HYPER-REALITY in Physics

Claes Johnson

www.bodysoulmath.org, www.fenics.org, www.icarusmath.com

Claes Johnson – KTH – p. 1

THE CLOCK AND THE ARROW

A BRIEF HISTORY OF TIME **SCIENCE-FICTION** DIALOG: PHIL MAT **SCIENCE** PHILOSOPHY ARTS LITERATURE

WHY IS TIME MOVING FORWARD?

What do you get every day but cannot keep?What do you have but cannot touch?.

Claes Johnson - KTH - p. 3

BODY&SOUL: www.bodysoulmath.org

Solve

 $\dot{u} = f(u)$

- Derivative, integral, lin alg, Gauss, Stokes
- Compute general ODE
- Compute general PDE: Poisson, heat, wave, convection, Maxwell
- Compute Euler/Navier-Stokes, Schrödinger...
- Turbulence...Computer Games...

BOOKS

- Vol 1: Derivatives and Geometry in \mathbb{R}^3 2003
- Vol 2: Integrals and Geometry in \mathbb{R}^n 2003
- Vol 3: Calculus in Several Dimensions 2003
- Vol 4: Comp Turbulent Incompress Flow 2007
- Vol 5: Computational Thermodynamics 2008
- Vol 6. THE CLOCK and the ARROW 2008
- Vol 7: Many-Minds Relativity 20008
- Vol 8: ComputationI Quantum Mechanics 2009
- Vol 9: ...

FENICS: AUTOMATION of CC

G2 General PDE
FEniCS Form Compiler
Adaptivity-Duality
A Posteriori Error Control
Optimization- Control
www.fenics.org

ICARUS: www.icarusmath.com

Web version of BODY&SOUL
Computer Game = CC
DEMO: Crash Course Thermodynamics

COMPUTER GAMES

u = f(u)
Interactive Model
Input: Data
Output: Solution
CONTROL
Stimulate Students: Active Learning

SUMMARY

COMPUTATIONAL CALCULUS
COMPLEX MODELING: TURBULENCE
HYPERREALITY: SIMULATION
KNOWLEDGE SOCIETY
REFORM? WHEN?

THE ARROW: DIRECTION of TIME

WHY IS TIME MOVING FORWARD?
WHY NO REWIND BUTTON?
NEW ANSWER:
FINITE PRECISION COMPUTATION
WORLD: CLOCK of FINITE PRECISION
WORLD: ANALOG COMPUTER

EQUATIONS WITHOUT SOLUTION

EULER-LAGRANGE-SCHRÖDINGER
 EXACT SOLUTIONS DO NOT EXIST
 COMPUTATIONAL SOLUTIONS DO EXIST
 APPROX OF NON-EXISTING EXACT SOL
 SIMULATIONS OF NON-EXISTING REALITY

HYPERREALITY

EULER EQUATIONS

- AIR/WATER
- VOLUME Ω
- TIME INTERVAL I
- SMALL VISC HEAT CONDUCTIVITY
- DENSITY ρ
- MOMENTUM $m = \rho u$
- VELOCITY $u = (u_1, u_2, u_3)$
- INTERNAL ENERGