(u), (f) f(u) = (1 + u)−1, (g) f(u) =
√
u2 + 4.

38.2. Verify that the constructed function u(x) satisfies (38.1). Hint: Use that
by the construction we have u(x) = u0 +

∫ x
0
f(u(y)) dy for x ∈ [0, 1].

38.3. Find the velocity of a parachute jumper assuming that the air resistance
is proportional to the square of the velocity.

38.4. Let u(t) be the position of a body sliding along x-axis with the velocity
u̇(t) satisfying u̇(t) = − exp(−u). How long time does it take for the body to
reach the position u = 0 starting from u(0) = 5
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Separable Scalar Initial Value
Problems

The search for general methods for integrating ordinary differential
equations ended about 1755. (Mathematical Thought, from Ancient
to Modern Times, Kline)

39.1 Introduction

We now consider the initial value problem for a scalar non-autonomous
differential equation:

u′(x) = f(u(x), x) for 0 < x ≤ 1, u(0) = u0, (39.1)

in the special case when f(u(x), x) has the form

f(u(x), x) =
h(x)
g(u(x))

, (39.2)

where h : R → R and g : R → R. We thus consider the initial value problem

u′(x) =
h(x)
g(u(x))

for 0 < x ≤ 1, u(0) = u0, (39.3)

where g : R → R and h : R → R are given functions, which we refer to
as a separable problem, because the right hand side f(u(x), x) separates
into the quotient of one function h(x) of x only, and one function g(u(x))
of u(x) only according to (39.2).
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39.2 An Analytical Solution Formula

We shall now derive an analytical solution formula that generalizes the
solution formula (38.3) for a scalar autonomous problem (corresponding to
the case h(x) = 1). Let then G(v) and H(x) be primitive functions of g(v)
and h(x) so that dG

dv = g and dH
dx = h, and suppose that the function u(x)

solves the equation
G(u(x)) = H(x) + C, (39.4)

for x ∈ [0, 1], where C is a constant. Differentiating with respect to x using
the Chain rule on the left hand side, we then find that g(u(x))u′(x) =
h(x), that is u(x) solves the differential equation u′(x) = h(x)/g(u(x)) =
f(u(x), x) as desired. Choosing the constant C so that u(0) = u0, we thus
obtain a solution u(x) of (39.3), that is the problem (39.1) with f(u(x), x)
of the separable form (39.2).

Note that (39.4) is an algebraic equation for the value of the solution
u(x) for each value of x. We have thus rewritten the differential equation
(39.3) as an algebraic equation (39.4) with x acting as a parameter, and
involving primitive functions of g(y) and h(x).

Of course, we may consider (39.1) with x in an interval [a, b] or [a,∞)
with a, b ∈ R.

Example 39.1. Consider the separable initial value problem

u′(x) = xu(x), x > 0, u(0) = u0, (39.5)

where f(u(x), x) = h(x)/g(u(x)) with g(v) = 1/v and h(x) = x. The
equation G(u(x)) = H(x) + C takes the form

log(u(x)) =
x2

2
+ C, (39.6)

and thus the solution u(x) of (39.5) is given by the formula

u(x) = exp
(
x2

2
+ C

)

= u0 exp
(
x2

2

)

,

with exp(C) = u0 chosen so that the initial condition u(0) = u0 is satisfied.
We check by differentiation using the Chain rule that indeed u0 exp(x2

2 )
satisfies u′(x) = xu(x) for x > 0.

Formally (“multiplying by dx”), we can rewrite (39.5) as

du

u
= xdx

and integrate to get

log(u) =
x2

2
+ C,

which corresponds to the equation (39.6).
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Example 39.2. On the rainy evening of November 11 1675 Leibniz success-
fully solved the following problem as a first (crucial) test of the power of
the Calculus he had discovered on October 29: Find a curve y = y(x) such
that the subnormal p, see Fig. 39.1, is inversely proportional to y. Leibniz
argued as follows: By similarity, see again Fig. 39.1, we have

dy

dx
=
p

y
,

and assuming the subnormal p to be inversely proportional to y, that is,

p =
α

y

with α a positive constant, we get the differential equation

dy

dx
=

α

y2
=
h(x)
g(y)

, (39.7)

which is separable with h(x) = α and g(y) = y2. The solution y = y(x)
with y(0) = 0 thus is given by, see Fig. 39.1,

y3

3
= αx, that is y = (3αx)

1
3 , (39.8)

The next morning Leibniz presented his solution to a stunned audience of
colleagues in Paris, and rocketed to fame as a leading mathematician and
Inventor of Calculus.

x

y

y

p

dx
dy

y = f(x)

Fig. 39.1. Leibniz’ subnormal problem (change from y = f(x) to y = y(x))
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39.3 Volterra-Lotka’s Predator-Prey Model

We now consider a biological system consisting of prey and predators like
rabbits and foxes which interact. Let x(t) be the density of the prey and y(t)
that of the predators at time t and consider Volterra-Lotka’s predator-prey
model for their interaction:

ẋ(t) = ax(t) − bx(t)y(t),
ẏ(t) = −αy(t) + βx(t)y(t) (39.9)

where a, b, α and β are positive constants, and ẋ = dx
dt and ẏ = dy

dt . The
model includes a growth term ax(t) for the prey corresponding to births and
a decay term bx(t)y(t) proportional to the density of prey and predators
corresponding to the consumption of prey by the predators, together with
corresponding terms for the predators with different signs.

This is a system of two differential equations in two unknowns x(t) and
y(t) for which analytical solutions are unknown in general. However, we
can derive an equation satisfied by the points (x(t), y(t)) in an x− y plane,
referred to as the x−y phase plane, as follows: Dividing the two equations,
we get

ẏ

ẋ
=

−αy + βxy

ax− bxy

and formally replacing ẏ
ẋ (by formally dividing out the common dt), we are

led to the equation

y′(x) =
−αy + βxy

ax− bxy
=
y(−α+ βx)
(a− by)x

,

where y′ = dy
dx , which is a separable equation with solution y = y(x) satis-

fying
a log(y) − by = −α log(x) + βx + C,

or
ya exp(−by) = exp(C)x−α exp(βx)

where C is a constant determined by the initial conditions. We plot pairs of
(x, y) satisfying this equation in Fig. 39.2 as we let the prey x vary, which
traces a phase plane curve of the solution (x(t), y(t) of Fig. 39.2 as t varies.
We see that the solution is periodic with a variation from (many rabbits,
many foxes) to (few rabbits, many foxes) to (few rabbits, few foxes) to
(many rabbits, few foxes) and back to (many rabbits, many foxes). Note
that the phase plane curve shows the different combinations of rabbits
and foxes (x, y), but does not give the time evolution (x(t), y(t)) of their
interaction as a function of time t. We know that for a given t, the point
(x(t), y(t)) lies on the phase plane curve, but not where.
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Fig. 39.2. Phase plane plot of a solution of Volterra-Lotka’s equation

39.4 A Generalization

We now consider a generalization of the separable differential equation (39.3)
with solution u(x) satisfying an equation of the form G(u(x))−H(x) = C,
to a differential equation with solution satisfying a more general equation
of the form F (x, u(x)) = C. This closely couples to Chapter Potential fields
below, and uses a generalization of the Chain rule, which can be accepted
right now by a willing reader, and which we will meet again in Chapter
Vector-valued functions of several variables below.

We thus consider the scalar initial value problem

u′(x) = f(u(x), x) for 0 < x ≤ 1, u(0) = u0, (39.10)

in the case f(u(x), x) has the form

f(u(x), x) =
h(u(x), x)
g(u(x)), x)

, (39.11)

where h(v, x) and g(v, x) are functions of v and x with the special property
that

g(v, x) =
∂F

∂v
(v, x), h(v, x) = −∂F

∂x
(v, x), (39.12)

where F (v, x) is a given function of v and x. Above we considered the
case when g(v, x) = g(v) is a function of v only and h(v, x) = h(x) is
a function of x only, and F (v, x) = G(v) − H(x) with G(v) and H(x)
primitive functions of g(v) and h(x), respectively. Now we allow F (v, x) to
have a more general form.

Assume now that u(x) satisfies the equation

F (u(x), x) = C for 0 < x ≤ 1.
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Differentiating both sides with respect to x, using a generalization of the
Chain rule, we then get

∂F

∂u

du

dx
+
∂F

∂x

dx

dx
= g(x, u(x))u′(x) − h(x, u(x)) = 0,

and thus u′(x) solves (39.10) with f(u(x), x) of the form (39.11). Again,
we thus have rewritten a differential equation as an algebraic equation
F (x, u(x)) = C with x acting as a parameter. We give an example. The
reader can construct many other similar examples.

Example 39.3. Let F (v, x) = x3

3 + xv + v3

3 so that g(v, x) = ∂F
∂v = x+ v2

and h(v, x) = −∂F
∂x = −x2 − v. If u(x) satisfies the algebraic equation

x3

3 + xu(x) + u3(x)
3 = C for x ∈ [0, 1], then u(x) solves the differential

equation

u′(x) = −x
2 + u(x)
x+ u2(x)

for 0 < x < 1.

To sum up: In this chapter we have given analytical solution formula for
some special cases of the scalar initial value problem (39.1), but we were
not able to give a solution formula in the case of a general non-autonomous
scalar equation.

Chapter 39 Problems

39.1. Prove that solutions (x(t), y(t) of the Volterra-Lotka model satisfies

x̄ =
1

T

∫ T

0

x(t) dt =
c

d
, ȳ =

1

T

∫ T

0

y(t) dt =
a

b
,

where T is the period of periodic solutions. Investigate the effect on the mean
values x̄ and ȳ of hunting of both predator and prey corresponding to including
dissipative terms −εx and −εy with ε > 0. Hint: Consider the integral of ẋ/x
over a period.

39.2. Extend the Volterra-Lotka model to the model

ẋ(t) = ax(t)− bx(t)y(t)− ex2(t),

ẏ(t) = −cy(t) + dx(t)y(t)− fy2(t),
(39.13)

where e and f are positive constants, with the additional terms modeling nega-
tive influences from competition within the species as the populations densities
increase. Compare the solutions of the two models numerically. Is the extended
system separable?

39.3. Consider the spread of an infection modeled by

u̇ = −auv,
v̇ = auv − bv,
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where u(t) is the density of the susceptibles and v(t) is that of the infectives at
time t, and a and b are positive constants. The term ±auv models the transfer
of susceptibles to infectives at a rate proportional to auv, and −bv models the
decay of infectives by death or immunity. Study the qualitative behavior of phase
plane curves.

39.4. Extend the previous model by changing the first equation to u̇ = −auv+µ,
with µ a positive constant modeling a constant growth of the susceptibles. Find
the equilibrium point, and study the linearized model linearized at the equilibrium
point.

39.5. Motivate the following model for a national economy:

u̇ = u− av, v̇ = b(u− v − w),

where u is the national income, v the rate of consumer spending and w the rate
of government spending, and a > 0 and b ≥ 1 are constants. Show that if w is
constant, then there is an equilibrium state, that is a solution independent of
time satisfying u − av = b(u − v − w) = 0. Show that the economy oscillates if
b = 1. Study the stability of solutions. Study a model with w = w0 + cu with w0

a constant. Show that there is no equilibrium state in this model if c ≥ (a−1)/a.
Draw some conclusion. Study a model with w = w0 + cu2.

39.6. Consider a boat being rowed across a river occupying the strip {(x, y) :
0 ≤ x ≤ 1, y ∈ R}, in such a way that the boat always points in the direction
of (0, 0). Assume that the boat moves with the constant speed u relative to the
water and that the river flows with constant speed v in the positive y-direction.
Show that the equations of motion are

ẋ = − ux
√
x2 + y2

, ẏ = − uy
√
x2 + y2

.

Show that the phase-plane curves are given by

y =
√
x2 + y2 = Ax1−α, where α− v

u
.

What happens if v > u?.TS
t Compute solutions.

TS
t Please check the punctuation mark.
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40
The General Initial Value Problem

Things are as they are because they were as they were.
(Thomas Gold)

40.1 Introduction

We now consider the Initial Value Problem or IVP for a system of nonlinear
differential equations of the form: Find u : [0, 1] → R

d such that

u′(x) = f(u(x), x) for 0 < x ≤ 1, u(0) = u0, (40.1)

where f : R
d × [0, 1] → R

d is a given bounded and Lipschitz continuous
function, u0 ∈ R

d is a given initial value, and d ≥ 1 is the dimension of the
system. The reader may assume d = 2 or d = 3, recalling the chapters on
analytic geometry in R

2 and R
3, and extend to the case d > 3 after having

read the chapter on analytic geometry in R
n below. The material in Chapter

Vector-valued functions of several real variables is largely motivated from
the need of studying problems of the form (40.1), and there is thus a close
connection between this chapter and the present one. We keep this chapter
abstract (and a bit philosophical), and present many concrete examples
below. Note that for notational convenience we here use superscript index
in the initial value u0 (instead of u0).

The IVP (40.1) is the non-autonomous vector version of the scalar ini-
tial value problem (38.1), and reads as follows in component form: Find
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functions ui : [0, 1] → R, i = 1, . . . , d, such that

u′1(x) = f1(u1(x), u2(x), . . . , ud(x), x) for 0 < x ≤ 1,
u′2(x) = f2(u1(x), u2(x), . . . , ud(x), x) for 0 < x ≤ 1,

. . . . . . . . .

u′d(x) = fd(u1(x), u2(x), . . . , ud(x), x) for 0 < x ≤ 1,

u1(0) = u10, u2(0) = u20, ud(0) = u0
d,

(40.2)

where fi : R
d × [0, 1] → R, i = 1, . . . , d, are given functions and u0

i ,
i = 1, . . . , d, are given initial values. With vector notation writing u =
(u1, . . . , ud), f = (f1, . . . , fd) and u0 = (u0

1, . . . , u
0
d), we may write (40.2) in

the compact form (40.1). Of course, writing f : R
d×[0, 1] → R

d, means that
for each vector v = (v1, . . . , vd) ∈ R

d and x ∈ [0, 1] there is assigned a vector
f(v, x) = (f1(v, x), . . . , fd(v, x)) ∈ R

d, where fi(v, x) = fi(v1, . . . , vd, x).
We assume Lipschitz continuity and boundedness of f : R

d × [0, 1] → R
d

in the form: There are constants Lf and Mf such that for all v, w ∈ R
d

and x, y ∈ [0, 1],

|f(v, x) − f(w, y)| ≤ Lf(|v − w| + |x− y|) and |f(v, x)| ≤Mf , (40.3)

where |v| = (
∑d

i=1 v
2
i )1/2 is the Euclidean norm of v = (v1, . . . , vd) ∈ R

d.
In short, everything looks the same as in the scalar case of (38.1) with the

natural extension to a non-autonomous problem, but the vector interpreta-
tion makes the actual content of this chapter vastly different from that of
Chapter Scalar autonomous initial value problems. In particular, there is in
general no analytical solution formula if d > 1, since the solution formula
for d = 1 based on the existence of a primitive function of 1/f(v), does not
generalize to d > 1.

We prove the existence of a unique solution of the IVP (40.1) by using
a constructive process which is a direct generalization of the method used
for the scalar problem (38.1), which was a direct generalization of method
used to construct the integral. The result of this chapter is definitely one
of the highlights of mathematics (or at least of this book), because of its
generality and simplicity: f : R

d × [0, 1] → R
d can be any bounded Lips-

chitz continuous function with the dimension d arbitrarily large, and the
proof looks exactly the same as in the scalar case. Therefore this chapter
has a central role in the book and couples closely to several other chap-
ters below including Analytic geometry in R

n, Solving systems of linear
equations, Linearization and stability of IVP, Adaptive IVP-solvers, Vector-
valued functions of several real variales and various chapters on applica-
tions including mechanical systems, electrical circuits, chemical reactions,
and other phenomena. This means that a full appreciation of this chapter
can only be made after digesting all this material. Nevertheless, it should
be possible to go through this chapter and understand that the general IVP
(40.1) can be solved through a constructive process requiring more or less
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work. This chapter also may be used as a basis for a bit of philosophical
discussion on constructive aspects of the World, as we now proceed to do
(for the interested reader).

40.2 Determinism and Materialism

Before we present the existence proof (which we thus have already seen),
we pause to reflect a little on the related mechanistic/deterministic view of
science and philosophy going back to Descartes and Newton and forming
the basis the industrial society leading into our own time. With this view
the World is like a big mechanical Clock governed by laws of mechanics,
which may be modeled as an initial value problem of the form (40.1) with
a certain function f and initial value u0 at time x = 0. The state of this
system for positive time is, according to the existence proof, uniquely de-
termined by the function f and u0, which would support a deterministic or
materialistic view of the World including the mental processes in human
beings: everything that will happen in the future is in principle determined
by the present state (assuming no blow-up). Of course, this view is in seri-
ous conflict with massive everyday experience of unpredictability and our
firm belief in the existence of a free will, and considerable efforts have gone
into resolving this paradox through the centuries without complete success.

Let’s see if we can approach this paradox from a mathematical point of
view. After all, the determinitic/materialistic view is founded on a proof of
existence of a unique solution of an initial value problem of the form (40.1),
and thus the roots of the paradox may be hidden in the mathematical proof
itself. We will argue that the resolution of the paradox must be coupled to
aspects of predictability and computability of the problem (40.1), which we
will now briefly touch upon and return to in more detail below. We hope the
reader is open for this type of discussion, seldom met in a Calculus text. We
try to point to the necessity of a proper understanding of a mathematical
result, which may appear to be very simple and clear, like the existence
proof to be presented, but which in fact may require a lot of explanation
and qualification to avoid misunderstanding.

40.3 Predictability and Computability

The predictability of the problem (40.1) concerns the sensitivity of the so-
lution to the given data, that is, the function f and the initial value u0.
The sensitivity is a measure of the change of the solution under changes of
the data f and u0. If the solution changes very much even for very small
changes of data, then the sensitivity is very high. In such a case we need to
know the data with very high precision to accurately predict the solution.
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We shall see below that solutions of certain initial value problems are highly
sensitive to changes in data and in these problems accurate prediction will
be impossible. An example is given by the familiar process of tossing a coin,
which can be modeled as an initial value problem. In principle, by repeat-
edly choosing the same initial value, the person tossing the coin should be
able to always get heads, for example. However, we all know that this is
impossible in practice, because the process is too sensitive to small changes
in the initial value (and the corresponding function f). To handle this type
of unpredictability the scientific field of statistics has been developed.

Similarly, the computability of the problem (40.1) concerns (i) the sensi-
tivity of the solution to errors made in constructing the solution according
to the existence proof, and (ii) the amount of computational work needed
to construct the solution. Usually, (i) and (ii) go hand in hand: if the sen-
sitivity is high, then a lot of work is required and of course the work also
increases with the dimension d. A highly sensitive problem with d very large
is thus a computational night-mare. To construct the solution of the initial
value problem for even a small part of the Universe will thus be practically
impossible with any kind of computer, and claiming that in principle the
solution is determined would make little sense.

We will meet this problem with painstaking evidence when we turn into
numerical methods. We will see that most systems of the form (40.1) with d
small (d ≤ 10 say) may be solved within fractions of a second on a PC,
while some systems (like the famous Lorenz system with d = 3 to be
studied below) quickly will exhaust even supercomputers because of very
high sensitivity. We will further see that many systems of practical interest
with d large (d ≈ 106 − 107) can be solved within minutes/hours on a PC,
while accurate modeling of e.g. turbulent flow requires d ≥ 1010 and super-
computer power. The most powerful super-computer in sight, the Blue
Gene consisting of 106 connected PCs to appear in a couple of years, is
designed for initial value problems of molecular dynamics of protein folding
for the purpose of medical drug design. A landmark in computing was set
in 1997 when the chess computer Deep Blue put the the world-champion
Gary Kasparov chess mate.

The computational work required to solve (40.1) may thus vary consider-
ably. Below we shall successively uncover a bit of this mystery and identify
basic features of problems requiring different amounts of computational
work.

We will return to the concepts of predictability and computability of
differential equations below. Here we just wanted to give some perspective
on the constructive existence proof to be given showing some limits of
mathematics as a human activity.
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40.4 Construction of the Solution

The construction of the solution u(x) of (40.1) looks identical to the con-
struction of the solution of (38.1), after we interpret u(x) and f(u(x))
as vectors instead of scalars and make the natural extension to a non-
autonomous problem.

We begin by discretizing [0, 1] using a mesh with nodes xn
i = ihn for

i = 1, · · · , N, where hn = 2−n and N = 2n. For n = 1, · · · , N, we define
an approximate piecewise linear solution Un : [0, 1] → R

d by the formula

Un(xn
i ) = Un(xn

i−1) + hnf(Un(xn
i−1), x

n
i−1), for i = 1, · · · , N, (40.4)

and setting Un(0) = u0. Note that Un(x) is linear on each subinterval
[xn

n−1, x
n
i ].

We want to prove that for x ∈ [0, 1], {Un(x)}∞n=1 is a Cauchy sequence
in R

d. We start by estimating Un(xn
i )−Un+1(xn

i ) for i = 1, · · · , N . Taking
two steps with step size hn+1 = 1

2hn to go from time xn
i−1 = xn+1

2i−2 to
xn

i = xn+1
2i , we have

Un+1(xn+1
2i−1) = Un+1(xn+1

2i−2) + hn+1f(Un+1(xn+1
2i−2), x

n
i−1),

Un+1(xn+1
2i ) = Un+1(xn+1

2i−1) + hn+1f(Un+1(xn+1
2i−1), x

n+1
2i−1).

Inserting now the value of Un+1(xn+1
2i−1) at the intermediate step xn+1

2i−1 from
the first equation into the second equation, we get

Un+1(xn+1
2i ) = Un+1(xn+1

2i−2) + hn+1f(Un+1(xn+1
2i−2), x

n
i−1)

+ hn+1f
(
Un+1(xn+1

2i−2) + hn+1f(Un+1(xn+1
2i−2), x

n
i−1), x

n+1
2i−1

)
.

(40.5)
Setting en

i ≡ Un(xn
i )−Un+1(xn+1

2i ) and subtracting (40.5) from (40.4) gives

en
i = en

i−1 + hn

(
f(Un(xn

i−1), x
n
i−1) − f(Un+1(xn+1

2i−2), x
n
i−1)

)

+ hn+1

(

f(Un+1(xn+1
2i−2), x

n
i−1) − f

(
Un+1(xn+1

2i−2)

+ hn+1f(Un+1(xn+1
2i−2), x

n
i−1), x

n+1
2i−1

)
)

≡ en
i−1 + F1,n + F2,n,

with the obvious definitions of F1,n and F2,n. Using (40.3), we have

|F1,n| ≤ Lfhn|en
i−1|,

|F2,n| ≤ Lfh
2
n+1(|f(Un+1(xn+1

2i−2), x
n
i−1)| + 1) ≤ LfM̄fh

2
n+1,

where M̄f = Mf + 1, and so for i = 1, · · · , N ,

|en
i | ≤ (1 + Lfhn)|en

i−1| + LfM̄fh
2
n+1.
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Iterating this inequality over i and using that en
0 = 0, we get

|en
i | ≤ LfM̄fh

2
n+1

i−1∑

k=0

(1 + Lfhn)i for i = 1, · · · , N.

Recalling (31.10) and (31.27), we have

i−1∑

k=0

(1 + Lfhn)k =
(1 + Lfhn)i − 1

Lfhn
≤ exp(Lf ) − 1

Lfhn
,

and thus we have proved that for i = 1, · · · , N ,

|en
i | ≤

1
2
M̄f exp(Lf )hn+1,

that is, for x̄ = ihn with i = 0, . . . , N,

|Un(x̄) − Un+1(x̄)| ≤ 1
2
M̄f exp(Lf)hn+1.

Iterating this inequality as in the proof of the Fundamental Theorem, we
get for m > n and x̄ = ihn with i = 0, . . . , N,

|Un(x̄) − Um(x̄)| ≤ 1
2
M̄f exp(Lf )hn. (40.6)

Again as in the proof of the Fundamental Theorem, we conclude that
{Un(x)} is a Cauchy sequence for each x ∈ [0, 1], and thus converges to
a function u(x), which by the construction satisfies the differential equation
u′(x) = f(u(x)) for x ∈ (0, 1] and u(0) = u0, and thus the limit u(x) is
a solution of the initial value problem (40.1). Uniqueness of a solution fol-
lows as in the scalar case considered in Chapter Scalar autonomous initial
value problems. We have now proved the following basic result:

Theorem 40.1 The initial value problem (40.1) with f : R
d × [0, 1] → R

d

bounded and Lipschitz continuous, has a unique solution u(x), which is
the limit of the sequence of continuous piecewise linear functions {Un(x)}
constructed from (40.4) and satisfying

|u(x) − Un(x)| ≤ (Mf + 1) exp(Lf )hn for x ∈ [0, 1]. (40.7)

40.5 Computational Work

The convergence estimate (40.7) indicates that the work required to com-
pute a solution u(x) of (40.1) to a given accuracy is proportional to exp(Lf)
and to exp(LfT ) if we consider a time interval [0, T ] instead of [0, 1]. With
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Lf = 10 and T = 10, which would seem to be a very innocent case, we
would have exp(LfT ) = exp(102) and we would thus have to choose hn

smaller than exp(−102) ≈ 10−30, and the number of computational op-
erations would be of the order 1030 which would be at the limit of any
practical possibility. Already moderately large constants such as Lf = 100
and T = 100, would give an exponential factor exp(104) way beyond any
comprehension. We conclude that the appearance of the exponential fac-
tor exp(LfT ), which corresponds to a worst possible case, seems to limit
the interest of the existence proof. Of course, the worst possible case does
not necessarily have to occur always. Below we will present problems with
special features for which the error is actually smaller than worst possible,
including the important class of stiff problems where large Lipschitz con-
stants cause quick exponential decay instead of exponential growth, and
the Lorenz system where the error growth turns out to be of order exp(T )
instead of exp(LfT ) with Lf = 100.

40.6 Extension to Second Order Initial Value
Problems

Consider a second order initial value problem

v̈(t) = g(v(t), v̇(t)) for 0 < t ≤ 1, v(0) = v0, v̇(0) = v̇0, (40.8)

with initial conditions for v(0) and v̇(0), where g : R
d×R

d → R
d is Lipschitz

continuous, v : [0, 1] → R
d and v̇ = dv

dt . In mechanics, initial value problems
often come in such second order form as they express Newton’s Law with
v̈(t) representing acceleration and g(v(t), v̇(t)) force. This problem can be
reduced to a first order system of the form (40.1) by introducing the new
variable w(t) = v̇(t) and writing (40.8) as

ẇ(t) = g(v(t), w(t)) for 0 < t ≤ 1,
v̇(t) = w(t) for 0 < t ≤ 1,
v(0) = v0, w(0) = v̇0.

(40.9)

Setting u = (u1, . . . , u2d) = (v1, . . . , vd, w1, . . . , wd) and f(u) = (g1(u), · · · ,
gd(u), ud+1, . . . , u2d), the system (40.9) takes the form u̇(t) = f(u(t)) for
0 < t ≤ 1, and u(0) = (v0, v̇0).

In particular, we can rewrite the second order scalar equations v̈+ v = 0
as a first order system and obtain existence of the trigonometric functions
via the general existence result for first order systems as solutions of the
corresponding initial value problem with appropriate data.
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40.7 Numerical Methods

The computational solution of differential equations is an important subject
with many aspects. The overall objective may be viewed to be to compute
approximate solutions with as little work as possible per digit of accuracy.
So far we have discussed only the simplest method for constructing approx-
imate solutions. In this section, we give a brief glimpse of other methods.
In Chapter Adaptive IVP solvers, we continue this study.

The computational method we have used so far, in which

Un(xn
i ) = Un(xn

i−1) + hnf(Un(xn
i−1), x

n
i−1), for i = 1, · · · , N, (40.10)

with Un(0) = u0, is called the forward Euler method. The forward Euler
method is an explicit method because we can directly compute Un(xn

i ) from
Un(xn

i−1) without solving a system of equations.
In contrast, the backward Euler method in which the approximate solu-

tion is computed via the equation

Un(xn
i ) = Un(xn

i−1) + hnf(Un(xn
i ), xn

i ), for i = 1, · · · , N, (40.11)

with Un(0) = u0, is an implicit method. At each step we need to solve the
system

V = Un(xn
i−1) + hnf(V, xn

i ), (40.12)

to compute Un(xn
i ) from Un(xn

i−1). Another implicit method is the mid-
point method

Un(xn
i ) = Un(xn

i−1) + hnf

(
1
2
(Un(xn

i−1) + Un(xn
i )), x̄n

i−1

)

, i = 1, · · · , N,

(40.13)
with x̄n

i−1 = 1
2 (xn

i−1 + xn
i ), where we have to solve the system

V = Un(xn
i−1) + hnf

(
1
2
(Un(xn

i−1) + V ), x̄n
i−1

)

(40.14)

at each step. Note that both (40.12) and (40.14) are nonlinear equations
when f is nonlinear. We may use Fixed Point Iteration or Newton’s method
to solve them, see Chapter Vector-valued functions of several real variables
below.

We also present the following variant of the midpoint method, which
we call the cG(1), continuous Galerkin method with trial functions of or-
der 1:.TS

u The approximate solution is computed via

Un(xn
i ) = Un(xn

i−1) +
∫ xn

i

xn
i−1

f(U(x), x) dx, i = 1, · · · , N, (40.15)

and Un(0) = u0, where Un(x) is continuous piecewise linear function with
the values Un(xn

i ) at the nodes xn
i . If we evaluate the integral in (40.15)

TS
u Please check this punctuation mark.

TS
v Please check it.

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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with the midpoint quadrature rule, we obtain the midpoint method. We
can of course use other quadrature formulas to get different methods.

We shall see that cG(1) is the first in a family of methods cG(q)TS
v with

q = 1, 2, . . . , where the solution is approximated by continuous piecewise
polynomials of order q. The Galerkin feature of cG(1) is expressed by the
fact that the method can be formulated as

∫ xn
i

xn
i−1

(
dUn

dx
(x) − f(Un(x), x)

)

dx = 0,

stating that the mean-value over each subinterval of the residual dUn

dx (x)−
f(U(x), x) of the continuous piecewise linear approximate solution Un(x),
is equal to zero (or that the residual is orthogonal to the set of constant
functions on each subinterval with a terminology to be used below).

We can prove convergence of the backward Euler and midpoint methods
in the same way as for the forward Euler method. The forward and back-
ward Euler methods are first order accurate methods in the sense that the
error |u(x)−Un(x)| is proportional to the step size hn, while the midpoint
method is second order accurate with the error proportional to h2

n and thus
in general is more accurate. The computational work per step is generally
smaller for an explicit method than for an implicit method, since no sys-
tem of equations has to be solved at each step. For so-called stiff problems,
explicit methods may require very small time steps compared to implicit
methods, and then implicit methods can give a smaller total cost. We will
return to these issues in Chapter Adaptive IVP solvers below.

Note that all of the methods discussed so far generalize to allow non-
uniform meshes 0 = x0 < x1 < x2 < . . . < xN = 1 with possibly varying
steps xi −xi−1. We will below return to the problem of automatic step-size
control with the purpose of keeping the error |u(xi) − U(xi)| ≤ TOL for
i = 1, · · · , N , where TOL is a given tolerance, while using as few time
steps as possible by varying the mesh steps, cf. the Chapter Numerical
Quadrature.

Chapter 40 Problems

40.1. Prove existence of a solution of the initial value problem (40.1) using the
backward Euler method or the midpoint method.

40.2. Complete the proof of existence for (40.1) by proving that the con-
structed limit function u(x) solves the initial value problem. Hint: use that
ui(x) =

∫ x
0
fi(u(y)) dy for x ∈ [0, 1], i = 1, . . . , d.

40.3. Give examples of problems of the form (40.1).





41
Calculus Tool Bag I

After experience had taught me that all the usual surroundings of
social life are vain and futile; seeing that none of the objects of my
fears contained in themselves anything either good or bad, except in
so far as the mind is affected by them, I finally resolved to inquire
whether there might be some real good having power to communicate
itself, which would affect the mind singly, to the exclusion of all else:
whether, in fact, there might be anything of which the discovery
and attainment would enable me to enjoy continuous, supreme, and
unending happiness. (Spinoza)

Sapiens nihil affirmat quod non probat.

41.1 Introduction

We present a Calculus Tool Bag I containing a minimal set of important
tools and concepts of Calculus for functions f : R → R. Below, we present
a Calculus Tool Bag II containing the corresponding of tools and concepts
of Calculus for functions f : R

m → R
n.

41.2 Rational Numbers

We start with the set of integers Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · ·} to-
gether with the usual operations of addition, subtraction and multiplica-
tion. We define the set of rational numbers Q as the set of pairs (p, q) with
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p and q �= 0 integers, and we write (p, q) = p
q along with the arithmetic

operations of addition
p

q
+
r

s
=
ps+ qr

qs
,

multiplication
p

q
× r

s
=
pr

qs
,

and division

(p, q)/(r, s) =
(p, q)
(r, s)

= (ps, qr),

assuming r �= 0. With the operation of division, we can solve the equation
ax = b to get x = b/a for a, b ∈ Q with a �= 0.

Rational numbers have periodic decimal expansions. There is no rational
number x such that x2 = 2.

41.3 Real Numbers. Sequences and Limits

Definitions: A real number is specified by an infinite decimal expansion
of the form

±pm · · · p0.q1q2q3 · · ·

with a never ending list of decimals q1, q2, . . . , where each of the pi and qj
are one of the 10 digits 0, 1, . . . , 9. The set of (all possible) real numbers is
denoted by R.

A sequence {xi}∞i=1 of real numbers converges to a real number x if for
any ε > 0 there is a natural number N such that |xi − x| < ε for i ≥ N
and we then write x = limi→∞ xi.

A sequence {xi}∞i=1 of real numbers is a Cauchy sequence if for all ε > 0
there is a natural number N such that

|xi − xj | ≤ ε for i, j ≥ N.

Basic properties: A convergent sequence of real numbers is a Cauchy
sequence. A Cauchy sequence of real numbers converges to a unique real
number. We have limi→∞ xi = x, where {xi}∞i=1 is the sequence of trun-
cated decimal expansions of x.

41.4 Polynomials and Rational Functions

A polynomial function f : R → R of degree n has the form f(x) = a0 +
a1x+ · · ·+ anx

n with coefficients ai ∈ R. A rational function h(x) has the
form h(x) = f(x)/g(x), where f(x) and g(x) are polynomials.
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41.5 Lipschitz Continuity

Definition: A function f : I → R, where I is an interval of real numbers,
is Lipschitz continuous on I with Lipschitz constant Lf ≥ 0 if

|f(x1) − f(x2)| ≤ Lf |x1 − x2| for all x1, x2 ∈ I.

Basic facts: Polynomial functions are Lipschitz continuous on bounded
intervals. Sums, products and composition of Lipschitz continuous func-
tions are Lipschitz continuous. Quotients of Lipschitz continuous functions
are Lipschitz continuous on intervals where the denominator is bounded
away from zero. A Lipschitz continuous function f : I → R, where I is an
interval of real numbers, satisfies:

f( lim
i→∞

xi) = lim
i→∞

f(xi),

for any convergent sequence {xi} in I with limi→∞ xi ∈ I.

41.6 Derivatives

Definition: The function f : (a, b) → R is differentiable at x̄ ∈ (a, b) with
derivative f ′(x̄) = df

dx(x̄) if there are real numbers f ′(x̄) and Kf (x̄) such
that for x ∈ (a, b) close to x̄,

f(x) = f(x̄) + f ′(x̄)(x− x̄) + Ef (x, x̄),

with |Ef (x, x̄)| ≤ Kf (x̄)|x− x̄|2.

If the constant Kf (x̄) can be chosen independently of x̄ ∈ (a, b), then
f : (a, b) → R is said to be uniformly differentiable on (a, b).

Derivative of xα with α �= 0: The derivative of f(x) = xα is f ′(x) =
αxα−1 for α �= 0, and x �= 0 for α < 1.

Bounded derivative implies Lipschitz continuity: If f(x) is uniformly
differentiable on the interval I = (a, b) and there is a constant L such that

|f ′(x)| ≤ L, for x ∈ I,

then f(x) is Lipschitz continuous on I with Lipschitz constant L.

41.7 Differentiation Rules

Linear Combination rule:

(f + g)′(x) = f ′(x) + g′(x),
(cf)′(x) = cf ′(x),
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where c is a constant.

Product rule:
(fg)′(x) = f(x)g′(x) + f ′(x)g(x).

Chain rule:

(f ◦ g)′(x) = f ′(g(x))g′(x), or
dh

dx
=
df

dy

dy

dx
,

where h(x) = f(y) and y = g(x), that is h(x) = f(g(x)) = (f ◦ g)(x).

Quotient rule:

(
f

g

)′
(x) =

f ′(x)g(x) − f(x)g′(x)
g(x)2

,

provided g(x) �= 0.

The derivative of an inverse function:

d

dy
f−1(y) =

1
d
dxf(x)

.

where y = f(x) and x = f−1(y).

41.8 Solving f(x) = 0 with f : R → R

Bisection: If f : [a, b] → R is Lipschitz continuous on [a, b] and
f(a)f(b) < 0, then the Bisection algorithm converges to a root x̄ ∈ [a, b] of
f(x) = 0.

Fixed Point Iteration: A Lipschitz continuous function g : R → R with
Lipschitz constant L < 1 is said to be a contraction mapping. A contraction
mapping g : R → R has a unique fixed point x̄ ∈ R satisfying x̄ = g(x̄)
and any sequence {xi}∞i=1 generated by Fixed Point Iteration xi = g(xi−1)
converges to x̄.

Bolzano’s theorem: If f : [a, b] → R is Lipschitz continuous and
f(a)f(b) < 0, then there is a real number x̄ ∈ [a, b] such that f(x̄) = 0
(consequence of Bisection above).

Newton’s method: Newton’s method xi+1 = xi − f(xi)
f ′(xi)

for computing
a root x̄ of f : R → R converges quadratically if f ′(x) is bounded away
from zero for x close to x̄ and the initial approximation is sufficiently close
to the root x̄.
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41.9 Integrals

TheFundamentalTheoremofCalclulus: If f : [a, b] is Lipschitz continu-
ous, then there is a unique uniformly differentiable function u : [a, b] → R,
that solves the initial value problem

{
u′(x) = f(x) for x ∈ (a, b],
u(a) = ua,

where ua ∈ R is given. The function u : [a, b] → R can be expressed as

u(x̄) = ua +
∫ x̄

a

f(x) dx for x̄ ∈ [a, b],

where
∫ x̄

0

f(x) dx = lim
n→∞

j∑

i=1

f(xn
i−1)hn,

with x̄ = xn
j , xn

i = a+ ihn, hn = 2−n(b−a). More precisely, if the Lipschitz
constant of f is Lf then for n = 1, 2, . . . ,

∣
∣
∣

∫ x̄

a

f(x) dx −
j∑

i=1

f(xn
i−1)hn

∣
∣
∣ ≤

1
2
(x̄ − a)Lfhn.

Furthermore, if |f(x)| ≤ Mf for x ∈ [a, b], then u : [a, b] → R is Lipschitz
continuous with Lipschitz constant Mf and Ku ≤ 1

2Lf , where Ku is the
constant of uniform differentiability of u.

Additivity:
∫ b

a

f(x) dx =
∫ c

a

f(x) dx +
∫ b

c

f(x) dx.

Linearity: If α and β are real numbers then,

∫ b

a

(αf(x) + βg(x)) dx = α

∫ b

a

f(x) dx + β

∫ b

a

g(x) dx.

Monotonicity: If f(x) ≥ g(x) for a ≤ x ≤ b, then

∫ b

a

f(x) dx ≥
∫ b

a

g(x) dx.
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Differentiation and integration are inverse operations:

d

dx

∫ x

a

f(y) dy = f(x).

Change of variables: Setting y = g(x), we have with formally dy =
g′(x) dx,

∫ b

a

f(g(x))g′(x) dx =
∫ g(b)

g(a)

f(y) dy.

Integration by parts:

∫ b

a

u′(x)v(x) dx = u(b)v(b) − u(a)v(a) −
∫ b

a

u(x)v′(x) dx.

The Mean Value theorem: If u(x) is uniformly differentiable on [a, b]
with Lipschitz continuous derivative u′(x), then there is a (at least one)
x̄ ∈ [a, b], such that

u(b) − u(a) = u′(x̄)(b − a).

Taylor’s theorem:

u(x) = u(x̄) + u′(x̄)(x− x̄) + · · · + u(n)(x̄)
n!

(x− x̄)n

+
∫ x

x̄

(x− y)n

n!
u(n+1)(y) dy.

41.10 The Logarithm

Definition:

log(x) =
∫ x

1

1
y
dy for x > 0.

Basic properties:

d

dx
log(x) =

1
x

for x > 0,

log(ab) = log(a) + log(b) for a, b > 0,
log(ar) = r log(a), for r ∈ R, a > 0.
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41.11 The Exponential

Definition: exp(x) = ex is the unique solution of the differential equation
u′(x) = u(x) for x ∈ R and u(0) = 1.

Basic properties:

d

dx
exp(x) = exp(x),

exp(a+ b) = exp(a) exp(b) or ea+b = eaeb,

exp(x) = lim
j→∞

(

1 +
x

j

)j

.

The inverse of the exponential is the logarithm:

y = exp(x) if and only if x = log(y).

The function ax with a > 0:

ax = exp(x log(a)),
d

dx
ax = log(a)ax.

41.12 The Trigonometric Functions

Definition of sin(x) and cos(x): The initial value problem u′′(x)+u(x)=0
for x > 0 with u0 = 0 and u1 = 1, has a unique solution, which is denoted
by sin(x). The initial value problem u′′(x) + u(x) = 0 for x > 0 with
u0 = 1 and u1 = 0, has a unique solution, which is denoted by cos(x). The
functions sin(x) and cos(x) extend to x < 0 as solutions of u′′(x)+u(x) = 0
and are periodic with period 2π, and sin(π) = 0, cos(π

2 ) = 0.

Properties:

d

dx
sin(x) = cos(x),

d

dx
cos(x) = − sin(x), cos(−x) = cos(x),

sin(−x) = − sin(x),
cos(π − x) = − cos(x),
sin(π − x) = sin(x),

cos(x) = sin
(π

2
− x

)
,

sin(x) = cos
(π

2
− x

)
,

sin
(π

2
+ x

)
= cos(x),

cos
(π

2
+ x

)
= − sin(x).
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Definition of tan(x) and cot(x):

tan(x) =
sin(x)
cos(x)

, cot(x) =
cos(x)
sin(x)

.

Derivatives of tan(x) and cot(x):

d

dx
tan(x) =

1
cos2(x)

,
d

dx
cot(x) = − 1

sin2(x)
.

Trigonometric formulas:

sin(x+ y) = sin(x) cos(y) + cos(x) sin(y),

sin(x− y) = sin(x) cos(y) − cos(x) sin(y),

cos(x+ y) = cos(x) cos(y) − sin(x) sin(y),

cos(x− y) = cos(x) cos(y) + sin(x) sin(y),

sin(2x) = 2 sin(x) cos(x)

cos(2x) = cos2(x) − sin2(x) = 2 cos2(x) − 1 = 1 − 2 sin2(x).

cos(x) − cos(y) = −2 sin
(
x+ y

2

)

sin
(
x− y

2

)

,

tan(x+ y) =
tan(x) + tan(y)
1 − tan(x) tan(y)

,

tan(x− y) =
tan(x) − tan(y)
1 + tan(x) tan(y)

,

sin(x) + sin(y) = 2 sin
(
x+ y

2

)

cos
(
x− y

2

)

,

sin(x) − sin(y) = 2 cos
(
x+ y

2

)

sin
(
x− y

2

)

,

cos(x) + cos(y) = 2 cos
(
x+ y

2

)

cos
(
x− y

2

)

.



41.12 The Trigonometric Functions 591

Inverses of trigonometric functions: The inverse of f(x) = sin(x) with
D(f) = [−π

2 ,
π
2 ] is f−1(y) = arcsin(y) with D(arcsin) = [−1, 1]. The in-

verse of f(x) = tan(x) with D(f) = (−π
2 ,

π
2 ) is f−1(y) = arctan(y) with

D(arctan) = R. The inverse of y = f(x) = cos(x) with D(f) = [0, π] is
f−1(y) = arccos(y) with D(arccos) = [−1, 1]. The inverse of f(x) = cot(x)
with D(f) = (0, π) is f−1(y) = arccot(y) with D(arccot) = R. We have

d

dy
arcsin(y) =

1
√

1 − y2

d

dy
arctan(y) =

1
1 + y2

d

dy
arccos(y) = − 1

√
1 − y2

d

dy
arccot(y) = − 1

1 + y2
,

arctan(u) + arctan(v) = arctan
(
u+ v

1 − uv

)

.

Definition of sinh(x) and cosh(x):

sinh(x) =
ex − e−x

2
and cosh(x) =

ex + e−x

2
for x ∈ R.

Derivatives of of sinh(x) and cosh(x):

Dsinh(x) = cosh(x) and Dcosh(x) = sinh(x).

Inverses of of sinh(x) and cosh(x): the inverse of y = f(x) = sinh(x)
with D(f) = R is f−1(y) = arcsinh(y) with D(arcsinh) = R. The in-
verse of y = f(x) = cosh(x) with D([0,∞)), is f−1(y) = arccosh(y) with
D(arccosh) = [1,∞). We have

d

dy
arcsinh(y) =

1
√
y2 + 1

,
d

dy
arccosh(y) =

1
√
y2 − 1

.
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41.13 List of Primitive Functions

∫ x

x0

1
s− c

ds = log |x− c| − log |x0 − c|, c �= 0,
∫ x

x0

s− a

(s− a)2 + b2
dx =

1
2

log((x − a)2 + b2) − 1
2

log((x0 − a)2 + b2),
∫ x

x0

1

(s− a)2 + b2
ds =

[
1

b
arctan

(x− a

b

)]

−
[
1

b
arctan

(x0 − a

b

)]

, b �= 0,

∫ x

0

y cos(y) dy = x sin(x) + cos(x) + 1,
∫ x

0

sin(
√
y) dy = −2

√
x cos(

√
x) + 2 sin(

√
x),

∫ x

1

y2 log(y) dy =
x3

3
log(x) − x3

9
+

1
9

∫ x

0

1
√

1 − y2
dy = arcsin(x) for x ∈ (−1, 1)

∫ x

0

1
√

1 − y2
=
π

2
− arccos(x) dy for x ∈ (−1, 1)

∫ x

0

1
1 + y2

dy = arctan(x) for x ∈ R

∫ x

0

1
1 + y2

dy =
π

2
− arccot(x) for x ∈ R.

41.14 Series

Definition of convergence: A series
∑∞

i=1 ai converges if and only if the
sequence {sn}∞n=1 of partial sums sn =

∑n
i=1 ai converges.

Geometric series:
∑∞

i=0 a
i = 1

1−a if |a| < 1.

Basic facts: A positive series
∑∞

i=1 ai converges if and only if the sequence
of partial sums is bounded above.

The series
∑∞

i=1 i
−α converges if and only if α > 1.

An absolutely convergent series is convergent.

An alternating series with the property that the modulus of its terms tends
monotonically to zero, converges. Example:

∑∞
i=1(−i)−1 converges.
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41.15 The Differential Equation
u̇ + λ(x)u(x) = f(x)

The solution to the initial-value problem u̇ + λ(x)u(x) = f(x) for x > 0,
u(0) = u0, is given by

u(x) = exp(−Λ(x))u0 + exp(−Λ(x))
∫ x

0

exp(Λ(y))f(y) dy,

where Λ(x) is a primitive function of λ(x) satisfying Λ(0) = 0.

41.16 Separable Scalar Initial Value Problems

The solution of the separable scalar initial value problem

u′(x) =
h(x)
g(u(x))

for 0 < x ≤ 1, u(0) = u0,

where g : R → R and h : R → R are given functions, satisfies for 0 ≤ x ≤ 1
the algebraic equation

G(u(x)) = H(x) + C,

where G(v) and H(x) are primitive functions of g(v), and C = G(u0) −
H(0).





42
Analytic Geometry in R

n

I also think that the (mathematical) mine has become too deep and
sooner or later it will be necessary to abandon it if new ore-bearing
veins shall not be discovered. Physics and Chemistry display now
treasures much more brilliant and easily exploitable, thus, appar-
ently, everybody has turned completely in this direction, and possi-
bly posts in Geometry in the Academy of Sciences will some day be
like chairs in Arabic Language in universities at present. (Lagrange,
1781)

42.1 Introduction and Survey of Basic Objectives

We now generalize the discussion of analytic geometry to R
n, where n

is an arbitrary natural number. Following the pattern set above for R
2

and R
3, we define R

n to be the set of all possible ordered n-tuples of the
form (x1, x2, . . . , xn) with xi ∈ R for i = 1, . . . , n. We refer to R

n as n-
dimensional Euclidean space.

We all have a direct concrete experience of R
3 as the three-dimensional

space of the real World, and we may think of R
2 as an infinite flat sur-

face, but we don’t have a similar experience with for example R
4, ex-

cept possibly from some science fiction novel with space ships travelling
in four-dimensional space-time. Actually, Einstein in his theory of relativ-
ity used R

4 as the set of space-time coordinates (x1, x2, x3, x4) with x4 = t
representing time, but of course had the same difficulty as we all have of
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“seeing” an object in R
4. In Fig. 42.1, we show a projection into R

3 of
a 4-cube in R

4, and we hope the clever reader can “see” the 4-cube.

Fig. 42.1. A cube in R
4

More generally, the need of using R
n arises as soon as we have n different

variables to deal with, which occurs all the time in applications, and R
n

is thus one of the most useful concepts in mathematics. Fortunately, we
can work with R

n purely algebraically without having to draw geometric
pictures, that is we can use the tools of analytic geometry in R

n in pretty
much the same way as we have done in R

2 and R
3.

Most of this chapter is one way or the other connected to systems of m
linear equations in n unknowns x1, . . . , xn, of the form

n∑

j=1

aijxj = bi for i = 1, . . . ,m, (42.1)

that is,
a11x1 + a12x2 + . . .+ a1nxn = b1,
a21x1 + a22x2 + . . .+ a2nxn = b2,

. . . . . .
am1x1 + am2x2 + . . .+ amnxn = bm,

(42.2)

where the aij are given (real) coefficients and (b1, . . . , bm) ∈ R
m is a given

right-hand side. We will write this system in matrix form as

Ax = b, (42.3)

that is 





a11 a12 .. a1n

. . .. .

. . .. .
am1 am2 .. amn













x1

.

.
xn





 =







b1
.
.
bm





 , (42.4)

where A = (aij) is a m × n matrix with rows (ai1, . . . , ain), i = 1, . . . ,m,
and columns (a1j , . . . , amj), j = 1, . . . , n, and we view x = (x1, . . . , xn) ∈ R

n
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and b = (b1, . . . , bm) ∈ R
m as column vectors. We will also write the system

in the form
x1a1 + · · · + xnan = b, (42.5)

expressing the given column vector b ∈ R
m as a linear combination of the

column vectors aj = (a1j , a2j , . . . , amj), j = 1, 2, . . . , n, with coefficients
(x1, . . . , xn). Notice that we use both (column) vectors in R

m (such as the
columns of the matrix A and the right hand side b) and (column) vectors
in R

n such as the solution vector x.
We shall view f(x) = Ax as a function or transformation f : R

n → R
m,

and we thus focus on a particular case of our general problem of solving
systems of equations of the form f(x) = b, where f : R

n → R
m is the

linear transformation f(x) = Ax. We shall denote by R(A) the range of
f(x) = Ax, that is

R(A) = {Ax ∈ R
m : x ∈ R

n} =






n∑

j=1

xjaj : xj ∈ R





,

and by N(A) the null space of f(x) = Ax that is

N(A) = {x ∈ R
n : Ax = 0} =





x ∈ R

n :
n∑

j=1

xjaj = 0





.

We are interested in the question of existence and/or uniqueness of solu-
tions x ∈ R

n to the problem Ax = b for a given m× n matrix A and right
hand side b ∈ R

m. Of particular interest is the case m = n with as many
equations as unknowns.

Existence of a solution x to Ax = b is of course the same as saying that
b ∈ R(A), which is the same as saying that b is a linear combination of the
columns of A. Uniqueness is the same as saying that N(A) = 0, because
if x and x̂ satisfy Ax = b and Ax̂ = b, then by linearity, A(x− x̂) = 0, and
if N(A) = 0 then x − x̂ = 0 that is x = x̂. Further, the non-uniqueness
of solutions of Ax = b is described by N(A): If Ax̂ = b and Ax = b, then
x− x̂ ∈ N(A).

We may thus formulate the following prime objectives of our study of
the linear transformation f(x) = Ax given by the matrix A:

� Determine R(A).

� Determine N(A).

� Solve Ax = b for given b.

We state here the following partial answer given by the Fundamental The-
orem of Linear Algebra, which we will prove in a couple of different ways
below: Let m = n and suppose that N(A) = 0. Then Ax = b has a unique
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solution for any b ∈ R
m, that is, R(A) = R

m. In other words, if m = n,
then uniqueness implies existence.

In our study we will be led to concepts such as: linear combination,
linear span, linear space, vector space, subspace, linear independence, basis,
determinant, linear transformation and projection, which we have already
met in the chapters on analytic geometry in R

2 and R
3 above.

This chapter focusses mostly on theoretical issues while the computa-
tional methods such as Gaussian elimination and iterative methods are
considered in more detail in Chapter Solving systems of linear equations
below.

42.2 Body/Soul and Artificial Intelligence

Before plunging into the geometry of R
n, we take a brake and return to the

story of Body and Soul which continues into our time with new questions:
Is it possible to create computer programs for Artificial Intelligence AI,
that is, can we give the computer some more or less advanced capability of
acting like an intelligent organism with some ability of “thinking”? It ap-
pears that this question does not yet have a clear positive answer, despite
many dreams in that direction during the development of the computer.
In seeking an answer, Spencer’s principle of adaptivity of course plays an
important role: an intelligent system must be able to adapt to changes in
its environment. Further, the presence of a goal or final cause according
to Leibniz, seems to be an important feature of intelligence, to judge if an
action of a system is stupid or not. Below we will design adaptive IVP-
solvers, which are computer programs for solving systems of differential
equations, with features of adaptive feed-back from the computational pro-
cess towards the goal of error control. These IVP-solvers thus show some
kind of rudiments of intelligence, and at any rate are infinitely much more
“clever” than traditional non-adaptive IVP-solvers with no feed-back.

42.3 The Vector Space Structure of R
n

We view R
n as a vector space consisting of vectors which are ordered n-

tuples, x = (x1, . . . , xn) with components xi ∈ R, i = 1, . . . , n. We write
x = (x1, . . . , xn) for short, and refer to x ∈ R

n as a vector with component
xi in position i.

We may add two vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) in R
n by

componentwise addition to get a new vector x+ y in R
n defined by

x+ y = (x1 + y1, x2 + y2, . . . , xn + yn). (42.6)

Further, we may multiply a vector x = (x1, . . . , xn) by a real number λ by
componentwise multiplication with λ, to get a new vector λx in R

n defined
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by
λx = (λx1, . . . , λxn). (42.7)

The operations of adding two vectors in R
n and multiplying a vector

in R
n with a real number, of course directly generalize the corresponding

operations from the cases n = 2 and n = 3 considered above. The gener-
alization helps us to deal with R

n using concepts and tools which we have
found useful in R

2 and R
3.

We may thus add vectors in R
n and multiply them by real numbers

(scalars), the usual commutative and distributive rules hold for these op-
erations, and R

n is thus a vector space. We say that (0, 0, . . . , 0) is the zero
vector in R

n and write 0 = (0, 0, . . . , 0).
Linear algebra concerns vectors in vector spaces, also refereed to as linear

spaces, and linear functions of vectors, that is linear transformations of
vectors. As we just saw, R

n is a vector space, but there are also many
other types of vector spaces, where the vectors have a different nature. In
particular, we will below meet vector spaces consisting of vectors which
are functions. In this chapter we focus on R

n, the most basic of all vector
spaces. We know that linear transformations in R

2 and R
3 lead to 2 × 2

and 3 × 3 matrices, and we shall now generalize to linear transformations
from R

n into R
m which can be represented by m× n matrices.

We give in this chapter a condensed (and dry) presentation of some basic
facts of linear algebra in R

n. Many applications of the theoretical results
presented will appear in the rest of the book.

42.4 The Scalar Product and Orthogonality

We define the scalar product x · y = (x, y) of two vectors x and y in R
n, by

x · y = (x, y) =
n∑

i=1

xiyi. (42.8)

This generalizes the scalar product in R
2 and R

3. Note that here we intro-
duce a new notation for the scalar product of two vectors x and y, namely
(x, y), as an alternative to the “dot product” x · y used in R

2 and R
3. We

should be ready to use both notations.
The scalar product is bilinear in the sense that (x+y, z) = (x, z)+(y, z),

(λx, z) = λ(x, z), (x, y + z) = (x, y) + (x, z) and (x, λy) = λ(x, y), and
symmetric in the sense that (x, y) = (y, x), for all vectors x, y, z ∈ R

n and
λ ∈ R.

We say that two vectors x and y in R
n are orthogonal if (x, y) = 0. We

define

|x| =

(
n∑

i=1

x2
i

)1/2

= (x, x)1/2 (42.9)
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to be the Euclidean length or norm of the vector x. Note that this definition
of length is a direct generalization of the natural length |x| of a vector x
in R

n, n = 1, 2, 3.

Example 42.1. Let x = (2,−4, 5, 1, 3) and y = (1, 4, 6,−1, 2) be two vectors
in R

5. We compute (x, y) = 2×1+(−4)×4+5×6+1× (−1)+3×2 = 21.

42.5 Cauchy’s Inequality

Cauchy’s inequality states that for x, y ∈ R
n,

|(x, y)| ≤ |x| |y|.

In words: the absolute value of the scalar product of two vectors is bounded
by the product of the norms of the vectors. We prove Cauchy’s inequality
by noting that for all s ∈ R,

0 ≤ |x+ sy|2 = (x + sy, x+ sy) = |x|2 + 2s(x, y) + s2|y|2,

and then assuming that y �= 0, choosing s = −(x, y)/|y|2 (which minimizes
the right-hand side), to get

0 ≤ |x|2 − 2
(x, y)2

|y|2 +
(x, y)2

|y|2 = |x|2 − (x, y)2

|y|2 ,

which proves the desired result.
We recall that for n = 2, 3,

(x, y) = x · y = cos(θ)|x||y|,

where θ is the angle between x and y, from which of course Cauchy’s
inequality follows directly using the fact that | cos(θ)| ≤ 1.

We define the angle θ ∈ [0, 2π) between two non-zero vectors x and y
in R

n by

cos(θ) =
(x, y)
|x||y| , (42.10)

which generalizes the corresponding notion for n = 2, 3.

Example 42.2. The angle between the vectors x = (1, 2, 3, 4) and y =
(4, 3, 2, 1) in R

4 is equal to arccos 2
3 ≈ 0.8411 ≈ 48◦ since (x, y) = 20 and

|x| = |y| =
√

30.
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42.6 The Linear Combinations of a Set of Vectors

We know that two non-parallel vectors a1 and a2 in R
3 define a plane in R

3

through the origin consisting of all the linear combinations λ1a1+λ2a2 with
coefficients λ1 and λ2 in R. The normal to the plane is given by a1 × a2.
A plane through the origin is an example of subspace of R

3, which is a subset
of R with the property that vector addition and scalar multiplication does
not lead outside the set. So, a subset S of R

3 is a subspace if the sum of
any two vectors in S belongs to S and scalar multiplication of a vector in S
gives a vector in S. Clearly, a plane through the origin is a subspace of R

3.
Similarly, a line through the origin defined as the scalar multiples λ1a1 with
coefficients λ1 ∈ R and a1 a given vector in R

3, is a subspace of R
3. The

subspaces of R
3 consist of lines and planes through the origin. Notice that

a plane or line in R
3 not passing through the origin, is not a subspace.

More generally, we use the concept of a vector space to denote a set of
vectors for which the operations of vector addition and scalar multiplication
does not lead outside the set. Of course, R

3 is a vector space. A subspace
of R

3 is a vector space. A plane or line in R
3 through the origin is a vector

space. The concept of vector space is fundamental in mathematics and we
will meet this term many times below.

We will now generalize to R
m with m > 3 and we will then meet new

examples of vector spaces and subspaces of vector spaces. Let a1, a2,. . . ,an,
be n non-zero vectors in R

m. A vector b in R
m of the form

b = λ1a1 + λ2a2 + · · · + λnan, (42.11)

where the λi ∈ R, is said to be a linear combination of the set of vectors
{a1, . . . , an} with coefficients λ1, . . . , λn. If

c = µ1a1 + µ2a2 + · · · + µnan, (42.12)

is another linear combination of {a1, . . . , an} with coefficients µj ∈ R, then
the vector

b+ c = (λ1 + µ1)a1 + (λ2 + µ2)a2 + · · · + (λ+µn)an, (42.13)

is again a linear combination of {a1, . . . , am} now with coefficients λj +µj .
Further, for any α ∈ R the vector

αb = αλ1a1 + αλ2a2 + · · · + αλmam (42.14)

is also a linear combination of {a1, . . . , am} with coefficients αλj . This
means that if we let S(a1, . . . an) denote the set of all linear combinations

λ1a1 + λ2a2 + · · · + λnan, (42.15)

of {a1, . . . , an}, where the coefficients λj ∈ R, then S(a1, . . . an) is indeed
a vector space, since vector addition and multiplication by scalars do not
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lead outside the set. The sum of two linear combinations of {a1, . . . , an}
is also a linear combination of {a1, . . . , an}, and a linear combination of
{a1, . . . , an} multiplied by a real number is also a linear combination of
{a1, . . . , an}.

We refer to the vector space S(a1, . . . an) of all linear combinations of
the form (42.15) of the vectors {a1, . . . , an} in R

m as the subspace of R
m

spanned by the vectors {a1, . . . , an}, or simply just the span of {a1, . . . , an},
which we may describe as:

S(a1, . . . an) =

{
n∑

i=1

λjaj : λj ∈ R, j = 1, . . . , n

}

.

If m = 2 and n = 1, then the subspace S(a1) is a line in R
2 through the

origin with direction a1. If m = 3 and n = 2, then S(a1, a2) corresponds
to the plane in R

3 through the origin spanned by a1 and a2 (assuming a1

and a2 are non-parallel), that is, the plane through the origin with normal
given by a1 × a2.

Note that for any µ ∈ R, we have

S(a1, a2, . . . , an) = S(a1, a2 − µa1, a3, . . . , an), (42.16)

since we can replace each occurrence of a2 by the linear combination (a2 −
µa1) + µa1 of a2 − µa1 and a1. More generally, we can add any multiple
of one vector to one of the other vectors without changing the span of the
vectors! Of course we may also replace any vector aj with a µaj where µ
is a non-zero real number without changing the span. We shall return to
these operations below.

42.7 The Standard Basis

The set of vectors in R
n:

{(1, 0, 0, · · · , 0, 0), (0, 1, 0, · · · , 0, 0), · · · , (0, 0, 0, · · · , 0, 1)} ,

commonly denoted by {e1, . . . , en}, where ei = (0, 0, . . . , 0, 1, 0, . . . , 0) with
a single coefficient 1 at position i, is called the standard basis for R

n. Any
vector x = (x1, . . . , xn) ∈ R

n can be written as a linear combination of the
basis vectors {e1, . . . , en}:

x = x1e1 + x2e2 + · · · + xnen, (42.17)

with the coefficients xj of x appearing as coefficients of the basis vectors ej .
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We note that (ej , ek) = ej · ek = 0 for j �= k, that is the standard basis
vectors are pairwise orthogonal, and of length one since (ej , ej) = |ej |2 = 1.
We may thus express the coefficients xi of a given vector x = (x1, . . . , xn)
with respect to the standard basis {e1, . . . , en} as follows:

xi = (ei, x) = ei · x. (42.18)

42.8 Linear Independence

We recall that to specify a plane in R
3 as the set of linear combinations of

two given vectors a1 and a2, we assume that a1 and a2 are non-parallel.
The generalization of this condition to a set {a1, . . . , am} of m vectors
in R

n, is referred to as linear independence, which we now proceed to define.
Eventually, this will lead us to the concept of basis of a vector space, which
is one of the most basic(!) concepts of linear algebra.

A set {a1, . . . , an} of vectors in R
m is said to be linearly independent

if none of the vectors ai can be expressed as a linear combination of the
others. Conversely, if some of the vectors ai can be expressed as a linear
combination of the others, for example if

a1 = λ2a2 + . . .+ λnan (42.19)

for some numbers λ2,. . . ,λn, we say that the set {a1, a2, . . . , an} is linearly
dependent. As a test of linear independence of {a1, a2, . . . , an}, we can use:
if

λ1a1 + λ2a2 + . . .+ λnan = 0 (42.20)

implies that λ1 = λ2 = . . . = λn = 0, then {a1, a2, . . . , an} is linearly
independent. This is because if (42.20) holds with some of the λj different
from 0, for example, λ1 �= 0, then we could divide by λ1 and express a1 as
a linear combination of {a2, . . . , am}:

a1 = −λ2

λ1
a2 + . . .+ −λn

λ1
an. (42.21)

The standard basis {e1, . . . , en} is (of course) a linearly independent set,
since if

λ1e1 + . . .+ λnen = 0,

then λi = 0 for i = 1, . . . , n, because 0 = (0, 0, . . . , 0) = λ1e1 + . . .+λnen =
(λ1, . . . , λn).
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42.9 Reducing a Set of Vectors to Get a Basis

Consider the subspace S(a1, . . . , an) spanned by the set of vectors {a1, a2,
. . . , an}. If the set {a1, a2, . . . , an} is linearly dependent, say that an can be
expressed as a linear combination of {a1, . . . , an−1}, then S(a1, . . . , an) is in
fact spanned by {a1, . . . , an−1} and thus S(a1, . . . , an) = S(a1, . . . , an−1).
This follows simply by replacing all occurrences of an by its linear combina-
tion of {a1, . . . , an−1}. Continuing this way, eliminating linearly dependent
vectors, we may express S(a1, . . . , an) as the span of {a1, a2, . . . , ak} (with
a suitable enumeration), that is, S(a1, . . . , an) = S(a1, a2, . . . , ak}, where
k ≤ n, and the set {a1, a2, . . . , ak} is linearly independent. This means
that {a1, a2, . . . , ak} is a basis for the vector space S = S(a1, . . . , an) in the
sense that the following two conditions are fulfilled:

� any vector in S can be expressed as a linear combination of {a1, a2,
. . . , ak},

� the set {a1, a2, . . . , ak} is linearly independent.

Note that by the linear independence the coefficients in the linear combi-
nation are uniquely determined: if two linear combinations

∑k
j=1 λjaj and

∑k
j=1 µjaj are equal, then λj = µj for j = 1, . . . , k.
Each vector b ∈ S can thus be expresses as a unique linear combination

of the basis vectors {a1, a2, . . . , ak}:

b =
k∑

j=1

λjaj ,

and we refer to (λ1, . . . , λk) as the coefficients of b with respect to the basis
{a1, a2, . . . , ak}.

The dimension of a vector space S is equal to the number of basis vectors
in a basis for S. We prove below that the dimension is uniquely defined so
that two sets of basis vectors always have the same number of elements.

Example 42.3. Consider the three vectors a1 = (1, 2, 3, 4), a2 = (1, 1, 1, 1),
and a3 = (3, 3, 5, 6) in R

4. We see that a3 = a1 + 2a2, and thus the set
{a1, a2, a3} is linearly dependent. The span of {a1, a2, a3} thus equals the
span of {a1, a2}, since each occurrence of a3 can be replaced by a1+2a2. The
vector a3 is thus redundant, since it can be replaced by a linear combination
of a1 and a2. Evidently, {a1, a2} is linearly independent, since a1 and a2 are
non-parallel. Thus, {a1, a2} is a linearly independent set spanning the same
subset as {a1, a2, a3}. We can also express a2 in terms of a1 and a3, or a1

in terms of a2 and a3, and thus any set of two vectors {a1, a2}, {a1, a3} or
{a2, a3}, can serve as a basis for the subspace spanned by {a1, a2, a3}.
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42.10 Using Column Echelon Form to Obtain a
Basis

We now present a constructive process for determining a basis for the vector
space S(a1, . . . , an) spanned by the set of vectors {a1, a2, . . . , an}, where
aj = (a1j , . . . , amj) ∈ R

m for j = 1, . . . , n which we view as column vec-
tors. We refer to this process as reduction to column echelon form. It is
of fundamental importance and we shall return to it below in several dif-
ferent contexts. Assume then first that a11 = 1 and choose µ ∈ R so that
µa11 = a12, and note that S(a1, . . . , an) = S(a1, a2−µa1, a3, . . . , an), where
now the first component of a2 − µa1 is zero. We here used the fact that
we can add one vector multiplied by a scalar to another vector without
changing the span of the vectors. Continuing in the same way we obtain
S(a1, . . . , an) = S(a1, â2, â3, . . . ân) where â1j = 0 for j > 1. In matrix form
with the aj ∈ R

m as column vectors, we may express this as follows:

S







a11 a12 .. a1n

a21 a22 .. a2n

. . .. .
am1 am2 .. amn





 = S







1 0 .. 0
a21 â22 .. â22

. . .. .
am1 âm2 .. âmn







We can now repeat the process by cutting out the first row and first column
and reduce to a set of n−1 vectors in R

m−1. Before doing this we take care
of the case a11 �= 1. If a11 �= 0, then we transform to the case a11 = 1 by
replacing a1 by µa1 with µ = 1/a11, noting that we can multiply any column
with a non-zero real number without changing the span. By renumbering
the vectors we may then assume that either a11 �= 0, which thus led to the
above construction, or a1j = 0 for j = 1, . . . , n, in which case we seek to
compute a basis for

S







0 0 .. 0
a21 a22 .. a22

. . .. .
am1 am2 .. amn







with only zeros in the first row. We may then effectively cut out the first
row and reduce to a set of n vectors in R

m−1.
Repeating now the indicated process, we obtain with k ≤ min(n,m),

S







a11 a12 .. a1n

. . .. .

. . .. .
am1 am2 .. amn





 = S











1 0 0 .. 0 .. 0
â21 1 0 .. 0 .. 0
. . . 0 0 .. 0
. . .. 1 0 .. 0
. . .. . . .. .

âm1 âm2 .. âmk 0 .. 0











where we refer to the matrix on the right as the column echelon form
of the matrix to the left, and k is the number of non-zero columns. We
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see that each non-zero column âj, j = 1, . . . , k, in the echelon form has
a coefficient equal to 1 and that all matrix elements to the right and above
that coefficient is equal to zero. Further, the ones appear in a staircase
form descending to the right on or below the diagonal. The set of non-zero
columns {â1, . . . , âk} is linearly independent, because if

k∑

j=1

x̂j âj = 0,

then we get successively x̂1 = 0, x̂2 = 0,. . . , x̂k = 0, and thus {â1, . . . , âk}
forms a basis for S(a1, . . . , an). The dimension of S(a1, . . . , an) is equal
to k. If zero columns appear in the echelon form, then the original set
{a1, . . . , an} is linearly dependent.

We note that, because of the construction, zero columns must appear if
n > m, and we thus understand that a set of n vectors in R

m is linearly
dependent if n > m. We may also understand that if n < m, then the
set {a1, . . . , an} cannot span R

m, because if k < m, then there are vectors
b ∈ R

m which cannot be expressed as linear combinations of {â1, . . . , âk}
as we now show: if

b =
k∑

j=1

x̂j âj ,

then the coefficients x̂1, . . . , x̂k are determined by the coefficients b1, . . . , bk,
of b occurring in the rows with the coefficient 1. For example, in the case
the 1s appear on the diagonal, we first compute x̂1 = b1, then x̂2 = b1 −
â21x̂1 etc, and thus the remaining coefficients bk+1, . . . , bm of b cannot be
arbitrary.

42.11 Using Column Echelon Form to Obtain R(A)

By reduction to column echelon form we can construct a basis for R(A) for
a given m× n matrix A with column vectors a1, . . . , an because

Ax =
n∑

j=1

xjaj

and thus R(A) = S(a1, . . . , an) expressing that the range R(A) = {Ax :
x ∈ R

n} is equal to the vector space S(a1, . . . , an) of all linear combinations
of the set of column vectors {a1, . . . , an}. Setting now

A =







a11 a12 .. a1n

. . .. .

. . .. .
am1 am2 .. amn





 , Â =











1 0 0 .. 0 .. 0
â21 1 0 .. 0 .. 0
. . . 0 0 .. 0
. . .. 1 0 .. 0
. . .. . . .. .

âm1 âm2 .. âmk 0 .. 0
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with Â obtained from A by reduction to column echelon form, we have

R(A) = R(Â) = S(â1, . . . , âk),

and thus {â1, . . . , âk} forms a basis for R(A). In particular we can easily
check if a given vector b ∈ R

m belongs to R(A), by using the echelon
form. By reduction to column echelon form we can thus give an answer
to the basic problem of determining R(A) for a given matrix A. Not bad.
For example, in the case m = n we have that R(A) = R

m if and only if
k = n = m, in which case the echelon form Â has 1s all along the diagonal.

We give an example showing the sequence of matrices appearing in re-
duction to column echelon form:

Example 42.4. We have

A =







1 1 1 1 1
1 2 3 4 7
1 3 4 5 8
1 4 5 6 9





 →







1 0 0 0 0
1 1 2 3 6
1 2 3 4 7
1 3 4 5 8







→







1 0 0 0 0
1 1 0 0 0
1 2 −1 −2 −5
1 3 −2 −4 −10





 →







1 0 0 0 0
1 1 0 0 0
1 2 1 −2 −5
1 3 2 −4 −10







→







1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 2 0 0





 = Â.

We conclude that R(A) is spanned by the 3 non-zero columns of Â and thus
in particular that the dimension of R(A) is equal to 3. In this example, A
is a 4 × 5 matrix and R(A) does not span R

4. Solving the system

Âx̂ =







1 0 0 0 0
1 1 0 0 0
1 2 1 0 0
1 3 2 0 0















x̂1

x̂2

x̂3

x̂4

x̂5









=







b1
b2
b3
b4







we compute uniquely x̂1, x̂2 and x̂3 from the first three equations, and to
have the fourth equation satisfied, we must have b4 = x̂1 + 3x̂2 + 2x̂3 and
thus b4 can not be chosen freely.
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42.12 Using Row Echelon Form to Obtain N(A)

We take the chance to solve the other basic problem of determining N(A)
by reduction to row echelon form, which is analogous to reduction to column
echelon form working now with the rows instead of the columns. We thus
consider a m× n matrix

A =







a11 a12 .. a1n

. . .. .

. . .. .
am1 am2 .. amn





 ,

and perform the operations of (i) multiplying one row with a real num-
ber and (ii) multiplying one row with a real number and subtracting it
from another row. We then obtain the row echelon form of A (possibly by
reordering rows):

Â =













1 â12 . . .. . â1n

0 1 . .. . .. â2n

. . . . . .. .
0 0 .. 1 . .. âkn

0 0 .. 0 0 .. 0
. . .. . . .. .
0 0 .. 0 0 .. 0













Each non-zero row of the row echelon matrix Â has one element equal to 1
and all elements to the left and below are equal to zero, and the 1s appear
in a staircase form on or to the right of the diagonal from the upper left
corner.

We notice that the row operations do not change the null space N(A) =
{x : Ax = 0}, because we may perform the row operations in the system
of equations Ax = 0, that isTS

a

a11x1 + a12x2 + . . .+ a1nxn = 0,
a21x1 + a22x2 + . . .+ a2nxn = 0,

. . . . . .
am1x1 + am2x2 + . . .+ amnxn = 0,

to reduce it to the echelon form system Âx = 0 without changing the vector
x = (x1, . . . , xn). We conclude that

N(A) = N(Â)

and we may thus determine N(A) by using that we can directly determine
N(Â) from the echelon form of A. It is easy to see that the dimension of
N(A) = N(Â) is equal to n− k, as illustrated in the following example. In

TS
a The following equation was numbered with (42.22) in the hard copy, please check

it.

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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the case n = m, we have that N(A) = 0 if and only if k = m = n in which
all diagonal elements of Â are equal to 1.

We give an example showing the sequence of matrices appearing in re-
duction to row echelon form:

Example 42.5. We have

A =







1 1 1 1 1
1 2 3 4 7
1 3 4 5 8
1 4 5 6 9





 →







1 1 1 1 1
0 1 2 3 6
0 2 3 4 7
0 3 4 5 8





 →







1 1 1 1 1
0 1 2 3 6
0 0 −1 −2 −5
0 0 −2 −4 −10





 →







1 1 1 1 1
0 1 2 3 6
0 0 1 2 5
0 0 0 0 0





 = Â.

We now determine N(A) by determining N(Â) = N(A) by seeking the
solutions x = (x1, . . . , x5) of the system Âx = 0, that is







1 1 1 1 1
0 1 2 3 6
0 0 1 2 5
0 0 0 0 0















x1

x2

x3

x4

x5









=







0
0
0
0





 .

We see that we can freely choose x4 and x5 and then solve for x3, x2 and x1

to get the solution in the form

x = λ1









0
1
−2
1
0









+ λ2









0
4
−5
0
1









where λ1 and λ2 are any real numbers. We have now computed a basis for
N(A) and we see in particular that the dimension of N(A) is equal to 2.
We recall that the dimension of R(A) is equal to 3 and we note that the
sum of the dimensions of R(A) and N(A) happens to be equal to 5 that is
the number of columns of A. This is a general fact which we prove in the
Fundamental Theorem below.
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42.13 Gaussian Elimination

Gaussian elimination to compute solutions to the system







a11 a12 .. a1n

. . .. .

. . .. .
am1 am2 .. amn













x1

.

.
xn





 =







b1
.
.
bm







closely couples to reduction to row echelon form. Performing row operations
we may reduce to a system of the form

Â =













1 â12 . . .. . â1n

0 1 . .. . .. â2n

. . . . . .. .
0 0 .. 1 . .. âkn

0 0 .. 0 0 .. 0
. . .. . . .. .
0 0 .. 0 0 .. 0



















x1

.

.
xn





 =







b̂1
.
.

b̂m







with the same solution vector x. We may assume, by possibly by renum-
bering the components of x, that the 1s appear on the diagonal. We see
that solvability is equivalent to having b̂j = 0 for j = k+ 1, . . . ,m, and the
non-uniqueness is expressed by N(A) as explained above. In the casem = n
we have that N(A) = 0 if and only if k = m = n in which case all diagonal
elements of Â are equal to 1, and the system Âx = b̂ is uniquely solv-
able for all b̂ ∈ R

m, and thus Ax = b is uniquely solvable for all b ∈ R
m.

We conclude that if m = n, then uniqueness implies existence. We may
thus say that by Gaussian elimination or reduction to row echelon form,
we may solve our basic problems of existence and uniqueness of solutions
to the system Ax = b. We shall add more information on these problems
in the Fundamental Theorem of Linear Algebra below. For more informa-
tion on Gaussian elimination, we refer to Chapter Solving Linear Algebraic
Systems below.

42.14 A Basis for R
n Contains n Vectors

Let us now prove that if {a1, . . . , am} is a basis for R
n, then m = n, that

is any basis for R
n has exactly n elements, no more no less. We already

deduced this fact from the column echelon form above, but we here give
a “coordinate-free” proof which applies to more general situations.
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We recall that a set {a1, . . . , am} of vectors in R
n is a basis for R

n if the
following two conditions are fulfilled:

� {a1, . . . , am} is linearly independent,

� any vector x ∈ R
n can be expressed as a linear combination x =∑m

j=1 λjaj of {a1, . . . , am} with coefficients λj .

Of course, {e1, . . . , en} is a basis for R
n in this sense.

To prove that m = n, we consider the set {e1, a1, a2, . . . , am}. Since
{a1, . . . , am} is a basis for R

n, that is spans R
n, the vector e1 can be

expressed as a linear combination of {a1, . . . , am}:

e1 =
m∑

j=1

λjaj,

with some λj �= 0. Suppose λ1 �= 0. Then, dividing by λ1 expresses a1 as
a linear combination of {e1, a2, . . . , am}. This means that {e1, a2, . . . , am}
spans R

n. Consider now the set {e1, e2, a2, . . . , am}. The vector e2 can be
expressed as a linear combination of {e1, a2, . . . , am} and some of the coef-
ficients of the aj must be non-zero, since {e1, e2} are linearly independent.
Supposing the coefficient of a2 is non-zero, we can eliminate a2 and thus the
set {e1, e2, a3, . . . , am} now spans R

n. Continuing this way we get the set
{e1, e2, . . . , en, an+1, . . . , am} if m > n and the set {e1, e2, . . . , en} if m = n,
which both span R

n. We conclude that m ≥ n, since if e.g. m = n − 1,
we would end up with the set {e1, e2, . . . , en−1} which does not span R

n

contrary to the assumption.
Repeating this argument with the roles of the basis {e1, e2, . . . , en} and

{a1, a2, . . . , am} interchanged, we get the reverse inequality n ≥ m and thus
n = m. Of course, intuitively, there are n independent directions in R

n and
thus a basis of R

n has n elements, no more no less.
We also note that if {a1, . . . , am} is a linearly independent set in R

n, then
it can be extended to a basis {a1, . . . , am, am+1, . . . , an} by adding suitable
elements am+1, . . . , an. The extension starts by adding am+1 as any vector
which cannot be expressed as a linear combination of the set {a1, . . . , am}.
Then {a1, . . . , am, am+1} is linearly independent, and if m + 1 < n, the
process may be continued.

We summarize as follows:

Theorem 42.1 Any basis of R
n has n elements. Further, a set of n vectors

in R
n span R

n if and only if it is linearly independent, that is a set of n
vectors in R

n that spans R
n or is independent, must be a basis. Also, a set

of fewer than n vectors in R
n cannot span R

n, and a set of more than n
vectors in R

n must be linearly dependent.

The argument used to prove this result can also be used to prove that
the dimension of a vector space S is well defined in the sense that any two
bases have the same number of elements.
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42.15 Coordinates in Different Bases

There are many different bases in R
n if n > 1 and the coordinates of

a vector with respect to one basis are not equal to the coordinates with
respect to another basis.

Suppose {a1, . . . , an} is a basis for R
n and let us seek the connection

between the coordinates of one and the same vector in the standard basis
{e1, . . . , en} and the basis {a1, . . . , an}. Assume then that the coordinates
of the basis vectors aj in the standard basis {e1, . . . , en} are given by aj =
(a1j , . . . anj) for j = 1, . . . n, that is

aj =
n∑

i=1

aijei.

Denoting the coordinates of a vector x with respect to {e1, . . . , en} by xj

and the coordinates with respect to {a1, . . . , an} by x̂j , we have

x =
n∑

j=1

x̂jaj =
n∑

j=1

x̂j

n∑

i=1

aijei =
n∑

i=1




n∑

j=1

aij x̂j



 ei, (42.22)

that is since also x =
∑n

i=1 xiei and the coefficients xi of x are unique,

xi =
n∑

j=1

aij x̂j for i = 1, . . . n. (42.23)

This relation expresses the connection between the coordinates x̂j with
respect to the basis {a1, . . . , an}, and the coordinates xi with respect to
the standard basis {e1, . . . , en}, in terms of the coordinates aij of the basis
vectors aj with respect to {e1, . . . , en}. This is a basic connection, which
will play a central role in the development to come.

Using the scalar product we can express the coordinates aij of the basis
vector aj as aij = (ei, aj). To find the connection (42.23) between the
coordinates x̂j with respect to the basis {a1, . . . , an}, and the coordinates xi

with respect to the standard basis {e1, . . . , en}, we may start from the
equality

∑n
j=1 xjej = x =

∑n
j=1 x̂jaj and take the scalar product of both

sides with ei, to get

xi =
n∑

j=1

x̂j(ei, aj) =
n∑

j=1

aij x̂j , (42.24)

where aij = (ei, aj).

Example 42.6. The set {a1, a2, a3} with a1 = (1, 0, 0), a2 = (1, 1, 0), a3 =
(1, 1, 1) in the standard basis, forms a basis for R

3 since the set {a1, a2, a3} is
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linearly independent. This is because if λ1a1+λ2a2+λ3a3 = 0, then λ3 = 0
and thus also λ2 = 0 and thus also λ1 = 0. If (x1, x2, x3) are the coordinates
with respect to the standard basis and (x̂1, x̂2, x̂3) are the coordinates with
respect to {a1, a2, a3} of a certain vector, then the connection between the
coordinates is given by (x1, x2, x3) = x̂1a1 + x̂2a2 + x̂3a3 = (x̂1 + x̂2 +
x̂3, x̂2 + x̂3, x̂3). Solving for the x̂j in terms of the xi, we get (x̂1, x̂2, x̂3) =
(x1 − x2, x2 − x3, x3).

42.16 Linear Functions f : R
n → R

A linear function f : R
n → R satisfies

f(x+ y) = f(x) + f(y), f(αx) = αf(x) for all x, y ∈ R
n, α ∈ R.

(42.25)

We say that f(x) is a scalar linear function since f(x) ∈ R. Expressing
x = x1e1 + . . . + xnen in the standard basis {e1, . . . , en}, and using the
linearity of f(x), we find that

f(x) = x1f(e1) + . . .+ xnf(en), (42.26)

and thus f(x) has the form

f(x) = f(x1, . . . , xn) = a1x1 + a2x2 + . . .+ anxn, (42.27)

where the aj = f(ej) are real numbers. We can write f(x) as

f(x) = (a, x) = a · x, (42.28)

where a = (a1, . . . , an) ∈ R
n, that is f(x) can be expressed as the scalar

product of x with the vector a ∈ R
n with components aj given by aj =

f(ej).
The set of scalar linear functions is the mother of all other functions. We

now generalize to systems of scalar linear functions. Linear algebra is the
study of systems of linear functions.

Example 42.7. f(x) = 2x1 +3x2−7x3 defines a linear function f : R
3 → R

with coefficients f(e1) = a1 = 2, f(e2) = a2 = 3 and f(e3) = a3 = −7.

42.17 Linear Transformations f : R
n → R

m

A function f : R
n → R

m is said to be linear if

f(x+ y) = f(x)+ f(y), f(αx) = αf(x) for all x, y ∈ R
n, α ∈ R. (42.29)
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We also refer to a linear function f : R
n → R

m as a linear transformation
of R

n into R
m.

The image f(x) of x ∈ R
n is a vector in R

m with components which
we denote by fi(x), i = 1, 2, . . . ,m, so that f(x) = (f1(x), . . . , fm(x)).
Each coordinate function fi(x) is a linear scalar function fi : R

n → R if
f : R

n → R
m is linear. We can thus represent a linear transformation

f : R
n → R

m as

f1(x) = a11x1 + a12x2 + . . .+ a1nxn

f2(x) = a21x1 + a22x2 + . . .+ a2nxn

. . . . . .
fm(x) = am1x1 + am2x2 + . . .+ amnxn

(42.30)

with the coefficients aij = fi(ej) = (ei, f(ej)) ∈ R.
We can write (42.30) in condensed form as

fi(x) =
n∑

j=1

aijxj for i = 1, . . . ,m. (42.31)

Example 42.8. f(x) = (2x1 + 3x2 − 7x3, x1 + x3) defines a linear function
f : R

3 → R
2 with coefficients f1(e1) = a11 = 2, f1(e2) = a12 = 3 and

f1(e3) = a13 = −7, f2(e1)a21 = 1, f2(e2)a22 = 0 and f2(e3) = a23 = 1.

42.18 Matrices

We now return to the notion of a matrix and develop a matric calculus.
The connection to linear transformations is very important. We define the
m× n matrix A = (aij) as the rectangular array







a11 a12 .. a1n

. . .. .

. . .. .
am1 am2 .. amn





 (42.32)

with rows (ai1, . . . , ain), i = 1, . . . ,m, and columns (a1j , . . . , amj), j =
1, . . . , n, where aij ∈ R.

We may view each row (ai1, . . . , ain) as a n-row vector or as a 1 × n
matrix, and each column (a1j , . . . , amj) as an m-column vector or a m× 1
matrix. We can thus view the m×n matrix A = (aij) with elements aij , as
consisting of m row vectors (ai1, . . . , ain), i = 1, . . . ,m or n column vectors
(a1j , . . . , amj), j = 1, . . . , n.
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42.19 Matrix Calculus

Let A = (aij) and B = (bij) be two m× n matrices. We define C = A+B
as the m× n matrix C = (cij) with elements

cij = aij + bij , i = 1, . . . , n, j = 1, . . . ,m. (42.33)

We may thus add twom×nmatrices by adding the corresponding elements.
Similarly, we define for λ a real number the matrix λA with elements

(λaij), corresponding to multiplying all elements of A by the real number λ.
We shall now define matrix multiplication and we start by defining the

product Ax of an m × n matrix A = (aij) with a n × 1 column vector
x = (xj) as the m × 1 column vector y = Ax with elements yi = (Ax)i

given by

(Ax)i =
n∑

j=1

aijxj , (42.34)

or with matrix notation






y1
y2
. . .
ym





 =







a11 a12 . . . a1n

a21 a22 . . . a2n

. . .
am1 am2 . . . amn













x1

x2

. . .
xn





 .

The element yi = (Ax)i of the matrix-vector product Ax is thus obtained
by taking the scalar product of row i of A with the vector x, as expressed
by (42.34).

We can now express a linear transformation f : R
n → R

m as a matrix-
vector product

f(x) = Ax,

where A = (aij) is an m×nmatrix with elements aij = fi(ej) = (ei, f(ej)),
where f(x) = (f1(x), . . . , fm(x)). This is a restatement of (42.31).

We now proceed to define the product of an m×p matrix A = (aij) with
a p× n matrix B = (bij). We do this by connecting the matrix product to
the composition f ◦ g : R

n → R
m given by

f ◦ g(x) = f(g(x)) = f(Bx) = A(Bx), (42.35)

where f : R
p → R

m is the linear transformation given by f(y) = Ay, where
A = (aij) and aik = fi(ek), and g : R

n → R
p is the linear transformation

given by g(x) = Bx, where B = (bkj) and bkj = gk(ej). Here ek denote the
standard basis vectors in R

p, and ej the corresponding basis vectors in R
n.

Clearly, f ◦ g : R
n → R

m is linear and thus can be represented by an m×n
matrix. Letting (f ◦ g)i(x)) denote the components of (f ◦ g)(x), we have

(f ◦ g)i(ej) = fi(g(ej)) = fi

(
p∑

k=1

bkjek

)

=
p∑

k=1

bkjfi(ek) =
p∑

k=1

aikbkj ,
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which shows that f ◦ g(x) = Cx, where C = (cij) is the m× n matrix with
elements cij given by the formula

cij =
p∑

k=1

aikbkj , i = 1, . . . ,m, j = 1, . . . , n. (42.36)

We conclude that A(Bx) = Cx, and we are thus led to define the matrix
product AB = C by (42.36), where thus A is an m × p matrix and B is
a p× n matrix, and the product AB is a m× n matrix. We can then write

A(Bx) = ABx

as a reflection of f(g(x)) = f ◦ g(x).
Formally, to get the m×n format of the product AB, we cancel the p in

the m× p format of A and the p× n format of B. We see that the formula
(42.36) may be expressed as follows: the element cij in row i and column j
of AB is obtained by taking the scalar product of row i of A with column j
of B.

We may write the formula for matrix multiplication as follows:

(AB)ij =
p∑

k=1

aikbkj , for i = 1, . . . , n, j = 1, . . . ,m, (42.37)

or with matrix notation

AB =







a11 a12 . . . a1p

a21 a22 . . . a2p

. . .
am1 am2 . . . amp













b11 b12 . . . b1n

b21 b22 . . . b2n

. . .
bp1 bp2 . . . bpn







=







∑p
k=1 a1kbk1

∑p
k=1 a1kbk2 . . .

∑p
k=1 a1kbkn∑p

k=1 a2kbk1

∑p
k=1 a2kbk2 . . .

∑p
k=1 a2kbkn

. . .∑p
k=1 amkbk1

∑p
k=1 amkbk2 . . .

∑p
k=1 amkbkn





 .

Matrix multiplication is not commutative, that is AB �= BA in general.
In particular, BA is defined only if n = m.

As a special case, we have that the product Ax of an m×nmatrix A with
an n× 1 matrix x is given by (42.34). We may thus view the matrix-vector
product Ax defined by (42.34) as a special case of the matrix product
(42.36) with the n × 1 matrix x being a column vector. The vector Ax
is obtained taking the scalar product of the rows of A with the column
vector x.

We sum up in the following theorem.
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Theorem 42.2 A linear transformation f : R
n → R

m can be expressed as

f(x) = Ax, (42.38)

where A = (aij) is an m×n matrix with elements aij = fi(ej) = (ei, f(ej)),
where f(x) = (f1(x), . . . , fm(x)). If g : R

n → R
p and f : R

p → R
m are

two linear transformations with corresponding matrices A and B, then the
matrix of f ◦ g : R

n → R
m is given by AB.

42.20 The Transpose of a Linear Transformation

Let f : R
n → R

m be a linear transformation defined by f(x) = Ax, where
A = (aij) is an m×n-matrix. We now define another linear transformation
f	 : R

m → R
n, which we refer to as the transpose of f , by the relation

(x, f	(y)) = (f(x), y) for all x ∈ R
n, y ∈ R

m. (42.39)

Using that f(x) = Ax, we have

(f(x), y) = (Ax, y) =
m∑

i=1

n∑

j=1

aijxjyi, (42.40)

and thus setting x = ej, we see that

(f	(y))j =
m∑

i=1

aijyi. (42.41)

This shows that f	(y) = A	y, where A	 is the n×m matrix with elements
(a	ji) given by a	ji = aij . In other words, the columns of A	 are the rows of
A and vice versa. For example, if

A =
(

1 2 3
4 5 6

)

, then A	 =




1 4
2 5
3 6



 . (42.42)

Summing up we have:

Theorem 42.3 If A = (aij) is a m× n matrix, then the transpose A	 is
an n×m matrix with elements a	ji = aij, and

(Ax, y) = (x,A	y) for all x ∈ R
n, y ∈ R

m. (42.43)

An n×n matrix such that A	 = A, that is aij = aji for i, j = 1, . . . n, is
said to be a symmetric matrix.
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42.21 Matrix Norms

In many situations we need to estimate the “size” of a m× n matrix A =
(aij). We may use this information to estimate the “length” of y = Ax in
terms of the “length” of x. We observe that

m∑

i=1

|yi| ≤
m∑

i=1

n∑

j=1

|aij ||xj | =
n∑

j=1

m∑

i=1

|aij ||xj | ≤ max
j=1,...,n

m∑

i=1

|aij |
n∑

j=1

|xj |,

which shows that if we define ‖x‖1 =
∑

|xj | and ‖y‖1 =
∑

|yi|, then

‖y‖1 ≤ ‖A‖1‖x‖1

if we define

‖A‖1 = max
j=1,...,n

m∑

i=1

|aij |

Similarly, we have

max
i

|yi| ≤ max
i

n∑

j=1

|aij |xj | ≤
n

max
i

n∑

j=1

|aij |max
j

|xj |

which shows that if we define ‖x‖∞ = maxj |xj | and ‖y‖∞ = maxi |yi|,
then

‖y‖∞ ≤ ‖A‖∞‖x‖∞
if we define

‖A‖∞ = max
i+1,...,m

n∑

j=1

|aij |.

We may also define the Euclidean norm ‖A‖ by

‖A‖ = max
x∈Rn

‖Ax‖
‖x‖ , (42.44)

where we maximize over x �= 0, and ‖ · ‖ denotes the Euclidean norm. We
thus define ‖A‖ to be the smallest constant C such that ‖Ax‖ ≤ C‖x‖ for
all x ∈ R

n. We shall return in Chapter The Spectral theorem below to the
problem of giving a formula for ‖A‖ in terms of the coefficients of A in the
case A is symmetric (with in particular m = n). By definition, we clearly
have

‖Ax‖ ≤ ‖A‖ ‖x‖. (42.45)

If A = (λi) is a diagonal n × n matrix with diagonal elements aii = λi,
then

‖A‖ = max
i=1,...,n

|λi|. (42.46)

TS
a The following equation was numbered with (42.48), please check it.
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42.22 The Lipschitz Constant
of a Linear Transformation

Consider a linear transformation f : R
n → R

m given by a m × n matrix
A = (aij), that isTS

a

f(x) = Ax, for x ∈ R
n.

By linearity we have

‖f(x) − f(y)‖ = ‖Ax−Ay‖ = ‖A(x− y)‖ ≤ ‖A‖‖x− y‖.

We may thus say that the Lipschitz constant of f : R
n → R

m is equal
to ‖A‖. Alternatively, working with the norms ‖ · ‖1 or ‖ · ‖∞, we may view
the Lipschitz constant to be equal to ‖A‖1 or ‖A‖∞.

42.23 Volume in R
n: Determinants

and Permutations

Let {a1, a2, . . . , an} be a set of n vectors in R
n. We shall now generalize

the concept of volume V (a1, . . . , an) spanned by {a1, a2, . . . , an}, which we
have met above in the case n = 2 and n = 3. In particular, the volume will
give us a tool to determine whether the set of vectors {a1, . . . , an} is linearly
independent or not. Using the determinant we shall also develop Cramer’s
solution formula for an n×n system Ax = b, which generalizes the solution
formulas for 2 × 2 and 3 × 3 which we have already met. The determinant
is a quite complicated object, and we try to make the presentation as
accessible as possible. When it comes to computing determinants. we shall
return to the column echelon form.

Before actually giving a formula for the volume V (a1, . . . , an) in terms
of the coordinates (a1j , . . . , anj) of the vectors aj , j = 1, 2, . . . , n, we note
that from our experience in R

2 and R
3, we expect V (a1, . . . , an) to be

a multilinear alternating form, that is

V (a1, . . . , an) ∈ R,

V (a1, . . . , an) is linear in each argument aj ,

V (a1, . . . , an) = −V (â1, . . . , ân),

where â1, . . . , ân is a listing of a1, . . . , an with two of the aj interchanged.
For example â1 = a2, â2 = a1 and âj = aj for j = 3, . . . , n. We note that
if two of the arguments in an alternating form is the same, for example
a1 = a2, then V (a1, a2, a3, . . . , an) = 0. This follows at once from the fact
that V (a1, a2, a3, . . . , an) = −V (a2, a1, a3, . . . , an). We are familiar with
these properties in the case n = 2, 3.
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We also need a little preliminary work on permutations. A permutation
of the ordered list {1, 2, 3, 4, . . . , n} is a reordering of the list. For example
{2, 1, 3, 4, . . . , n} is a permutation corresponding to interchanging the ele-
ments 1 and 2. Another permutation is {n, n − 1, . . . , 2, 1} corresponding
to reversing the order.

We can also describe a permutation as a one-to-one mapping of the set
{1, 2, . . . , n} onto itself. We may denote the mapping by π : {1, 2, . . . , n} →
{1, 2, , n}, that is π(j) is one of the numbers 1, 2, . . . , n for each j =
1, 2, . . . , n and π(i) �= π(j) if i �= j. We can then talk about the prod-
uct στ of two permutations σ and τ defined as the composition of τ and
σ:

στ(j) = σ(τ(j)), for j = 1, . . . , n, (42.47)

which is readily seen to be a permutation. Note that the order may be
important: in general the permutation στ is different from the permuta-
tion τσ. In other words, multiplication of permutations is not commutative.
However, multiplication is associative:

(πσ)τ = π(στ), (42.48)

which directly follows from the definition by composition of functions.
A permutation corresponding to interchanging two elements, is called

a transposition. More precisely, if π is a transposition then there are two
elements p and q of the elements {1, 2, . . . , n}, such that

π(p) = q

π(q) = p

π(j) = j for j �= p, j �= q.

The permutation π with π(j) = j for j = 1, . . . , n is called the identity
permutation.

We shall use the following basic fact concerning permutations (a proof
will be given in the Appendix).

Theorem 42.4 Every permutation can be written as a product of trans-
positions. The representation is not unique, but for a given permutation
the number of transpositions in such a representation cannot be odd in one
case and even in another case; it is odd for all representations or even for
all representations.

We call a permutation even if it contains an even number of transposition
factors, and odd if it contains an odd number of transpositions. The number
of even perturbations is equal to the number of odd perturbations, and thus
the total number of perturbations, including the identity, is even.
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42.24 Definition of the Volume V (a1, . . . , an)

Assuming that V (a1, . . . , an) is multilinear and alternating and that
V (e1, e2, . . . , en) = 1, we get the following relation

V (a1, . . . , an) = V (
∑

j

aj1ej,
∑

j

aj2ej , . . . ,
∑

j

ajnej)

=
∑

π

±aπ(1) 1aπ(2) 2 · · ·aπ(n) n,
(42.49)

where we sum over all permutations π of the set {1, . . . , n}, and the sign
indicates if the permutation is even (+) or odd (-). Note that we give
the identity permutation, which is included among the permutations, the
sign +. We recall that aj = (a1j , . . . , anj) for j = 1, . . . , n.

We now turn around in this game, and simply take (42.49) as a definition
of the volume V (a1, . . . , an) spanned by the set of vectors {a1, . . . , an}. By
this definition it follows that V (a1, . . . , an) is indeed a multilinear alternat-
ing form on R

n. Further, V (e1, . . . , en) = 1, since the only non-zero term
in the sum (42.49) in this case corresponds to the identity perturbation.

We can transform the definition V (a1, . . . , an) to matrix language as
follows. Let A = (aij) be the n× n matrix







a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . .
an1 an2 . . . ann





 (42.50)

formed by the column vectors a1, . . . , an with coefficients aj = (a1j , . . . anj).
We define the determinant det A of A, by

det A = V (a1, . . . , an) =
∑

π

±aπ(1) 1aπ(2) 2 · · ·aπ(n) n,

where we sum over all permutations π of the set {1, . . . , n}, and the sign
indicates if the permutation is even (+) or odd (-).

We note that since the unit vectors ej in R
n are mapped by A into the

column vectors aj , that is since Aej = aj , we have that A maps the unit
n-cube in R

n onto the parallelepiped in R
n spanned by a1, . . . , an. Since

the volume of the n-cube is one and the volume of the the parallelepiped
spanned by a1, . . . , an is V (a1, . . . , an), the volume scale of the mapping
x→ Ax is equal to V (a1, . . . , an).
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42.25 The Volume V (a1, a2) in R
2

If A is the 2 × 2-matrix (
a11 a12

a21 a22

)

,

then det A = V (a1, a2) is given

det A = V (a1, a2) = a11a22 − a21a12. (42.51)

of course, a1 = (a11, a21) and a2 = (a12, a22) are the column vectors of A.

42.26 The Volume V (a1, a2, a3) in R
3

If A is the 3 × 3-matrix



a11 a12 a13

a21 a22 a23

a31 a32 a33



 ,

then det A = V (a1, a2, a3) is given by

det A = V (a1, a2, a3) = a1 · a2 × a3

= a11(a22a33 − a23a32) − a12(a21a33 − a23a31) + a13(a21a32 − a22a31).
(42.52)

We see that we can express det A as

det A = a11 det A11 − a12 det A12 + a13A13

= a11V (â2, â3) − a12V (â1, â3) + a13V (â1, â2) (42.53)

where the A1j are 2 × 2 matrices formed by cutting out the first row and
j:th column of A, explicitly given by

A11 =
(
a22 a23

a32 a33

)

A12 =
(
a21 a23

a31 a33

)

A13 =
(
a21 a22

a31 a32

)

and â1 = (a21, a31), â2 = (a22, a32), â3 = (a23, a33) are the 2-column vectors
formed by cutting out the first element of the 3-columns aj. We say that
(42.53) is an expansion of the 3 × 3 matrix A in terms of the elements of
the first row of A and the corresponding 2 × 2 matrices. The expansion
formula follows by collecting all the terms with a11 as a factor, and all the
terms with a12 as a factor and all the terms with a13 as a factor.
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42.27 The Volume V (a1, a2, a3, a4) in R
4

Using the expansion formula we can compute the determinant det A =
V (a1, . . . , a4) of a 4 × 4 matrix A = (aij) with column vectors
aj = (a1j , . . . , a4j) for j = 1, 2, 3, 4. We have

det A = V (a1, a2, a3, a4) = a11V (â2, â3, â4) − a12V (â1, â3, â4)
+a13V (â1, â2, â4) − a14V (â1, â2, â3),

where the âj , j = 1, 2, 3, 4 are the 3-column vectors corresponding to cut-
ting out the first coefficient of the aj . We have now expressed the determi-
nant of the 4× 4 matrix A as a sum of determinants of 3× 3 matrices with
the first row of A as coefficients.

42.28 The Volume V (a1, . . . , an) in R
n

Iterating the row-expansion formula indicated above, we can compute the
determinant of an arbitrary n × n matrix A. As an example we give the
expansion formula for a 5 × 5 matrix A = (aij):

det A = V (a1, a2, a3, a4, a5) = a11V (â2, â3, â4, â5) − a12V (â1, â3, â4, â5)
+a13V (â1, â2, â4, â5) − a14V (â1, â2, â3, â5) + a15V (â1, â2, â3, â4).

Evidently, we can formulate the following a rule of sign for the term with
the factor aij : choose the + if i+ j is even and the − if i+ j is odd. This
rule generalizes to expansions with respect to any row of A.

42.29 The Determinant of a Triangular Matrix

Let A = (aij) be a upper triangular n× n matrix, that is aij = 0 for i > j.
All elements aij of A below the diagonal are zero. In this case the only
non-zero term in the expression for detA, is the product of the diagonal
elements of A corresponding to the identity perturbation, so that

detA = a11a22 · · · ann. (42.54)

This formula also applies to a lower triangular n×n matrix A = (aij) with
aij = 0 for i < j.

42.30 Using the Column Echelon Form
to Compute detA

We now present a way to compute detA = V (a1, . . . , an), where the aj are
the columns of a n × n matrix A = (aij), based on reduction to column
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echelon form. We then use that the volume does not change if we subtract
one column multiplied by a real number from another column, to obtain

detA = V (a1, a2, . . . , an) = V (â1, â2, â3, . . . , ân)

where âij = 0 if j > i, that is the corresponding matrix Â is a lower tri-
angular matrix. We then compute V (â1, â2, â3, . . . , ân) by multiplying the
diagonal elements. As usual, if we meet a zero diagonal term we interchange
columns until we meet a nonzero diagonal term, or if all diagonal terms ap-
pearing this way are zero, we proceed to modify the next row. At least one
of the diagonal terms in the final triangular matrix will then be zero, and
thus the determinant will be zero.

Example 42.9. We show the sequence of matrices in a concrete case:

A =




1 1 1
2 4 6
3 4 6



 →




1 0 0
2 2 4
3 1 3



 →




1 0 0
2 2 0
3 1 1





and conclude that detA = 2.TS
a

42.31 The Magic Formula det AB = detA detB

Let A and B be two n × n matrices. We know that AB is the matrix of
the composite transformation f(g(x)), where f(y) = Ay and g(x) = Bx.
The volume scale of the mapping x→ Bx is equal to detB and the volume
scale of the mapping y → Ay is detA, and hence the volume scale of the
mapping x→ ABx is equal to detAdetB. This proves that

detAB = detAdetB,

which is one of the corner stones of the calculus of determinants. The
proof suggested is a “short proof” avoiding algebraic computations. One
can also give a direct algebraic proof using suitable expansion formulas for
the determinant.

42.32 Test of Linear Independence

To test the linear independence of a given set of n vectors {a1, a2, . . . , an}
in R

n, we can use the volume V (a1, a2, . . . , an). More precisely, we shall
prove that {a1, a2, . . . , an} is linearly independent if and only if V (a1, a2,
. . . , an) �= 0. First, we note that if {a1, a2, . . . , an} is linearly dependent,
for example if a1 =

∑n
j=2 λjaj is a linear combination of {a2, . . . , an},

TS
a Should “det” be made italic.
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then V (a1, a2, . . . , an) =
∑n

j=2 λjV (aj , a2, . . . , an) = 0, since each factor
V (aj , a2, . . . , an) has two equal vectors.

Secondly, if {a1, a2, . . . , an} is linearly independent, i.e., {a1, a2, . . . , an}
is a basis for R

n, then we must have V (a1, . . . , an) �= 0. We see this as fol-
lows. We express each ej as a linear combination of the set {a1, a2, . . . , an},
for example e1 =

∑
λ1jaj . We have, since V is multilinear and vanishes if

two arguments are the same, and V (aπ(1), . . . , aπ(n)) = ±V (a1, . . . , an) for
any permutation π, that

1 = V (e1, . . . , en) = V




∑

j

λ1jaj , e2, . . . , en



 =
∑

j

λ1jV (aj , e2, . . . , en)

=
∑

j

λ1jV

(

aj ,
∑

k

λ2kak, e3, . . . , en

)

= . . . = cV (a1, . . . , an), (42.55)

for some constant c. We conclude that V (a1, . . . , an) �= 0. We summarize
as follows:

Theorem 42.5 A set {a1, a2, . . . , an} of n vectors in R
n is linearly inde-

pendent if and only if V (a1, . . . , an) �= 0.

We may restate this result in matrix language as follows: The columns
of an n× n-matrix A are linearly independent if and only if detA �= 0. We
may thus sum up as follows:

Theorem 42.6 Let A be a n × n matrix. Then the following statements
are equivalent:

� The columns of A are linearly independent.

� If Ax = 0 then x = 0.

� detA �= 0.

To test linear independence of the columns of a given matrix A we may
thus compute detA and check if detA = 0. We can also use this test in
more quantitative form as follows: If detA is small then the columns are
close to being linearly dependent and uniqueness is at risk!

A matrix A with detA = 0 is called singular, while matrices with
detA �= 0 are referred to as non-singular. Thus an n × n-matrix is non-
singular if and only if its columns are linearly independent. Again we can
go to quantitative forms and say that a matrix A is close to singular if its
determinant is close to zero. The dependence of the solution on the size of
the determinant is clearly expressed in the next chapter.
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42.33 Cramer’s Solution for Non-Singular Systems

Consider again the n× n linear system of equations

Ax = b (42.56)

or
n∑

j=1

ajxj = b (42.57)

where A = (aij) is an n × n matrix with columns aj = (a1j , . . . , anj),
j = 1, . . . , n. Suppose that the columns aj of A are linearly independent, or
equivalently, that detA = V (a1, . . . , an) �= 0. We then know that (42.56)
has a unique solution x ∈ R

n for any given b ∈ R
n, we shall now seek

a formula for the solution x in terms of b and the columns aj of A.
Using the basic property of the volume function V (g1, . . . , gn) of a set

{g1, . . . , gn} of n vectors gi, in particular the property that V (g1, . . . , gn)=0
if any two of the gi are equal, we obtain the following solution formula
(Cramer’s formula):

x1 =
V (b, a2, . . . , an)
V (a1, a2, . . . , an)

,

. . .

xn =
V (a1, . . . , an−1, b)
V (a1, a2, . . . , an)

.

(42.58)

For example, to obtain the formula for x1, use that

V (b, a2, . . . , an) = V




∑

j

ajxj , a2, . . . , an





=
n∑

j=1

xjV (aj , a2, . . . , an) = x1V (a1, a2, . . . , an).

We summarize:

Theorem 42.7 If A is a n× n non-singular matrix with detA �= 0, then
the system of equations Ax = b has a unique solution x for any b ∈ R

n.
The solution is given by Cramer’s formula (42.58).

A result like this was first derived by Leibniz and then by Gabriel Cramer
(1704-1752) (who got a Ph.D. at the age of 18 with a thesis on the theory of
sound) in Introduction l’analyse des lignes courbes algbraique. Throughout
the book Cramer makes essentially no use of the Calculus in either Leibniz’
or Newton’s form, although he deals with such topics as tangents, maxima
and minima, and curvature, and cites Maclaurin and Taylor in footnotes.
One conjectures that he never accepted or mastered Calculus.
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Fig. 42.2. Gabriel Cramer: “I am friendly, good-humoured, pleasant in voice and
appearance, and possess good memory, judgement and health”

Note that Cramer’s solution formula for Ax = b is very computationally
demanding, and thus cannot be used for actually computing the solution
unless n is small. To solve linear systems of equations other methods are
used, like Gaussian elimination and iterative methods, see Chapter Solving
systems of linear equations.

42.34 The Inverse Matrix

Let A be a non-singular n×n matrix with V (a1, . . . , an) �= 0. Then Ax = b
can be solved uniquely for all b ∈ R

n according to Cramer’s solution for-
mula (42.58). Clearly, x depends linearly on b, and the solution x may be
expressed as A−1b, where A−1 is an n× n matrix which we refer to as the
inverse of A. The j:th column of A−1 is the solution vector corresponding
to choosing b = ej . Cramer’s formula thus gives the following formula for
the inverse A−1 of A:

A−1 = V (a1, . . . , an)−1







V (e1, a2, . . . , an) .. V (a1, . . . , an−1, e1)
. .. .
. .. .

V (en, a2, . . . , an) .. V (a1, . . . , an−1, en)





 .

(42.59)

The inverse matrix A−1 of A satisfies

A−1A = AA−1 = I,

where I is the n× n identity matrix, with ones on the diagonal and zeros
elsewhere.
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Evidently, we can express the solution to Ax = b in the form x = A−1b
if A is a non-singular n × n matrix (by multiplying Ax = b by A−1 from
the left). . .

42.35 Projection onto a Subspace

Let V be a subspace of R
n spanned by the linearly independent set of

vectors {a1, . . . , am}. In other words, {a1, . . . , am} is a basis for V . The
projection Pv of a vector v ∈ R

n onto V is defined as the vector Pv ∈ V
satisfying the orthogonality relation

(v − Pv,w) = 0 for all vectors w ∈ V, (42.60)

or equivalently

(Pv, aj) = (v, aj) for j = 1, . . . ,m. (42.61)

To see the equivalence, we note that (42.60) clearly implies (42.61). Con-
versely, any w ∈ V is a linear combination of the form

∑
µjaj , and mul-

tiplying (42.61) by µj and summing over j, we obtain (Pv,
∑

j µjaj) =
(v,

∑
j µjaj), which is (42.60) with w =

∑
j µjaj as desired.

Expressing Pv =
∑m

i=1 λiai in the basis {a1, . . . , am} for V , the orthogo-
nality relation (42.61) corresponds to the m×m linear system of equations

m∑

i=1

λi(ai, aj) = (v, aj) for j = 1, 2, . . . ,m. (42.62)

We shall now prove that this system admits a unique solution, which proves
that the projection Pv of v onto V exists and is unique. By Theorem 42.6
it is enough to prove uniqueness. We thus assume that

m∑

i=1

λi(ai, aj) = 0 for j = 1, 2, . . . ,m.

Multiplying by λj and summing we get

0 =




m∑

i=1

λiai,

m∑

j=1

λjaj



 = |
m∑

i=1

λiai|2,

which proves that
∑

i λiai = 0 and thus λi = 0 for i = 1, . . . ,m, since the
{a1, . . . , am} is linearly independent.

We have now proved the following fundamental result:

Theorem 42.8 Let V be a linear subspace of R
n. Then for all v ∈ R

n the
projection Pv of v onto V , defined by Pv ∈ V and (v − Pv,w) = 0 for all
w ∈ V , exists and is unique.
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We note that P : R
n → V is a linear mapping. To see this, let v and v̂ be

two vectors in R
n, and note that since (v−Pv,w) = 0 and (v̂−P v̂, w) = 0

for all w ∈ V , we have

(v + v̂ − (Pv + P v̂), w) = (v − Pv,w) + (v̂ − P v̂, w) = 0,

which shows that Pv+P v̂ = P (v+ v̂). Similarly, Pw = λPv if w = λv, for
any λ ∈ R and v ∈ R

n. This proves the linearity of P : R
n → V .

We further note that PP = P . We sum up as follows:

Theorem 42.9 The projection P : R
n → V onto a linear subspace V

of R
n is a linear transformation defined by (v − Pv,w) = 0 for all w ∈ V ,

which satisfies PP = P .

42.36 An Equivalent Characterization
of the Projection

We shall now prove that the projection Pv of a vector v ∈ R
n onto V is

the vector Pv ∈ V with minimum distance to v, that is |v − Pv| ≤ |v −w|
for all w ∈ V .

We state the equivalence of the two definitions of the projection in the
following fundamental theorem:

Theorem 42.10 Let v ∈ R
n be given. The vector Pv ∈ V satisfies the

orthogonality relation

(v − Pv,w) = 0 for all vectors w ∈ V, (42.63)

if and only if Pv minimizes the distance to v in the sense that

|v − Pv| ≤ |v − w| for all w ∈ V. (42.64)

Further, the element Pv ∈ V satisfying (42.63) and (42.64) is uniquely
determined.

To prove the theorem we note that by the orthogonality (42.60), we have
for any w ∈ V ,

|v − Pv|2 = (v − Pv, v − Pv)
= (v − Pv, v − w) + (v − Pv,w − Pv) = (v − Pv, v − w),

since w − Pv ∈ V . Using Cauchy-Schwarz inequality, we obtain

|v − Pv|2 ≤ |v − Pv| |v − w|,

which shows that |v − Pv| ≤ |v − w| for all w ∈ V .
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Conversely, if |v − Pv| ≤ |v − w| for all w ∈ V , then for all ε ∈ R and
w ∈ V

|v − Pv|2 ≤ |v − Pv + εw|2

= |v − Pv|2 + ε(v − Pv,w) + ε2|w|2,

that is for all ε > 0
(v − Pv,w) + ε|w|2 ≥ 0,

which proves that

(v − Pv,w) ≥ 0 for all w ∈ V.

Changing w to −w proves the reverse inequality and we conclude that
(v − Pv,w) = 0 for all w ∈ V .

Finally, to prove uniqueness, assume that z ∈ V satisfies

(v − z, w) = 0 for all vectors w ∈ V.

Then (Pv− z, w) = (Pv− v, w) + (v− z, w) = 0 + 0 = 0 for all w ∈ V , and
Pv−z is a vector in V . Choosing w = Pv−z thus shows that |Pv−z|2 = 0,
that is z = Pv. The proof of the theorem is now complete.

The argument just given is very fundamental and will be used many
times below in various forms, so it is worth taking the time to understand
it now.

42.37 Orthogonal Decomposition:
Pythagoras Theorem

Let V be a subspace of R
n. Let P be the projection onto V . Any vector x

can be written
x = Px+ (x− Px) (42.65)

where Px ∈ V , and further (x − Px) ⊥ V since by the definition of P we
have (x − Px,w) = 0 for all w ∈ V . We say that x = Px+ (x− Px) is an
orthogonal decomposition of x since (Px, x− Px) = 0.

Define the orthogonal complement V ⊥ to V by V ⊥ = {y ∈ R
n : y ⊥ V } =

{y ∈ R
n : y ⊥ x for all x ∈ V }. It is clear that V ⊥ is a linear subspace

of R
n. We have that if x ∈ V and y ∈ V ⊥, then (x, y) = 0. Further,

any vector z ∈ R
n can be written z = x + y, with x = Pz ∈ V and

y = (x− Px) ∈ V ⊥. We can summarize by saying that

V ⊕ V ⊥ = R
n, (42.66)

is an orthogonal decomposition of R
n into the two orthogonal subspaces V

and V ⊥: x ∈ V and y ∈ V ⊥ implies (x, y) = 0 and any z ∈ R
n can be
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written uniquely in the form z = x+y. The uniqueness of the decomposition
z = Pz + (z − Pz) follows from the uniqueness of Pz.

We note the following generalization of Pythagoras theorem: for any
x ∈ R

n, we have
|x|2 = |Px|2 + |x− Px|2. (42.67)

This follows by writing x = Px+ (x−Px) and using that Px ⊥ (x−Px):

|x|2 = |Px+ (x− Px)|2 = |Px|2 + 2(Px, x− Px) + |x− Px|2.

More generally, we have if z = x+ y with x ⊥ y (that is (x, y) = 0), that

|z|2 = |x|2 + |y|2.

42.38 Properties of Projections

Let P be the orthogonal projection onto a linear subspace V in R
n. Then

P : R
n → R

n is a linear transformation that satisfies

P	 = P and PP = P. (42.68)

We have already seen that PP = P . To see that P	 = P we note that

(w,P	v) = (Pw, v) = (Pw,Pv) = (w,Pv) for all v, w ∈ R
n, (42.69)

and thus P	 = P . Conversely, let P : R
n → R

n be a linear transformation
which satisfies (42.68). Then P is the orthogonal projection onto a sub-
space V of R

n. To see this, set V = R(P ) and note that since P	 = P and
PP = P , we have

(x− Px, Px) = (x, Px) − (Px, Px) = (x, Px) − (x, P	Px)
= (x, Px) − (x, Px) = 0.

This shows that x = Px + (x − Px) is an orthogonal decomposition, and
thus P is the orthogonal projection onto V = R(P ).

42.39 Orthogonalization: The Gram-Schmidt
Procedure

Let {a1, . . . , am} be a basis for a subspace V of R
n, i.e., {a1, . . . , am} is

linearly independent and V is the set of linear combinations of {a1, . . . , am}.
We try to construct another basis {ê1, . . . , êm} for V that is orthonormal,
i.e. such that the basis vectors êi are mutually orthogonal and have length
equal to one or

(êi, êj) = 0 for i �= j, and |êi| = 1 (42.70)
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We choose ê1 = 1
|a1|a1 and let V1 be the subspace spanned by ê1, or equiv-

alently by a1. Let P1 be the projection onto V1. Define

ê2 =
1

|a2 − P1a2|
(a2 − P1a2).

Then (ê1, ê2) = 0 and |ê2| = 1. Further, the subspace V2 spanned by
{a1, a2} is also spanned by {ê1, ê2}. We now continue in the same way:
Let P2 be the projection onto V2 and define

ê3 =
1

|a3 − P2a3|
(a3 − P2a3)

Then the subspace V3 spanned by {a1, a2, a3} is also spanned by the or-
thonormal set {ê1, ê2, ê3}.

Continuing, we obtain an orthonormal basis {ê1, . . . , êm} for the sub-
space spanned by {a1, . . . , am} with the property that for i = 1, . . . ,m, the
subspace spanned by {a1, . . . , ai} is spanned by {ê1, . . . , êi}.

Note that since the basis {ê1, . . . , êm} is orthogonal, the system of equa-
tions (42.62) corresponding to computing Pi−1ai, is diagonal.

42.40 Orthogonal Matrices

Consider the matrix Q with columns ê1, . . . , ên, where {ê1, . . . , ên} is an
orthonormal basis for R

n. Since the vectors êj are pairwise orthogonal and
of length one, Q	Q = I, where I is the n× n identity matrix. Conversely,
if Q is a matrix such that Q	Q = I, where I is an identity matrix, then
the columns of Q must be orthonormal.

An n×n-matrixQ such thatQ	Q = I, is called an orthogonal matrix. An
orthogonal n× n-matrix can thus be characterized as follows: Its columns
form an orthonormal basis for R

n, that is a basis consisting of pairwise
orthogonal vectors of length, or norm, one.

We summarize:

Theorem 42.11 An orthogonal matrix Q satisfies Q	Q = QQ	 = I, and
Q−1 = Q	.

42.41 Invariance of the Scalar Product Under
Orthogonal Transformations

Let Q by an n × n orthonormal matrix with the columns formed by the
coefficients of basis vectors êj of an orthonormal basis {ê1, . . . , ên}. We then
know that the coordinates x of a vector with respect to the standard basis,
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and the coordinates x̂ with respect to the basis {ê1, . . . , ên}, are connected
by

x = Qx̂.

We now prove that the scalar product is invariant under the orthonormal
change of coordinates x = Qx̂. We compute setting y = Qŷ,

(x, y) = (Qx̂,Qŷ) = (Q	Qx̂, ŷ) = (x̂, ŷ),

that is the scalar product is the same in the {e1, . . . , en} coordinates as in
the {ê1, . . . , ên} coordinates. We summarize:

Theorem 42.12 If Q is an orthogonal n×n matrix, then (x, y) = (Qx,Qy)
for all x, y ∈ R

n.

42.42 The QR-Decomposition

We can give the Gram-Schmidt orthogonalization procedure the following
matrix interpretation: Let {a1, . . . , am} be m linearly independent vectors
in R

n and let A be the n × m matrix with the aj occurring as columns.
Let {ê1, . . . , êm} be the corresponding orthonormal set generated by the
Gram-Schmidt procedure, and let Q be the n ×m matrix with the êj as
columns. Then

A = QR, (42.71)

where R is a m ×m upper triangular matrix, which expresses each aj as
a linear combination of {ê1, . . . , êj}.

The matrix Q satisfies Q	Q = I, where I is the m×m identity matrix,
since the êj are pairwise orthogonal and have length 1. We conclude that
a m× n matrix A with linearly independent columns can be factored into
A = QR, where Q satisfies Q	Q = I, and R is upper triangular. The
columns of the matrix Q are orthonormal, as in the case of an orthonormal
matrix, but if m < n, then they do not span all of R

n.

42.43 The Fundamental Theorem
of Linear Algebra

We return to our basic question of existence and uniqueness of solutions to
the system Ax = b with A a given m×n matrix and b ∈ R

m a given vector.
We now allow m to be different from n, remembering that we focussed on
the case m = n above. We shall now prove the Fundamental Theorem of
Linear Algebra giving an answer of theoretical nature to our basic questions
of existence and uniqueness.
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We note the following chain of equivalent statements for a m × n-mat-
rix A, where “iff” is shorthand for “if and only if”:

x ∈ N(A) iff Ax = 0 iff x ⊥ rows of A iff

x ⊥ columns of A	 iff

x ⊥ R(A	) iff

x ∈ (R(A	)⊥.

Thus N(A) = (R(A	)⊥, and since R(A	)⊥ ⊕R(A	) = R
n, we see that

N(A) ⊕R(A	) = R
n. (42.72)

As a consequence of this orthogonal splitting, we see that

dim N(A) + dim R(A	) = n, (42.73)

where dim V is the dimension of the linear space V . We recall that the
dimension dim V of a linear space V is the number of elements in a basis
for V . Similarly, replacing A by A	 and using that (A	)	 = A, we have

N(A	) ⊕R(A) = R
m, (42.74)

and thus in particular,

dim N(A	) + dim R(A) = m. (42.75)

Next we note that, letting g1, . . . , gk be a basis in N(A)⊥ so that
Ag1, . . . , Agk span R(A) and thus dim R(A) ≤ k, we have

dim N(A) + dim R(A) ≤ n, and also dim N(A	) + dim R(A	) ≤ m.
(42.76)

Adding (42.73) and (42.75), we conclude that equality holds in (42.76). We
summarize in:

Theorem 42.13 (The Fundamental Theorem of Linear Algebra)
Let A be a m× n matrix. Then

N(A) ⊕R(A	) = R
n N(A	) ⊕R(A) = R

m,

dim N(A) + dim R(A	) = n, dim N(A	) + dim R(A) = m,

dim N(A) + dim R(A) = n, dim N(A	) + dim R(A	) = m,

dim R(A) = dim R(A	).
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In the special case m = n, we have that R(A) = R
m if and only

if N(A) = 0 (which we proved above using Cramer’s rule), stating that
uniqueness implies existence.

We call dim R(A) the column rank of the matrix A. The column rank
of A is equal to the dimension of the space spanned by the columns of A.
Similarly the row rank of A is equal to the dimension of the space spanned
by the rows of A. The equality dim R(A) = dim R(A	) in the Fundamental
Theorem expresses that the the column ranks of A and A	 are equal, that
is that the column rank of A is equal to the row rank of A. We state this
result as:

Theorem 42.14 The number of linearly independent columns of A is equal
to the number of linearly independent rows of A.

Example 42.10. Returning to Example 41.5, we note that the column
echelon form of A	 is the transpose of the row echelon form of A, that is

R(A	) =









1 0 0 0
1 1 0 0
1 2 1 0
1 3 2 0
1 6 5 0








.

We check that the columns vectors (0, 1,−2, 1, 0) and (0, 4,−5, 0, 1) span-
ning N(A) are orthogonal to R(A	), that is orthogonal to the columns of
the echelon form of A	. Of course, this is just a restatement of the fact
that these vectors are orthogonal to the rows of the row echelon form Â of
A (as is evident from the proof of the Fundamental Theorem). We see that
N(A) ⊕R(A	) = R

5 as predicted by the Fundamental Theorem.

42.44 Change of Basis: Coordinates and Matrices

Let {s1, . . . , sn} be a basis for R
n where the coordinates of the basis vectors

in the standard basis {e1, . . . , en} are given by sj = (s1j , . . . , snj). Recalling
(42.23), we have the following connection between the coordinates xi of
a vector x with respect to the standard basis and the coordinates x̂j of x
with respect to the basis {s1, . . . , sn}:

xi =
n∑

j=1

sij x̂j for i = 1, . . . , n. (42.77)

This follows from taking the scalar product of
∑n

j=1 xjej =
∑n

i=1 x̂jsj

with ei and using that sij = (ei, sj).
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Introducing the matrix S = (sij), we thus have the following connection
between the coordinates x = (x1, . . . , xn) with respect to {e1, . . . , en}, and
the coordinates x̂ = (x̂1, . . . , x̂n) with respect to {s1, . . . , sn}:

x = Sx̂, that is x̂ = S−1x. (42.78)

Consider now a linear transformation f : R
n → R

n with matrix A =
(aij) with respect to the standard basis {e1, . . . , en}, that is with aij =
fi(ej) = (ei, f(ej)), where f(x) = (f1(x), . . . , fn(x)) in the standard basis
{e1, . . . , en}, that is

y = f(x) =
∑

i

fi(x)ei =
n∑

i=1

n∑

j=1

aijxjei = Ax.

Writing y = Sŷ and x = Sx̂, we have

Sŷ = ASx̂ that is ŷ = S−1ASx̂

This shows that the matrix of the linear transformation f : R
n → R

n, with
the matrix A with respect to the standard basis, takes the following form
in the basis {s1, . . . , sn}:

S−1AS, (42.79)

where the the coefficients sij of the matrix S = (sij) are the coordinates of
the basis vectors sj with respect to the standard basis.

42.45 Least Squares Methods

Consider the m× n linear system of equations Ax = b, or
n∑

j

ajxj = b,

where A = (aij) is an m × n matrix with columns aj = (a1j , . . . , amj),
j = 1, . . . , n. We know that if b ∈ R(A) then the system can be solved,
and if N(A) = 0, then the solution is unique. Suppose now that b /∈ R(A).
Then there is no x ∈ R

n such that Ax = b, and the system Ax = b has no
solution. We can replace the problem by the following least squares problem

min
x∈Rn

|Ax− b|2.

This problem amounts to seeking the projection Pb of b onto R(A), that is
the projection of b onto the space spanned by the columns aj of A.

By the properties of projections given above, we know that Pb ∈ R(A)
exists and is uniquely determined by the relation

(Pb, y) = (b, y) for all y ∈ R(A),
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that is we seek Pb = Ax̂ for some x̂ ∈ R
n such that

(Ax̂,Ax) = (b, Ax) for all x ∈ R
n.

This relation can be written

(A	Ax̂, x) = (A	b, x) for all x ∈ R
n,

which is the same as the matrix equation

A	Ax̂ = A	b,

which we refer to as the normal equations.
The matrix A	A is an n × n symmetric matrix. Assume now that the

columns aj of A are linearly independent. Then A	A is non-singular, be-
cause if A	Ax = 0, then

0 = (A	Ax, x) = (Ax,Ax) = |Ax|2,

and thus Ax = 0 and therefore x = 0, since the columns of A are linearly
independent. Thus the equation A	Ax̂ = A	b has a unique solution x̂ for
each right hand side A	b, given by the formula

x̂ = (A	A)−1A	b.

In particular, we have the following formula for the projection Pb of b
onto R(A),

Pb = A(A	A)−1A	b.

We can directly check that P : R
m → R

m defined this way is symmetric
and satisfies P 2 = P .

If the columns of A are linearly dependent, then x̂ is undetermined
up to vectors x̂ in N(A). It is then natural to single out a unique x̂ by
requiring that |x̂|2 to be minimal. Using the orthogonal decomposition
R

n = R(A	) ⊕ N(A), this is equivalent to seeking x̂ in R(A	), since by
Pythagoras theorem this minimizes |x̂|. We thus seek x̂ so that

� Ax̂ is equal to the projection Pb of b onto R(A)

� x̂ ∈ R(A	).

This leads to the following equation for x̂ = A	ŷ:

(Ax̂,AA	y) = (b, AA	y) for all y ∈ R
m, (42.80)

with x̂ uniquely determined.
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Chapter 42 Problems

42.1. Prove that a plane in R
3 not passing through the origin is not a subspace

of R
3.

42.2. (a) What is a vector space? (b) What is a subspace of a vector space?

42.3. Verify (42.17) and (42.18).

42.4. Why must a set of more than n vectors in R
n be linearly dependent? Why

must a set of n linearly independent vectors in R
n be a basis?

42.5. Verify that R(A) and N(A) are linear subspaces of R
m and R

n, respec-
tively, and further that the orthogonal complement V � of a subspace V of R

n is
also a subspace of R

n.

42.6. (a) Give an example showing that permutations need not commute.
(b) Verify the associative law for permutations.

42.7. Compute the determinants of some n× n matrices with n = 2, 3, 4, 5.

42.8. Fill out the details in the proof of Cauchys inequality.

42.9. Write an algorithm for the Gram-Schmidt orthogonalization procedure,
and implement it in Matlab, for example.

42.10. Fill in the details in (42.55)

42.11. Verify that for an orthogonal matrix QQ� = I . Hint: Multiply Q�Q = I
from the right with C and from the right with Q, where C is the matrix such
that QC = I .

42.12. Prove for 2 × 2 matrices A and B that detAB = detA detB.

42.13. How many operations are needed to solve an n × n system of linear
equations using Cramer’s formula?

42.14. Prove by reduction to column echelon form that a basis for R
n contains

n elements.

42.15. Implement algorithms for reduction to column and row echelon forms.

42.16. Prove that the solution x̂ ∈ R(A�) of (42.80) is uniquely determined.

42.17. Construct the row and column echelon forms of different (small) matrices,
and check the validity of the Fundamental Theorem.



43
The Spectral Theorem

There seems to be three possibilities (of a Unified Theory of Physics):

1. There really is a complete unified theory, which we will someday
discover if we are smart enough.

2. There is no ultimate theory of the Universe, just an infinite
sequence of theories that describe the Universe more and more
accurately.

3. There is no theory of the Universe; events cannot be predicted
beyond a certain extent but occur in a random and arbitrary
manner. (Stephen Hawking, in A Brief History of Time)

43.1 Eigenvalues and Eigenvectors

Let A = (aij) be a quadratic n× n matrix. We investigate the situation in
which multiplication by A acts like scalar multiplication. To start with, we
assume that the elements aij are real numbers. If x = (x1, . . . , xn) ∈ R

n is
a non-zero vector that satisfies

Ax = λx, (43.1)

where λ is a real number, then we say that x ∈ R
n is an eigenvector of A

and that λ is a corresponding eigenvalue of A. An eigenvector x has the
property that Ax is parallel to x (if λ �= 0), or Ax = 0 (if λ = 0). This is a
special property, as easy to verify with almost any example we might make
up.
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If x is an eigenvector with corresponding eigenvalue λ then x̄ = µx for
any non-zero real number µ is also an eigenvector corresponding to the
eigenvalue λ because

if Ax = λx, then Ax̄ = µAx = µλx = λµx = λx̄.

Thus, we may change the length of an eigenvector without changing the
corresponding eigenvalue. For example, we may normalize an eigenvector
to have length equal to 1. In essence, the direction of an eigenvector is
determined, but not its length.

We shall now study the problem of finding eigenvalues and corresponding
eigenvectors of a given a quadratic matrix. We shall see that this is a basic
problem of linear algebra arising in many different situations. We shall
prove the Spectral Theorem stating that if A is a symmetric real n × n
matrix, then there is an orthogonal basis for R

n consisting of eigenvectors.
We shall also briefly discuss the case of non-symmetric matrices.

Rewriting (43.1) as (A−λI)x = 0 with x ∈ R
n a non-zero eigenvector and

I the identity matrix, we see that the matrix A−λI must be singular if λ is
an eigenvalue, that is det(A−λI) = 0. Conversely, if det(A−λI) = 0 then
A− λI is singular and thus the null-space N(A− λI) is different from the
zero vector and thus there is a non-zero vector x such that (A− λI)x = 0,
that is there is an eigenvector x with corresponding eigenvalue λ. Using
the expansion formula for the determinant, we see that det(A − λI) is
a polynomial in λ of degree n with coefficients depending on the coefficients
aij of A. The polynomial equation

det(A− λI) = 0

is called the characteristic equation. We summarize:

Theorem 43.1 The number λ is an eigenvalue of the n × n matrix A if
and only if λ is a root of the characteristic equation det(A− λI) = 0.

Example 43.1. If A = (aij) is a 2×2 matrix, then the characteristic equation
is

det(A− λI) = (a11 − λ)(a22 − λ) − a12a21 = 0,
which is a second order polynomial equation in λ. For example, if

A =
(

0 1
1 0

)

,

then the characteristic equation is det(A − λI) = λ2 − 1 = 0 with roots
λ1 = 1 and λ2 = −1. The corresponding normalized eigenvectors are s1 =
1√
2
(1, 1) and s2 = 1√

2
(1,−1) since

(A− λ1I)
(

1
1

)

=
(
−1 1
1 −1

)(
1
1

)

=
(

0
0

)

,

and similarly (A − λ2)s2 = 0. We observe that (s1, s2) = s1 · s2 = 0, that
is eigenvectors corresponding to different eigenvalues are orthogonal.
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43.2 Basis of Eigenvectors

Suppose {s1, . . . , sn} is a basis for R
n consisting of eigenvectors of the

n× n matrix A = (aij) with corresponding eigenvalues λ1, . . . , λn so

Asi = λisi for i = 1, . . . , n. (43.2)

Let S be the matrix with the columns equal to the eigenvectors sj expressed
in the standard basis. We can then write (43.2) in matrix form as follows,

AS = SD, (43.3)

where D is the diagonal matrix with the eigenvalues λj on the diagonal.
We thus have

A = SDS−1 or D = S−1AS, (43.4)

where D is a diagonal matrix. We say that S transforms A into a diagonal
matrix D with the eigenvalues on the diagonal.

Conversely, if we can express a matrix A in the form A = SDS−1 with S
non-singular and D diagonal then AS = SD, which says that the columns
of S are eigenvectors with corresponding eigenvalues on the diagonal of D.

Viewing the n × n matrix A as defining a linear transformation f :
R

n → R
n by f(x) = Ax, we can express the action of f(x) in a basis

of eigenvectors {s1, . . . , sn} by the diagonal matrix D since f(si) = λisi.
Thus, the linear transformation f : R

n → R
n is expressed by the matrix A

in the standard basis and by the diagonal matrix D matrix in a basis of
eigenvectors. The coupling is given by

D = S−1AS.

Of course, the action of a diagonal matrix is very easy to describe and
to understand and this is the motivation for considering eigenvalues and
eigenvectors.

We now formulate the following basic question in two equivalent forms:

� Given a n× n matrix A, is there a basis of eigenvectors of A?

� Given a n × n matrix A, is there a non-singular matrix S such that
S−1AS is diagonal?

As we have seen, the columns of the matrix S are the eigenvectors of A
and the diagonal elements are the eigenvalues.

We shall now give the following partial answer: if A is an n×n symmetric
matrix, then there is an orthogonal basis for R

n consisting of eigenvectors.
This is the celebrated Spectral Theorem for symmetric matrices. Notice
the assumption that A is symmetric and that in this case the basis of
eigenvectors may be chosen to be orthogonal.
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Example 43.2. Recalling Example 43.1, we see that s1 = 1√
2
(1, 1) and s2 =

1√
2
(1,−1) form an orthogonal basis. By the orthogonality of S, S−1 = S	,

and

S−1AS =
1
2

(
1 1
1 −1

)(
0 1
1 0

)(
1 1
1 −1

)

=
1
2

(
1 1
−1 1

)(
1 1
1 −1

)

=
(

1 0
0 −1

)

.

43.3 An Easy Spectral Theorem for Symmetric
Matrices

The following version of the Spectral Theorem for symmetric matrices is
easy to prove:

Theorem 43.2 Let A be a symmetric n × n matrix. Suppose A has n
distinct eigenvalues λ1, . . . , λn and corresponding normalized eigenvectors
s1, . . . , sn with ‖sj‖ = 1, j = 1, . . . , n. Then, {s1, . . . , sn} is an orthonor-
mal basis of eigenvectors. Letting Q = (qij) be the orthogonal matrix with
the columns (q1j , . . . , qnj) being the coordinates of the eigenvectors sj with
respect to the standard basis, then D = Q−1AQ is a diagonal matrix with
the eigenvalues λj on the diagonal and A = QDQ−1, where Q−1 = Q	.

To prove this result, it suffices to prove that eigenvectors corresponding
to different eigenvalues are orthogonal. This follows from the assumption
that there are n distinct eigenvalues λ1, . . . , λn with corresponding normal-
ized eigenvectors s1, . . . , sn. If we prove that these eigenvectors are pairwise
orthogonal, then they form a basis for R

n and the proof is complete. Thus,
assume that si and sj are eigenvectors corresponding to different eigenval-
ues λi and λj . Since A is symmetric and (Ax, y) = (x,Ay) for all x, y ∈ R

n,
we have

λi(si, sj) = (λisi, sj) = (Asi, sj) = (si, Asj)
= (si, λjsj) = λj(si, sj),

which implies that (si, sj) = 0 since λi �= λj . We state this observation as
a theorem because of its basic importance.

Theorem 43.3 If A is a symmetric n×n matrix, and si and sj are eigen-
vectors of A corresponding to the eigenvalues λi and λj with λi �= λj, then
(si, sj) = 0. In other words, eigenvectors corresponding to different eigen-
values are orthogonal.

Note that above we prove the Spectral Theorem for a symmetric
n × n matrix A in the case the characteristic equation det(A − λI) = 0
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has n different roots. It thus remains to consider the case of multiple roots
where there are less than n different roots. We will consider this below.
The reader in hurry may skip that proof.

43.4 Applying the Spectral Theorem to an IVP

We show a typical application of the Spectral Theorem. Consider the initial
value problem: find u : [0, 1] → R

n such that

u̇ = Au, for 0 < t ≤ 1, u(0) = u0,

where A = (aij) is a symmetric n × n matrix with real coefficients aij

independent of t. Systems of this form arise in many applications and the
behavior of such a system may be very complicated.

Suppose now that {g1, . . . , gn} is an orthonormal basis of eigenvectors
of A and let Q be the matrix with columns comprised of the coordinates of
the eigenvectors gj with respect to the standard basis. Then A = QDQ−1,
where D is the diagonal matrix with the eigenvalues λj on the diagonal.
We introduce the new variable v = Q−1u, that is we set u = Qv, where
v : [0, 1] → R

n. Then, the equation u̇ = Au takes the form Qv̇ = AQv, that
is v̇ = Q−1AQv = Dv, where we use the fact that Q is independent of time.
Summing up, we get the following diagonal system in the new variable v,

v̇ = Dv for 0 < t ≤ 1, v(0) = v0 = Q−1u0.

The solution of this decoupled system is given by

v(t) =







exp(λ1t) 0 0 .... 0
0 exp(λ2t) 0 .... 0
. . . . .
0 0 0 .... exp(λn)





 v0 = exp(Dt)v0,

where exp(Dt) is a diagonal matrix with the elements exp(λjt) on the di-
agonal. The dynamics of this system is easy to grasp: each component vj(t)
of v(t) evolves according to vj(t) = exp(λjt)v0j .

Transforming back, we get the following solution formula in the original
variable u(t),

u(t) = Q exp(Dt)Q−1u0. (43.5)

With A as in Example 43.1,TS
a we get the solution formula

u(t) =
1
2

(
1 1
1 −1

)(
et 0
0 e−t

)(
1 1
1 −1

)(
u01

u02

)

=
1
2

(
(et + e−t)u01 + (et − e−t)u02

(et − e−t)u01 + (et + e−t)u02

)

.

TS
a It was (43.1) on hardcopy, please check it.

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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43.5 The General Spectral Theorem for Symmetric
Matrices

Above, we saw that eigenvalues of a matrix A are roots of the characteristic
equation det(A − λI) = 0. In principle, we can find the eigenvalues and
eigenvectors of given matrix by first solving the characteristic equation to
find all the eigenvalues, and then for each eigenvalue λ find corresponding
eigenvectors by solving the linear system of equations (A− λI)x = 0.

We shall now present an alternative way of constructing/finding the
eigenvectors and eigenvalues of a symmetric matrix A that also proves the
Spectral Theorem for a symmetric n×n matrix A in the general case with
possibly multiple roots. In the proof, we construct an orthonormal basis of
eigenvectors {s1, . . . , sn} of A by constructing the eigenvectors one by one
starting with s1.

Constructing the First Eigenvector s1

To construct the first eigenvector s1, we consider the minimization problem:
find x̄ ∈ R

n such that
F (x̄) = min

x∈Rn
F (x), (43.6)

where

F (x) =
(Ax, x)
(x, x)

=
(f(x), x)

(x, x)
(43.7)

is the so-called Rayleigh quotient. We note that the function F (x) is ho-
mogenous of degree zero, that is for any λ ∈ R, λ �= 0, we have

F (x) = F (λx),

because we can simply divide out the factor λ. In particular, for any x �= 0,

F (x) = F

(
x

‖x‖

)

, (43.8)

and thus we may restrict the x in (43.6) to have length one, that is we may
consider the equivalent minimization problem: find x̄ with ‖x̄‖ = 1 such
that

F (x̄) = min
x∈Rn ‖x‖=1

F (x) (43.9)

Since F (x) is Lipschitz continuous on the closed and bounded subset
{x ∈ R

n : ‖x‖ = 1} of R
n, we know by the Chapter Minimization, that

the problem (43.9) has a solution x̄, and thus also the problem (43.6) has
a solution x̄. We set s1 = x̄, and check that g1 is indeed an eigenvector
of A, that is an eigenvector of f : R

n → R
n.
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Since x̄ solves the minimization problem (43.6), we have ∇F (x̄) = 0,
where ∇F is the gradient of F . Computing ∇F (x) using the symmetry of
F (x) or the matrix A, we find that

∇F (x) =
(x, x)2Ax − (Ax, x)2x

(x, x)2
, (43.10)

so that with x = x̄ satisfying (x̄, x̄) = 1,

∇F (x̄) = 2(Ax̄− (Ax̄, x̄)x̄) = 0,

that is
Ax̄ = λ1x̄, (43.11)

where

λ1 = (Ax̄, x̄) =
(Ax̄, x̄)
(x̄, x̄)

= min
x∈Rn

F (x). (43.12)

Setting s1 = x̄, we thus have

As1 = λ1s1, λ1 = (As1, s1), ‖s1‖ = 1.

We have now constructed the first normalized eigenvector s1 with corre-
sponding eigenvalue λ1. We now let V1 be the orthogonal complement of
the space spanned by s1, consisting of all the vectors x ∈ R

n such that
(x, s1) = 0. The dimension of V1 is n− 1.

Invariance of A

Note that V1 is invariant with respect to A in the sense that if x ∈ V1 then
Ax ∈ V1. This follows because if (x, g1) = 0 then (Ax, s1) = (x,As1) =
(x, λ1s1) = λ1(x, s1) = 0. This means that we can now restrict attention to
the action of A on V1, having handled the action of A on the space spanned
by the first eigenvector s1.

Constructing the Second Eigenvector s2

Consider the minimization problem to find x̄ ∈ V1 such that

F (x̄) = min
x∈V1

F (x). (43.13)

By the same argument, this problem has a solution which we denote s2 and
which satisfies As2 = λ2s2, where λ2 = (As2,s2)

(s2,s2)
, and ‖s2‖ = 1. Because in

(43.13) we minimize over a smaller set than in (43.6), λ2 ≥ λ1. Note that
it may happen that λ2 = λ1, although V1 is a subset of R

n. In that case,
we say that λ1 = λ2 is a multiple eigenvalue.
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Continuing the Process

Let V2 be the orthogonal subspace to the space spanned by s1 and s2
Again A is invariant on V2 and the space spanned by {s1, s2}. Continuing
this way, we obtain a orthonormal basis {s1, . . . , sn} of eigenvectors of A
with corresponding real eigenvalues λi.

We have now proved the famous

Theorem 43.4 (Spectral Theorem): If f : R → R is a linear symmet-
ric transformation with corresponding symmetric n × n matrix A in the
standard basis, then there is an orthogonal basis (g1, . . . , gn) of R

n con-
sisting of eigenvectors gi of f with corresponding real eigenvalues λj sat-
isfying f(gj) = Agj = λjgj, for j = 1, . . . , n. We have D = Q−1AQ and
A = QDQ−1, where Q is the orthogonal matrix with the coefficients of the
eigenvectors gj in the standard basis forming the columns, and D is the
diagonal matrix with the eigenvalues λj on the diagonal.

43.6 The Norm of a Symmetric Matrix

We recall that we have defined the Euclidean norm ‖A‖ of a n×n matrix A
by

‖A‖ = max
x∈Rn

‖Ax‖
‖x‖ , (43.14)

where we maximize over x �= 0. By the definition, we have

‖Ax‖ ≤ ‖A‖ ‖x‖, (43.15)

and we may thus view ‖A‖ to be the smallest constant C such that ‖Ax‖ ≤
C‖x‖ for all x ∈ R

n.
We shall now prove that ifA is symmetric, then we can directly relate ‖A‖

to the eigenvalues λ1, . . . , λn of A:

‖A‖ = max
i=1,...,n

|λi|. (43.16)

We do this as follows. Using the Spectral theorem, we can write A as
A = Q	ΛQ with Q orthogonal and Λ a diagonal matrix with the eigenval-
ues λi on the diagonal. We recall that (cf. (42.46))

‖Λ‖ = max
i=1,...,n

|λi| = |λj | (43.17)

and thus for all x ∈ R
n,

‖Ax‖ = ‖Q	ΛQx‖ = ‖ΛQx‖ ≤ ‖Λ‖‖Qx‖ = ‖Λ‖‖x‖ = max
i=1,...,n

|λi|‖x‖,

which proves that ‖A‖ ≤ maxi=1,...,n |λi|. Choosing x to be equal to the
eigenvector corresponding to the eigenvalue λj of maximal modulus proves
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that indeed ‖A‖ = maxi=1,...,n |λi| = |λj |. We have proved the following
result, which is a corner stone of numerical linear algebra.

Theorem 43.5 If A is a symmetric n × n matrix, then ‖A‖ = max |λi|,
where λ1, . . . , λn are the eigenvalues of A.

43.7 Extension to Non-Symmetric Real Matrices

Up until now, we have mainly focussed on the case of real scalars, that
is we assume that the components of vectors are real numbers. We know
that we can also let the components of vectors be complex numbers, and
we may then allow eigenvalues to be complex numbers. The fundamental
theorem of algebra states that a polynomial equation of degree n with com-
plex coefficients, has n complex roots, and thus the characteristic equation
det(A−λI) = 0 has n complex roots λ1, . . . , λn, and thus a n×n matrix A
has n complex eigenvalues λ1, . . . , λn, if roots are counted with multiplicity.
We have in this chapter focussed on symmetric matrices A with real coef-
ficients and we have proved that a symmetric matrix with real coefficients
has n real eigenvalues, counted with multiplicity. For symmetric matrices
we can thus limit ourselves to real roots of the characteristic equation.

Chapter 43 Problems

43.1. Verify (43.10).

43.2. Compute the eigenvalues and eigenvectors of an arbitrary symmetric
2 × 2 matrix A. Solve the corresponding initial-value problem u̇(t) = Au(t) for
t > 0, u(0) = u0.





44
Solving Linear Algebraic Systems

All thought is a kind of computation. (Hobbes)

44.1 Introduction

We are interested in solving a system of linear equations

Ax = b,

where A is a given n × n matrix and b ∈ R
n is a given n-vector and we

seek the solution vector x ∈ R
n. We recall that if A is non-singular with

non-zero determinant, then the solution x ∈ R
n is theoretically given by

Cramer’s formula. However if n is large, the computational work in using
Cramer’s formula is prohibitively large, so we need to find a more efficient
means of computing the solution.

We shall consider two types of methods for solving the system Ax = b: (i)
direct methods based on Gaussian elimination that theoretically produce
a solution after a finite number of arithmetic operations, and (ii) iterative
methods that produce a generally infinite sequence of increasingly accurate
approximations.TS

b

44.2 Direct Methods

We begin by noting that some linear systems are easier to solve than others.
For example if A = (aij) is diagonal, which means that aij = 0 if i �= j, then
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the system is solved in n operations: xi = bi/aii, i = 1, . . . , n. Further, if
the matrix is upper triangular, which means that aij = 0 if i > j, or lower
triangular, which means that aij = 0 if i < j, then the system can be
solved by backward substitution or forward substitution respectively; see
Fig. 44.1 for an illustration of these different types. For example if A is
upper triangular, the “pseudo-code” shown in Fig. 44.2 solves the system
Ax = b for the vector x = (xi) given the vector b = (bi) (assuming that
akk �= 0): In all three cases, the systems have a unique solution as long as
the diagonal entries of A are nonzero.

Direct methods are based on Gaussian elimination, which in turn is based
on the observation that the solution of a linear system is not changed under
the following elementary row operations:

� interchanging two equations

� adding a multiple of one equation to another

� multiplying an equation by a nonzero constant.

The idea behind Gaussian elimination is to transform using these opera-
tions a given system into an upper triangular system, which is solved by
back substitution. For example, to solve the system

x1 + x2 + x3 = 1
x2 + 2x3 = 1

2x1 + x2 + 3x3 = 1,

we first subtract 2 times the first equation from the third to get the equiv-
alent system,

x1 + x2 + x3 = 1
x2 + 2x3 = 1
−x2 + x3 = −1.

We define the multiplier to be the factor 2. Next, we subtract −1 times the
second row from the third to get

x1 + x2 + x3 = 1
x2 + 2x3 = 1

3x3 = 0.

0

0 0

0

Fig. 44.1. The pattern of entries in diagonal, upper, and lower triangular ma-
trices. A “∗” denotes a possibly nonzero entry

TS
b A sentence lacks in comparison with the hardcopy, please check it.

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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for k = n-1, n-2, ..., 1, do

sum = 0

for j = k+1, ..., n, do

sum = sum + akj . xj

xk = (bk - sum)/akk

xn = bn/ann

Fig. 44.2. An algorithm for solving an upper triangular system by back substi-
tution

In this case, the multiplier is −1. The system is now upper triangular and
using back substitution, we obtain x3 = 0, x2 = 1, and x1 = 0. Gaussian
elimination can be coded in a straightforward way using matrix notation.

Matrix Factorization

There is another way to view Gaussian elimination that is useful for the
purposes of programming and handling special cases. Namely, Gaussian
elimination is equivalent to computing a factorization of the coefficient
matrix, A = LU , where L is a lower triangular and U an upper triangular
n× n matrix. Given such a factorization of A, solving the system Ax = b
is straightforward. We first set y = Ux, then solve Ly = b by forward
substitution and finally solve Ux = y by backward substitution.

To see that Gaussian elimination gives an LU factorization of A, consider
the example above. We performed row operations that brought the system
into upper triangular form. If we view these operations as row operations
on the matrix A, we get the sequence




1 1 1
0 1 2
2 1 3



 →




1 1 1
0 1 2
0 −1 1



 →




1 1 2
0 1 2
0 0 3



 ,

which is an upper triangular matrix. This is the “U” in the LU decompo-
sition.

The matrix L is determined by the observation that the row operations
can be performed by multiplying A on the left by a sequence of special
matrices called Gauss transformations. These are lower triangular matri-
ces that have at most one nonzero entry in the off-diagonal positions and
1s down the diagonal. We show a Gauss transformation in Fig. 44.3. Multi-
plying A on the left by the matrix in Fig. 44.3 has the effect of adding αij
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times row j of A to row i of A. Note that the inverse of this matrix is
obtained changing αij to −αij ; we will use this below.






















1 0 · · · 0
0 1 0 0

. . . 1
. . . 0

...
...

0 0 0
. . . 0

0 αij 0
. . . 1

. . .

0 0 0
. . .
0 1 0

0 · · · 0 1






















Fig. 44.3. A Gauss transformation

To perform the first row operation on A above, we multiply A on the left
by

L1 =




1 0 0
0 1 0
−2 0 1



 ,

to get

L1A =




1 1 1
0 1 2
0 −1 −1



 .

The effect of pre-multiplication by L1 is to add −2× row 1 of A to row 3.
Note that L1 is lower triangular and has ones on the diagonal.

Next we multiply L1A on the left by

L2 =




1 0 0
0 1 0
0 1 1



 ,

and get

L2L1A =




1 1 1
0 1 2
0 0 3



 = U.

L2 is also lower triangular with ones on the diagonal. It follows that
A = L−1

1 L−1
2 U or A = LU , where

L = L−1
1 L−1

2 =




1 0 0
0 1 0
2 −1 1



 .
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It is easy to see that L is also lower triangular with 1’s on the diagonal with
the multipliers (with sign change) occurring at the corresponding positions.
We thus get the factorization

A = LU =




1 0 0
0 1 0
2 −1 1








1 1 1
0 1 2
0 0 3



 .

Note that the entries in L below the diagonal are exactly the multipliers
used to perform Gaussian elimination on A.

A general linear system can be solved in exactly the same fashion by
Gaussian elimination using a sequence of Gauss transformations to obtain
a factorization A = LU .

An LU factorization can be performed in situ using the storage space
allotted to the matrix A. The fragment of code shown in Fig. 44.4 computes
the LU factorization of A, storing U in the upper triangular part of A and
storing the entries in L below the diagonal in the part of A below the
diagonal. We illustrate the storage of L and U in Fig. 44.5.

for k = 1, ..., n-1, do

for j = k+1, ..., n, do

a jk = a jk/a kk
for m = k+1, ..., n, do

a jm = a jm - a jk a km

(step through rows)

(store the entry of L)

(eliminate entries
below diagonal entry)

(correct entries
down the row)

(store the entry of U)

Fig. 44.4. An algorithm to compute the LU factorization of A that stores the
entries of L and U in the storage space of A

u11
u22

unn

u12 u1n
l21

ln1 lnn-1

Fig. 44.5. The matrix output from the algorithm in Fig. 44.4. L and U are stored
in the space allotted to A
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Measuring the Cost

The cost of solving a linear system using a direct method is measured
in terms of computer time. In practice, the amount of computer time is
proportional to the number of arithmetic and storage operations the com-
puter uses to compute the solution. It is traditional (on a sequential com-
puter) to simplify the cost calculation by equating storing a value, addition,
and subtraction and equating multiplication and division when counting
operations. Moreover, since multiplication (i.e. multiplications and divi-
sions) generally cost much more than addition on older computers, it is
also common to simply count the number of multiplications (=multiplica-
tions+divisions).

By this measure, the cost of computing the LU decomposition of an n×n
matrix is n3 − n/3 = O(n3/3). We introduce some new notation here, the
big “O”. The actual count is n3/3−n/3, however when n is large, the lower
order term −n/3 becomes less significant. In fact,

lim
n→∞

n3/3 − n/3
n3/3

= 1, (44.1)

and this is the definition of the big “O”. (Sometimes the big “O” notation
means that the limit of the ratio of the two relevant quantities is any con-
stant). With this notation, the operations count of the LU decomposition
is just O(n3).

The cost of the forward and backward substitutions is much smaller:

Pivoting

During Gaussian elimination, it sometimes happens that the coefficient of
a variable in the “diagonal position” becomes zero as a result of previous
eliminations. When this happens of course, it is not possible to use that
equation to eliminate the corresponding entries in the same column lying
below the diagonal position. If the matrix is invertible, it is possible to find
a non-zero coefficient in the same column and below the diagonal position,
and by switching the two rows, the Gaussian elimination can proceed. This
is called zero pivoting, or just pivoting.

Adding pivoting to the LU decomposition algorithm is straightforward.
Before beginning the elimination using the current diagonal entry, we check
to see if that entry is non-zero. If it is zero, we search the entries below
in the same column for the first non-zero value, then interchange the row
corresponding to that non-zero entry with the row corresponding to the
current diagonal entry which is zero. Because the row interchanges involve
rows in the “un-factored” part of A, the form of L and U are not affected.
We illustrate this in Fig. 44.6.

To obtain the correct solution of the linear system Ax = b, we have to
mirror all pivots performed on A in the data b. This is easy to do with
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for k = 1, ..., n-1, do

for j = k+1, ..., n, do

a jk = a jk/a kk
for m = k+1, ..., n, do

a jm = a jm - a jk a km

(step through rows)

(store the entry of L)

(eliminate entries
below diagonal entry)

(correct entries
down the row)

(store the entry of U)

j=k

while a jk = 0, j=j+1

for m = 1 , ..., n do

temp = a km
akm = a jm
a jm = tem p

(search for the first
non-zero entry in
the current column)

(switch the k th and j th

rows of A)

Fig. 44.6. An algorithm to compute the LU factorization of A that used pivoting
to avoid zero-valued diagonal entries

the following trick. We define the vector of integers p = (1, 2, . . . , n)	.
This vector is passed to the LU factorization routine and whenever two
rows of A are interchanged, we interchange the corresponding entries in p.
After getting the altered p vector back, we pass it to the forward/backward
routine. Here, we address the vector b indirectly using the vector p, i.e., we
use the vector with entries (bpi)

n
i=1, which has the effect of interchanging

the rows in b in the correct fashion.
There are additional reasons to pivot in practice. As we have noted, the

computation of the LU decomposition can be sensitive to errors originating
from the finite precision of the computer if the matrix A is close to being
non-invertible. We discuss this further below. We mention here however
that a special kind of pivoting, called partial pivoting can be used to reduce
this sensitivity. The strategy behind partial pivoting is to search the entries
in the same column and below the current diagonal entry for the largest in
absolute value. The row corresponding to the largest entry in magnitude is
interchanged with the row corresponding to the current entry at the diago-
nal. The use of partial pivoting generally gives more accurate results than
factorization without partial pivoting. One reason is that partial pivoting
insures that the multipliers in the elimination process are kept as small as
possible and consequently the errors in each entry are magnified by as little
as possible during the course of the Gaussian elimination. We illustrate this
with an example. Suppose that we solve

.000100x1 + 1.00x2 = 1.00
1.00x1 + 1.00x2 = 2.00
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on a computer that holds three digits. Without pivoting, we get

.000100x1 + 1.00x2 = 1.00
−10000x2 = −10000

which implies that x2 = 1 and x1 = 0. Note the large multiplier that is
required for the elimination. Since the true answer is x1 = 1.0001 and
x2 = .9999, the computed result has an error of 100% in x1. If we switch
the two rows before eliminating, which corresponds exactly to the partial
pivoting strategy, we get

1.00x1 + 1.00x2 = 2.00
1.00x2 = 1.00

which gives x1 = x2 = 1.00 as a result.

44.3 Direct Methods for Special Systems

It is often the case that the matrices arising from the Galerkin finite element
method applied to a differential equation have special properties that can
be useful during the solution of the associated algebraic equations. For
example, the stiffness matrix for the Galerkin finite element approximation
of the two-point boundary value problem with no convection is symmetric,
positive-definite, and tridiagonal. In this section, we examine a couple of
different classes of problems that occur frequently.

Symmetric, Positive-Definite Systems

As we mentioned, symmetric, positive-definite matrices are often encoun-
tered when discretizing differential equations (especially if the spatial part
of the differential equation is of the type called elliptic). If A is symmet-
ric and positive-definite, then it can be factored as A = BB	 where B is
a lower triangular matrix with positive diagonal entries. This factorization
can be computed from the LU decomposition of A, but there is a compact
method of factoring A that requires only O(n3/6) multiplications called
Cholesky’s method.:

b11 =
√
a11

bi1 =
ai1

b11
, 2 ≤ i ≤ n,






bjj =
(
ajj −

∑j−1
k=1 b

2
jk

)1/2

,

bij =
(
aij −

∑j−1
k=1 bikbjk

)
/bjj ,

2 ≤ j ≤ n, j + 1 ≤ i ≤ n
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This is called a compact method because it is derived by assuming that
the factorization exists and then computing the coefficients of B directly
from the equations obtained by matching coefficients in BB	 = A. For ex-
ample, if we compute the coefficient in the first row and column of BB	 we
get b211, which therefore must equal a11. It is possible to do this because A is
positive-definite and symmetric, which implies among other things that the
diagonal entries of A remain positive throughout the factorization process
and pivoting is not required when computing an LU decomposition.

Alternatively, the square roots in this formula can be avoided by com-
puting a factorization A = CDC	 where C is a lower triangular matrix
with ones on the diagonal and D is a diagonal matrix with positive diagonal
coefficients.

Banded Systems

Banded systems are matrices with non-zero coefficients only in some num-
ber of diagonals centered around the main diagonal. In other words, aij = 0
for j ≤ i−dl and j ≥ i+du, 1 ≤ i, j ≤ n, where dl is the lower bandwidth, du

is the upper bandwidth, and d = du + dl − 1 is called the bandwidth. We
illustrate this in Fig. 44.7. The stiffness matrix computed for the two-point
boundary value problem with no convection is an example of a tridiagonal
matrix, which is a matrix with lower bandwidth 2, upper bandwidth 2, and
bandwidth 3.

When performing the Gaussian elimination used to compute the LU
decomposition, we see that the entries of A that are already zero do not
have to be reduced further. If there are only relatively few diagonals with
non-zero entries, then the potential saving is great. Moreover, there is no

a11
a22

ann

a12 0
a21

0

a13 a1du 0

adl1
0

ann-dl+10

ann-du+1

0

du

d
l

Fig. 44.7. The notation for a banded matrix
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need to store the zero-valued entries of A. It is straightforward to adapt the
LU factorization and forward/backward substitution routines to a banded
pattern, once a storage scheme has been devised. For example, we can store
a tridiagonal matrix as a 3 × n matrix:














a21 a31 0 · · · 0
a12 a22 a32 0 · · · 0

0 a13 a23 a33 0 · · ·
...

. . . . . . . . . . . . . . . 0
... 0 a1n−1 a2n−1 a3n−1

0 · · · 0 a1n a2n














.

The routine displayed in Fig. 44.8 computes the LU factorization, while
the routine in Fig. 44.9 performs the forward/backward substitution.

The cost of this routine grows linearly with the dimension, rather than
at a cubic rate as in the full case. Moreover, we use only the equivalent of
six vectors of dimension n for storage. A more efficient version, derived as
a compact method, uses even less.

This algorithm assumes that no pivoting is required to factor A. Pivoting
during the factorization of a banded matrix raises the difficulty that the
bandwidth becomes larger. This is easy to see in a tridiagonal matrix, in

for k = 2, ..., n, do

a1k = a 1k/a2k-1
a 2k = a 2k - a 1k a3k-1

Fig. 44.8. A routine for computing the LU factorization of a tridiagonal system

for k = n-1, ..., 1, do

xn = yn/a2n

xk = yk - a3k xk+1 /a2k

for k = 2, ..., n, do

y1 = b1

yk = bk - a1k yk-1

Fig. 44.9. Using forward and backward substitution to solve a tridiagonal system
given the LU factorization
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which case we have to store an extra vector to hold the extra elements
above the diagonal that result if two adjacent rows are switched.

As for a tridiagonal matrix, it is straightforward to program special LU
factorization and forward/backward substitution routines for a matrix with
bandwidth d. The operations count is O(nd2/2) and the storage require-
ment is a matrix of dimension d× n if no pivoting is required. If d is much
less than n, the savings in a special approach are considerable.

While it is true that if A is banded, then L and U are also banded,
it is also true that in general L and U have non-zero entries in positions
where A is zero. This is called fill-in. In particular, the stiffness matrix
for a boundary value problem in several variables is banded and moreover
most of the sub-diagonals in the band have zero coefficients. However, L
and U do not have this property and we may as well treat A as if all the
diagonals in the band have non-zero entries.

Banded matrices are one example of the class of sparse matrices. Recall
that a sparse matrix is a matrix with mostly zero entries. As for banded
matrices, it is possible to take advantage of sparsity to reduce the cost of
factoring A in terms of time and storage. However, it is more difficult to do
this than for banded matrices if the sparsity pattern puts non-zero entries
at any location in the matrix. One approach to this problem is based on
rearranging the equations and variables, or equivalently rearranging the
rows and columns to form a banded system.

44.4 Iterative Methods

Instead of solving Ax = b directly, we now consider iterative solution meth-
ods based on computing a sequence of approximations x(k), k = 1, 2, . . . ,
such that

lim
k→∞

x(k) = x or lim
k→∞

‖x(k) − x‖ = 0,

for some norm ‖ · ‖.
Note that the finite precision of a computer has a different effect on an

iterative method than it has on a direct method. A theoretically convergent
sequence can not reach its limit in general on a computer using a finite
number of digits. In fact, at the point at which the change from one iterate
to the next occurs outside the range of digits held by the computer, the
sequence simply stops changing. Practically speaking, there is no point
computing iterations past this point, even if the limit has not been reached.
On the other hand, it is often sufficient to have less accuracy than the limit
of machine precision, and thus it is important to be able to estimate the
accuracy of the current iterate.
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Minimization Algorithms

We first construct iterative methods for a linear system Ax = b where A is
symmetric and positive-definite. In this case, the solution x can be charac-
terized equivalently as the solution of the quadratic minimization problem:
find x ∈ R

n such that

F (x) ≤ F (y) for all y ∈ Rn, (44.2)

where
F (y) =

1
2
(Ay, y) − (b, y),

with (·, ·) denoting the usual Euclidean scalar product.
We construct an iterative method for the solution of the minimization

problem (44.2) based on the following simple idea: given an approxima-
tion x(k), compute a new approximation x(k+1) such that F (x(k+1)) <
F (x(k)). On one hand, since F is a quadratic function, there must be
a “downhill” direction from the current position, unless we are at the mini-
mum. On the other hand, we hope that computing the iterates so that their
function values are strictly decreasing, will force the sequence to converge
to the minimum point x. Such an iterative method is called a minimization
method.

Writing x(k+1) = x(k) + αkd
(k), where d(k) is a search direction and αk

is a step length, by direct computation we get

F (x(k+1)) = F (x(k)) + αk

(
Ax(k) − b, d(k)

)
+
α2

k

2
(
Ad(k), d(k)

)
,

where we used the symmetry of A to write (Ax(k), d(k))=(x(k), Ad(k)). If the
step length is so small that the second order term in αk can be neglected,
then the direction d(k) in which F decreases most rapidly, or the direction
of steepest descent, is

d(k) = −(Ax(k) − b) = −r(k),

which is the opposite direction to the residual error r(k) = Ax(k) − b. This
suggests using an iterative method of the form

x(k+1) = x(k) − αkr
(k). (44.3)

A minimization method with this choice of search direction is called a steep-
est descent method. The direction of steepest descent is perpendicular to
the level curve of F through x(k), which is the curve in the graph of F gen-
erated by the points where F has the same value as at x(k). We illustrate
this in Fig. 44.10.

It remains to choose the step lengths αk. Staying with the underlying
principle, we choose αk to give the minimum value of F in the direction
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x(k)

x(k)
x

x

d(k)

F

level curves

Fig. 44.10. The direction of steepest descent of F at a point is perpendicular to
the level curve of F through the point

of d(k) starting from x(k). Differentiating F (x(k) + αkr
(k)) with respect

to αk and setting the derivative zero gives

αk = −
(
r(k), d(k)

)

(d(k), Ad(k))
. (44.4)

As a simple illustration, we consider the case

A =
(
λ1 0
0 λ2

)

, 0 < λ1 < λ2, (44.5)

and b = 0, corresponding to the minimization problem

min
y∈Rn

1
2
(
λ1y

2
1 + λ2y

2
2

)
,

with solution x = 0.
Applying (44.3) to this problem, we iterate according to

x(k+1) = x(k) − αkAx
(k),

using for simplicity a constant step length with αk = α instead of (44.4).
In Fig. 44.11, we plot the iterations computed with λ1 = 1, λ2 = 9, and
x(0) = (9, 1)	. The convergence in this case is quite slow. The reason is that
if λ2 � λ1, then the search direction −(λ1x

(k)
1 , λ2x

(k)
2 )	 and the direction

−(x(k)
1 , x

(k)
2 )	 to the solution at the origin, are very different. As a result

the iterates swing back and forth across the long, narrow “valley”.
It turns out that the rate at which the steepest descent method converges

in general depends on the condition number κ(A) = λn/λ1 of A, where
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0 2 4 6 8

−1

−0.5

0.5

1

x1

x2

x(0)

x(1)

x(2)

Fig. 44.11. A sequence generated by the steepest descent method for (44.5)
plotted together with some level curves of F

λ1 ≤ λ2 ≤ . . . ≤ λn are the eigenvalues of A (counted with multiplicity). In
other words, the condition number of a symmetric positive definite matrix
is the ratio of the largest eigenvalue to the smallest eigenvalue.

The general definition of the condition number of a matrix A in terms of
a norm ‖ ·‖ is κ(A) = ‖A‖‖A−1‖. In the ‖ ·‖2 norm, the two definitions are
equivalent for symmetric matrices. Using any definition, a matrix is said
to be ill-conditioned if the log(κ(A)) is of the order of the number of digits
used in the computer. As we said, we can expect to have difficulty solving
an ill-conditioned system; which in terms of direct methods means large
errors due to rounding errors and in terms of iterative methods means slow
convergence.

We now analyze the steepest descent method for Ax = b in the case of
a onstant step length α, where we iterate according to

x(k+1) = x(k+1) − α(Ax(k) − b).

Since the exact solution x satisfies x = x−α(Ax− b), we get the following
equation for the error e(k) = x− x(k):

e(k+1) = (I − αA)e(k).

The iterative method converges if the error tend to zero. Taking norms, we
get

‖e(k+1)‖ ≤ µ ‖e(k)‖ (44.6)

where we use the spectral estimate (43.16) to write

µ = ‖I − αA‖ = max
j

|1 − αλj |,
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since the eigenvalues of the matrix I−αA are 1−αλj, j = 1, . . . , n. Iterating
this estimate we get

‖e(k+1)‖ ≤ µk ‖e(0)‖, (44.7)

where e(0) is the initial error.
To understand when (44.6), or (44.7), guarantees convergence, consider

the scalar sequence {λk} for k ≥ 0. If |λ| < 1, then λk → 0; if λ = 1,
then the sequence is always 1; if λ = −1, the sequence alternates between 1
and −1 and does not converge; and if |λ| > 1, then the sequence diverges.
Therefore if we want the iteration to converge for any initial value, then
we must choose α so that µ < 1. Since the λj are positive by assumption,
1 − αλj < 1 automatically, and we can guarantee that 1 − αλj > −1 if α
satisfies α < 2/λn. Choosing α = 1/λn, which is not so far from optimal,
we get

µ = 1 − 1/κ(A).

If κ(A) is large, then the convergence can be slow because then the
reduction factor 1 − 1/κ(A) is close to one. More precisely, the number of
steps required to lower the error by a given amount is proportional to the
condition number.

When an iteration converges in this fashion, i.e. the error decreases (more
or less) by a given factor in each iteration, then we say that the iteration
converges linearly. We define the rate of convergence to be − log(µ). The
motivation is that the number of iterations are required to reduce the error
by a factor of 10−m is approximately −m log(µ). Note that a faster rate of
convergence means a smaller value of µ.

This is an a priori estimate of the error reduction per iteration, since we
estimate the error before the computation. Such an analysis must account
for the slowest possible rate of convergence because it holds for all initial
vectors.

Consider the system Ax = 0 with

A =




λ1 0 0
0 λ2 0
0 0 λ3



 , (44.8)

where 0 < λ1 < λ2 < λ3. For an initial guess x(0)=(x0
1, x

0
2, x

0
3)

	, the
steepest descent method with α = 1/λ3 gives the sequence

x(k) =

((

1 − λ1

λ3

)k

x0
1,

(

1 − λ2

λ3

)k

x0
2, 0

)

, k = 1, 2, . . . ,

and,

‖e(k)‖ =

√
(

1 − λ1

λ3

)2k (
x0

1

)2 +
(

1 − λ2

λ3

)2k (
x0

2

)2
, k = 1, 2, . . .
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Thus for a general initial guess, the size of the error is given by the root
mean square average of the corresponding iterate and the rate that the
errors decrease is the root mean square average of the rates of decrease of
the components. Therefore, depending on the initial vector, initially the
iterates will generally converge more quickly than the rate of decrease of
the first, i.e. slowest, component. In other words, more quickly than the
rate predicted by (44.6), which bounds the rate of decrease of the errors
by the rate of decrease in the slowest component. However, as the iteration
proceeds, the second component eventually becomes much smaller than the
first component (as long as x0

1 �= 0) and we can neglect that term in the
expression for the error, i.e.

‖e(k)‖ ≈
(

1 − λ1

λ3

)k

|x0
1| for k sufficiently large. (44.9)

In other words, the rate of convergence of the error for almost all initial
vectors eventually becomes dominated by the rate of convergence of the
slowest component. It is straightforward to show that the number of itera-
tions that we have to wait for this approximation to be valid is determined
by the relative sizes of the first and second components of x(0).

This simple error analysis does not apply to the unmodified steepest
descent method with varying αk. However, it is generally true that the
rate of convergence depends on the condition number of A, with a larger
condition number meaning slower convergence. If we again consider the
2 × 2 example (44.5) with λ1 = 1 and λ2 = 9, then the estimate (44.6) for
the simplified method suggests that the error should decrease by a factor of
1−λ1/λ2 ≈ .89 in each iteration. The sequence generated by x(0) = (9, 1)	

decreases by exactly .8 in each iteration. The simplified analysis over-
predicts the rate of convergence for this particular sequence, though not
by a lot. By way of comparison, if we choose x(0) = (1, 1)	, we find that
the ratio of successive iterations alternates between ≈ .126 and ≈ .628, be-
cause αk oscillates in value, and the sequence converges much more quickly
than predicted. On the other hand, there are initial guesses leading to se-
quences that converge at the predicted rate.

The stiffness matrix A of a linear second order two-point boundary value
problem with no convection is symmetric and positive-definite, and its con-
dition number κ(A) ∝ h−2. Therefore the convergence of the steepest de-
scent method is very slow if the number of mesh points is large.

A General Framework for Iterative Methods

We now briefly discuss iterative methods for a general, linear systemAx= b,
following the classical presentation of iterative methods in Isaacson and
Keller ([13]). Recall that some matrices, like diagonal and triangular ma-
trices, are relatively easy and cheap to invert, and Gaussian elimination
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can be viewed as a method of factoring A into such matrices. One way to
view an iterative method is an attempt to approximate A−1 by the inverse
of a part of A that is easier to invert. This is called an approximate inverse
of A, and we use this to produce an approximate solution to the linear
system. Since we don’t invert the matrix A, we try to improve the approx-
imate solution by repeating the partial inversion over and over. With this
viewpoint, we start by splitting A into two parts:

A = N − P,

where the part N is chosen so that the system Ny = c for some given c
is relatively inexpensive to solve. Noting that the true solution x satisfies
Nx = Px+ b, we compute x(k+1) from x(k) by solving

Nx(k+1) = Px(k) + b for k = 1, 2, . . . , (44.10)

where x(0) is an initial guess. For example, we may choose N to be the
diagonal of A:

Nij =

{
aij , i = j,

0, i �= j,

or triangular:

Nij =

{
aij , i ≥ j,

0, i < j.

In both cases, solving the system Nx(k+1) = Px(k) + b is cheap compared
to doing a complete Gaussian elimination on A. so we could afford to do it
many times.

As an example, suppose that

A =




4 1 0
2 5 1
−1 2 4



 and b =




1
0
3



 , (44.11)

and we choose

N =




4 0 0
0 5 0
0 0 4



 and P =




0 −1 0
−2 0 −1
1 −2 0



 ,

in which case the equation Nx(k+1) = Px(k) + b reads

4xk+1
1 = −xk

2 + 1

5xk+1
2 = −2xk

1 − xk
3

4xk+1
3 = xk

1 − 2xk
2 + 3.
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Being a diagonal system it is easily solved, and choosing an initial guess
and computing, we get

x(0) =




1
1
1



 , x(1) =




0

−.6
.5



 , x(2) =




.4
−.1
1.05



 , x(3) =




.275
−.37
.9



 ,

x(4) =




.3425
−.29

1.00375



 , · · · x(15) =




.333330098
−.333330695
.999992952



 , · · ·

The iteration appears to converge to the true solution (1/3, −1/3,1)	.
In general, we could choose N = Nk and P = Pk to vary with each

iteration.
To analyze the convergence of (44.10), we subtract (44.10) from the equa-

tion Nx = Px+ b satisfied by the true solution to get an equation for the
error e(k) = x− x(k):

e(k+1) = Me(k),

where M = N−1P is the iteration matrix. Iterating on k gives

e(k+1) = Mk+1e(0). (44.12)

Rephrasing the question of convergence, we are interested in whether
e(k) → 0 as k → ∞. By analogy to the scalar case discussed above, if M
is “small”, then the errors e(k) should tend to zero. Note that the issue of
convergence is independent of the data b.

If e(0) happens to be an eigenvector of M , then it follows from (44.12)

‖e(k+1)‖ = |λ|k+1‖e(0)‖,

and we conclude that if the method converges then we must have |λ| < 1
(or λ = 1). Conversely, one can show that if |λ| < 1 for all eigenvalues
of M , then the method (44.10) indeed does converge:

Theorem 44.1 An iterative method converges for all initial vectors if and
only if every eigenvalue of the associated iteration matrix is less than one
in magnitude.

This theorem is often expressed using the spectral radius ρ(M) of M , which
is the maximum of the magnitudes of the eigenvalues of A. An iterative
method converges for all initial vectors if and only if ρ(M) < 1. In general,
the asymptotic limit of the ratio of successive errors computed in ‖ ‖∞ is
close to ρ(M) as the number of iterations goes to infinity. We define the
rate of convergence to be RM = − log(ρ(M)). The number of iterations
required to reduce the error by a factor of 10m is approximately m/RM .

Practically speaking, “asymptotic” means that the ratio can vary as the
iteration proceeds, especially in the beginning. In previous examples, we
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saw that this kind of a priori error result can underestimate the rate of
convergence even in the special case when the matrix is symmetric and
positive-definite (and therefore has an orthonormal basis of eigenvectors)
and the iterative method uses the steepest descent direction. The general
case now considered is more complicated, because interactions may oc-
cur in direction as well as magnitude, and a spectral radius estimate may
overestimate the rate of convergence initially. As an example, consider the
non-symmetric (even non-normal) matrix

A =
(

2 −100
0 4

)

(44.13)

choosing

N =
(

10 0
0 10

)

and P =
(

8 100
0 6

)

gives M =
(
.9 10
0 .8

)

.

In this case, ρ(M) = .9 and we expect the iteration to converge. In-
deed it does converge, but the errors become quite large before they start
to approach zero. We plot the iterations starting from x(0) = (1, 1)	 in
Fig. 44.12.

i

0
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20 30 40 50

‖e
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Fig. 44.12. The results of an iterative method computed using a non-normal
matrix

The goal is obviously to choose an iterative method so that the spectral
radius of the iteration matrix is small. Unfortunately, computing ρ(M)
in the general case is much more expensive than solving the original linear
system and is impractical in general. We recall that |λ| ≤ ‖A‖ holds for any
norm and any eigenvalue λ of A. The following theorem indicates a practical
way to check for convergence.

Theorem 44.2 Assume that ‖N−1P‖ ≤ µ for some constant µ < 1 and
matrix norm ‖ · ‖. Then the iteration converges and ‖e(k)‖ ≤ µk‖e(0)‖
for k ≥ 0.
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This theorem is also an a priori convergence result and suffers from the
same deficiency as the analysis of the simplified steepest descent method
presented above. In fact, choosing an easily computable matrix norm, like
‖ ‖∞, generally leads to an even more inaccurate estimate of the conver-
gence rate than would be obtained by using the spectral radius. In the worst
case, it is entirely possible that ρ(M) < 1 < ‖M‖ for the chosen norm, and
hence the iterative method converges even though the theorem does not
apply. The amount of “slack” in the bound in Theorem 44.2 depends on
how much larger ‖A‖∞ is than ρ(A).

For the 3 × 3 example (44.11), we compute ‖N−1P‖∞ = 3/4 = λ and
therefore we know the sequence converges. The theorem predicts that the
error will get reduced by a factor of 3/4 every iteration. If we examine the
error of each iterate along with the ratios of successive errors after the first
iteration:

i ‖e(i)‖∞ ‖e(i)‖∞/‖e(i−1)‖∞
0 1.333
1 .5 .375
2 .233 .467
3 .1 .429
4 .0433 .433
5 .0194 .447
6 .00821 .424
7 .00383 .466
8 .00159 .414
9 .000772 .487

we find that after the first few iterations, the errors get reduced by a factor
in the range of .4–.5 each iteration and not the factor 3/4 predicted above.
The ratio of e(40)/e(39) is approximately .469. If we compute the eigenvalues
of M , we find that ρ(M) ≈ .476 which is close to the ratio of successive
errors. To decrease the initial error by a factor of 10−4 using the predicted
decrease of .75 per iteration, we would compute 33 iterations, while only 13
iterations are actually needed.

We get different methods, and different rates of convergence, by choosing
different N and P . The method used in the example above is called the
Jacobi method. In general, this consists of choosing N to be the “diagonal
part” of A and P to be the negative of the “off-diagonal” part of A. This
gives the set of equations

xk+1
i = − 1

aii

(∑

j �=i

aijx
k
j − bi

)

, i = 1, . . . , n.

To derive a more sophisticated method, we write out these equations in
Fig. 44.13. The idea behind the Gauss-Seidel method is to use the new
values of the approximation in these equations as they become known. The
substitutions are drawn in Fig. 44.13. Presumably, the new values are more
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x1
k+1 = - 1a11 (0 + a12x2k + . . . +a1nxnk - b1 )

x2
k+1 = - 1a22 (a21x1k +0 +a23x3k + . . . +a2nxnk - b2 )

x3
k+1 = - 1a33 (a31x1k +a32x2k +0 +a34x4k + . . . - b3 )

xn
k+1 = - 1ann (an1x1k +an2x2k + . . . + ann-1xkn-1 +0 - bn )

Fig. 44.13. The Gauss-Seidel method substitutes new values of the iteration as
they become available

accurate than the old values, hence we might guess that this iteration will
converge more quickly. The equations can be written

xk+1
i =

1
aii

(

−
i−1∑

j=1

aijx
k+1
j −

n∑

j=i+1

aijx
k
j + bi

)

.

If we decompose A into the sum of its lower triangular L, diagonal D, and
upper triangular U parts, A = L+D+U , then the equations can be written
Dx(k+1) = −Lx(k+1) − Ux(k) + b or

(D + L)x(k+1) = −Ux(k) + b.

Therefore, N = D + L and P = −U . The iteration matrix is MGS =
N−1P = −(D + L)−1U .

A diagonally dominant matrix often occurs when a parabolic problem
is discretized. We have already seen the other case, if A is symmetric and
positive-definite then the Gauss-Seidel method converges. This is quite hard
to prove, see Isaacson and Keller ([13]) for details.

44.5 Estimating the Error of the Solution

The issue of estimating the error of the numerical solution of a linear system
Ax = b arises both in Gaussian elimination, because of the cumulative
effects of round-off errors, and when using iterative methods, where we
need a stopping criterion. Therefore it is important to be able to estimate
the error in some norm with a fair degree of accuracy.

We discussed this problem in the context of iterative methods in the
last section when we analyzed the convergence of iterative methods and
Theorem 44.2 gives an a priori estimate for the convergence rate. It is
an a priori estimate because the error is bounded before the computation
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begins. Unfortunately, as we saw, the estimate may not be very accurate on
a particular computation, and it also requires the size of the initial error.
In this section, we describe a technique of a posteriori error estimation that
uses the approximation after it is computed to give an estimate of the error
of that particular approximation.

We assume that xc is a numerical solution of the system Ax = b with
exact solution x, and we want to estimate the error ‖x − xc‖ in some
norm ‖ · ‖. We should point out that we are actually comparing the ap-
proximate solution x̃c of Ãx̃ = b̃ to the true solution x̃, where Ã and b̃ are
the finite precision computer representations of the true A and b respec-
tively. The best we can hope to do is compute x̃ accurately. To construct
a complete picture, it would be necessary to examine the effects of small
errors in A and b on the solution x. To simplify things, we ignore this part
of the analysis and drop the ˜ . In a typical use of an iterative method, this
turns out to be reasonable. It is apparently less reasonable in the analysis
of a direct method, since the errors arising in direct methods are due to
the finite precision. However, the initial error caused by storing A and b
on a computer with a finite number of digits occurs only once, while the
errors in the arithmetic operations involved in Gaussian elimination occur
many times, so even in that case it is not an unreasonable simplification.

We start by considering the residual error

r = Axc − b,

which measures how well xc solves the exact equation. Of course, the resid-
ual error of the exact solution x is zero but the residual error of xc is not
zero unless xc = x by some miracle. We now seek to estimate the unknown
error e = x− xc in terms of the computable residual error r.

By subtracting Ax− b = 0 from Axc − b = r, we get an equation relating
the error to the residual error:

Ae = −r. (44.14)

This is an equation of the same from as the original equation and by solv-
ing it numerically by the same method used to compute xc, we get an
approximation of the error e. This simple idea will be used in a more so-
phisticated form below in the context of a posteriori error estimates for
Galerkin methods.

We now illustrate this technique on the linear system arising in the Galer-
kin finite element discretization of a two-point boundary value problem
with no convection. We generate a problem with a known solution so that
we can compute the error and test the accuracy of the error estimate. We
choose the true solution vector x with components xi = sin(πih), where
h = 1/(M+1), corresponding to the function sin(πx) and then compute the
data by b = Ax, where A is the stiffness matrix. We use the Jacobi method,
suitably modified to take advantage of the fact thatA is tridiagonal, to solve
the linear system. We use ‖ ‖ = ‖ ‖2 to measure the error.
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We compute the Jacobi iteration until the residual error becomes smaller
than a given residual tolerance RESTOL. In other words, we compute the
residual r(k) = Ax(k) − b after each iteration and stop the process when
‖r(k)‖ ≤ RESTOL. We present computations using the stiffness matrix
generated by a uniform discretization with M = 50 elements yielding a fi-
nite element approximation with an error of .0056 in the l2 norm. We choose
the value of RESTOL so that the error in the computation of the coeffi-
cients of the finite element approximation is about 1% of the error of the
approximation itself. This is reasonable since computing the coefficients
of the approximation more accurately would not significantly increase the
overall accuracy of the approximation. After the computation of x(k) is
complete, we use the Jacobi method to approximate the solution of (44.14)
and compute the estimate of the error.

Using the initial vector x(0) with all entries equal to one, we compute
6063 Jacobi iterations to achieve ‖r‖ < RESTOL = .0005. The actual error
of x(6063), computed using the exact solution, is approximately .0000506233.
We solve (44.14) using the Jacobi method for 6063 iterations, reporting the
value of the error estimate every 400 iterations:

Iter. Error Est. Iter. Error Est. Iter. Error Est.
1 0.00049862 2001 0.000060676 4001 0.000050849

401 0.00026027 2401 0.000055328 4401 0.000050729
801 0.00014873 2801 0.000052825 4801 0.000050673
1201 0.000096531 3201 0.000051653 5201 0.000050646
1601 0.000072106 3601 0.000051105 5601 0.000050634

We see that the error estimate is quite accurate after 6001 iterations and
sufficiently accurate for most purposes after 2000 iterations. In general,
we do not require as much accuracy in the error estimate as we do in the
solution of the system, so the estimation of the accuracy of the approximate
solution is cheaper than the computation of the solution.

Since we estimate the error of the computed solution of the linear system,
we can stop the Jacobi iteration once the error in the coefficients of the
finite element approximation is sufficiently small so that we are sure the
accuracy of the approximation will not be affected. This is a reasonable
strategy given an estimate of the error. If we do not estimate the error,
then the best strategy to guarantee that the approximation accuracy is not
affected by the solution error is to compute the Jacobi iteration until the
residual error is on the order of roughly 10−p, where p is the number of digits
that the computer uses. Certainly, there is not much point to computing
further Jacobi iterations after this. If we assume that the computations
are made in single precision, then p ≈ 8. It takes a total of 11672 Jacobi
iterations to achieve this level of residual error using the same initial guess
as above. In fact, estimating the error and computing the coefficients of
the approximation to a reasonable level of accuracy costs significantly less
than this crude approach.
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This approach can also be used to estimate the error of a solution com-
puted by a direct method, provided the effects of finite precision are in-
cluded. The added difficulty is that in general the residual error of a solu-
tion of a linear system computed with a direct method is small, even if the
solution is inaccurate. Therefore, care has to be taken when computing the
residual error because the possibility that subtractive cancellation makes
the calculation of the residual error itself inaccurate. Subtractive cancella-
tion is the name for the fact that the difference of two numbers that agree
to the first i places has i leading zeroes. If only the first p digits of the
numbers are accurate then their difference can have at most p− i accurate
significant digits. This can have severe consequences on the accuracy of the
residual error if Axc and b agree to most of the digits used by the com-
puter. One way to avoid this trouble is to compute the approximation in
single precision and the residual in double precision (which means compute
the product Axc in double precision, then subtract b). The actual solution
of (44.14) is relatively cheap since the factorization of A has already been
performed and only forward/backward substitution needs to be done.

44.6 The Conjugate Gradient Method

We learned above that solving an n× n linear system of equations Ax = b
with A symmetric positive definite using the gradient method, requires
a number of iterations, which is proportional to the condition number
κ(A) = λn/λ1, where λ1 ≤ . . . ≤ λn are the eigenvalues of A. Thus the
number of iteration will be large, maybe prohibitively so, if the condition
number κ(A) is large.

We shall now present a variant of the gradient method, referred as the
conjugate gradient method, where the number of iterations scales instead
like

√
κ(A), which may be much smaller than κ(A) if κ(A) is large.

In the conjugate gradient method each new search direction is chosen to
be orthogonal, with respect to the scalar product induced by the positive
definite symmetric matrix A, which prevents choosing inefficient search
directions as in the usual gradient method.

The conjugate gradient method may be formulated as follows: for
k = 1, 2, . . . compute an approximate solution xk ∈ R

n as the solution of
the minimization problem

min
y∈Kk(A)

F (y) = min
y∈Kk(A)

1
2
(Ay, y) − (b, y)

whereKk(A) is the Krylov space spanned by the vectors {b, Ab, . . . , Ak−1b}.
This is the same as defining xk to be the projection of x onto Kk(A) with

respect to the scalar product 〈y, z〉 on R
n ×R

n defined by 〈y, z〉 = (Ay, z),
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because we have using the symmetry of A and that Ax = b:

1
2
(Ay, y) − (b, y) =

1
2
〈y − x, y − x〉 − 1

2
〈x, x〉.

In particular, the conjugate gradient method has the following minimiza-
tion property

‖x− xk‖A = min
y∈Kk(A)

‖x− y‖A ≤ ‖pk(A)x‖A

where pk(x) is a polynomial of degree k with p(0) = 1, and ‖·‖A is the norm
associated with the scalar product 〈·, ·〉, that is, ‖y‖2

A = 〈y, y〉. This follows
by using that since b = Ax, we have that Kk(A) is spanned by the vectors
{Ax,A2x, . . . , Akx}. In particular, we conclude that for all polynomials
pk(x) of degree k such that pk(0) = 1, we have

‖x− xk‖A ≤ max
λ∈Λ

|pk(λ)|‖x‖A (44.15)

where Λ is the set of eigenvalues of A. By choosing the polynomial pk(x)
properly, e.g as a so-called Chebyshev polynomial qk(x) with the property
that qk(x) is small on the interval [λ1, λn] containing the eigenvalues of A,
one can prove that the number of iterations scales like

√
κ(A) if n is large.

If n is not large, we have in particular from (44.15) that we get the exact
solution after at most n iterations, since we may choose the polynomial
pk(x) to be zero at the n eigenvalues of A.

We have now defined the conjugate gradient method through it struc-
tural properties: projection onto a Krylov space with respect to a certain
scalar product, and we now address the problem of actually computing the
sequence xk step by step. This is done as follows: For k = 0, 1, 2, . . . ,

xk+1 = xk + αkd
k, αk = − (rk, dk)

〈dk, dk〉 , (44.16)

dk+1 = −rk+1 + βkd
k, βk =

〈rk+1, dk〉
〈dk, dk〉 , (44.17)

where rk = Axk − b is the residual of the approximation xk, and we choose
x0 = 0 and d0 = b. Here, (44.17) signifies that the new search direction
dk+1 gets new directional information from the new residual rk+1 and is
chosen to be orthogonal (with respect to the scalar product 〈·, ·〉) to the old
search direction dk. Further, (44.16), expresses that xk+1 is chosen so as to
to minimize F (x(k) +αdk) in α, corresponding to projection onto Kk+1(A).
We prove these properties in a sequence of problems below.

Note that if we choose the initial approximation x0 different from zero,
then we may reduce to the above case by considering instead the problem
Ay = b−Ax0 in y, where y = x− x0.
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44.7 GMRES

The conjugate gradient method for solving an n×n system Ax = b builds on
the matrix A being symmetric and positive definite. If A is non-symmetric
or non-positive definite, but yet non-singular, then we may apply the con-
jugate gradient method to the least squares problem A	Ax = A	b, but
the since the condition number of A	A typically is the square of the con-
dition number of A, the required number of iterations may be too large for
efficiency.

Instead we may try the Generalized Minimum Residual method referred
to as GMRES, which generates a sequence of approximations xk of the
solution x of Ax = b, satisfying for any polynomial pk(x) of degree at
most k with pk(0) = 1

‖Axk − b‖ = min
y∈Kk(A)

‖Ay − b‖ ≤ ‖pk(A)b‖, (44.18)

that is xk is the element in the Krylov space Kk(A) which minimizes the
Euclidean norm of the residual Ay − b with y ∈ Kk(A). Assuming that
the matrix A is diagonalizable, there exist a nonsingular matrix V so that
A = V DV −1, where D is a diagonal matrix with the eigenvalues of A on
the diagonal. We then have that

‖Axk − b‖ ≤ κ(V )max
λ∈Λ

|pk(λ)|‖b‖, (44.19)

where Λ is the set of eigenvalues of A.
In the actual implementation of GMRES we use the Arnoldi iteration,

a variant of the Gram-Schmidt orthogonalization, that constructs a se-
quence of matrices Qk whose orthogonal column vectors span the succes-
sive Krylov spaces Kk(A), and we write xk = Qkc to get the following least
squares problem:

min
c∈Rk

‖AQnc− b‖. (44.20)

The Arnoldi iteration is based on the identity AQk = Qk+1Hk, where Hk

is an upper Hessenberg matrix so that hij = 0 for all i > j + 1. Using this
identity and multiplying from the left by QT

k+1 gives us another equivalent
least squares problem:

min
c∈Rk

‖Hkc−QT
k+1b‖. (44.21)

Recalling the construction of the Krylov spaces Kk(A), in particular that
K1(A) is spanned by b, we find that QT

k+1b = ‖b‖e1, where e1 = (1, 0, 0, . . .),
and we obtain the final form of the least squares problem to be solved in
the GMRES iteration:

min
c∈Rk

‖Hkc− ‖b‖e1‖. (44.22)
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This problem is now easy to solve due to the simpel structure of the Hes-
senberg matrix Hk.

In Fig. 44.14 we compare the performance of the conjugate gradient
method and GMRES for system with a tridiagonal 200×200 matrix with 1
on the diagonal, and random off-diagonal entries that take values in
(−0.5, 0.5) and the right hand side a random vector with values in [−1, 1].
The system matrix in this case is not symmetric, but it is strictly diago-
nally dominant and thus may be viewed asa perturbation of the identity
matrix and should be easy to solve iteratively. We see that both the con-
jugate gradient method and GMRES converge quite rapidly, with GMRES
winning in number of iterations.
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Fig. 44.14. Log-plot of the residual versus the number of iterations for diagonal
dominant random matrix, using the conjugate gradient method (′·′) and GMRES
(’triangles’)

In GMRES we need to store the basis vectors for the increasing Krylov
space, which may be prohibitive for large systems requiring many itera-
tions. To avoid this problem, we may restart GMRES when we have reached
a maximal number of stored basis vector, by using as initial approxima-
tion x0 the last approximation before restart. The trade-off is of course
that a retarted GMRES may require more iterations for the same accuracy
than GMRES without restart.

We now consider the more challenging problem of solving a 200 × 200
stiffness matrix system, that is a system with a tridiagonal matrix with 2
on the diagonal, and −1 on the off-diagonal (which is not strictly diago-
nally dominant). We will meet this type of system matrix in Chapter FEM
for Two-Point Boundary Value Problems below, and we will see that it has
a condition number proportional to the square of the number of unknowns.
We thus expect the conjugate gradient method to require about the same
number of iterations as the number of unknowns. In Fig. 44.15 we compare
again the performance of the conjugate gradient method with the GMRES



676 44. Solving Linear Algebraic Systems

method, now restarted after 100 iterations. We find that the conjugate gra-
dient method as expected converges quite slowly (and non monotonically),
until immediate convergence at iteration 200 as predicted by theory. The
GMRES iteration on the other hand has a monotone but still quite slow
convergence in particular after each restart when the Krylov subspace is
small.

In Fig. 44.16 we compare different restart conditions for GMRES, and
we find that there is a trade-off between the convergence rate and the
memory consumption: few restarts give a faster convergence, but require
more memory to store more basis vectors for the Krylov space. On the other
hand we save memory by using more restarts, but then the convergence rate
deteriorates.
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Fig. 44.15. Log-plot of the residual versus the number of iterations for stiffness
matrix, using the conjugate gradient method and GMRES, restarted after 100
iterations
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Fig. 44.16. Log-plot of the residual versus the number of iterations for stiffness
matrix using GMRES and restarted GMRES, restarted after 20,50,100,150 iter-
ations (left), and a close-up on the cases of no restart and restart after 100 and
150 iterations (right)
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Chapter 44 Problems

44.1. Using a similar format, write down algorithms to solve a diagonal system
and then a lower triangular system using forward substitution. Determine the
number of arithmetic operations needed to compute the solution.

44.2. Prove that multiplying a square matrix A on the left by the matrix in
Fig. 44.3 has the effect of adding αij times row j of A to row i of A. Prove that
the inverse of the matrix in Fig. 44.3 is obtained changing αij to −αij

44.3. Show that the product of two Gauss transformations is a lower triangular
matrix with ones on the diagonal and the inverse of a Gauss transformation is
a Gauss transformation.

44.4. Solve the system

x1 − x2 − 3x3 = 3

−x1 + 2x2 + 4x3 = −5

x1 + x2 = −2

by computing an LU factorization of the coefficient matrix and using forward/
backward substitution.

44.5. On some computers, dividing two numbers is up to ten times more ex-
pensive than computing the reciprocal of the denominator and multiplying the
result with the numerator. Alter this code to avoid divisions. Note: the reciprocal
of the diagonal element akk has to be computed just once.

44.6. Write some pseudo-code that uses the matrix generated by the code in
Fig. 44.4 to solve the linear system Ax = b using forward/backward substitution.
Hint: the only missing entries of L are the 1s on the diagonal.

44.7. Show that the cost of a backward substitution using an upper triangular
matrix of dimension n× n is O(n2/2).

44.8. Determine the cost of multiplying a n× n matrix with another.

44.9. One way to compute the inverse of a matrix is based on viewing the
equation AA−1 = I as a set of linear equations for the columns of A−1. If a(j)

denotes the jth column of A−1, then it satisfies the linear system

Aa(j) = ej

where ej is the standard basis vector of R
n with a one in the jth position. Use

this idea to write a pseudo-code for computing the inverse of a matrix using LU
factorization and forward/backward substitution. Note that it suffices to compute
the LU factorization only once. Show that the cost of computing the inverse in
this fashion is O(4n3/3).
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44.10. Solve the system

x1 + x2 + x3 = 2

x1 + x2 + 3x3 = 5

−x1 − 2x3 = −1.

This requires pivoting.

44.11. Alter the LU decomposition and forward/backward routines to solve a lin-
ear system with pivoting.

44.12. Modify the code in Problem 44.11 to use partial pivoting.

44.13. Count the cost of Cholesky’s method.

44.14. Compute the Cholesky factorization of




4 2 1
2 3 0
1 0 2





44.15. Show that the operations count for solving a tridiagonal system using
the solver described in Fig. 44.9 is O(5n).

44.16. Find an algorithm to solve a tridiagonal system that stores only four
vectors of dimension n.

44.17. A factorization of a tridiagonal solver can be derived as a compact
method. Assume that A can be factored as

A =











α1 0 · · · 0

β2 α2 0
...

0 β3 α3

...
. . . 0

0 · · · 0 βn αn




















1 γ1 0 · · · 0
0 1 γ2 0
...

. . .
. . .

1 γn−1

0 · · · 0 1










Multiply out the factors and equate the coefficients to get equations for α, β,
and γ. Derive some code based on these formulas.

44.18. Write some code to solve the tridiagonal system resulting from the
Galerkin finite element discretization of a two-point boundary value problem.
Using 50 elements, compare the time it takes to solve the system with this tridi-
agonal solver to the time using a full LU decomposition routine.

44.19. Show that the operations count of a banded solver for a n × n matrix
with bandwidth d is O(nd2/2).

44.20. Write code to solve a linear system with bandwidth five centered around
the main diagonal. What is the operations count for your code?
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44.21. Prove that the solution of (44.2) is also the solution of Ax = b.

44.22. Prove that the direction of steepest descent for a function F at a point
is perpendicular to the level curve of F through the same point.

44.23. Prove (44.4).

44.24. Prove that the level curves of F in the case of (44.5) are ellipses with
major and minor axes proportional to 1/

√
λ1 and 1/

√
λ2, respectively.

44.25. Compute the iteration corresponding to λ1 = 1, λ2 = 2, λ3 = 3, and
x(0) = (1, 1, 1)� for the system Ax = 0 with A defined in (44.8). Make a plot of
the ratios of successive errors versus the iteration number. Do the ratios converge
to the ratio predicted by the error analysis?

44.26. Prove that the estimate (44.9) generalizes to any symmetric positive-
definite matrix A, diagonal or not. Hint: use the fact that there is a set of eigen-
vectors of A that form an orthonormal basis for R

n and write the initial vector
in terms of this basis. Compute a formula for the iterates and then the error.

44.27. (a) Compute the steepest descent iterations for (44.5) corresponding to
x(0) = (9, 1)� and x(0) = (1, 1)�, and compare the rates of convergence. Try
to make a plot like Fig. 44.11 for each. Try to explain the different rates of
convergence.

(b) Find an initial guess which produces a sequence that decreases at the rate
predicted by the simplified error analysis.

44.28. Prove that the method of steepest descent corresponds to choosing

N = Nk =
1

αk
I, and P = Pk =

1

αk
I − A,

with suitable αk in the general iterative solution algorithm.

44.29. Compute the eigenvalues and eigenvectors of the matrix A in (44.13) and
show that A is not normal.

44.30. Prove that the matrix

(
1 −1
1 1

)

is normal.

44.31. Prove Theorem 44.2.

44.32. Compute 10 Jacobi iterations using the A and b in (44.11) and the initial
guess x(0) = (−1, 1, −1)�. Compute the errors and the ratios of successive errors
and compare to the results above.

44.33. Repeat Problem 44.32 using

A =




4 1 100
2 5 1
−1 2 4



 and b =




1
0
3



 .

Does Theorem 44.2 apply to this matrix?
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44.34. Show that for the Jacobi iteration, N = D and P = −(L+ U) and the
iteration matrix is MJ = −D−1(L+ U)

44.35. (a) Solve (44.11) using the Gauss-Seidel method and compare the conver-
gence with that of the Jacobi method. Also compare ρ(M) for the two methods.
(b) Do the same for the system in Problem 44.33.

44.36. (Isaacson and Keller ([13])) Analyze the convergence of the Jacobi and
Gauss-Seidel methods for the matrix

A =

(
1 ρ
ρ 1

)

in terms of the parameter ρ.

In general it is difficult to compare the convergence of the Jacobi method
with that of the Gauss-Seidel method. There are matrices for which the Ja-
cobi method converges and the Gauss-Seidel method fails and vice versa.
There are two special classes of matrices for which convergence can be es-
tablished without further computation. A matrix A is diagonally dominant
if

|aii| >
n∑

j=1
j �=i

|aij |, i = 1, . . . , n.

If A is diagonally dominant then the Jacobi method converges.

44.37. Prove this claim.

44.38. Derive an algorithm that uses the Jacobi method to solve a tridiagonal
system. Use as few operations and as little storage as possible.

44.39. Devise an algorithm to estimate the error of the solution of a linear
system using single and double precision as suggested. Repeat the example using
a tridiagonal solver and your algorithm to estimate the error.

44.40. Show that the sequences {xk} and {dk} generated by the conjugate
gradient method (44.16)-(44.17), with x1 = 0 and d1 = b, satisfies for k = 1, 2, . . . ,
(a) xk ∈ Kk(A) = {b, . . . , Ak−1b}, (b) dk+1 is orthogonal to Kk(A), (c) xk is the
projection of x onto Kk(A) with respect to the scalar product 〈y, z〉 = (Ay, z).

44.41. The Cbebyshev polynomial qk(x) if degree k is defined for −1 ≤ x ≤ 1
by the formula qk(x) = cos(k arccos(x)). Show that q′k(0) ≈ k2. Deduce from
this result that the number of iterations in the conjugate gradient method scales
like

√
κA)TS

c .

44.42. Compare the GMRES-algorithm for Ax = b with the conjugate gradient
method fro the normal equations A�A = A�b.

TS
c Please check this right parenthesis.

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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44.43. The formula AQk = Qk+1Hk, with Hk an upper Hessenberg matrix
(hij = 0 for all i > j + 1), defines a recurrence relation for the column vector
qk+1 of Qk+1 in terms of itself and the previous Krylov vectors. (a) Derive this
recurrence relation. (b) Implement an algorithm that computes Qk+1 and Hk,
given a matrix A (this is the Arnoldi iteration).

44.44. Prove that QTk+1b = ‖b‖e1.

44.45. Implement the GMRES-method.





45
Linear Algebra Tool Bag

45.1 Linear Algebra in R
2

Scalar product of two vectors a = (a1, a2) and b = (b1, b2) in R
2:

a · b = (a, b) = a1b1 + a2b2.

Norm: |a| = (a2
1 + a2

2)
1/2.

Angle between two vectors a and b in R
2: cos(θ) = a·b

|a| |b| .
The vectors a and b are orthogonal if and only if a · b = 0.

Vector product of two vectors a = (a1, a2) and b = (b1, b2) in R
3:

a× b = a1b2 − a2b1.

Properties of vector product: |a × b| = |a||b|| sin(θ)|, where θ is the
angle between a and b. In particular, a and b are parallel if and only if
a× b = 0.

Volume of parallelogram spanned by two vectors a, b ∈ R
2:

V (a, b) = |a× b| = |a1b2 − a2b1|.
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45.2 Linear Algebra in R
3

Scalar product of two vectors a = (a1, a2, a3) and b = (b1, b2, b3) in R
3:

a · b =
3∑

i=1

aibi = a1b1 + a2b2 + a3b3.

Norm: |a| = (a2
1 + a2

2 + a2
3)

1/2.

Angle between two vectors a and b in R
3: cos(θ) = a·b

|a| |b| .
The vectors a and b are orthogonal if and only if a · b = 0.
Vector product of two vectors a = (a1, a2, a3) and b = (b1, b2, b3) in R

3:

a× b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).

Properties of vector product: The vector product a × b of two non-
zero vectors a and b in R

3, is orthogonal to both a and b, and |a × b| =
|a||b|| sin(θ)|, where θ is the angle between a and b. In particular, a and b
are parallel if and only if a× b = 0.

Volume of parallelepiped spanned by three vectors a, b, c ∈ R
3:

V (a, b, c) = |c · (a× b)|.

45.3 Linear Algebra in R
n

Definition of R
n: The set of ordered n-tuples, x = (x1, . . . , xn) with

components xi ∈ R, i = 1, . . . , n.

Vector addition and scalar multiplication: For x = (x1, . . . , xn) and
y = (y1, . . . , yn) in R

n and λ ∈ R, we define

x+ y = (x1 + y1, x2 + y2, . . . , xn + yn), λx = (λx1, . . . , λxn).

Scalar product: x · y = (x, y) =
∑n

i=1 xiyi. Norm: |x| = (
∑n

i=1 x
2
i )

1/2.

Cauchy’s inequality: |(x, y)| ≤ |x| |y| .

Angle of two vectors x and y in R
n: cos(θ) = (x,y)

|x||y| .

Standard basis: {e1, . . . , en}, where ei = (0, 0, . . . , 0, 1, 0, . . . , 0) with a
single coefficient 1 at position i.

Linear independence: A set {a1, . . . , an} of vectors in R
m is said to be

linearly independent if none of the vectors ai can be expressed as a linear
combination of the others, that is, if

∑n
i=1 λiai = 0 with λi ∈ R implies

that λi = 0 for i = 1, . . . , n.
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A basis for R
n is a linearly independent set of vectors whose linear com-

binations span R
n. Any basis of R

n has n elements. Further, a set of n
vectors in R

n span R
n if and only if it is linearly independent, that is, a set

of n vectors in R
n that spans R

n or is independent, must be a basis. Also,
a set of fewer than n vectors in R

n cannot span R
n, and a set of more than

n vectors in R
n must be linearly dependent.

45.4 Linear Transformations and Matrices

An m × n real (or complex) matrix A = (aij) is rectangular array with
rows (ai1, . . . , ain), i = 1, . . . ,m, and columns (a1j , . . . , amj), j = 1, . . . , n,
where aij ∈ R (or aij ∈ C).

Matrix addition: Given two m× n matrices A = (aij) and B = (bij), we
define C = A+B as them×nmatrix C = (cij) with elements cij = aij+bij ,
corresponding to elementwise addition.

Multiplication by scalar Given am×nmatrix A = (aij) and a real num-
ber λ, we define the m× n matrix λA with elements (λaij), corresponding
to multiplying all elements of A by the real number λ.

Matrix multiplication: Given a m × p matrix A and a p × n matrix B
we define a m × n matrix AB with elements (AB)ij =

∑p
k=1 aikbkj . Ma-

trix multiplication is not commutative, that is, AB �= BA in general. In
particular, BA is defined only if n = m.

A linear transformation f : R
n → R

m can be expressed as f(x) = Ax,
where A = (aij) is an m×nmatrix with elements aij = fi(ej) = (ei, f(ej)),
where f(x) = (f1(x), . . . , fm(x)). If g : R

n → R
p and f : R

p → R
m are

two linear transformations with corresponding matrices A and B, then the
matrix of f ◦ g : R

n → R
m is given by AB.

Transpose: If A = (aij) is a real m× n matrix, then the transpose A	 is
an n ×m matrix with elements a	ji = aij , and (Ax, y) = (x,A	y) for all
x ∈ R

n, y ∈ R
m.

Matrix norms:

‖A‖1 = max
j=1,...,n

m∑

i=1

|aij |, ‖A‖∞ = max
i+1,...,m

n∑

j=1

|aij |, ‖A‖ = max
x∈Rn

‖Ax‖
‖x‖ .

If A = (λi) is a diagonal n × n matrix with diagonal elements aii = λi,
then

‖A‖ = max
i=1,...,n

|λi|.

Lipschitz constant of a linear transformation: The Lipschitz constant
of a linear transformation f : R

n → R
m given by a m×n matrix A = (aij)

is equal to ‖A‖.
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45.5 The Determinant and Volume

The determinant det A of an n × n matrix A = (aij), or the volume
V (a1, . . . , an) spanned by the column vectors of A, is defined by

det A = V (a1, . . . , an) =
∑

π

±aπ(1) 1aπ(2) 2 · · ·aπ(n) n,

where we sum over all permutations π of the set {1, . . . , n}, and the sign
indicates if the permutation is even (+) or odd (-). We have detA = detA	.

Volume V (a1, a2) in R
2:

det A = V (a1, a2) = a11a22 − a21a12.

Volume V (a1, a2, a3) in R
3:

det A = V (a1, a2, a3) = a1 · a2 × a3

= a11(a22a33 − a23a32) − a12(a21a33 − a23a31) + a13(a21a32 − a22a31).

Volume V (a1, a2, a3, a4) in R
4:

det A = V (a1, a2, a3, a4) = a11V (â2, â3, â4) − a12V (â1, â3, â4)
+a13V (â1, â2, â4) − a14V (â1, â2, â3),

where the âj , j = 1, 2, 3, 4 are the 3-column vectors corresponding to cut-
ting out the first coefficient of the aj .

Determinant of a triangular matrix: If A = (aij) is a upper triangular
n× n matrix, that is aij = 0 for i > j, then

detA = a11a22 · · · ann.

This formula also applies to a lower triangular n×n matrix A = (aij) with
aij = 0 for i < j.

The magic formula: detAB = detAdetB.

Test of linear independence: A set {a1, a2, . . . , an} of n vectors in R
n

is linearly independent if and only if V (a1, . . . , an) �= 0. The following
statements are equivalent for an n×n matrix A: (a) The columns of A are
linearly independent, (b) If Ax = 0, then x = 0, (c) detA �= 0.

45.6 Cramer’s Formula

If A is a n × n non-singular matrix with detA �= 0, then the system of
equations Ax = b has a unique solution x = (x1, . . . , xn) for any b ∈ R

n.
given by

xi =
V (a1, . . . , ai−1, b, ai+1, . . . , an)

V (a1, a2, . . . , an)
, i = 1, . . . , n.



45.7 Inverse 687

45.7 Inverse

A nonsingular n× n matrix A has a inverse matrix A−1 satisfying:

A−1A = AA−1 = I,

where I is the n× n identity matrix.

45.8 Projections

The projection Pv ∈ V of v ∈ R
n, where V is a linear subspace of R

n,
is uniquely defined defined by (v − Pv,w) = 0 for all w ∈ V and satisfies
|v − Pv| ≤ |v − w| for all w ∈ V . Further, PP = P and P	 = P .

45.9 The Fundamental Theorem of Linear Algebra

If A is a m × n matrix with null space N(A) = {x ∈ R
n : Ax = 0} and

range R(A) = {y = Ax : x ∈ R
n}, then

N(A) ⊕R(A	) = R
n N(A	) ⊕R(A) = R

m,

dim N(A) + dim R(A	) = n, dim N(A	) + dim R(A) = m,

dim N(A) + dim R(A) = n, dim N(A	) + dim R(A	) = m,

dim R(A) = dim R(A	),

The number of linearly independent columns of A is equal to the number
of linearly independent rows of A.

45.10 The QR-Decomposition

An n×m matrix A can be expressed in the form

A = QR,

where Q is a n × m matrix with orthogonal columns and R is a m × m
upper triangular matrix.
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45.11 Change of Basis

A linear transformation f : R
n → R

n, with matrix A with respect to the
standard basis, has the following matrix in a basis {s1, . . . sn}:

S−1AS,

where the the coefficients sij of the matrix S = (sij) are the coordinates of
the basis vectors sj with respect to the standard basis.

45.12 The Least Squares Method

The least squares solution of the linear system Ax= b with A anm× nmat-
rix minimizing |Ax − b|2 satisfies A	Ax = A	b, and is unique if the
columns of A are linearly independent.

45.13 Eigenvalues and Eigenvectors

If A is an n × n matrix and x =∈ R
n is a non-zero vector which satisfies

Ax = λx, where λ is a real number, then we say that x ∈ R
n is an eigen-

vector of A and that λ is a corresponding eigenvalue of A. The number λ
is an eigenvalue of the n × n matrix A if and only if λ is a root of the
characteristic equation det(A− λI) = 0.

45.14 The Spectral Theorem

If A is a symmetric n × n matrix A, then there is an orthonormal basis
{q1, . . . , qn} of R

n consisting of eigenvectors qj of A with corresponding
real eigenvalues λj , satisfying Aqj = λjqj , for j = 1, . . . , n. We have D =
Q−1AQ and A = QDQ−1, where Q is the orthogonal matrix with the
eigenvectors qj in the standard basis forming the columns, and D is the
diagonal matrix with the eigenvalues λj on the diagonal. Further, ‖A‖ =
maxi=1,...,n |λi|.

45.15 The Conjugate Gradient Method for Ax = b

For k = 0, 1, 2, . . . , with rk = Axk − b, x0 = 0 and d0 = b, do

xk+1 = xk + αkd
k, αk = − (rk, dk)

(dk, Adk)
,

dk+1 = −rk+1 + βkd
k, βk =

(rk+1, Adk)
(dk, Adk)

.



46
The Matrix Exponential exp(xA)

I tell them that if they will occupy themselves with the study of
mathematics, they will find in it the best remedy against the lusts
of the flesh. (Thomas Mann (1875-1955))

An important special case of the general initial value problem (40.1) is
the linear system

u′(x) = Au(x) for 0 < x ≤ T, u(0) = u0, (46.1)

where A is a constant d × d matrix, u0 ∈ R
d, T > 0 and the solution

u(x) ∈ R
d is a column vector. By the general existence result of the previous

chapter we know that that a unique solution exists. Recalling that the
solution of the scalar problem u′ = au, a constant, is u = exau0, we denote
the solution of (46.1) by

u(x) = exp(xA)u0 = exAu0. (46.2)

This definition can be extended to x < 0 in the obvious way.
To make sense of exp(xA), we may view exp(xA) = exA as the d× d mat-

rix with column i denoted by exp(xA)i being the solution vector u(x) with
initial data u0 = ei, where the ei are the standard basis vectors. This means
that exp(xA)i = exp(xA)ei. By linearity we can write the solution u(x)
with general initial data u0 =

∑d
i=1 u

0
i ei in the form

u(x) = exp(xA)u0 =
d∑

i=1

exp(xA)u0
i ei =

d∑

i=1

u0
i exp(xA)i.
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Example 46.1. If A is diagonal with diagonal elements di, then exp(xA)TS
d

is a diagonal matrix with diagonal elements exp(xdi).

We may express the basic property of the matrix exponential exp(xA) as
follows:

d

dx
exp(xA) = A exp(xA) = AexA, for x ∈ R (46.3)

We also note the following related basic property, which generalizes a fa-
miliar property of the usual exponential (for a proof, see Problem 46.1):

exp(xA) exp(yA) = exp((x + y)A) for x, y ∈ R. (46.4)

46.1 Computation of exp(xA) when A Is
Diagonalizable

We have defined exp(xA) through the solution of the initial value prob-
lem (46.1), but we do not yet have an analytical formula for exp(xA),
except in the “trivial” case with A diagonal. It turns out that we can find
a formula in the case with A diagonalizable. This formula helps to give an
idea of the structure of the matrix function exp(xA) in terms of the eigen-
values and eigenvectors of A, and in particular gives a chance of identifying
cases when exp(xA) is exponentially decaying as x increases.

We consider the system (46.1) with the matrix A diagonalizable so that
there is a nonsingular matrix S such that S−1AS = D or A = SDS−1,
where D is a diagonal matrix with diagonal elements di (the eigenvalues
of A), and the columns of S corresponding eigenvectors, see the Chapter
The Spectral Theorem. If A is symmetric then S may be chosen to be
orthogonal with S−1 = S	. Introducing the new dependent variable v =
S−1u so that u = Sv, we can rewrite u̇ = Au in the form v̇ = S−1ASv =
Dv, and letting exp(xD) be the diagonal matrix with diagonal elements
equal to exp(xdi), we have v(x) = exp(xD)v(0), which we can write in the
form S−1u(x) = exp(xD)S−1u0, that is

u(x) = S exp(xD)S−1u0.

Since according to the previous section we have also decided to write u(x) =
exp(xA)u0, we conclude that

exp(xA) = S exp(xD)S−1.

This shows that indeed exp(xA) may be viewed as a matrix, and we also
get an analytic formula to compute exp(xA) without having to directly
solve u̇ = Ax. We note that each element of exp(xA) is a certain linear
combination of terms of the form exp(xdi) with di and eigenvalue of A. We
give some basic examples.

TS
d Should “exp” be italic here.
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Example 46.2. (A symmetric with real eigenvalues) Suppose

A =
(
a 1
1 a

)

.

The eigenvalues of A are d1 = a − 1 and d2 = a + 1 and the correspond-
ing matrix S of normalized eigenvectors (which is orthogonal since A is
symmetric), is given by

S =
1√
2

(
1 1
1 −1

)

, S−1 = ST =
1√
2

(
1 1
1 −1

)

.

We compute and find that

exp(xA) = S exp(xD)ST = exp(ax)
(

cosh(x) sinh(x)
sinh(x) cosh(x)

)

,

and we see that each element of exp(xA) is a linear combination of exp(djx)
with dj an eigenvalue of A. If a < −1, then all elements of exp(xA) are
exponentially decaying.

Example 46.3. (A anti-symmetric with purely imaginary eigenvalues)

A =
(

0 1
−1 0

)

.

The eigenvalues of A are purely imaginary, d1 = −i and d2 = i, and the
corresponding matrix S of eigenvectors is given by

S =
(
−i i
1 1

)

, S−1 =
1
2i

(
−1 i
1 i

)

We compute and find that

exp(xA) = S exp(xD)S−1 =
(

cos(x) − sin(x)
sin(x) cos(x)

)

,

and we see again that each element of exp(xA) is a linear combination of
exp(djx) with dj an eigenvalue of A. In this case the problem u̇ = Au takes
the form of the scalar linear oscillator v̈ + v = 0 with u1 = v and u2 = v̇.

Example 46.4. (A non-normal) The matrix

A =
(
a 1
ε2 a

)

with a ∈ R, and ε small positive has the eigenvalues d1 = a − ε and
d2 = a+ ε, and the corresponding matrix of eigenvectors S is given by

S =
(

1 1
−ε ε

)

, S−1 =
1
2

(
1 ε−1

1 −ε−1

)

.
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Computing we find that

exp(xA) = S exp(xD)S−1 = exp(ax)
(

cosh(εx) ε−1 sinh(εx)
ε sinh(εx cosh(εx)

)

.

Again we note that each element of exp(xA) is a linear combination of
exp(djx) with dj and eigenvalue. We further that if ε is small, then S
is nearly singular (the two eigenvectors are almost parallel), and the in-
verse S−1 contains large numbers (ε−1).

46.2 Properties of exp(Ax)

If A = D = (dj) is diagonal with diagonal elements di, then the nature
of exp(xA) is easy to describe. In this case, exp(xA) is diagonal and if
dj > 0, then the corresponding diagonal element exp(djx) is exponentially
increasing and if dj < 0, then exp(djx) is exponentially decreasing. If all
the dj are positive (negative), then we may describe exp(xA) as exponen-
tially increasing (decaying). If di = a + ib is complex with b �= 0, then
exp(djx) = exp(ax) exp(ibx) oscillates with an exponentially increasing or
decreasing amplitude depending on the sign of a > 0.

If A is diagonalizable with S−1AS = D with D = (dj) diagonal, then
exp(xA) = S exp(xD)S−1, and it follows that the elements of exp(AX) are
a certain linear combinations of the exponentials exp(djx). If all the dj are
negative, then all elements of exp(xA) will be exponentially decaying. We
will pay particular attention to this case below.

If A is not diagonalizable, then the structure of exp(xA) is more complex:
the elements of exp(xA) will then be of the form p(x) exp(djx) with dj an
eigenvalue of A and p(x) a polynomial with degree less than the multiplicity
of dj .

46.3 Duhamel’s Formula

We can generalize the previous discussion to the non-homogeneous problem

u′(x) = Au(x) + f(x) for 0 < x ≤ 1, u(0) = u0, (46.5)

where f(x) is a given function. The solution u(x) can be expressed in the
form of a Duhamel formula generalizing the formula that holds for a scalar
problem,

u(x) = exp(xA)u0 +
∫ x

0

exp((x − y)A)f(y) dy. (46.6)
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This is readily verified by differentiation,

u̇(x) =
d

dx
exp(xA)u0 +

d

dx

∫ x

0

exp((x− y)A)f(y) dy

= A exp(xA)u0 + exp((x − x)A)f(x) +
∫ x

0

A exp((x− y)A)f(y) dy

= Au(x) + f(x).
(46.7)

Chapter 46 Problems

46.1. Prove (46.4). Hint: Assuming that u′ = Au we may write u(x + y) =
exp(xA)u(y) = exp(xA) exp(yA)u(0) and also u(x+ y) = exp((x+ y)A)u(0).

46.2. Rewrite the second order scalar constant coefficient problem
v̈ + a1v̇ + a0v = 0 in first order system form u̇ = Au by setting u1 = v and
u2 = v̇, and connect the analysis of this chapter to the analysis of the linear
oscillator in the Chapter N-body systems. Generalize to higher order scalar prob-
lems.





47
Lagrange and the Principle
of Least Action*

Dans les modifications des mouvements, l’action devient ordinaire-
ment un Maximum ou un Minimum. (Leibniz)

Whenever any action occurs in nature, the quantity of action em-
ployed by this change is the least possible. (Maupertuis 1746)

From my earliest recollection I have had an irresistible liking for
mechanics and the physical laws on which mechanics as a science is
based. (Reynolds)

47.1 Introduction

Lagrange (1736-1813), see Fig. 47.1, found a way to formulate certain dy-
namical problems in mechanics using a Principle of Least Action. This
principle states that the state u(t) of a system changes with time t over
a given time interval [t1, t2], so that the action integral

I(u) =
∫ t2

t1

(T (u̇(t)) − V (u(t)) dt (47.1)

is stationary, where T (u̇(t)) with u̇ = du
dt is the kinetic energy, and V (u(t))

is the potential energy of the state u(t). We here assume that the state u(t)
is a function u : [t1, t2] → R satisfying u(t1) = u1 and u(t2) = u2, where u1

and u2 are given initial and final values. For example, u(t) may be the
position of a moving mass at time t. The action integral of a state is thus
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Fig. 47.1. Lagrange, Inventor of the Principle of Least Action: “I regard as
quite useless the reading of large treatises of pure analysis: too large a number of
methods pass at once before the eyes. It is in the works of applications that one
must study them; one judges their ability there and one apprises the manner of
making use of them”

the difference between the kinetic and potential energies integrated in time
along the state.

We shall now get acquainted with Lagrange’s famous Principle of Least
Action and we shall see that it may be interpreted as a reformulation of
Newton’s law stating that mass times acceleration equals force. To this end,
we first need to explain what is meant by the statement that the action
integral is stationary for the actual solution u(t). Our tool is Calculus, at
its best!

Following in the foot-steps of Lagrange, consider a perturbation v(t) =
u(t) + εw(t) = (u + εw)(t) of the state u(t), where w(t) is a function
on [t1, t2] satisfying w(t1) = w(t2) = 0 and ε is a small parameter. The
function v(t) corresponds to changing u(t) with the function εw(t) inside
(t1, t2) while keeping the values v(t1) = u1 and v(t2) = u2. The Principle
of Least Action states that the actual path u(t) has the property that for
all such functions w(t), we have

d

dε
I(u+ εw) = 0 for ε = 0. (47.2)

The derivative d
dεI(u + εw) at ε = 0, measures the rate of change with

respect to ε at ε = 0 of the value of the action integral with u(t) replaced
by v(t) = u(t) + εw(t). The Principle of Least Action says this rate of
change is zero if u is the actual solution, which expresses the stationarity
of the action integral.

We now present a couple of basic applications illustrating the use of the
Principle of Least Action.
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47.2 A Mass-Spring System

We consider a system of a mass m sliding on a on a horizontal friction-
less x-axis and being connected to the origin with a weight-less Hookean
spring with spring constant k, see the Chapter Galileo, Newton et al. We
know that this system may be described by the equation mü + ku = 0,
where u(t) is the length of the spring at time t. We derive this model by
using the Principle of Least Action. In this case,

T (u̇(t)) =
m

2
u̇2(t) and V (u(t)) =

k

2
u2(t),

and thus

I(u) =
∫ t2

t1

(
m

2
u̇2(t) − k

2
u2(t)

)

dt.

To motivate the expression V (u(t)) = k
2u

2(t) for the potential energy, we
use the definition of the potential energy as the total work required to move
the mass from position u = 0 to position u(t). The work to move the mass
from position v to v + ∆v is equal to kv∆v following the principle that
work = force × displacement. The total work is thus

V (u(t)) =
∫ u(t)

0

kv dv =
k

2
u2(t),

as announced.
To see how the equationmü+ku = 0 arises, we compute the derivative of

I(u+εw) with respect to ε and then set ε = 0, where w(x) is a perturbation
satisfying w(t1) = w(t2) = 0. Direct computation based on moving d

dε inside
the integral, which is allowed since the limits of integration are fixed,

d

dε
I(u+ εw) =
∫ t2

t1

d

dε

(
m

2
u̇u̇+ εmu̇ẇ +

m

2
ε2ẇẇ − k

2
u2 − kεuw − k

2
ε2w2

)

dt

=
∫ t2

t1

(
mu̇ẇ − kuw

)
dt for ε = 0.

Integrating by parts in the term mu̇ẇ, we get
∫ t2

t1

(
mü+ ku

)
w dt = 0,

for all w(t) with w(t1) = w(t2) = 0. This implies thatmü+ku = 0 in [t1, t2],
since w(t) can vary arbitrarily in the interval (t1, t2), and we obtain the
desired equation.
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47.3 A Pendulum with Fixed Support

We consider a pendulum in the form of a body of mass one attached to
a weightless string of unit length fixed to the ceiling under the action of
a vertical gravity force normalized to one. The action integral of the differ-
ence between kinetic and potential energy is given by

I(u) =
∫ t2

t1

(
1
2
u̇2(t) − (1 − cos(u(t))TS

e

)

dt,

where u(t) represents the angle of the pendulum in radians at time t, mea-
sured from the vertical position, see Fig. 47.2.

1
u

u

sin(u)

cos(u)

tension

Fig. 47.2. A pendulum

The potential energy in this case is equal to the work of lifting the mass
from the bottom position to the level (1−cos(v)), which is exactly equal to
(1− cos(v)) if the gravitational constant is normalized to one. Stationarity
of the action integral requires that for all perturbations w(t) satisfying
w(t1) = w(t2) = 0, we have

0 =
d

dε

∫ t2

t1

(
1
2
(u̇ + εẇ)2(t) − (1 − cos(u(t) + εw(t))TS

f

)

dt for ε = 0,

which gives as above
∫ t2

t1

(
ü+ sin(u(t))

)
w dt = 0.

This yields the initial value problem
{
ü+ sin(u) = 0 for t > 0
u(0) = u0, u̇(0) = u1,

(47.3)

TS
e Please check the parentheses.

TS
f Please check the parentheses.
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where we added initial conditions for position and velocity.
The resulting differential equation ü = − sin(u) is an expression of New-

ton’s Law, since ü is the angular acceleration and − sin(u) is the restoring
force in the angular direction. We conclude that the Principle of Least
Action in the present case is a reformulation of Newton’s Law.

If the angle of the pendulum stays small during the motion, then we can
approximate sin(u) by u and obtain the linear equation ü + u = 0, with
solutions being linear combinations of sin(t) and cos(t).

47.4 A Pendulum with Moving Support

We now generalize to a pendulum with a support that is subject to a pre-
scribed motion. Consider thus a body of mass m swinging in a weightless
string of length l that is attached to a support moving according to a given
function r(t) = (r1(t), r2(t)) in a coordinate system with the x1-axis hori-
zontal and the x2-axis vertical upward. Let u(t) be the angle of the string
at time t measured from the vertical.

The potential energy is again equal to the height of the body, measured
from some reference position, times mg with g the gravitational constant.
Thus, we may choose

V (u(t)) = mg(r2(t) − l cos(u)).

To express the kinetic energy, we need to take into account the motion of
the support. The velocity of the body relative to the support is (lu̇ cosu,
lu̇ sinu), and the total velocity is thus (ṙ1(t)+ lu̇ cosu, ṙ2(t)+ lu̇ sinu). The
kinetic energy is m/2 times the square of the modulus of the velocity, and
thus

T =
m

2
[
(ṙ1 + lu̇ cosu)2 + (ṙ1 + lu̇ sinu)2

]
.

Using the Principle of Least Action, we obtain the following equation:

ü+
g

l
sinu+

r̈1
l

cosu+
r̈2
l

sinu = 0, (47.4)

together with initial conditions for u(0) and u̇(0).
If the support is fixed with r̈1 = r̈2 = 0, then we recover the equation

(47.3) setting l = m = g = 1.

47.5 The Principle of Least Action

We now consider a mechanical system that is described by a vector function
u(t) = (u1(t), u2(t)). We may think of a system consisting of two bodies
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with positions given by the functions u1(t) and u2(t). The action integral
is

I(u1, u2) = I(u) =
∫ t2

t1

L(u(t) dt,

where
L(u1(t), u2(t)) = L(u(t)) = T (u̇(t)) − V (u(t))

is the difference of the kinetic energy T (u̇(t)) = T (u̇1(t), u̇2(t)) and the
potential energy V (u(t)) = V (u1(t), u2(t)). We refer to L(u(t)) as the La-
grangean of the state u(t).

The Principle of Least Action states that the action integral is stationary
at the true state u(t) in the sense that for all perturbations w1(t) and w2(t)
with w1(t1) = w2(t1) = w1(t2) = w2(t2), we have for ε = 0,

d

dε
I(u1 + εw1, u2) = 0

d

dε
I(u1, u2 + εw2) = 0.

Assuming that

T (u̇1(t), u̇2(t)) =
m1

2
u̇2

1(t) +
m2

2
u̇2

2(t),

we obtain performing the differentiation with respect to ε as above and
setting ε = 0,

∫ t2

t1

(
mu̇1(t)ẇ1(t) −

∂V

∂u1
(u1(t), u2(t))w1(t)

)
dt = 0,

∫ t2

t1

(
mu̇2(t)ẇ2(t) −

∂V

∂u2
(u1(t), u2(t))w2(t)

)
dt = 0.

Integrating by parts as above and letting w1 and w2 vary freely over (t1, t2),
we obtain

mü1(t) = − ∂V

∂u1
(u1(t), u2(t)),

mü2(t) = − ∂V

∂u2
(u1(t), u2(t)).

(47.5)

If we set
F1 = − ∂V

∂u1
, F2 = − ∂V

∂u2
,

then we can write the equations derived from the Principle of Least Action
as

mü1(t) = F1(u1(t), u2(t)),
mü2(t) = F1(u1(t), u2(t)),

(47.6)

which can be viewed as Newton’s Law if F1 and F2 are interpreted as forces.
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47.6 Conservation of the Total Energy

Defining the total energy

E(u(t)) = T (u̇(t)) + V (u(t))

as the sum of the kinetic and potential energies and using (47.5), we get

d

dt
E(u(t)) = m1u̇1ü1 +m2u̇2ü2 +

∂V

∂u1
u̇1 +

∂V

∂u2
u̇2

= u̇1

(

m1ü1 +
∂V

∂u1

)

+ u̇2

(

m2ü2 +
∂V

∂u2

)

= 0.

We conclude that the total energy E(u(t)) is constant in time, that is the
energy is conserved. Obviously, energy conservation is not a property of all
systems, and thus the Principle of Least Action only applies to so called
conservative systems, where the total energy is conserved. In particular,
effects of friction are not present.

47.7 The Double Pendulum

We now consider a double pendulum consisting of two bodies of masses m1

and m2, where the first body of mass m1 hangs on a weightless string of
length l1 attached to a fixed support and the second body of massm2 hangs
on a weightless string of length l2 attached to the first body. We shall now
apply the Principle of Least Action to derive the equations of motion for
this system.

To describe the state of the system, we use the angles u1(t) and u2(t) of
the two bodies measured from vertical position.

We now seek expressions for the kinetic and potential energies of the sys-
tem of the two bodies. The contributions from the second body is obtained
from the expressions for a pendulum with moving support derived above if
we set (r1(t), r2(t)) = (l1 sinu1,−l1 cosu1).

The potential energy of the first pendulum is −mgl1 cosu1 and the total
potential energy is

V (u1(t), u2(t)) = −m1gl1 cosu1(t) −m2g (l1 cosu1(t) + l2 cosu2(t)) .

The total kinetic energy is obtained similarly adding the kinetic energies
of the two bodies:

T (u̇1(t), u̇2(t)) =
m1

2
l21u̇

2
1 +

m2

2
[
(l1u̇1 cosu1 + l2u̇2 cosu2)2

+(l1u̇1 sinu1 + l2u̇2 sinu2)2
]
.
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u1

u2

l1

l2

m1

m2

Fig. 47.3. Double pendulum

Using the identities sin2 u + cos2 u = 1 and cos (u1 − u2) = cosu1 cosu2 +
sinu1 sinu2, we can rewrite this expression as

T =
m1

2
l21u̇

2
1 +

m2

2
[
l21u̇

2
1 + l22u̇

2
2 + 2l1l2u̇1u̇2 cos (u1 − u2)

]
.

Applying the Principle of Least Action, we obtain the following system
of equations for a double pendulum:

ü1 +
m2

m1 +m2

l2
l1

[
ü2 cos(u2 − u1) − u̇2

2 sin(u2 − u1)
]
+
g

l1
sinu1 = 0,

ü2 +
l1
l2

[
ü1 cos(u2 − u1) + u̇2

1 sin(u2 − u1)
]
+
g

l2
sinu2 = 0.

(47.7)

We note that if m2 = 0, then the first equation is just the equation for
a simple pendulum, and that if ü1 = u̇1 = 0, then the second equation is
again the equation for a simple pendulum.

47.8 The Two-Body Problem

We consider the two-body problem for a small mass orbiting around a heavy
mass, such as the Earth moving around the Sun neglecting the influence of
the other planets. We assume that the motion takes place in a plane and
use polar coordinates (r, θ) with the origin at the center of the heavy mass
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to describe the position of the light body. Assuming that the heavy body
is fixed, the action integral representing the difference between the kinetic
and potential energy of the small mass is given by

∫ t2

t1

(
1
2
ṙ2 +

1
2
(θ̇r)2 +

1
r

)

dt (47.8)

because the velocity is (ṙ, rθ̇) in the radial and angular directions respec-
tively, and the gravity potential is −r−1 = −

∫∞
r s−2 ds corresponding to

the work needed to move a particle of unit mass a distance r from the orbit
center to infinity. The corresponding Euler-Lagrange equations are

{
r̈ − rθ̇2 = − 1

r2 , t > 0,
d
dt(r

2θ̇) = 0, t > 0,
(47.9)

which is a second order system to be complemented with initial values for
position and velocity.

We construct the analytical solution of this system in a set of prob-
lems below, which may be viewed as a short course on Newton’s Principia
Matematica. We invite the reader to take this opportunity of getting on
speaking terms with Newton himself.

47.9 Stability of the Motion of a Pendulum

The linearization of the equation for a pendulum at ū ∈ R, ü+ sin(u) = 0,
is obtained by setting u = ū+ϕ and noting that sin(u) ≈ sin(ū)+cos(ū)ϕ.
This leads to

0 = ü+ sin(u) ≈ ϕ̈+ sin(ū) + cos(ū)ϕ.

Assuming first that ū = 0, we obtain the following linearized equation for
the perturbation ϕ,

ϕ̈+ ϕ = 0, (47.10)

with solution being a linear combination of sin(t) and cos(t). For example,
if ϕ(0) = δ and ϕ̇(0) = 0, then ϕ(t) = δ cos(t), and we see that an initially
small perturbation is kept small for all time: the pendulum stays close to
the bottom position under small perturbations.

Setting next ū = π, we obtain

ϕ̈− ϕ = 0 (47.11)

with the solution being a linear combination of exp(±t). Since exp(t) grows
very quickly, the state ū = π corresponding to the pendulum in the top
position is unstable. A small perturbation will quickly develop into a large
perturbation and the pendulum will move way from the top position.
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We will return to the topic of this section in Chapter Linearization and
stability of initial value problems

Chapter 47 Problems

47.1. Supply the missing details in the derivation of the equation for the pen-
dulum. If the angle u stays small during the motion, then the simpler linearized
model ü + u = 0 may be used. Solve this equation analytically and compare
with numerical results for the nonlinear pendulum equation to determine limits
of validity of the linear model.

47.2. Carry out the details in the derivation of the equations for the pendulum
with moving support and the double pendulum.

47.3. Study what happens for the double pendulum in the extreme cases, i.e.
at zero and infinity, for the parameters m1, m2, l1 and l2.

47.4. Derive the second equation of motion for the double pendulum from
the result for the pendulum with moving support by setting (r1(t), r2(t)) =
(l1 sin u1,−l1 cos u1).

47.5. Derive the equation of motion for a bead sliding on a frictionless plane
vertical curve under the action of gravity.

47.6. In the foot-steps of Newton give an analysis and analytical solution of the
two-body problem modeled by (47.9) through the following sequence of problems:
(i) Prove that a stationary point of the action integral (47.8) satisfies (47.9).
(ii) Prove that the total energy is constant in time. (iii) Introducing the change
of variables u = r−1, show that θ̇ = cu2 for c constant. Use this relation together
with the fact that the chain rule implies that

dr

dt
=
dr

du

du

dθ

dθ

dt
= −cdu

dθ
and r̈ = −c2u2 d

2u

dθ2

to rewrite the system (47.9) as

d2u

dθ2
+ u = c−2. (47.12)

Show that the general solution of (47.12) is

u =
1

r
= γ cos(θ − α) + c−2,

where γ and α are constants. (iii) Prove that the solution is either an ellipse,
parabola, or hyperbola. Hint: Use the fact that these curves can be described
as the loci of points for which the ratio of the distance to a fixed point and to
a fixed straight line, is constant. Polar coordinates are suitable for expressing this
relation. (iv) Prove Kepler’s three laws for planetary motion using the experience
from the previous problem.
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47.7. Study the linearizations of the double pendulum at (u1, u2) = (0, 0) and
(u1, u2) = (π, π) and draw conclusions about stablity.

47.8. Attach an elastic string to a simple pendulum in some way and model the
resulting system.

47.9. Compute solutions of the presented models numerically.





48
N -Body Systems*

The reader will find no figures in this work. The methods which I set
forth do not require either geometrical or mechanical reasonings, but
only algebraic operations, subject to a regular and uniform rule of
procedure. (Lagrange in Méchanique Analytique)

48.1 Introduction

We shall now model systems of N bodies interacting through mechani-
cal forces that result from springs and dashpots, see Fig. 48.1, or from
gravitational or electrostatic forces. We shall use two different modes of
description. In the first formulation, we describe the system through the
coordinates of (the centers of gravity of) the bodies. In the second, we use
the displacements of the bodies measured from an initial reference config-
uration. In the latter case, we also linearize under an assumption of small
displacements to obtain a linear system of equations. In the first formula-
tion, the initial configuration is only used to initialize the system and is
“forgotten” at a later time in the sense that the description of the system
only contains the present position of the masses. In the second formula-
tion, the reference configuration is retrievable through the evolution since
the unknown is the displacement from the reference position. The different
formulations have different advantages and ranges of application.
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48.2 Masses and Springs

We consider the motion in R
3 of a system of N bodies connected by a set

of Hookean springs. For i = 1, . . . , N , let the position at time t of body i
be given by the vector function ui(t) = (ui1(t), ui2(t), ui3(t)), with uik(t)
denoting the xk coordinate, k = 1, 2, 3, and suppose the mass of body i
is mi. Let body i be connected to body j with a Hookean spring of spring
constant kij ≥ 0 for i, j = 1, . . .N . Some of the kij may be zero, which
effectively means that there is no spring connection between body i and
body j. In particular kii = 0. We assume to start with that the reference
length of the spring corresponding to zero spring tension is equal to zero.
This means that the spring forces are always attractive.

Fig. 48.1. A typical system of masses, springs and dashpots in motion

We now derive the equations of motion for the mass-spring system using
the Principle of Least Action. We assume first that the gravitational force
is set to zero. The potential energy of the configuration u(t) is given by

V (u(t)) =
N∑

i,j=1

1
2
kij |ui − uj |2

=
N∑

i,j=1

1
2
kij

(
(ui1 − uj1)2 + (ui2 − uj2)2 + (ui3 − uj3)2

)
,

(48.1)

with the time dependence of the coordinates uik suppressed for readability.
This is because the length of the spring connecting the body i and body j
is equal to |ui −uj|, and the work to stretch the spring from zero length to
length l is equal to 1

2kij l
2.
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The action integral is

I(u) =
∫ t2

t1

(
N∑

i=1

1
2
mi

(
u̇2

i1 + u̇2
i2 + u̇2

i3

)
− V (u(t))

)

dt,

and using the Principle of Least Action and the fact that

∂V (u)
∂uik

=
N∑

j=1

kij(uik − ujk),

we obtain the following system of equations of motion:

miüik = −
N∑

j=1

kij(uik − ujk), k = 1, 2, 3, i = 1, . . . , N, (48.2)

or in vector form

miüi = −
N∑

j=1

kij(ui − uj), i = 1, . . . , N, (48.3)

together with initial conditions for ui(0) and u̇i(0). We can view these
equations as expressing Newton’s Law

miüi = F s
i , (48.4)

with the total spring force F s
i = (F s

i1, F
s
i2, F

s
i3) acting on body i being equal

to

F s
i = −

N∑

j=1

kij(ui − uj). (48.5)

Inclusion of gravity forces in the direction of the negative x3 axis, adds
a component −mig to F s

i3, where g is the gravitational constant.
The system (48.3) is linear in the unknowns uij(t). If we assume that

the reference length with zero spring force of the spring connecting body i
and j is equal to lij > 0, then the potential changes to

V (u(t)) =
N∑

i,j=1

1
2
kij(|ui − uj| − lij)2, (48.6)

and the resulting equations of motion are no longer linear. Below, we shall
consider a linearized form assuming |ui − uj| − lij is small compared to lij .
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48.3 The N -Body Problem

By tradition, a “N -body” problem refers to a system of N bodies in motion
in R

3 under the influence of mutual gravitational forces. An example is
given by our solar system with 9 planets orbiting around the Sun, where
we typically disregard moons, asteroids, and comets.

Let the position at time t of (the center of gravity of) body i be given
by the vector function ui(t) = (ui1(t), ui2(t), ui3(t)), with uik(t) denoting
the xk coordinate in R

3, k = 1, 2, 3, and suppose the mass of body i is mi.
Newton’s inverse square law of gravitation states that the gravitational
force from the body j on the body i is given by

− γmimj

|ui(t) − uj(t)|2
ui(t) − uj(t)
|ui(t) − uj(t)|

= −γmimj
ui(t) − uj(t)

|ui(t) − uj(t)|3
,

where γ is a gravitational constant. We thus obtain the following system
of equations modeling the N -body problem:

miüi = −γmimj

∑

j �=i

ui − uj

|ui(t) − uj(t)|3
, (48.7)

together with initial conditions for ui(0) and u̇i(0).
Alternatively, we may derive these equations using the Principle of Least

Action using the gravity potential

V (u) = −
N∑

i,j=1, i�=j

γmimj

|ui − uj |
,

and the fact that

∂V

∂uik
=

∑

j �=i

γmimj

|ui − uj|3
(uik − ujk). (48.8)

The expression for the gravity potential is obtained by noticing that the
work to bring body i from a distance r of body j to infinity is equal to

∫ ∞

r

γmimj

s2
ds = γmimj [−

1
s
]s=∞
s=r =

γmimj

r
.

Notice the minus sign of the potential, arising from the fact that the body i
loses potential energy as it approaches body j.

Analytical solutions are available only in the case of the 2-body prob-
lem. The numerical solution of for example the 10-body problem of our
solar system is very computationally demanding in the case of long time
simulation. As a result, the long time stability properties of our Solar sys-
tem are unknown. For example, it does not seem to be known if eventually
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the Earth will change orbit with Mercury, Pluto will spin away to another
galaxy, or some other dramatic event will take place.

The general result of existence guarantees a solution, but the presence
of the stability factor exp(tLf ) brings the accuracy in long-time simulation
seriously in doubt.

48.4 Masses, Springs and Dashpots:
Small Displacements

We now give a different description of the mass-spring system above. Let
the initial position of body i, which is now chosen as reference position, be
ai = (ai1, ai2, ai3), and let the actual position at time t > 0 be given by
ai + ui(t) where now ui(t) = (ui1(t), ui2(t), ui3(t)) is the displacement of
body i from its reference position ai.

The potential energy of the configuration u(t) is given by

V (u(t)) =
N∑

i,j=1

1
2
kij

(
|ai + ui − (aj + uj)| − |ai − aj |

)2

=
1
2
kij

(
|ai − aj + (ui − uj)| − |ai − aj |

)2
,

assuming zero spring forces if the springs have the reference lengths ai−aj .
We now specialize to small displacements, assuming that |ui−uj| is small

compared to |ai−aj |. We then use that if |b| is small compared to |a|, where
a, b ∈ R

3, then

|a+ b| − |a| =
(|a+ b| − |a|)(|a+ b| + |a|)

|a+ b| + |a|

=
|a+ b|2 − |a|2
|a+ b| + |a| =

(a+ b) · (a+ b) − a · a
|a+ b| + |a| ≈ a · b

|a| .

Thus, if |ui − uj| is small compared to |ai − aj |, then

|ai − aj + (ui − uj)| − |ai − aj | ≈
(ai − aj) · (ui − uj)

|ai − aj |
,

and we obtain the following approximation of the potential energy

V̂ (TS
gu(t) =

N∑

i,j=1

1
2
kij

(
(ai − aj) · (ui − uj)

)2

|ai − aj |2
.

Using the Principle of Least Action we thus obtain the following linearized
system of equations

miüik = −
N∑

j=1

kij(ai − aj) · (ui − uj)
|ai − aj |2

(aik − ajk), k = 1, 2, 3, i = 1, . . . , N,

TS
g Please check the parentheses.

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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or in vector form

miüi = −
N∑

j=1

kij(ai − aj) · (ui − uj)
|ai − aj |2

(ai − aj), i = 1, . . . , N. (48.9)

together with initial conditions for ui(0) and u̇i(0). We can view these
equations as expressing Newton’s Law

miüi = F s
i , i+ 1, . . . , N, (48.10)

with the spring force F s
i acting on body i given by

F s
i = −

N∑

j=1

bijeij ,

where
eij =

ai − aj

|ai − aj |
is the normalized vector connecting aj and ai, and

bij = kijeij · (ui − uj). (48.11)

48.5 Adding Dashpots

A dashpot is a kind of shock absorber which may be thought of as consisting
of a piston that moves inside a cylinder filled with oil or some other viscous
fluid, see Fig. 48.2. As the piston moves, the flow of the fluid past the piston

u

m

0

Fig. 48.2. Cross section of a dashpot connected to a mass

creates a force opposite to the motion, which we assume is proportional to
the velocity with the constant of proportionality representing the coefficient
of viscosity of the dashpot.
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We now expand the above mass-spring model to include springs and
dashpots coupled in parallel. For each pair of nodes i and j, we let kij

and µij be the coefficients of a spring and a dashpot coupled in parallel,
with kij = 0 and µij = 0 if the spring or dashpot is absent, and in particular
kii = µii = 0. The dashpot force F d

i acting on body i will then be given by

F d
i = −

N∑

j=1

dijeij ,

where
dij = µijeij · (u̇i − u̇j). (48.12)

To get this result, we use the fact that

eij · (u̇i − u̇j)eij

is the projection of u̇i − u̇j onto eij . We thus assume that the dashpot
reacts with a force that is proportional to the projection of u̇i − u̇j onto
the direction ai − aj .

This leads to the linearized mass-spring-dashpot model:

miüi = F s
i + F d

i , i = 1, . . . , N, (48.13)

together with initial conditions for ui(0) and u̇i(0). We can write these
equations as a system in the form

Mü+Du̇+Ku = 0, (48.14)

with constant coefficient matrices matrices M , D and K, where u is
a 3N -vector listing all the components uik. The matrix M is diagonal with
the masses mi as entries, and D and K are symmetric positive semi-definite
(see the problem section).

A system with dashpots is not conservative, since the dashpots consume
energy, and therefor cannot be modeled using the Principle of Least Action.

The linear system (48.14) models a wide range of phenomena and can be
solved numerically with appropriate solvers. We return to this issue below.
We now consider the simplest example of one mass connected to the origin
with a spring and a dashpot in parallel.

48.6 A Cow Falling Down Stairs

In Fig. 48.3 and Fig. 48.4 we show the result of computational simulation of
a cow falling down a staircase. The computational model consists of a skele-
ton in the form of a mass-spring-dashpot-system together with a surface
model built upon the skeleton. The skeleton deforms under the action of
gravity forces and contact forces from the staircase and the surface model
conforms to the deformation.
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Fig. 48.3. Cow falling down a staircase (simulation created by Mr. Johan Jans-
son)

48.7 The Linear Oscillator

We now consider the simplest example consisting of one body of mass 1
connected to one end of a Hookean spring connected to the origin with the
motion taking place along the x1-axis. Assuming the spring has zero length
at zero tension, the system is described by

{
ü+ ku = 0 for t > 0,
u(0) = u0, u̇(0) = u̇0.

(48.15)

with u(t) denoting the x1 coordinated of the body at time t, and u0 and u̇0

given initial conditions. The solution is given by

u(t) = a cos(
√
kt) + b sin(

√
kt) = α cos(

√
k(t− β)), (48.16)

where the constants a and b, or α and β, are determined by the initial
conditions. We conclude that the motion of the mass is periodic with fre-
quency

√
k and phase shift β and amplitude α, depending on the initial data.

This model is referred to as the linear oscillator. The solution is periodic
with period 2π√

k
, and the time scale is similar.
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Fig. 48.4. N-body cow-skeleton falling down a staircase (simulation created by
Mr. Johan Jansson)

48.8 The Damped Linear Oscillator

Adding a dashpot in parallel with the spring in the model above gives the
model of a damped linear oscillator

{
ü+ µu̇+ ku = 0, for t > 0,
u(0) = u0, u̇(0) = u̇0.

(48.17)

In the case k = 0, we obtain the model
{
ü+ µu̇ = 0 for t > 0,
u(0) = u0, u̇(0) = u̇0,

(48.18)

with the solution

u(t) = − u̇0

µ
exp(−µt) + u0 +

u̇0

µ
.

We see that the mass approaches the fixed position u = u0 + u̇0
µ determined

by the initial data as t increases to infinity. The time scale is of size 1
µ .

The characteristic polynomial equation for the full model ü+µu̇+ku = 0,
is

r2 + µr + kr = 0.
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Completing the square we can write the characteristic equation in the form

(
r +

µ

2

)2

=
µ2

4
− k =

1
4
(µ2 − 4k). (48.19)

If µ2 − 4k > 0, then there are two real roots − 1
2 (µ ±

√
µ2 − 4k), and the

solution u(t) has the form (see the Chapter The exponential function),

u(t) = ae−
1
2 (µ+

√
µ2−4k)t + be−

1
2 (µ−

√
µ2−4k)t,

with the constants a and b determined by the initial conditions. In this
case, the viscous damping of the dashpot dominates over the spring force,
and the solution converges exponentially to a rest position, which is equal
to u = 0 if k > 0. The fastest time scale is again of size 1

µ .

If µ2 − 4k < 0, then we introduce the new variable v(t) = e
µt
2 u(t), with

the objective of transforming the characteristic equation (48.19) into an
equation of the form s2 + (k − µ2

4 ) = 0. Since u(t) = e−
µt
2 v(t), we have

u̇(t) =
d

dt

(
e−

µt
2 v(t)

)
=

(
v̇ − µ

2
v
)
e−

µt
2 ,

ü(t) =
(

v̈ − µv̇ +
µ2

4

)

e−
µt
2 ,

and thus the differential equation ü+ µu̇+ ku = 0 is transformed into

v̈ +
(

k − µ2

4

)

v = 0,

with the solution v(t) being a linear combination of cos( t
2

√
4k − µ2) and

sin( t
2

√
4k − µ2). Transforming back to the variable u(t) we get the solution

formula

u(t) = ae−
1
2µt cos

(
t

2

√
4k − µ2

)

+ be−
1
2µt sin

(
t

2

√
4k − µ2

)

.

The solution again converges to the zero rest position as time passes if
µ > 0, but now it does so in an oscillatory fashion. Now two time scales
appear: a time scale of size 1

µ for the exponential decay and a time scale
1/
√
k − µ2/4 of the oscillations.

Finally, in the limit case µ2−4k = 0 the solution v(t) of the corresponding
equation v̈ = 0 is given by v(t) = a+ bt, and thus

u(t) = (a+ bt)e−
1
2µt.

This solution exhibits initial linear growth and eventually converges to
a zero rest position as time tends to infinity. We illustrate the three possible
behaviors in Fig. 48.5.
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Fig. 48.5. Three solutions of the mass-spring-dashpot model (48.17) satisfying
the initial conditions u(0) = 0 and u̇(0) = 1. The first solution corresponds to
µ = 5 and k = 4, the second to µ = 2 and k = 5, and the third to µ = 2 and
k = 1

48.9 Extensions

We have above studied systems of bodies interacting through Hookean
springs, linear dashpots and gravitational forces. We can generalize to sys-
tems of non-linear springs, dashpots, and other mechanical devices like
springs reacting to changes of angles between the bodies, or other forces
like electrostatic forces. In this way, we can model very complex systems
from macroscopic scales of galaxies to microscopic molecular scales. For
example, electrostatic forces are related to potentials of the form

V e(u) = ±c
N∑

i,j=1

qiqj
|ui − uj|

where qi is the charge of body i and c is a constant, and thus have a form
similar to that of gravitational forces.

In particular, models for molecular dynamics take the form of N -body
systems interacting through electrostatic forces and forces modeled by var-
ious springs reacting to bond lengths and bond angles between the atoms.
In these applications, N may be of the order 104 and the smallest time
scale of the dynamics may be of size 10−14 related to very stiff bond length
springs. Needless to say, simulations with such models may be very compu-
tationally demanding and is often out of reach with present day computers.
For more precise information, we refer to the survey article Molecular mod-
eling of proteins and mathematical prediction of protein structure, SIAM
REV. (39), No 3, 407-460, 1997, by A. Neumair.
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Chapter 48 Problems

48.1. Verify the solution formulas for the three solutions shown in Fig. 48.5.

48.2. Write down the model (48.2) in a simple case of a system with a few
bodies.

48.3. Derive the equations of motion with the potential (48.6).

48.4. Generalize the mass-spring-dashpot model to arbitrary displacements.

48.5. Generalize the mass-spring model to different non-linear springs.

48.6. Model the vertical motion of a floating buoy. Hint: use that by Archimedes’
Principle, the upward force on a cylindrical vertical buoy from the water is pro-
portional to the immersed depth of the buoy.

48.7. Prove that the matrices D and K in (48.14) are symmetric positive semi-
definite.



49
The Crash Model*

On October 24, 1929, people began selling their stocks as fast as
they could. Sell orders flooded market exchanges. On a normal day,
only 750-800 members of the New York Stock Exchange started
the Exchange. However, there were 1100 members on the floor for
the morning opening. Furthermore, the Exchange directed all em-
ployees to be on the floor since there were numerous margin calls
and sell orders placed overnight and extra telephone staff was ar-
ranged at the members’ boxes around the floor. The Dow Jones
Industrial Index closed at 299 that day. October 29 was the be-
ginning of the Crash. Within the first few hours the stock market
was open, prices fell so far as to wipe out all the gains that had
been made in the previous year. The Dow Jones Industrial Index
closed at 230. Since the stock market was viewed as the chief in-
dicator of the American economy, public confidence was shattered.
Between October 29 and November 13 (when stock prices hit their
lowest point) over $30 billion disappeared from the American econ-
omy. It took nearly twenty-five years for many stocks to recover.
(www.arts.unimelb.edu.au/amu/ucr/student/1997/Yee/1929.htm)

49.1 Introduction

Why did the Wall fall on November 9 1989? Why did the Soviet Union
dissolve in January 1992? Why did the Stock market collapse in October
1929 and 1987? Why did Peter and Mary break up last Fall after 35 years
of marriage? What caused the September 11 attack? Why does the flow in
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the river go from orderly laminar to chaotic turbulent at a certain specific
point? All the situations behind these questions share a common feature:
Nothing particularly dramatic preceded the sudden transition from stable
to unstable, and in each case the rapid and dramatic change away from
normality came as big surprise to almost everyone.

We now describe a simple mathematical model that shows the same
behavior: the solution stays almost constant for a long time and then quite
suddenly the solution explodes.

We consider the following initial value problem for a system of two ordi-
nary differential equations: find u(t) = (u1(t), u2(t)) such that






u̇1 + εu1 − λu2u1 = ε t > 0,
u̇2 + 2εu2 − εu1u2 = 0 t > 0,
u1(0) = 1, u2(0) = κε,

(49.1)

where ε is a small positive constant of size say 10−2 or smaller and λ and κ
are positive parameters of moderate size ≈ 1. If κ = 0, then the solution
u(t) = (1, 0) is constant in time, which we view as the base solution. In
general, for κ > 0, we think of u1(t) as a primary part of solution with
initial value u1(0) = 1, and u2(t) as a small secondary part with an initial
value u2(0) = κε that is small because ε is small. Both components u1(t)
and u2(t) will correspond to physical quantities that are non-negative and
u1(0) = 1 and u2(0) = κε ≥ 0.

49.2 The Simplified Growth Model

The system (49.1) models an interaction between a primary quantity u1(t)
and a secondary quantity u2(t) through the terms −λu1u2 and −εu2u1. If
we keep just these terms, we get a simplified system of the form






ẇ1(t) = λw1(t)w2(t) t > 0,
ẇ2(t) = εw2(t)w1(t) t > 0,
w1(0) = 1, w2(0) = κε.

(49.2)

We see that the coupling terms are growth terms in the sense that both
the equation ẇ1(t) = λw1(t)w2(t) and ẇ2(t) = εw2(t)w1(t) say that ẇ1(t)
and ẇ2(t) are positive if w1(t)w2(t) > 0. In fact, the system (49.1) always
blow up for κ > 0 because the two components propel each other to in-
finity as t increases in the sense that the right hand sides get bigger with
w1(t)w2(t) and this increases the growth rates ẇ1(t) and ẇ2(t), which in
turn makes w1w2(t) even bigger, and so on towards blow up, see Fig. 49.1.

We can study the blow up in (49.2) analytically assuming for simplicity
that λ = κ = 1. In this case, it turns out that the two components w1(t)
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Fig. 49.1. Solution of simplified growth model

and w2(t) for all t are coupled by the relation w2(t) = εw1(t), that is w2(t) is
always the same multiple of w1(t). We check this statement by first verifying
that w2(0) = εw1(0) and then by dividing the two equations to see that
ẇ2(t)/ẇ1(t) = ε. So, ẇ2(t) = εẇ1(t), that is w2(t)−w2(0) = εw1(t)−εw2(0),
and we get the desired conclusion w2(t) = εw1(t) for t > 0. Inserting this
relation into the first equation of (49.2), we get

ẇ1(t) = εw2
1(t) for t > 0,

which can be written as

− d

dt

1
w1(t)

= ε for t > 0.

Recalling the initial condition w1(0) = 1, we get

− 1
w1(t)

= εt− 1 for t ≥ 0,

which gives the following solution formula in the case λ = κ = 1:

w1(t) =
1

1 − εt
, w2(t) =

ε

1 − εt
for t ≥ 0. (49.3)

This formula shows that the solution tends to infinity as t increases to-
wards 1/ε, that is, the solution explodes at t = 1/ε. We notice that the
time of blow up is 1/ε, and that the time scale before the solution starts
to increase noticeably, is of size 1

2ε , which is a long time since ε is small.
Thus, the solution changes very slowly for a long time and then eventually
blows up quite a bit more rapidly, see Fig. 49.1.
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49.3 The Simplified Decay Model

On the other hand, if we forget about the growth terms, we get another
simplified system:






v̇1 + εv1 = ε t > 0, t > 0,
v̇2 + 2εv2 = 0 t > 0,
v1(0) = 1 + δ, v2(0) = κε,

(49.4)

where we have also introduced a small perturbation δ in v1(0). Here the
two terms εv1 and 2εv2 are so called dissipative terms that cause the solu-
tion v(t) to return to the base solution (1, 0) regardless of the perturbation,
see Fig. 49.2. This is clear in the equation v̇2 + 2εv2 = 0 with solution
v2(t) = v2(0) exp(−2εt), which decays to zero as t increases. Rewriting the
equation v̇1 + εv1 = ε as V̇1 + εV1 = 0, setting V1 = v1 − 1 = exp(−εt), we
find that v1(t) = δ exp(−εt)+1, and thus v1(t) approaches 1 as t increases.
We summarize: the solution (v1(t), v2(t)) of (49.4) satisfies

v1(t) = δ exp(−εt) + 1 → 1, v2(t) = κε exp(−2εt) → 0, as t→ ∞.

We say that (49.4) is a stable system because the solution always returns
from (1+δ, κε) to the base solution (1, 0) independently of the perturbation
(δ, κε) of (v1(0), v2(0).

We note that the time scale is again of size 1/ε, because of the presence
of the factors exp(−εt) and exp(−2εt).
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Fig. 49.2. Solution of simplified decay model
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49.4 The Full Model

We can now sum up: The real system (49.1) is a combination of the unstable
system (49.2) that includes only the growth terms only and whose the
solution always blows up, and the stable system (49.4) that excludes the
growth terms. We shall see that depending on the size of λκ the unstable
or stable feature will take over. In Fig. 49.3 and Fig. 49.4, we show different
solutions for different values of the parameters λ and κ with different initial
values u(0) = (u1(0), u2(0)) = (1, κε). We see that if λκ is sufficiently large,
then the solution u(t) eventually blows up after a time of size 1/ε, while if λκ
is sufficiently small, then the solution u(t) returns to the base solution (1, 0)
as t tends to infinity.

Thus, there seems to be a threshold value for λκ above which the initially
disturbed solution eventually blows up and below which the initially dis-
turbed solution returns to the base solution. We can view κ as a measure
of the size if the initial disturbance, because u2(0) = κε. Further, we can
view the factor λ as a quantitative measure of the coupling between the
growth components u2(t) and u1(t) through the growth term λu1u2 in the
evolution equation for u1.

Our main conclusion is that if the initial disturbance times the coupling is
sufficiently large, then the system will blow up. Blow up thus requires both
the initial disturbance and the coupling to be sufficiently large. A large ini-
tial disturbance will not cause blow up unless there some coupling. A strong
coupling will not cause blow up unless there is an initial disturbance.
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Fig. 49.3. Return to the base solution if λκ is small enough
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Fig. 49.4. Blow up if λκ is large enough
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We now investigate the qualitative behavior of (49.1) in a little more
detail. We see that u̇1(0)/u1(0) = λκε, while u̇2(0)/u2(0) = −ε, which
shows that initially u1(t) grows and u2(t) decays at relative rates of size ε.
Now, u1(t) will continue to grow as long as λu2(t) > ε, and further u2(t)
will start to grow as soon as u1(t) > 2. Thus, if u1(t) manages to become
larger than 2, before u2(t) has decayed below ε/λ, then both components
will propel each other to cause a blow up to infinity. This happens if λκ is
above a certain threshold.

We notice that the time scale for significant changes in both u1 and u2

is of size ε−1, because the growth rates are of size ε. This conforms with
the experience from the simplified models. The scenario is thus that the
primary part u1(t) grows slowly starting from 1 at a rate of size ε and
the secondary part u2(t) decays slowly at a rate of size ε2, over a time of
size 1/ε. If λκ is above a certain threshold, then u1(t) reaches the value 2,
at which point u2(t) starts to grow and eventually blow up follows on a
somewhat shorter time scale. If u1(t) does not reach the value 2 in time,
then (u1(t), u2(t)) returns to the base solution (1, 0) as t increases.

We hope the presented scenario is quite easy to grasp intuitively, and
conforms with every-day experiences of quit sudden blow-up, as a result of
an accumulation of small events over a long period.

We can give the Crash model very many interpretations in real life, such
as

� stock market (u1 stock prize of big company, u2 stock prize of small
innovative company),

� chemical reaction (u1 main reactant, u2 catalyst),

� marriage crisis (u1 main discontent, u2 small irritation factor),

� spread of infection (u1 infected people, u2 amount of germs),

� symbiosis (u1 main organism, u2 small parasite),

� population model (u1 rabbits, u2 vitalizing carrots),

and many others.
In particular, the model describes an essential aspect of the process of

transition from laminar to turbulent flow in for example a pipe. In this
case u1 represents a flow component in the direction of the pipe and u2

represents a small perturbation of the flow in the transversal direction.
The time to explosion corresponds to the time it takes for the flow to go
turbulent starting as laminar flow at the inlet. In the famous experiment
of Reynolds from 1888, ink is injected at the inlet of a transparent pipe
and the observer can follow the streamline traced by the ink, which forms
a straight line in the laminar part and then successively becomes more
and more wavy until it breaks down to completely turbulent flow at some
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distance from the inlet. The distance to breakdown varies with the flow
speed and viscosity and perturbations resulting from e.g. roughness of the
surface of the pipe or a heavy-weight truck passing by at some distance
from the experimental set-up.

Chapter 49 Problems

49.1. Develop the indicated applications of the Crash model.

49.2. Solve the full system (49.1) numerically for various values of λ and κ and
try to pin down the threshold value of λκ.

49.3. Develop a Theory of Capitalism based on (49.1) as a simple model of
the economy in a society, with u1 representing the value of a basic resource like
land, and u2 some venture capital related to the exploitation of new technology,
with (1, 0) a base solution without the new technology, and with the coefficient λ
of the u1u2 term in the first equation representing the positive interplay between
base and new technology, and the terms εui representing stabilizing effects of
taxes for example. Show that the possible pay-off u1(t)− u1(0) of a small invest-
ment u2(0) = κε may be large, and that an exploding economy may result if λκ
is large enough. Show that no growth is possible if λ = 0. Draw some conclusions
from the model coupled to for example the role of the interest rate for controlling
the economy.

49.4. Interpret (49.1) as a simple model of a stock market with two stocks, and
discuss scenarios of overheating. Extend to a model for the world stock market,
and predict the next crash.

49.5. Consider the linear model

ϕ̇1 + εϕ1 − λϕ2 = 0 t > 0,
ϕ̇2 + εϕ2 = 0 t > 0,

ϕ1(0) = 0, ϕ2(0) = κε,
(49.5)

which is obtained from (49.1) by setting ϕ1 = u1 − 1 and ϕ2 = u2 and replac-
ing u1ϕ2 by ϕ2 assuming u1 is close to 1. Show that the solution of (49.5) is given
by

ϕ2(t) = κε exp(−εt), ϕ1(t) = λκεt exp(−εt).
Conclude that

ϕ1(
1
ε
)

ϕ2(0)
= λ

exp(−1)

ε
,

and make an interpretation of this result.

49.6. Expand the Crash model (49.1) toTS
h

u̇1 + εu1 − λu1u2 + µ1u
2
2 = ε t > 0,

u̇2 + 2εu2 − εu2u1 + µ2u
2
1 = 0 t > 0,

u1(0) = 1, u2(0) = κε,

TS
h The following equation was numbered with (49.6) in the hardcopy, please check

it.

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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with decay terms µ1u
2
2 and µ2u

2
1, where µ1 and µ2 are positive coefficients.

(a) Study the stabilizing effect of such terms numerically. (b) Seek to find values
of µ1 and µ2, so that the corresponding solution starting close to (1, 0) shows
an intermittent behavior with repeated periods of blow up followed by a decay
back to a neighborhood of (1, 0). (c) Try to find values of µ1 and µ2 so that
multiplication of the first equation with a positive multiple of u1 and the second
by u2, leads to bounds on |εu1(t)|2 and |u2(t)|2 in terms of initial data. Hint: Try
for example µ1 ≈ 1/ε, and µ2 ≈ ε2.

49.7. Study the initial value problem u̇ = f(u) for t > 0, u(0) = 0, where
f(u) = λu− u3, with different values of λ ∈ R. Relate the time-behavior of u(t)
to the set of solutions ū of f(u) = 0, that is, ū = 0 if λ ≤ 0, and ū = 0 or
ū = ±

√
λ if λ > 0. Study the linearized models ϕ̇ − λϕ + 3ū2ϕ = 0 for the

different ū. Study the behavior of the solution assuming λ(t) = t− 1.

49.8. Study the model

ẇ1 +w1w2 + εw1 = 0, t > 0,
ẇ2 − εw2

1 + εw2 = −γε, t > 0,
(49.6)

with given initial data w(0), where γ is a parameter and ε > 0. This problem
admits the stationary “trivial branch” solution w̄ = (0,−γ) for all γ. If γ > ε,
then also w̄ = (±√

γ − ε,−ε) is a stationary solution. Study the evolution of the
solution for different values of γ. Study the corresponding linearized problem,
linearized at w̄.
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Electrical Circuits*

We can scarcely avoid the conclusion that light consists in the trans-
verse undulations of the same medium which is the cause of electric
and magnetic phenomena. (Maxwell 1862)

50.1 Introduction

There is an analogy between models of masses, dashpots, and springs in
mechanics and models of electrical circuits involving inductors, resistors,
and capacitors respectively. The basic model for an electrical circuit, see
Fig. 50.1, with these three components has the form

Lq̈(t) +Rq̇(t) +
q(t)
C

= f(t), for t > 0, (50.1)

together with initial conditions for q and q̇. Here f(t) represents an ap-
plied voltage and q(t) is a primitive function of the current i(t). The equa-
tion (50.1) says that the applied voltage f(t) is equal to the sum of the
voltage drops L di

dt , Ri and u/C across the inductor, resistor, and capacitor
respectively, where L, R and C are the coefficients of inductance, resistance
and capacitance. Note that the integral q(t) of the current represents the
charge.

The system (50.1), which is referred to as an LCR-circuit, takes the same
form as the mass-dashpot-spring system (48.17), and the discussion above
concerning the case f(t) = 0 applies to the LCR-circuit. In the absence of
a resistor, a non-zero solution oscillates between extreme states with the
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C

L

Ri(t)

v(t)

Fig. 50.1. A circuit with inductor, resistor and capacitor

charge |u(t)| in the capacitor maximal and u̇ = 0 over an intermediate state
with zero capacitor charge and |u̇| maximal. This is analogous to the mass-
spring system with the potential energy corresponding to the capacitor
and the velocity corresponding to u̇. Further, the influence of a resistor is
analogous to that of a dash pot, causing a damping of the oscillations.

We now proceed to describe the components of the electrical circuit in
some more detail and show how complex circuits may be constructed com-
bining the components in series or parallel in different configurations.

50.2 Inductors, Resistors and Capacitors

The voltage drop v(t) across a capacitor satisfies

v(t) =
q(t)
C

,

where q(t) is the charge defined by

q(t) =
∫ t

0

i(t) dt,

assuming q(0) = 0, where i(t) is the current and the constant C is the
capacitance. Differentiating, we have

i(t) = q̇(t) = Cv̇(t).

The voltage drop across a resistor is according to Ohm’s Law v(t) = Ri(t),
where the constant R is the resistance. Finally, the voltage drop across an
inductor is

v(t) = L
di

dt
(t),

where the constant L is the inductance.
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50.3 Building Circuits: Kirchhoff’s Laws

By joining the components of inductors, resistors and capacitors by elec-
trical wires, we can build electrical circuits, with the wires joined at nodes.
A closed loop in the circuit is a series of wires connecting components and
nodes that leads back to the node of departure. To model the circuit, we
use the two Kirchhoff laws:

� the sum of all currents entering a node is zero (first law),

� the sum of the voltage drops around any closed loop of the circuit is
zero (second law).

i

i1

i2
L = 1L = 1R = 1

R = 1

t = 0

C = 1
v(t)

Fig. 50.2. A circuit with two loops

Example 50.1. We consider the following circuit consisting of two loops,
see Fig. 50.3, and assume that v(t) = 10. Suppose that the switch is turned
on at t = 0, with the charge in the capacitor being zero at t = 0 and
i1(0) = i2(0) = 0. By Kirchhoffs second law applied to the two closed
loops, we have

i+
di

dt
+
∫ t

0

i1(s) ds = 10,

i2 +
i2
dt

−
∫ t

0

i1(s) ds = 0.

Inserting Kirchhoffs first law stating that i = i1 + i2 into the first equation,
and eliminating i2 + i2

dt using the second equation, we get

i1 +
di1
dt

+ 2
∫ t

0

i1(s) ds = 10, (50.2)
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which upon differentiation gives the following second order equation,

d2i1
dt2

+
di1
dt

+ 2i1 = 0,

with characteristic equation r2 + r+ 2 = 0. Completing the square, we get
the equation (r+ 1

2 )2+ 7
4 = 0, and thus using the initial condition i1(0) = 0,

we have

i1(t) = c exp
(

− t

2

)

sin

(
t
√

7
2

)

,

with c a constant. Inserting into (50.2) gives c = 20√
7
, and we have deter-

mined the current i1(t) as a function of time. We can now solve for i2 using
the second loop equation.

50.4 Mutual Induction

Two inductors in different loops of the circuit may be coupled through
mutual inductance, for instance by letting the inductors share an iron core.
We give an example in Fig. 50.3.

L1 L2

i1 i2

M

v(t)

R1 R2

Fig. 50.3. A circuit with mutual inductance

Kirchhoffs second law applied to each of the circuits now takes the form

R1i1 + L1
di1
dt

+M
di2
dt

= v(t),

R2i2 + L1
di2
dt

+M
di1
dt

= 0,

where L1 and L2 are the inductances in the two circuits and M is the
coefficient of mutual inductance.
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Chapter 50 Problems

50.1. Design circuits with the indicated components. Study resonance phenom-
ena, and amplifiers.

50.2. Study the charging of a capacitor through a resistor.

50.3. Derive the effective resistance of n resistors coupled (a) in parallel, (b) in
series. Do the same for inductors and capacitors.





51
String Theory*

It’s because physicists dream of a unified theory: a single mathemat-
ical framework in which all fundamental forces and units of matter
can be described together in a manner that is internally consistent
and consistent with current and future observation. And it turns
out that having extra dimensions of space makes it possible to build
candidates for such a theory. Superstring theory is a possible uni-
fied theory of all fundamental forces, but superstring theory requires
a 10 dimensional spacetime, or else bad quantum states called ghosts
with unphysical negative probabilities become part of the spectrum
(http://superstringtheory.com/experm/exper5.html).

51.1 Introduction

We now study a couple of basic mass-spring models with different response
characteristics depending on the geometry. These simple models lead to
separable equations in the phase plane. The models can generalized and
coupled into systems of high complexity.

Consider a horizontal elastic string attached at (−1, 0 and (1, 0) in
a x− y-plane with the y-axis vertical downward, and with a body of mass 1
attached to the string at its midpoint, see Fig. 51.1. To describe the dy-
namics of this system, we seek the vertical force required to displace the
midpoint of the string the vertical distance y. Pythagoras theorem implies
that the length of half the string after displacement is equal to

√
1 + y2,

see Fig. 51.1. The elongation is thus
√

1 + y2 − 1 and assuming that the
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(−1, 0) (1, 0)1

y

y
H(y)

Hv(y)√
1 + y2

Fig. 51.1. A horizontal elastic string fix fig: y-axis downward and x-axis

tension in the string before displacement is H and that the string is linear
elastic with constant 1, we find that the tension of the string after displace-
ment is equal to H + (

√
1 + y2 − 1). By similarity, the vertical component

Hv(y) of the string force is

Hv(y) = (H +
√

1 + y2 − 1)
y

√
1 + y2

,

and the total downward force f(y) required to pull the spring downward
the distance y is thus

f(y) = 2Hv(y), (51.1)

where the factor 2 comes from the fact that the upward force has contri-
butions from both sides of the string, see Fig. 51.1. Using Newton’s Law,
we thus obtain the following model for the mass-spring system

ÿ + f(y) = 0,

if we neglect gravity forces.

51.2 A Linear System

We now assume that y so small that we can replace
√

1 + y2 by 1, and
assuming that H = 1

2 , we then obtain the linear harmonic oscillator model:

ÿ + y = 0, (51.2)

with the solution y(t) being a linear combination of sin(t) and cos(t). For
example, if y(0) = δ with δ small and ẏ(0) = 0, then the solution is y(t) =
δ cos(t) corresponding to small vibrations around the rest position y = 0.
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51.3 A Soft System

We next assume that H = 0 so that the string is without tension with
y = 0. By Taylor’s theorem for y small (with an error proportional to y4),

√
1 + y2 ≈ 1 +

y2

2
,

and we obtain assuming y to be small

f(y) ≈ y3

√
1 + y2

≈ y3,

and are thus led to the model

ÿ + y3 = 0.

In this model the restoring force y3 is much smaller than the y in the linear
model for y small, and thus corresponds to a “soft” system.

51.4 A Stiff System

We consider now a system of two nearly vertical bars each of length one
connected by a frictionless joint with the lower bar fixed to the ground with
a frictionless joint and with a body of mass 1 at the top of the upper bar, see
Fig. 51.2. Let y be the vertical displacement downward of the weight from
the top position with the bars fully vertical, and let z be the corresponding
elongation of the horizontal spring. The corresponding horizontal spring
force is H = z assuming the spring is Hookean with zero natural length
and spring constant equal to 1. With V denoting the vertical component
of the bar force, momentum balance gives, see Fig. 51.2,

V z = H
(
1 − y

2

)
= z

(
1 − y

2

)
,

and thus the vertical force reaction on the body from the spring-bar system
is given by

f(y) = −V = −
(
1 − y

2

)
.

We see that the vertical force from the spring-bar system in this system is
almost constant and equal to 1 for small y. Thus the system reacts with an
almost constant response, which contrasts to the linear response y and the
cubic response y3 met above. In the present context, we may refer to this
response as being “stiff” in contrast to the more or less soft response of the
above systems. We are thus led to the following model in the present case

ÿ +
(
1 − y

2

)
= 0, (51.3)
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V

1

1

yy

z H

1 − y
2

Fig. 51.2. A “stiff” bar-spring system

where we assume that 0 ≤ y ≤ 1. In particular, we may consider the initial
conditions y(0) = 0, and ẏ(0) = y0 > 0 and follow the evolution until y(t)
reaches the value 1 or 0.

51.5 Phase Plane Analysis

We rewrite the second order equation ÿ+f(y) = 0 as the first order system

v̇ + f(u) = 0, u̇ = v

by setting u = y and v = ẏ. The corresponding phase plane equation reads

du

dv
= − v

f(u)
,

which is a separable equation

f(u) du = −v dv

with solution curves in the u− v-plane satisfying

F (u) +
v2

2
= C,

where F (u) is a primitive function of f(u). With f(u) = u as in the linear
case, the phase plane curves are circles,

u2 + v2 = 2C.

In the soft case with f(u) = u3, the phase plane curves are given by

u4

4
+
v2

2
= C,
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which represent a sort of ellipses. In the stiff case with f(u) = (1− u
2 ), the

phase-plane curves are given by

−
(
1 − u

2

)2

+
v2

2
= C,

which represent hyperbolas.

Chapter 51 Problems

51.1. Compare the three systems from the point of view of efficiency as catapults,
assuming the system can be “loaded” by applying a force of a certain maximal
value and distance of action. Hint: Compute the work to load the system.

51.2. Design other mass-spring systems, for instance by coupling the elementary
systems considered in series and parallel, and find their corresponding mathemat-
ical models. Solve the systems numerically.

51.3. Add gravity force to the above systems.

51.4. Develop an analog of the stiff system above of the form ÿ + (1 − y) if
0 ≤ y ≤ 1 and ÿ − (1 + y) = 0 if −1 ≤ y ≤ 0 allowing y to take arbitrary values
in −1 ≤ y ≤ 1. Hint: mirror the given system.

51.5. Visualize the indicated phase-plane plots.





52
Piecewise Linear Approximation

The beginners mind is empty, free of the habits of the expert, ready
to accept, or doubt, and open to all the possibilities. It is a kind of
mind which can see things as they are. (Shunryu Suzuki)

52.1 Introduction

Approximating a complicated function to arbitrary accuracy by “simpler”
functions is a basic tool of applied mathematics. We have seen that piece-
wise polynomials are very useful for this purpose, and that is why approx-
imation by piecewise polynomials plays a very important role in several
areas of applied mathematics. For example, the Finite Element Method
FEM is an extensively used tool for solving differential equations that is
based on piecewise polynomial approximation, see the Chapters FEM for
two-point boundary value problems and FEM for Poisson’s equation.

In this chapter, we consider the problem of approximating a given real-
valued function f(x) on an interval [a, b] by piecewise linear polynomials
on a subdivision of [a, b]. We derive basic error estimates for interpolation
with piecewise linear polynomials and we consider an application to least
squares approximation.
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52.2 Linear Interpolation on [0, 1]

Let f : [0, 1] → R be a given Lipschitz continuous function. Consider the
function πf : [0, 1] → R defined by

πf(x) = f(0)(1 − x) + f(1)x = f(0) + (f(1) − f(0))x.

Clearly, πf(x) is a linear function in x,

πf(x) = c0 + c1x,

where c0 = f(0), c1 = f(1) − f(0), and πf(x) interpolates f(x) at the
end-points 0 and 1 of the interval [0, 1], by which we mean that πf takes
the same values as f at the end-points, i.e.

πf(0) = f(0), πf(1) = f(1).

We refer to πf(x) as a linear interpolant of f(x) that interpolates f(x) at
the end-points of the interval [0, 1].

0 1

f(x)

(πf)(x)

Fig. 52.1. The linear interpolant πf of a function f

We now study the interpolation error f(x) − πf(x) for x ∈ [0, 1]. Before
doing so we get some perspective on the space of linear functions on [0, 1]
to which the interpolant πf belongs.

The Space of Linear Functions

We let P = P(0, 1) denote the set of first order (linear) polynomials

p(x) = c0 + c1x,

defined for x ∈ [0, 1], where the real numbers c0 and c1 are the coefficients
of p. We recall that two polynomials p(x) and q(x) in P may be added
to give a new polynomial p + q in P defined by (p + q)(x) = p(x) + q(x),
and that a polynomial p(x) in P may be multiplied by a scalar α to give
a polynomial αp in P defined by (αp)(x) = αp(x). Adding two polynomials
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is carried out by adding their coefficients, and multiplying a polynomial
by a real number is carried out by multiplying the coefficients by the real
number.

We conclude that P is a vector space where each vector is a particular
first order polynomial p(x) = c0 + c1x determined by the two real num-
bers c0 and c1. As a basis for P we may choose {1, x}. To see this, we note
that each p ∈ P can be uniquely expressed as a linear combination of 1 and
x: p(x) = c0 + c1x, and we may refer to the pair (c0, c1) as the coordinates
of the polynomial p(x) = c0 + c1x with respect to the basis {1, x}. For
example, the coordinates of the polynomial p(x) = x with respect to the
basis {1, x}, are (0, 1), right? Since there are two basis functions, we say
that the dimension of the vector space P is equal to two.

We now consider an alternative basis {λ0, λ1} for P consisting of the two
functions λ0 and λ1 defined

λ0(x) = 1 − x, λ1(x) = x.

Each of these functions takes the value 0 at one end-point and the value 1
at the other end-point, namely

λ0(0) = 1, λ0(1) = 0, and λ1(0) = 0, λ1(1) = 1.

See Fig. 52.2.

0

1

1

λ1 λ2

Fig. 52.2. The basis functions λ0 and λ1

Any polynomial p(x) = c0 + c1x in P can be expressed as a linear com-
bination of the functions λ0(x) and λ1(x), i.e.

p(x) = c0 + c1x = c0(1 − x) + (c1 + c0)x = c0λ0(x) + (c1 + c0)λ1(x)

= p(0)λ0(x) + p(1)λ1(x).

A very nice feature of these functions is that the coefficients p(0) and p(1)
are the values of p(x) at x = 0 and x = 1. Moreover, λ0 and λ1 are linearly
independent, since if

a0λ0(x) + a1λ1(x) = 0 for x ∈ [0, 1],
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then setting x = 0 and x = 1 shows that a1 = a0 = 0. We conclude that
{λ0, λ1} is a basis for P .

In particular, we can express the interpolant πf ∈ P in the basis {λ0, λ1}
as follows:

πf(x) = f(0)λ0(x) + f(1)λ1(x), (52.1)

where the end-point values f(0) and f(1) appear as coefficients.

The Interpolation Error

We want to estimate the interpolation error f(x)−πf(x) for x ∈ [0, 1]. We
prove that

|f(x) − πf(x)| ≤ 1
2
x(1 − x) max

y∈[0,1]
|f ′′(y)|, x ∈ [0, 1]. (52.2)

Since (convince yourself!)

0 ≤ x(1 − x) ≤ 1
4

for x ∈ [0, 1],

we can state the interpolation error estimate in the form

max
x∈[0,1]

|f(x) − πf(x)| ≤ 1
8

max
y∈[0,1]

|f ′′(y)|. (52.3)

This estimate states that the maximal value of the interpolation error
|f(x)−πf(x)| over [0, 1] is bounded by a constant times the maximum value
of the second derivative |f ′′(y)| over [0, 1], i.e. to the degree of concavity
or convexity of f , or the amount that f curves away from being linear, see
Fig. 52.3.

00 11

f
f

πfπf

Fig. 52.3. The error of a linear interpolant depends on the size of |f ′′|, which
measures the degree that f curves away from being linear. Notice that the error
of the linear interpolant of the function on the right is much larger than of the
linear interpolant of the function on the left and the function on the right has
a larger second derivative in magnitude
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To prove (52.2), we fix x in (0, 1) and use Taylor’s theorem to express
the values f(0) and f(1) in terms of f(x), f ′(x), f ′′(y0) and f ′′(y1) where
y0 ∈ (0, x) and y1 ∈ (x, 1). This gives

f(0) = f(x) + f ′(x)(−x) +
1
2
f ′′(y0)(−x)2,

f(1) = f(x) + f ′(x)(1 − x) +
1
2
f ′′(y1)(1 − x)2.

(52.4)

Substituting the Taylor expansions (52.4) into (52.1) and using the identi-
ties

λ0(x) + λ1(x) = (1 − x) + x ≡ 1,
(−x)λ0(x) + (1 − x)λ1(x) = (−x)(1 − x) + (1 − x)x ≡ 0,

(52.5)

we obtain the error representation

f(x) − πf(x) = −1
2
(
f ′′(y0)(−x)2(1 − x) + f ′′(y1)(1 − x)2x

)
.

Using the identity (−x)2(1−x)+(1−x)2x = x(1−x)(x+1−x) = x(1−x)
gives (52.2),

|f(x) − πf(x)| ≤ 1
2
x(1 − x) max

y∈[0,1]
|f ′′(y)| ≤ 1

8
max

y∈[0,1]
|f ′′(y)|. (52.6)

Next, we prove the following estimate for the error in the first derivative,

|f ′(x) − (πf)′(x)| ≤ x2 + (1 − x)2

2
max

y∈[0,1]
|f ′′(y)|, x ∈ [0, 1]. (52.7)

Since 0 ≤ x2 + (1 − x)2 ≤ 1 for x ∈ [0, 1],

max
x∈[0,1]

|f ′(x) − (πf)′(x)| ≤ 1
2

max
y∈[0,1]

|f ′′(y)|.

We illustrate in Fig. 52.4.
To prove (52.7), we differentiate (52.1) with respect to x (note that the

x-dependence is carried by λ0(x) and λ1(x)) and use (52.4) together with
the obvious identities

λ′0(x) + λ′1(x) = −1 + 1 ≡ 0,
(−x)λ′0(x) + (1 − x)λ′1(x) = (−x)(−1) + (1 − x) ≡ 1.

This gives the error representation:

f ′(x) − (πf)′(x) = −1
2
(
f ′′(y0)(−x)2(−1) + f ′′(y1)(1 − x)2

)
,

where again y0 ∈ (0, x) and y1 ∈ (x, 1). This proves the desired result.
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00 11

f

pif
f ′

(πf)′

Fig. 52.4. The derivative of a linear interpolant of f approximates the derivative
of f . We show f and the linear interpolant πf on the left and their derivatives
on the right

Finally, we prove an estimate for |f(x) − πf(x)| using only the first
derivative f ′. This is useful when the second derivative f ′′ does not exist.
The Mean Value theorem implies

f(0) = f(x) + f ′(y0)(−x), f(1) = f(x) + f ′(y1)(1 − x), (52.8)

where y0 ∈ [0, x] and y1 ∈ [x, 1]. Substituting into (52.1), we get

|f(x)−πf(x)| = |f ′(y0)x(1−x)−f ′(y1)(1−x)x| ≤ 2x(1−x) max
y∈[0,1]

|f ′(y)|.

Since 2x(1 − x) ≤ 1
2 for 0 ≤ x ≤ 1, we thus find that

max
x∈[0,1]

|f(x) − πf(x)| ≤ 1
2

max
y∈[0,1]

|f ′(y)|.

We summarize in the following theorem.

Theorem 52.1 The linear polynomial πf ∈ P(0, 1), which interpolates
the given function f(x) at x = 0 and x = 1, satisfies the following error
bounds:

max
x∈[0,1]

|f(x) − πf(x)| ≤ 1
8

max
y∈[0,1]

|f ′′(y)|,

max
x∈[0,1]

|f(x) − πf(x)| ≤ 1
2

max
y∈[0,1]

|f ′(y)|,

max
x∈[0,1]

|f ′(x) − (πf)′(x)| ≤ 1
2

max
y∈[0,1]

|f ′′(y)|.

(52.9)

The corresponding estimates for an arbitrary interval I = [a, b] of length
h = b− a takes the following form, where of course P(a, b) denotes the set
of linear functions on [a, b]. Observe how the length h = b−a of the interval
enters, with the factor h2 in the estimate for f(x) − πf(x) with f ′′, and h
in the estimate for f ′(x) − (πf)′(x).
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Theorem 52.2 The linear polynomial πf ∈ P(a, b), which interpolates the
given function f(x) at x = a and x = b, satisfies the following error bounds:

max
x∈[a,b]

|f(x) − πf(x)| ≤ 1
8

max
y∈[a,b]

|h2f ′′(y)|,

max
x∈[a,b]

|f(x) − πf(x)| ≤ 1
2

max
y∈[a,b]

|hf ′(y)|,

max
x∈[a,b]

|f ′(x) − (πf)′(x)| ≤ 1
2

max
y∈[a,b]

|hf ′′(y)|,

(52.10)

where h = b− a.

If we define the maximum norm over I = [a, b] by

‖v‖L∞(I) = max
x∈[a,b]

|v(x)|,

then we can state (52.9) as follows

‖f − πf‖L∞(I) ≤
1
8
‖h2f ′′‖L∞(I),

‖f − πf‖L∞(I) ≤
1
2
‖hf ′‖L∞(I),

‖f ′ − (πf)′‖L∞(I) ≤
1
2
‖hf ′′‖L∞(I).

(52.11)

Below we shall use an analog of this estimate with the L∞(I)-norm replaced
by the L2(I)-norm.

52.3 The Space of Piecewise
Linear Continuous Functions

For a given interval I = [a, b], we let a = x0 < x1 < x2 < · · · < xN = b be
a partition of I into N sub-intervals Ii = (xi−1, xi) of length hi = xi−xi−1,
i = 1, . . . , N . We denote by h(x) the mesh function defined by h(x) = hi

for x ∈ Ii and we use Th = {Ii}N
i=1 to denote the set of intervals or mesh

or partition.
We introduce the vector space Vh of continuous piecewise linear functions

on the mesh Th. A function v ∈ Vh is linear on each subinterval Ii and is
continuous on [a, b]. Adding two functions in Vh or multiplying a function
in Vh by a real number gives a new function in Vh, and thus Vh is indeed
a vector space. We show an example of such a function in Fig. 53.2.

We now present a particularly important basis for Vh that consists of the
hat functions or nodal basis functions {ϕi}N

i=0 illustrated in Fig. 52.5.
The hat-function ϕi(x) is a function in Vh satisfying

ϕi(xj) = 1 if j = i, ϕi(xj) = 0 if j �= i.
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a bx1 xi

ϕi

xi−1 xi+1

Fig. 52.5. The hat function ϕi associated to node xi

and is given by the formula:

ϕi(x) =






0, x /∈ [xi−1, xi+1],
x− xi−1

xi − xi−1
, x ∈ [xi−1, xi],

x− xi+1

xi − xi+1
, x ∈ [xi, xi+1].

The basis functions ϕ0 and ϕN associated to the boundary nodes x0 and xN

look like “half hats”. Observe that each hat function ϕi(x) is defined on the
whole interval [a, b] and takes the value zero outside the interval [xi−1, xi+1]
(or [a, x1] if i = 0 and [xN−1, b] if i = N).

The set of hat-functions {ϕi}N
i=0 is a basis for Vh because each v ∈ Vh

has the unique representation

v(x) =
N∑

i=0

v(xi)ϕi(x),

where the nodal values v(xi) appear as coefficients. To see this, it is suffi-
cient to realize that the functions on the left and right hand side are both
continuous and piecewise linear and take the same values at the nodes, and
thus coincide. Since the number of basis functions ϕi is equal to N +1, the
dimension of Vh is equal to N + 1.

The continuous piecewise linear interpolant πhf ∈ Vh of a given Lipschitz
continuous function f(x) on [0, 1] is defined by

πhf(xi) = f(xi) for i = 0, 1, . . . , N,

that is, πhf(x) interpolates f(x) at the nodes xi, see Fig. 52.6. We can
express πhf in terms of the basis of hat functions {ϕi}N

i=0 as follows:

πhf =
N∑

i=0

f(xi)ϕi or πhf(x) =
N∑

i=0

f(xi)ϕi(x) for x ∈ [0, 1], (52.12)

with the x-dependence indicated.
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x0 x1 x2 x3 x4

f(x)

πhf(x)

Fig. 52.6. An example of a continuous piecewise linear interpolant

Since πhf(x) is linear on each subinterval Ii and interpolates f(x) at the
end-points of Ii, we can express πf(x) analytically on Ii as follows:

πhf(x) = f(xi−1)
x− xi

xi−1 − xi
+ f(xi)

x− xi−1

xi − xi−1
for xi−1 ≤ x ≤ xi,

for i = 1, . . . , N .
Using Theorem 52.2, we obtain the following error estimate for piecewise

linear interpolation:

Theorem 52.3 The piecewise linear interpolant πhf(x) of a twice differ-
entiable function f(x) on a partition of [a, b] with mesh function h(x) sat-
isfies

‖f − πhf‖L∞(a,b) ≤
1
8
‖h2 f ′′‖L∞(a,b),

‖f ′ − (πhf)′‖L∞(a,b) ≤
1
2
‖h f ′′‖L∞(a,b).

(52.13)

If f(x) is only once differentiable, then

‖f − πhf‖L∞(a,b) ≤
1
2
‖h f ′‖L∞(a,b). (52.14)

Note that since the mesh function h(x) may have jumps at the nodes,
we interpret ‖h2 f ′′‖L∞(a,b) as

max
i=1,...,N

max
y∈[xi−1,xi]

|h2(y) f ′′(y)|,

where h(y) = xi − xi−1 for y ∈ [xi−1, xi].

52.4 The L2 Projection into Vh

Let f(x) be a given function on an interval I = [a, b] and Vh denote the
space of continuous piecewise linear functions Vh on a partition a = x0 <
. . . < xN = b of I with mesh function h(x).
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The orthogonal projection Phf of the function f into Vh is the function
Phf ∈ Vh such that

∫

I

(f − Phf)v dx = 0 for v ∈ Vh. (52.15)

Recalling the definition of the L2(I)-scalar product

(v, w)L2(I) =
∫

I

v(x)w(x) dx,

with the corresponding L2(I)-norm

‖v‖L2(I) =
(∫

I

v2(x) dx
)1/2

,

we can write (52.15) in the form

(f − Phf, v)L2(I) = 0 for v ∈ Vh.

This says that f −Phf is orthogonal to Vh with respect to the L2(I) scalar
product. We also call Phf the L2(I)-projection of f onto Vh.

We first show that Phf is uniquely defined and then prove that Phf is
the best Vh-approximation of f in the L2(I)-norm.

To prove uniqueness and existence, we express Phf in the nodal basis
{ϕi}N

i=0:

Phf(x) =
N∑

j=0

cjϕj(x),

where the cj = (Phf)(xj) are the nodal values of Phf that have to be
determined. We insert this representation into (52.15) and choose v = ϕi

with i = 0, . . . , N , to get for i = 0, . . . , N ,

∫

I

N∑

j=0

cjϕj(x)ϕi(x) dx =
N∑

j=0

cj

∫

I

ϕj(x)ϕi(x) dx

=
∫

I

fϕi dx ≡ bi , (52.16)

where we changed the order of integration and summation. This gives the
following system of equations

N∑

j=0

mijcj =
∫

I

fϕi dx ≡ bi i = 0, 1, . . . , N, (52.17)

where
mij =

∫

I

ϕj(x)ϕi(x) dx, i, j = 0, . . . , N.
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We can write (52.17) in matrix form as

Mc = b

where c = (c0, . . . , cN ) is a N+1-vector of the unknown coefficients cj , and
b = (b0, . . . , bN) is computable from f(x), and M = (mij) is a (N + 1)×
(N + 1)-matrix that depends on the basis functions ϕi, but not on the
function f(x). We refer to the matrix M as the mass matrix.

We can now easily prove the uniqueness of Phf . Since the difference
Phf − P̄hf of two functions Phf ∈ Vh and P̄hf ∈ Vh satisfying the relation
(52.15), also satisfy

∫

I

(Phf − P̄hf)v dx = 0 for v ∈ Vh,

by choosing v = Phf − P̄hf , we get
∫

I

(Phf − P̄hf)2 dx = 0,

and thus Phf(x) = P̄hf(x) for x ∈ I. Solutions of the system Mc = b are
therefore unique, and since M is a square matrix, existence follows from
the Fundamental Theorem of Linear Algebra. We sum up:

Theorem 52.4 The L2(I)-projection Phf of a given function f onto the
set of piecewise linear functions Vh on I is uniquely defined by (52.15)
or the equivalent system of equations Mc = b, where cj = Phf(xj) are
the nodal values of Phf , M is the mass matrix with coefficients mij =
(ϕj , ϕi)L2(I) = (ϕi, ϕj)L2(I) and the coefficients of the right hand side b are
given by bi = (f, ϕi).

Example 52.1. We compute the mass matrix M in the case of a uniform
subdivision with h(x) = h = (b − a)/N for x ∈ I. We get by a direct
computation

mii =
∫ xi+1

xi−1

ϕ2
i (x) dx =

2h
3

i = 1, . . .N − 1, m00 = mNN =
h

3
,

mi,i+1 =
∫ xi+1

xi−1

ϕi(x)ϕi+1(x) dx =
h

6
i = 1, . . .N − 1.

The corresponding “lumped” mass matrix M̂ = (m̂ij), which is a diagonal
matrix with the diagonal element in each row being the sum of the elements
in the corresponding row of M , takes the form

m̂ii = h i = 1, . . . , N − 1, m̂00 = m̂NN = h/2.

We see that M̂ may be viewed as a h-scaled variant of the identity matrix
and M can be viewed as an h-scaled approximation of the identity matrix.
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We now prove that the L2(I)-projection Phf of a function f satisfies

‖f − Phf‖L2(I) ≤ ‖f − v‖L2(I), for all v ∈ Vh. (52.18)

This implies that Phf is the element in Vh with smallest deviation from f
in the L2(I)-norm. Applying Cauchy’s inequality to (52.15) with v ∈ Vh

gives
∫

I

(f − Phf)2 dx

=
∫

I

(f − Phf)(f − Phf) dx+
∫

I

(f − Phf)(Phf − v) dx

=
∫

I

(f − Phf)(f − v) dx ≤
(∫

I

(f − Phf)2 dx
)1/2 (∫

I

(f − v)2 dx
)1/2

,

which proves the desired result. We summarize:

Theorem 52.5 The L2(I)-projection Ph into Vh defined by (52.15), is the
unique element in Vh which minimizes ‖f−v‖L2(I) with v varying over Vh.

In particular, choosing v = πhf in (52.18), we obtain

‖f − Phf‖L2(I) ≤ ‖f − πhf‖L2(I),

where πhf is the nodal interpolant of f introduced above. One can prove
the following analog of (52.13)

‖f − πhf‖L2(I) ≤
1
π2

‖h2 f ′′‖L2(I),

where the interpolation constant happens to be π−2. We thus conclude the
following basic result:

Theorem 52.6 The L2(I)-projection Ph into the space of piecewise linear
functions Vh on I with mesh function h(x), satisfies the following error
estimate:

‖f − Phf‖L2(I) ≤
1
π2

‖h2 f ′′‖L2(I). (52.19)

Chapter 52 Problems

52.1. Give a different proof of the first estimate of TheoremTS
a Theorem 52.1

by considering for a given x ∈ (0, 1), the function

g(y) = f(y) − πf(y) − γ(x)y(1− y), y ∈ [0, 1],

where γ(x) is chosen so that g(x) = 0. Hint: the function g(y) vanishes at 0, x
and 1. Show by repeated use of the Mean Value theorem that g′′ vanishes at some
point ξ, from which it follows that γ(x) = −f ′′(ξ)/2.

TS
a Please check it.

Editor’s or typesetter’s annotations (will be removed before the final TEX run)
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52.2. Prove Theorem 52.2 from Theorem 52.1 by using the change of vari-
ables x = a + (b − a)z transforming the interval [0, 1] onto [a, b], setting F (z) =
f(a+(b−a)z) and using that by the Chain Rule, F ′ = dF

dz
= (b−a)f ′ = (b−a) df

dx
.

52.3. Develop approximation/interpolation with piecewise constant (discontin-
uous) functions on a partition of an interval. Consider interpolation at left-hand
endpoint, right-hand endpoint, midpoint and mean value for each subinterval.
Prove error estimates of the form ‖u − πhu‖L∞(I) ≤ C‖hu′‖L∞(I), with C = 1
or C = 1

2
.





53
FEM for Two-Point Boundary Value
Problems

The results, however, of the labour and invention of this century are
not to be found in a network of railways, in superb bridges, in enor-
mous guns, or in instantaneous communication. We must compare
the social state of the inhabitants of the country with what it was.
The change is apparent enough. The population is double what it
was a century back; the people are better fed and better housed, and
comforts and even luxuries that were only within the reach of the
wealthy can now be obtained by all classes alike. . . . But with these
advantages there are some drawbacks. These have in many cases as-
sumed national importance, and it has become the province of the
engineer to provide a remedy. (Reynolds, 1868)

53.1 Introduction

We begin by deriving a model that is based on a conservation principle
which states:

The rate at which a specified quantity changes in a region is
equal to the rate that the quantity leaves and enters the region
plus the rate at which the quantity is created and destroyed
inside the region.

Such a conservation principle holds for a wide variety of quantities, includ-
ing animals, automobiles, bacteria, chemicals, fluids, heat and energy, etc.
So the model we derive has a wide application.
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In this chapter, we assume that the quantity to be modeled exists in
a very small diameter “tube” with constant cross section and that the
quantity varies in the direction along the tube but not at all within a fixed
cross section, see Fig. 53.1. We use x to denote the position along the length
of the tube and let t denote time. We assume that the quantity in the tube
is sufficiently abundant that it makes sense to talk about a density u(x, t),
measured in amount of the quantity per unit volume, that varies continu-
ously with the position x and time t. This is certainly valid for quantities
such as heat and energy, and may be more or less valid for quantities such
as bacteria and chemicals provided there is a sufficient number of creatures
or molecules respectively.

x1 x2
x

A

Fig. 53.1. Variation in a very narrow “tube”

We next express the conservation principle mathematically. We consider
a small region of the tube of width dx and cross-sectional area A. The
amount of quantity in this region is u(x, t)Adx. We let q(x, t) denote the
flux at position x and time t, or the amount of the quantity crossing the
section at x at time t measured in amount per unit area per unit time. We
choose the orientation so that q is positive when the flow is to the right.
The amount of quantity crossing the section at position x at time t is
therefore Aq(x, t). Lastly, we let f(x, t) denote the rate that the quantity is
created or destroyed within the section at x at time t measured in amount
per unit volume per unit time. So, f(x, t)Adx is the amount of the quantity
created or destroyed in the small region of width dx per unit time.

The conservation principle for a fixed length of pipe between x = x1 and
x = x2 implies that the rate of change of the quantity in this section must
equal the rate at which it flows in at x = x1 minus the rate at which it
flows out at x = x2 plus the rate at which it is created in x1 ≤ x ≤ x2. In
mathematical terms,

∂

∂t

∫ x2

x1

u(x, t)Adx = Aq(x1, t) −Aq(x2, t) +
∫ x2

x1

f(x, t)Adx.

or
∂

∂t

∫ x2

x1

u(x, t) dx = q(x1, t) − q(x2, t) +
∫ x2

x1

f(x, t) dx. (53.1)

Equation (53.1) is called the integral formulation of the conservation prin-
ciple.
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We can reformulate (53.1) as a partial differential equation provided
u(x, t) and q(x, t) are sufficiently smooth. For we can write,

∂

∂t

∫ x2

x1

u(x, t) dx =
∫ x2

x1

∂

∂t
u(x, t) dx,

q(x1, t) − q(x2, t) =
∫ x2

x1

∂

∂x
q(x, t) dx,

and therefore collecting terms,
∫ x2

x1

(
∂

∂t
u(x, t) +

∂

∂x
q(x, t) − f(x, t)

)

dx = 0.

Since x1 and x2 are arbitrary, the integrand must be zero at each point, or

∂

∂t
u(x, t) +

∂

∂x
q(x, t) = f(x, t). (53.2)

Equation (53.2) is the pointwise or differential formulation of the conser-
vation principle.

So far we have one equation for two unknowns. To complete the model,
we use a constitutive relation that describes the relation between the flux
and the density. This relation is specific to the physical properties of the
quantity being modeled, yet it is often unclear exactly how to model these
properties. A constitutive relation used in practice is often only an approx-
imation to the true unknown relation.

Many quantities have the property that the quantity flows from regions
of high concentration to regions of low concentration, and the rate of flow
increases as the differences in concentration increases. As a first approxi-
mation, we assume a simple linear relation

q(x, t) = −a(x, t) ∂
∂x
u(x, t), (53.3)

where a(x, t) > 0 is the diffusion coefficient. In case u represents heat,
(53.3) is known as Newton’s Heat Law. In general, equation (53.3) is known
as Fick’s Law. Note that the choice of sign of a guarantees for example
that flow is to the right if ux < 0, i.e. if u decreases across the section
at x. Substituting (53.3) into (53.2), we obtain the general time-dependent
reaction-diffusion equation,

∂

∂t
u(x, t) − ∂

∂x

(

a(x, t)
∂

∂x
u(x, t)

)

= f(x, t).

To simplify the notation, we use u̇ to denote ∂u/∂t and u′ to denote ∂u/∂x.
This yields

u̇(x, t) − (a(x, t)u′(x, t))′ = f(x, t). (53.4)

Convection or transport is another important process to take into ac-
count in this model.
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Example 53.1. When modeling populations of animals, diffusion reflects
the natural tendency of most creatures to spread out over a region due to
randomly occurring interactions between pairs of creatures, while convec-
tion models phenomena such as migration.

Convection is modeled by assuming a constitutive relation in which the
flux is proportional to the density, i.e.

ϕ(x, t) = b(x, t)u(x, t),

which results in a convection term in the differential equation of the
form (bu)′. The convection coefficient b(x, t) determines the rate and di-
rection of transport of the quantity being modeled.

In general, many quantities are modeled by a constitutive relation of the
form

ϕ(x, t) = −a(x, t)u′(x, t) + b(x, t)u(x, t)

which combines diffusion and convection. Arguing as above, we obtain the
general reaction-diffusion-convection equation

u̇(x, t) − (a(x, t)u′(x, t))′ + (b(x, t)u(x, t))′ = f(x, t). (53.5)

53.2 Initial Boundary-Value Problems

We have to add suitable data to (53.4) or (53.5) in order to specify a unique
solution. We model the amount of substance in a fixed length of tube lo-
cated between x = 0 and x = 1, as in Fig. 53.1, and specify some infor-
mation about u called boundary conditions at x = 0 and x = 1. We also
need to give some initial data at some initial time, which we take to be
t = 0. The evolutionary or time-dependent initial two point boundary value
problem reads: find u(x, t) such that






u̇− (au′)′ + (bu)′ = f in (0, 1) × (0, T ),
u(0, t) = u(1, t) = 0 for t ∈ (0, T )
u(x, 0) = u0(x) for x ∈ (0, 1),

(53.6)

where a, b, c are given coefficients and f and g are given data. The boundary
values u(0, t) = u(1, t) = 0 are known as homogeneous Dirichlet boundary
conditions.

Example 53.2. In the case that we use (53.4) to model the heat u in
a long thin wire, the coefficient a represents the heat conductivity of the
metal in the wire, f is a given heat source, and the homogeneous Dirichlet
boundary conditions at the end-points means that the temperature of the
wire is held fixed at 0 there. Such conditions are realistic for example if the
wire is attached to very large masses at the ends.
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Other boundary conditions found in practice include: nonhomogeneous
Dirichlet boundary conditions u(0) = u0, u(1) = u1 with constants u0, u1;
one homogeneous Dirichlet u(0) = 0 and one nonhomogeneous Neumann
boundary condition a(1)u′(1) = g1 with constant g1; and more general
Robin boundary conditions

−a(0)u′(0) = γ(0)(u0 − u(0)), a(1)u′(1) = γ(1)(u1 − u(1))

with constants γ(0), u0, γ(1), u1.

53.3 Stationary Boundary Value Problems

In many situations, u is independent of time and the model reduces to the
stationary reaction-diffusion equation

−(a(x)u′(x))′ = f(x) (53.7)

in the case of pure diffusion and

−(a(x)u′(x))′ + (b(x)u(x))′ = f(x) (53.8)

in case there is convection as well. For these problems, we only need to spec-
ify boundary conditions. For example, we consider the two-point boundary
value problem: find the function u(x) satisfying

{
−(au′)′ = f in (0, 1),
u(0) = u(1) = 0

(53.9)

and when there is convection: find u(x) such that
{
−(au′)′ + (bu)′ = f in (0, 1),
u(0, t) = u(1, t) = 0.

(53.10)

53.4 The Finite Element Method

We begin the discussion of discretization by studying the simplest model
above, namely the two-point boundary value problem for the stationary
reaction-diffusion model (53.9).

We can express the solution u(x) of (53.9) analytically in terms of data
by integrating twice (setting w = au′)

u(x) =
∫ x

0

w(y)
a(y)

dy + α1, w(y) = −
∫ y

0

f(z) dz + α2,
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where the constants α1 and α2 are chosen so that u(0) = u(1) = 0. We can
use this solution formula to compute the value of the solution u(x) for any
given x ∈ (0, 1) by evaluating the integrals analytically or numerically using
quadrature. However, this is very time consuming if we want the solution
at many points in [0, 1]. This motivates consideration of an alternative way
of computing the solution u(x) using the Finite Element Method (FEM),
which is a general method for solving differential equations numerically.
FEM is based on rewriting the differential equation in variational form
and seeking an approximate solution as a piecewise polynomial.

Note that we do not use the solution by integration outlined above, one
important consequence of that procedure is that u is “twice as differen-
tiable” as the data f , since we integrate twice to get from f to u.

We present FEM for (53.9) based on continuous piecewise linear approx-
imation. We let Th : 0 = x0 < x1 < . . . < xM+1 = 1, be a partition
(or triangulation) of I = (0, 1) into sub-intervals Ij = (xj−1, xj) of length
hj = xj−xj−1. We look for an approximate solution in the set Vh of contin-
uous piecewise linear functions v(x) on Th such that v(0) = 0 and v(1) = 0.
We show an example of such a function in Fig. 53.2. In Chapter 52, we saw
that Vh is a finite dimensional vector space of dimension M with a basis
consisting of the hat functions {ϕj}M

j=1 illustrated in Fig. 52.5, associated
with the interior nodes x1, · · · , xM . The coordinates of a function v in Vh in
this basis are the values v(xj) at the interior nodes since a function v ∈ Vh

can be written

v(x) =
M∑

j=1

v(xj)ϕj(x).

Note that because v ∈ Vh is zero at 0 and 1, we do not include ϕ0 and
ϕM+1 in the set of basis functions for Vh.

xixi-1 xM+1x0

hi 10

Fig. 53.2. A continuous piecewise linear function in Vh

The finite element method is based on restating the differential equation
−(au′)′ = f in an average or variational form

−
∫ 1

0

(au′)′v dx =
∫ 1

0

fv dx, (53.11)

where the function v varies over an appropriate set of test functions.
The variational form results from multiplying the differential equation
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−(au′)′ = f by the test function v(x) and integrating over the interval (0, 1).
The variational formulation says that the residual −(au′)′ − f of the true
solution is orthogonal to all test functions v with respect to the L2(0, 1)
scalar product.

The basic idea of FEM is to compute an approximate solution U ∈ Vh

that satisfies (53.11) for a restricted set of test functions. This approach
to computing an approximate solution is known as the Galerkin method
in memory of the Russian engineer and scientist Galerkin (1871-1945), see
Fig. 53.3. He invented his method while imprisoned for anti-Tsarist activi-
ties during 1906-7. We call the set Vh, where we seek the FEM-solution U ,
the trial space and we call the space of test functions the test space. In
the present case of homogeneous Dirichlet boundary conditions, we usually
choose the test space to be equal to Vh. Consequently, the dimensions of
the trial and test spaces are equal, which is necessary for the existence and
uniqueness of the approximate solution U .

Fig. 53.3. Boris Galerkin, inventor of the Finite Element Method: “It is really
quite simple; just multiply by v(x) and then integrate”

However since the functions in Vh do not have second derivatives, we
can not simply plug a potential approximate solution U in Vh directly
into (53.11). To get around this difficulty, we use integration by parts to
move one derivative from (au′)′ onto v, noting that functions in Vh are
piecewise differentiable. Assuming v is differentiable and v(0) = v(1) = 0:

−
∫ 1

0

(au′)′v dx = −a(1)u′(1)v(1) + a(0)u′(0)v(0) +
∫ 1

0

au′v′ dx

=
∫ 1

0

au′v′ dx.
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This leads to the continuous Galerkin finite element method of order 1
(cG(1)-method) for (53.9): compute U ∈ Vh such that

∫ 1

0

aU ′v′ dx =
∫ 1

0

fv dx for all v ∈ Vh. (53.12)

We note that the derivatives U ′ and v′ of the functions U and v ∈ Vh are
piecewise constant functions of the form depicted in Fig. 53.4 and are not

xixi-1
xM+1x0

Fig. 53.4. The derivative of the continuous piecewise linear function in Fig. 53.2

defined at the nodes xi. However, the value of an integral is independent of
the value of the integrand at isolated points. Therefore, the integral (53.12)
with integrand aU ′v′ is uniquely defined as the sum of the integrals over
the sub-intervals Ij .

Discretization of the Stationary Reaction-Diffusion-Convection
Problem

To solve (53.10) numerically let 0 = x0 < x1 < . . . < xL+1 = 1 be a parti-
tion of (0, 1), and let Vh be the corresponding space of continuous piecewise
linear functions v(x) such that v(0) = v(1) = 0. The cG(1) FEM for (53.10)
takes the form: compute U ∈ Vh such that

∫ 1

0

(aU ′)v′ + (bU)′v) dx =
∫ 1

0

fv dx for all v ∈ Vh.

53.5 The Discrete System of Equations

We have not yet proved that the set of equations (53.12) has a unique
solution nor discussed what is involved in computing the solution U . This
is an important issue considering we constructed the FEM precisely because
the original problem is likely impossible to solve analytically.

We prove that the cG(1)-method (53.12) corresponds to a square lin-
ear system of equations for the unknown nodal values ξj = U(xj), j =
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1, . . . ,M . We write U using the basis of hat functions as

U(x) =
M∑

j=1

ξjϕj(x) =
M∑

j=1

U(xj)ϕj(x).

Substituting into (53.12), we change the order of summation and integra-
tion to obtain

M∑

j=1

ξj

∫ 1

0

aϕ′
jv

′ dx =
∫ 1

0

fv dx, (53.13)

for all v ∈ Vh. Now, it suffices to check (53.13) with v varying over the set
of basis functions {ϕi}M

i=1, since any function in Vh can be expressed as
a linear combination of the basis functions. We are thus led to the M ×M
linear system of equations

M∑

j=1

ξj

∫ 1

0

aϕ′
jϕ

′
i dx =

∫ 1

0

fϕi dx, i = 1, . . . ,M, (53.14)

for the unknown coefficients ξ1, . . . , ξM . We let ξ = (ξ1, . . . , ξM )	 denote
the M -vector of unknown coefficients and define the M×M stiffness matrix
A = (aij) with elements

aij =
∫ 1

0

aϕ′
jϕ

′
i dx, i, j = 1, . . . ,M,

and the load vector b = (bi) with

bi =
∫ 1

0

fϕi dx, i = 1, . . . ,M.

These names originate from early applications of the finite element method
in structural mechanics describing deformable structures like the body and
wing of an aircraft or buildings. Using this notation, (53.14) is equivalent
to the system of linear equations

Aξ = b. (53.15)

In order to solve for the unknown vector ξ of nodal values of U , we first
have to compute the stiffness matrix A and the load vector b. In the first
instance, we assume that a(x) = 1 for x ∈ [0, 1]. We note that aij is zero
unless i = j−1, i = j, or i = j+1 because otherwise either ϕi(x) or ϕj(x) is
zero on each sub-interval occurring in the integration. We illustrate this in
Fig. 53.5. We compute aii first. Using the definition of the hat function ϕi,

ϕi(x) =






(x− xi−1)/hi, xi−1 ≤ x ≤ xi,

(xi+1 − x)/hi+1, xi ≤ x ≤ xi+1,

0, elsewhere,
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xi-1 xi xi xi+1xi

ϕi-1 ϕi ϕi ϕi-1 ϕi

Fig. 53.5. Three possibilities to obtain a non-zero element in the stiffness matrix

the integration breaks down into two integrals:

aii =
∫ xi

xi−1

(
1
hi

)2

dx+
∫ xi+1

xi

(
−1
hi+1

)2

dx =
1
hi

+
1

hi+1
for i = 1, 2, . . . ,M,

since ϕ′
i = 1/hi on (xi−1, xi) and ϕ′

i = −1/hi+1 on (xi, xi+1) and ϕi is zero
on the other sub-intervals. Similarly,

ai i+1 =
∫ xi+1

xi

−1
(hi+1)2

dx = − 1
hi+1

for i = 1, 2, . . . ,M,

while ai i−1 = −1/hi for i = 2, 3, . . . ,M .
We compute the elements of the load vector of b in the same way to get

bi =
∫ xi

xi−1

f(x)
x − xi−1

hi
dx+

∫ xi+1

xi

f(x)
xi+1 − x

hi+1
dx, i = 1, . . . ,M.

The matrix A is a sparse matrix in the sense that most of its entries
are zero. In particular, A is a banded matrix with non-zero entries occur-
ring only in the diagonal, super-diagonal and sub-diagonal positions. A is
also called a tri-diagonal matrix. Moreover, A is a symmetric matrix since∫ 1

0
ϕ′

iϕ
′
j dx =

∫ 1

0
ϕ′

jϕ
′
i dx. Finally, A is positive-definite in the sense that

η	Aη =
M∑

i,j=1

ηiaijηj > 0,

unless ηi = 0 for i = 1, . . . ,M . This follows by noting that if v(x) =
∑M

j=1 ηjϕj(x) then by reordering the summation (check!)

M∑

i,j=1

ηiaijηj =
M∑

i,j=1

ηi

∫ 1

0

aϕ′
jϕ

′
i dx ηj

=
∫ 1

0

a
M∑

j=1

ηjϕ
′
j

M∑

i=1

ηiϕ
′
i dx =

∫ 1

0

av′(x)v′(x) dx > 0

unless v′(x) = 0 for all x ∈ [0, 1], that is v(x) = 0 for x ∈ [0, 1], since
v(0) = 0, that is ηi = 0 for i = 1, . . . ,M . This implies that A is invertible,
so that (53.15) has a unique solution for all data b.
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We sum up: the stiffness matrix A is sparse, symmetric and positive
definite, and thus in particular the system Aξ = b has a unique solution
for all b.

We expect the accuracy of the approximate solution to increase as M
increases since the work involved in solving for U increases. Systems of
dimension 102 − 103 in one space dimension and up to 106 in two or three
space dimensions are common. An important issue is the efficient numerical
solution of the system Aξ = b.

53.6 Handling Different Boundary Conditions

We consider briefly the discretization of the two-point boundary value prob-
lem −(au′)′ = f in (0, 1) with the different boundary conditions.

Non-Homogeneous Dirichlet Boundary Conditions

We begin with the boundary conditions u(0) = u0 and u(1) = u1, where u0

and u1 are given boundary values, where the conditions are non-homogen-
eous if u0u1 �= 0. In this situation, we compute an approximate solution in
the trial space Vh of continuous piecewise linear functions v(x) on a par-
tition Th : 0 = x0 < x1 < . . . < xM+1 = 1, satisfying the boundary
conditions v(0) = u0, v(1) = u1, and we let the test functions vary over the
space V 0

h of continuous piecewise linear functions v(x) satisfying the homo-
geneous boundary conditions v(0) = v(1) = 0. The trial and test spaces are
different in this case, but we note that they have equal dimension (equal
to the number M of internal nodes). Multiplying by a test function and
integrating by parts, we are led to the following method: compute U ∈ Vh

such that ∫ 1

0

aU ′v′ dx =
∫ 1

0

fv dx for all v ∈ V 0
h . (53.16)

As above this leads to a symmetric positive definite system of equations in
the internal unknown nodal values U(x1), . . . , U(xM ).

Neumann Boundary Conditions

We now consider the problem
{
−(au′)′ = f, in (0, 1),
u(0) = 0, a(1)u′(1) = g1,

(53.17)

with a non-homogeneous Neumann boundary condition at x = 1, which in
the case of modeling heat in a wire, corresponds to prescribing the heat
flux a(1)u′(1) at x = 1 to be g1.
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To derive a variational formulation of this problem, we multiply the
differential equation −(au′)′ = f by a test function v and integrate by
parts to get
∫ 1

0

fv dx = −
∫ 1

0

(au′)′v dx =
∫ 1

0

au′v′ dx− a(1)u′(1)v(1) + a(0)u′(0)v(0).

Now a(1)u′(1) = g1 is specified but a(0)u′(0) is unknown. So it is convenient
to assume that v satisfies the homogeneous Dirichlet condition v(0) = 0.
Correspondingly, we define Vh to be the space of continuous functions v
that are piecewise linear on a partition Th of (0, 1) satisfying v(0) = 0.
Replacing a(1)u′(1) by g1, we are led to the following FEM for (53.17):
compute U ∈ Vh such that

∫ 1

0

aU ′v′ dx =
∫ 1

0

fv dx+ g1v(1) for all v ∈ Vh. (53.18)

We substitute U(x) =
∑M+1

i=1 ξiϕi(x), noting that the value ξM+1 =
U(xM+1) at the node xM+1 is now undetermined, into (53.18) and choose
v = ϕ1, · · · , ϕM+1 to get a (M + 1) × (M + 1) system of equations for ξ.
We show the form of the resulting stiffness matrix with a = 1 and load
vector in Fig. 53.6. Note that the last equation

A
-hM+1
-1

-hM+1
-1

hM+1
-1

0

0

0 0 bM+1+g1

b

Fig. 53.6. The stiffness matrix and load vector computed from (53.18) in the
case that a ≡ 1. A and b are the stiffness matrix and load vector previously
obtained in the problem with homogeneous Dirichlet boundary conditions and
bM+1 =

∫ 1

0
fϕM+1 dx

U(xM+1) − U(xM )
hM+1

= bM+1 + g1

is a discrete analog of the boundary condition u′(1) = g1 since bM+1 ≈
hM+1

2 f(1).
To conclude, a Neumann boundary condition, unlike a Dirichlet condi-

tion, is not explicitly enforced in the trial space. Instead, the Neumann con-
dition is automatically satisfied as a consequence of the variational formula-
tion by letting the test functions vary freely at the corresponding boundary
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point. In the case of Neumann boundary conditions, we thus simply can
“forget” the boundary conditions in the definition of the trial space Vh

and let the test space coincide with Vh. A Dirichlet boundary condition is
called an essential boundary condition and a Neumann condition is called
a natural boundary condition. An essential boundary condition is imposed
explicitly in the definition of the trial space, i.e. it is a strongly imposed
boundary condition, and the test space satisfy the corresponding homoge-
neous boundary condition. A natural boundary condition is not imposed in
the trial space and becomes automatically satisfied through the variational
formulation by letting the test functions vary freely at the corresponding
boundary point.

Robin Boundary Conditions

A natural generalization of Neumann conditions for the problem −(au′)′ =f
in (0, 1) are called Robin boundary conditions. These take the form

−a(0)u′(0) = γ(0)(u0 − u(0)), a(1)u′(1) = γ(1)(u1 − u(1)). (53.19)

In the case of modeling heat in a wire, γ(0) and γ(1) are given (non-
negative) boundary heat conductivities and u0 and u1 are given “outside
temperatures”. The Robin boundary condition at x = 0 states that the
heat flux −a(0)u′(0) is proportional to the temperature difference u0−u(0)
between the outside and inside temperature. If u0 > u(0) then heat will
flow from outside to inside and if u0 < u(0) then heat will flow from inside
out.

Example 53.3. Wemay experience this kind of boundary conditionwithγ(0)
quite large in a poorly insulated house on a cold winter day. The size of
the boundary heat conductivity γ is an important issue in the real estate
business in the north of Sweden.

When γ = 0, (53.19) reduces to a homogeneous Neumann boundary
condition. Conversely, letting γ tend to infinity, the Robin boundary con-
dition −a(0)u′(0) = γ(0)(u0 − u(0)) approaches the Dirichlet boundary
condition u(0) = u0.

Robin boundary conditions are natural boundary conditions like Neu-
mann conditions, Therefore, we let Vh be the space of continuous piecewise
linear functions on a partition of (0, 1) without any boundary conditions
imposed. Multiplying the equation −(au′)′ = f by a function v ∈ Vh and
integrating by parts, we get

∫ 1

0

fv dx = −
∫ 1

0

(au′)′v dx =
∫ 1

0

au′v′ dx− a(1)u′(1)v(1) + a(0)u′(0)v(0).
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Replacing a(0)u′(0) and a(1)u′(1) using the Robin boundary conditions,
we get

∫ 1

0

fv dx =
∫ 1

0

au′v′ dx+ γ(1)(u(1) − u1)v(1) + γ(0)(u(0) − u0)v(0).

Collecting data on the right hand side, we are led to the following cG(1)
method: compute U ∈ Vh such that

∫ 1

0

aU ′v′ dx+ γ(0)u(0)v(0) + γ(1)u(1)v(1)

=
∫ 1

0

fv dx+ γ(0)u0v(0) + γ(1)u1v(1)

for all v ∈ Vh.
An even more general Robin boundary condition has the form

−a(0)u′(0) = γ(0)(u0−u(0))+g0, where g0 is a given heat flux. This Robin
boundary condition thus includes Neumann boundary conditions (γ = 0)
and Dirichlet boundary conditions (letting γ → ∞). The implementation
of a Robin boundary conditions is facilitated by the fact that the trial and
test space are the same.

53.7 Error Estimates and Adaptive Error Control

When conducting scientific experiments in a laboratory or building a sus-
pension bridge, for example, there is always a lot of worry about the errors
in the process. In fact, if we were to summarize the philosophy behind the
scientific revolution, a main component would be the modern emphasis on
the quantitative analysis of error in measurements during experiments and
the reporting of the errors along with the results. The same issue comes
up in computational mathematical modeling: whenever we make a com-
putation on a practical problem, we must be concerned with the accuracy
of the results and the related issue of how to compute efficiently. These
issues naturally fit into a wider framework which also addresses how well
the differential equation models the underlying physical situation and what
effect errors in data and the model have on the conclusions we can draw
from the results.

We address these issues by deriving two kinds of error estimates for the
error u−U of the finite element approximation. First we prove an a priori
error estimate which shows that the Galerkin finite element method for
(53.9) produces the best possible approximation in Vh of the solution u
in a certain sense. If u has continuous second derivatives, then we know
that Vh contains good approximations of u, for example the piecewise linear
interpolant. So the a priori estimate implies that the error of the finite
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element approximation can be made arbitrarily small by refining the mesh
provided that the solution u is sufficiently smooth to allow the interpolation
error to go to zero as the mesh is refined. This kind of result is called an
a priori error estimate because the error bound does not depend on the
approximate solution to be computed. One the other hand, it does requires
knowledge about the derivatives of the (unknown) exact solution.

After that, we prove an a posteriori error bound that bounds the error of
the finite element approximation in terms of its residual error. This error
bound can be evaluated once the finite element solution has been computed
and used to estimate the error. Through the a posteriori error estimate, it
is possible to estimate and adaptively control the finite element error to
a desired tolerance level by suitably refining the mesh.

To measure the size of the error e = u − U , we shall use the weighted
L2 norm

‖w‖a =
(∫ 1

0

aw2 dx

)1/2

,

with weight a. More precisely we shall estimate the quantity

‖(u− U)′‖a

which we refer to as the energy norm of the error u− U .
We will use the following variations of Cauchy’s inequality with the

weight a present:

∣
∣
∣
∣

∫ 1

0

av′w′ dx

∣
∣
∣
∣ ≤ ‖v′‖a‖w′‖a and

∣
∣
∣
∣

∫ 1

0

vw dx

∣
∣
∣
∣ ≤ ‖v‖a‖w‖a−1 . (53.20)

An A Priori Error Estimate

We shall prove that the finite element approximation U ∈ Vh is the best
approximation of u in Vh with respect to the energy norm. This is a conse-
quence of the Galerkin orthogonality built into the finite element method
expressed by

∫ 1

0

a(u− U)′v′ dx = 0 for all v ∈ Vh (53.21)

which results from subtracting (53.12) from (53.11) (integrated by parts)
with v ∈ Vh. This is analogous to the best approximation property of the
L2 projection studied in the Chapter Piecewise linear approximation.
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We have for any v ∈ Vh,

‖(u− U)′‖2
a =

∫ 1

0

a(u− U)′(u− U)′ dx

=
∫ 1

0

a(u− U)′(u− v)′ dx +
∫ 1

0

a(u− U)′(v − U)′ dx

=
∫ 1

0

a(u− U)′(u− v)′ dx,

where the last line follows because v − U ∈ Vh. Estimating using Cauchy’s
inequality, we get

‖(u− U)′‖2
a ≤ ‖(u− U)′‖a‖(u− v)′‖a,

so that

‖(u− U)′‖a ≤ ‖(u− v)′‖a for all v ∈ Vh.

This is the best approximation property of U . We now choose in particular
v = πhu, where πhu ∈ Vh is the nodal interpolant of u, and use the following
weighted analog of (52.11)

‖(u− πhu)′‖a ≤ Ci‖hu′′‖a,

where Ci is an interpolation constant that depends only on (the variation
of) a. We then obtain the following error estimate.

Theorem 53.1 The finite element approximation U satisfies ‖(u−U)′‖a ≤
‖(u − v)′‖a for all v ∈ Vh. In particular, there is a constant Ci depending
only on a such that

‖u′ − U ′‖a ≤ Ci‖hu′′‖a.

This energy norm estimate says that the derivative of the error of the
finite element approximation converges to zero at a first order rate in the
mesh size h. By integration it follows that the error itself, say pointwise
or in the L2 norm, also tends to zero. One can also prove a more precise
bound for the error u− U itself that is second order in the mesh size h.

An A Posteriori Error Estimate

We shall now estimate the energy norm error ‖u′ − U ′‖a in terms of the
residual R(U) = (aU ′)′ + f of the finite element solution U on each subin-
terval. The residual measures how well U solves the differential equation
and it is completely computable once U has been computed.
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We start by using the variational form of (53.11) with v = e = u− U to
find an expression for ‖u− U‖2

a:

‖e′‖2
a =

∫ 1

0

ae′e′ dx =
∫ 1

0

au′e′ dx−
∫ 1

0

aU ′e′ dx

=
∫ 1

0

fe dx−
∫ 1

0

aU ′e′ dx.

We then use (53.12), with v = πhe denoting the nodal interpolant of e
in Vh, to obtain

‖e′‖2
a =

∫ 1

0

f (e− πhe) dx−
∫ 1

0

aU ′(e− πhe)′ dx

=
∫ 1

0

f (e− πhe) dx−
M+1∑

j=1

∫

Ij

aU ′(e− πhe)′ dx.

Now, we integrate by parts over each sub-interval Ij in the last term and use
the fact that all the boundary terms disappear because (e− πhe)(xj) = 0
to get the error representation formula

‖e′‖2
a =

∫ 1

0

R(U)(e− πhe) dx, (53.22)

where the residual errorR(U) is the discontinuous function defined on (0, 1)
by

R(U) = f + (aU ′)′ on each sub-interval Ij .

From the weighted Cauchy inequality (53.20) (inserting factors h and h−1),
we get

‖e′‖2
a ≤ ‖hR(U)‖a−1‖h−1(e− πhe)‖a.

One can prove the following analog of the second estimate of (52.11)

‖h−1(e− πhe)‖a ≤ Ci‖e′‖a,

where Ci is an interpolation constant depending on a, and we notice the
appearance of the factor h−1 on the left hand side. This proves the basic
a posteriori error estimate:

Theorem 53.2 There is an interpolation constant Ci depending only on
a such that the finite element approximation U satisfies

‖u′ − U ′‖a ≤ Ci‖hR(U)‖a−1. (53.23)
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Adaptive Error Control

Since the a posteriori error estimate (53.23) indicates the size of the error
of an approximation on a given mesh in terms of computable information,
it is natural to try to use this information to compute an accurate approx-
imation. This is the basis of adaptive error control.

The computational problem that arises once a two-point boundary value
problem is specified is to find a mesh such that the finite element approx-
imation achieves a given level of accuracy, or in other words, such that
the error of the approximation is bounded by an error tolerance TOL. In
practice, we are also concerned with efficiency, which means that we want
to determine a mesh with the fewest number of elements that yields an ap-
proximation with the desired accuracy. We try to reach this optimal mesh
by starting with a coarse mesh and successively refining based on the size
of the a posteriori error estimate. By starting with a coarse mesh, we try
to keep the number of elements as small as possible.

More precisely, we choose an initial mesh Th, compute the correspond-
ing cG(1) approximation U , and then check whether or not

Ci‖hR(U)‖a−1 ≤ TOL.

This is the stopping criterion, which guarantees that ‖u′ − U ′‖a ≤ TOL
by (53.23). Therefore when the stopping criterion is satisfied, U is suffi-
ciently accurate. If the stopping criterion is not satisfied, we try to con-
struct a new mesh Th̃ of mesh size h̃ with as few elements as possible such
that

Ci‖h̃R(U)‖a−1 = TOL.

This is the mesh modification criterion from which the new mesh size h̃ is
computed based on the size of the residual error R(U) of the approximation
on the old mesh. In order to minimize the number of mesh points, it turns
out that the mesh size should be chosen to equidistribute the residual error
in the sense that the contribution from each element to the integral giving
the total residual error is roughly the same. In practice, this means that
elements with large residual errors are refined, while elements in intervals
where the residual error is small are combined together to form bigger
elements.

We repeat the adaptive cycle of mesh modification followed by solution
on the new mesh until the stopping criterion is satisfied. By the a priori
error estimate, we know that if u′′ is bounded then the error tends to
zero as the mesh is refined. Hence, the stopping criterion will be satisfied
eventually. In practice, the adaptive error control rarely requires more than
a few iterations.
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53.8 Discretization of Time-Dependent
Reaction-Diffusion-Convection Problems

We now return to original time dependent problem (53.6).
To solve (53.6) numerically, we apply the cG(1) method for time dis-

cretization and the cG(1) FEM for discretization in space. More precisely,
let 0 = x0 < x1 < . . . < xL+1 = 1 be a partition of (0, 1), and let Vh be
the corresponding space of continuous piecewise linear functions v(x) such
that v(0) = v(1) = 0. Let 0 = t0 < t1 < t2 < . . . < tN = T be a sequence of
discrete time levels with corresponding time intervals In = (tn−1, tn) and
time steps kn = tn − tn−1, for n = 1, . . . , N . We look for a numerical solu-
tion U(x, t) that is linear in t on each time interval In. For n = 1, . . . , N ,
we compute Un ∈ Vh such that for all v ∈ Vh,

∫

In

∫ 1

0

U̇v dx dt+
∫

In

∫ 1

0

(aU ′)v′ + (bU)′v) dx dt

=
∫

In

∫ 1

0

fv dx dt+
∫

In

(g(0, t)v(0) + g(1, t)v(1)) dt,
(53.24)

where U(tn, x) = Un(x) denotes the time nodal value for n = 1, 2, . . . , N
and U0 = u0, assuming that u0 ∈ Vh. Since U is linear on each time interval,
it is determined completely once we have computed its nodal values.

Arguing as above using the expansion in terms of the basis functions
for Vh leads to a sequence of systems of equations for n = 1, . . . , N ,

MUn + knAnU
n = MUn−1 + knb

n, (53.25)

where M is the mass matrix corresponding to Vh and An is a stiffness
matrix related to time interval In. Solving this system successively for n =
1, 2, . . . , N , we obtain an approximate solution U of (53.10).

53.9 Non-Linear
Reaction-Diffusion-Convection Problems

In many situations, the coefficients or data depend on the solution u, which
leads to a nonlinear problem. For example if f depends on u, we get a prob-
lem of the form






u̇− (au′)′ + (bu)′ = f(u) in (0, 1) × (0, T ),
u(0, t) = u(1, t) = 0, for t ∈ (0, T ),
u(x, 0) = u0(x) for x ∈ (0, 1).

(53.26)

Discretization as above eventually yields a discrete system of the form

MUn + knAnU
n = MUn−1 + knb

n(Un), (53.27)
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where bn depends on Un. This nonlinear system may be solved by fixed
point iteration or Newton’s method.

We conclude this section by presenting some examples of systems of non-
linear reaction-diffusion-convection problems arising in physics, chemistry
and biology. These systems may be solved numerically by a direct extension
of the cG(1) method in space and time presented above. In all examples,
a and the αi are a positive constants.

Example 53.4. The bistable equation for ferro-magnetism

u̇− au′′ = u− u3, (53.28)

with a small.

Example 53.5. Model of a superconductivity of a fluid

u̇1 − au′′1 = (1 − |u|2)u1,

u̇2 − au′′2 = (1 − |u|2)u2.
(53.29)

Example 53.6. Model of flame propagation

u̇1 − au′′1 = −u1e
−α1/u2 ,

u̇2 − au′′2 = α2u1e
−α1/u2 .

(53.30)

Example 53.7. Field-Noyes equations for chemical reactions

u̇1 − au′′1 = α1(u2 − u1u3 + u1 − α2u
2
1),

u̇2 − au′′2 = α−1(α3u3 − u2 − u1u2),
u̇2 − au′′2 = α4(u1 − u3).

(53.31)

Example 53.8. Spread of rabies in foxes

u̇1 − au′′1 = α1(1 − u1 − u2 − u3) − u3u1,

u̇2 − au′′2 = u3u1 − (α2 + α3 + α1u1 + α1u1 + α1u3)u2,

u̇2 − au′′2 = α2u2 − (α4 + α1u1 + α1u1 + α1u3)u3,

(53.32)

where α4 < (1 + (α3 + α1)/α2)−1 − α1.

Example 53.9. Interaction of two species

u̇1 − au′′1 = u1M(u1, u2),
u̇2 − au′′2 = u2N(u1, u2),

(53.33)

where M(u1, u2) and N(u1, u2) are given functions describing various situ-
ations such as (i) predator-prey (Mu2 < 0, Nu1 > 0) (ii) competing species
(Mu2 < 0, Nu1 < 0) and (iii) symbiosis (Mu2 > 0, Nu1 > 0).
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Example 53.10. Morphogenesis of patterns (zebra or tiger)

u̇1 − au′′1 = −u1u
2
2 + α1(1 − u1)

u̇2 − au′′2 = u1u
2
2 − (α1 + α2)u2.

(53.34)

Example 53.11. Fitz-Hugh-Nagumo model for transmission of axons

u̇1 − au′′1 = −u1(u1 − α1)(u1 − 1) − u2

u̇2 − au′′2 = α2u1 − α3u2,
(53.35)

0 < α1 < 1.

Chapter 53 Problems

53.1. Compute the stiffness matrix and load vector for the cG(1) method on
a uniform partition for (53.9) with a(x) = 1+x and f(x) = sin(x). Use quadrature
if exact integration is inconvenient.

53.2. Formulate the cG(1) method for the problem −(au′)′ + cu = f in (0, 1),
u(0) = u(1) = 0, where a(x) and c(x) are positive coefficients. Compute the
corresponding stiffness matrix when a = c = 1, assuming a uniform partition. Is
the stiffness matrix still symmetric, positive-definite, and tridiagonal?

53.3. Determine the resulting system of equations corresponding to the cG(1)
method (53.16) with non-homogeneous Dirichlet boundary conditions.

53.4. Prove a priori and a posteriori error estimates for cG(1) for −(au′)′ = f
in (0, 1) with Robin boundary conditions (a positive).

53.5. Prove a priori and a posteriori error estimates for cG(1) for −(au′)′+cu = f
in (0, 1) with Robin boundary conditions (a and c positive).

The “classical” phase of my career was summed up in the book The
Large Scale Structure of Spacetime which Ellis and I wrote in 1973.
I would not advise readers of this book to consult that work for fur-
ther information: it is highly technical, and quite unreadable. I hope
that since then I have learned how to write in a manner that is easier
to understand. (Stephen Hawking in A Brief History of Time)
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K, 1032
L2 projection, 746
Vh, 1036
N, 52
Q, 81
R, 197
δz, 1008
ε−N definition of a limit, 170
λi, 1037
ϕi, 1037
τK , 1032
h refinement, 1033
hK , 1032
Nh, 1032
Sh, 1032
Th, 1032

a posteriori error estimate, 668, 765,
767, 828, 1059

a priori error estimate, 661, 667, 764,
766

Abacus, 4
absolutely convergent series, 548
acceleration, 402
action integral, 707
adaptive

algorithm, 768, 1059

error control, 768, 1059
adaptive error control, 825
advancing front, 1033
alternating series, 548
Ampere’s law, 962, 1003
analytic function, 1102
analytic geometry, 265
angle, 316
arc length, 893
Archimedes’ principle, 971, 976
arclength, 899
area, 443, 916

of triangle, 290
automatic step-size control, 826
automatized computation, 3
automatized production, 3

Babbage, 4
Babbage-Scheutz Difference Ma-

chine, 4
backward Euler, 578
bandwidth, 655
barbers paradox, 226
basis, 297, 609
Bernouilli’s law, 1133
bisection algorithm, 188, 215
block structure, 1052
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Bolzano, 216
Bolzano’s theorem, 216
boundary condition

Dirichlet, 989
essential, 763, 1064
natural, 763, 1065
Neumann, 989
Robin, 763, 989

boundary value problem, 755
buoyancy force, 977
butterfly effect, 843

Cantor, 230
capacitor, 725
Cauchy sequence, 192, 196
Cauchy’s inequality, 598

weighted, 765
Cauchy’s representation formula,

1120
Cauchy’s theorem, 1119
Cauchy-Riemann equations, 1103,

1104
Cauchy-Schwarz inequality, 598
center of mass, 971
centripetal acceleration, 890
change of basis, 633
change of order of integration, 911
change of variable, 937
chaos, 843
charge, 725, 1003, 1099
children, 1033
Cholesky’s method, 654
circle of curvature, 901
compact factorization, 654
complex integral, 1115, 1116
complex number, 345
complex plane, 345
computational cost, 219
computer representation of num-

bers, 180
condition number, 660
conformal mapping, 1110
conjugate harmonic function, 1108
conservation

heat, 988
conservation of energy, 699
conservation of mass, 993
conservative system, 699
constitutive equation, 989

constitutive law, 993
constructivist, 227
continuous Galerkin cG(1), 578
continuous Galerkin method cG(1),

826
contour plot, 809
contraction mapping, 246
Contraction mapping theorem, 800
coordinate system, 267
Coriolis

acceleration, 890
force, 887

Coulomb’s law, 1003
Cramer’s formula, 624
crash model, 718
current, 725
curvature, 900
curve, 784
curve integral, 893

dashpot, 710
de Moivres formula, 514
deca-section algorithm, 193
decimal expansions

non-periodic, 76
periodic, 76

delta function, 1008
derivative, 357

of xn, 362
chain rule, 378
computation of, 367
definition, 360
inverse function, 385
linear combination rule, 376
one-sided, 381
quotient rule, 379

Descartes, 101
determinant, 617
diagonal matrix, 647
diagonally dominant, 678
diameter of a triangle, 1032
dielectric constant, 1003, 1099
difference quotient, 366
differentiability

uniform, 370
differentiable, 369, 788, 1025
differentiation under the integral

sign, 806
dinner Soup model, 25
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directional derivative, 797
divergence, 879, 880
Divergence theorem, 946, 955
domain, 104
double integral, 905

Einstein, 411
Einstein’s law of motion, 411
elastic membrane, 994
elastic string, 731
electric circuit, 725
electric conductivity, 1003, 1099
electric current, 1003, 1099
electric displacement, 1003, 1099
electric field, 1003, 1004, 1099
electric permittivity, 1003
electrical circuit, 725
electrostatics, 1004
element, 1032

basis function, 1037
stiffness matrix, 1054

elementary functions, 517
elementary row operations, 648
elliptic, 991
energy, 1055
energy norm, 1056
Engdahl, 375
ENIAC, 4
equidistribution of error, 483, 768,

1063
error representation formula, 741,

767, 1040, 1058
essential boundary condition, 763,

1064
Euclid, 87
Euclidean norm, 275
Euclidean plane, 99, 267
Euler equations, 1002
Eulerian description, 997
existence of minimum point, 868

Faraday’s law, 1003
fill-in, 657
five-point formula, 996
fixed point, 245
floating point arithmetic, 180
flow in a corner, 1131
force field, 897
formalist school, 224

forward Euler, 578
Fourier, 407
Fourier’s law, 408, 989
Fredholm, 1011
Fredholm integral equation, 1011
front, 1033
function, 103

ax, 497
polynomial, 119

function y = xr, 241
functions

combinations of, 141
rational, 143
several variables, 163

fundamental solution, 1009
Fundamental Theorem of Calculus,

428, 440
fundamental theorem of linear alge-

bra, 632

Galileo, 402
Gauss, 101
Gauss transformation, 649
Gauss’ theorem, 943, 946, 953, 955
Gauss-Seidel method, 666
geometrically orthogonal, 280
global basis function, 1037
global stiffness matrix, 1054
GPS, 11, 94
GPS navigator, 269
gradient, 791, 880, 883
gradient field, 898
Gram-Schmidt procedure, 629
gravitational field, 1007
greatest lower bound, 874
Green’s formula, 943, 946, 953, 955
Gulf Stream, 891
Gustafsson, Lars, 195

hanging chain, 510
hat function, 743
heat

capacity coefficient, 988
conduction, 987
conductivity, 989
flux, 988
source, 988

heat equation, 990
Hilbert, 1011
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Hooke, 405
Hooke’s law, 405

identity matrix, 305
ill-conditioned matrix, 660
implicit differentiation, 386
Implicit Function theorem, 804, 811,

813
income tax, 354
incompressible, 999
independent variable, 105
induction, 728

mutual, 728
inductor, 725
infinite decimal expansion, 195, 582
initial value problem

general, 571
scalar autonomous, 555
second order, 577
separable scalar, 563

integer, 47
computer representation of, 59
division with remainder, 57

integral
additivity over subintervals,

450
change of variables, 455
linearity, 452
monotonicity, 453

integral equation, 1011
integration by parts, 457, 946
interior minimum point, 869
intermediate value theorem, 216
intuitionist, 227
invariance

orthogonal transformation, 340
inverse

of matrix, 336
Inverse Function theorem, 804
inverse matrix, 625
inversion, 1112
irrotational, 968
irrotational flow, 1131
isobars, 887
isotropic, 883
isotropy, 1032
iterated integration, 934
iterated one-dimensional integra-

tion, 911

iteration matrix, 664
iterative method, 657

Jacobi method, 666
Jacobian, 788, 1025
Jacquard, 4

Kirchhoff’s laws, 727
Kronecker, 230

Lagrange, 693
Lagrangian description, 998
Laplace, 1007
Laplacian, 879, 881, 884

polar coordinates, 881, 1028
spherical coordinates, 885

Laurent series, 1124
LCR-circuit, 725
least squares method, 634
Leibniz, 104, 428
Leibniz’ teen-age dream, 41
level curve, 658, 809
level surface, 812
liars paradox, 226
limit, 177

computation of, 177
line, 323
line integral, 893, 898
linear combination, 277, 599
linear convergence, 661
linear function, 611
linear independence, 297, 601, 682
linear mapping, 299
linear oscillator, 712

damped, 713
linear transformation, 338, 612
linearization, 791
linearly independent, 337
Lipschitz continuity, 149, 205

boundedness, 159
composition of functions, 161
generalization, 243
linear combinations, 157
linear function, 150
monomials, 156
product of functions, 160
quotient of functions, 160

Lipschitz continuous, 786, 1025
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Lipschitz continuous function
converging sequence, 175

load vector, 759, 1048, 1052
logarithm, 469
logicists, 224
logistic equation, 558
long division, 77
Lorenz, 843
Lorenz system, 844
lower triangular matrix, 648
lumped mass quadrature, 1043

Möbius transformation, 1112
magnetic field, 885, 1003, 1099
magnetic flux, 1003, 1099
magnetic permeability, 1003, 1099
magnetostatics, 1006
Malthus, 410
marginal cost, 354
mass conservation, 998
mass-spring system, 695
mass-spring-dashpot systems, 709
matrix, 300, 333, 612

factorization, 649
ill-conditioned, 660
multiplication, 613, 683

matrix addition, 303
matrix multiplication, 303
Maxwell, 1003
Maxwell’s equations, 1003
Mean Value theorem, 793
medical tomography, 12
mesh, 743

isotropy, 1032
mesh function, 483, 743, 1032
mesh modification criterion, 768
minimization method, 658
minimization problem, 658, 1055
minimum point, 866
minimum value, 866
model

crash, 718
infection, 568
marriage crisis, 722
national economy, 569
population, 722
spread of infection, 722
stock market, 722
symbiosis, 722

transition to turbulence, 722
moment of inertia, 929, 940
muddy yard model, 28
multi-grid method, 1055
multiplication by scalar, 599

N-body system, 705
natural boundary condition, 763,

1065
natural logarithm, 469
natural number, 47
Navier-Stokes equations, 1002
navigator, 269
Newton, 981
Newton’s Inverse Square Law, 981
Newton’s Law of gravitation, 1009
Newton’s Law of motion, 402
Newton’s method, 391, 805
nightmare, 981
nodal basis function, 743
non-Euclidean geometry, 101
non-periodic decimal expansion, 196
norm, 275

energy, 1056
norm of a symmetric matrix, 616,

644
numerical quadrature, 476

Ohm’s law, 1003
optimal mesh, 1060
optimization, 865
ordered n-tuples, 596, 682
ordered pair, 271
orthogonal, 315
orthogonal complement, 628
orthogonal decomposition, 282, 628
orthogonal matrix, 338, 630
orthogonal projection, 746
orthogonalization, 629

parallel
lines, 294

parallelogram law, 273
parametrization, 785
parents, 1033
partial derivative, 388
partial derivatives of second order,

798
partial fractions, 523
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partial pivoting, 653
particle paths, 999
partition, 743
Peano axiom system, 229
pendulum

double, 699
fixed support, 696
moving support, 697

periodic decimal expansion, 196
permutation, 617
pivoting, 652
plane, 324
Poincaré inequality, 1018
point mass, 1008
Poisson’s equation, 991, 1046, 1062

minimization problem, 1055
variational formulation, 1047

Poisson’s equation on a square, 1049
polar coordinates, 919
polar representation, 276
polynomial, 119

coefficients, 119
positive series, 545
positive-definite, 760
potential, 898
potential field, 967
potential flow, 999, 1131
potential theory, 1130
power series, 1123
precision, 1043
prime number, 58
principle of equidistribution, 1060
principle of least action, 693
projection, 281, 302, 316

onto a subspace, 626
point onto a line, 294
point onto a plane, 328

Pythagoras, 87
Pythagoras’ theorem, 87

QR-decomposition, 631
quadrature, 429

adaptive, 482
endpoint rule, 480
lumped mass, 1043
midpoint rule, 480
trapezoidal rule, 480

quadrature error, 478
quarternions, 346

radius of curvature, 901
range, 104
rate of change, 353
rate of convergence, 661
rational number, 71
Rayleigh quotient, 1012
Reagan, 943
real number, 197

absolute value, 200
addition, 197
Cauchy sequence, 203, 582
comparison, 201
division, 200
multiplication, 200

reference triangle, 1050
refinement strategy, 1060
residual error, 668, 767, 1058
residue calculus, 1126
Residue Theorem, 1127
resistor, 725
Riemann sum, 916, 936
rigid transformations, 883
Robin boundary conditions, 763
rocket propulsion, 408
rotation, 285, 879, 881

scalar product, 315, 597
search direction, 658
separable scalar initial value prob-

lem, 563
sequence, 165

limit of, 165
series, 544
Slide Rule, 4
socket wrench, 167
solid of revolution, 939
sorting, 866
space capsule, 977
sparse matrix, 657, 760
sparsity pattern of a matrix, 1052
spectral radius, 664
spectral theorem for symmetric ma-

trices, 639
spherical coordinates, 885, 937
spinning tennis ball, 1132
splitting a matrix, 663
square domain, 1049
squareroot of two, 185
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stability
of motion, 701

stability factor, 825
stability of floating body, 977
standard basis, 600
steepest ascent, 795
steepest descent, 795, 872
steepest descent method, 658
step length, 658
stiffness matrix, 759, 1048, 1052
Stoke’s theorem, 959, 964
Stokes, 961
stopping criterion, 398, 768
straight line, 292
streamlines, 999, 1131
string theory, 731
strong boundary condition, 763
subtractive cancellation, 670
support, 1038
surface, 786
surface area, 923
surface integral, 923, 928, 1029
surface of revolution, 926
surveyor, 269
Svensson’s formula, 996, 1095
symmetric matrix, 760
system of linear equations, 295, 330

tangent plane, 791
Taylor’s formula, 1118, 1122
Taylor’s theorem, 461, 800
temperature, 988
tent functions, 1037
test of linear independence, 622
total energy, 1055
transpose, 615
transpose of a matrix, 305

triangular domain, 1070
triangulation, 1032

boundary nodes, 1062
internal nodes, 1032, 1062

trigonometric functions, 502
triple integral, 933
triple product, 321
Turing, 222
two-body, 700
two-point boundary value problem,

755

union jack triangulation, 1070
upper triangular matrix, 648

variable, 104
variation of constants, 530
Vasa, 971
vector, 271
vector addition, 272
vector product, 287, 317
vector space R

n, 596
Verhulst, 558
voltage, 725
Volterra-Lotka’s predator-prey

model, 566
volume, 935

parallelepiped, 320
volume under graph, 912

wave equation, 1012
weather prediction, 13
weight, 765
weighted L2 norm, 765
weighted Cauchy’s inequality, 765
Winnie-the-Pooh, 165

zero pivoting, 652






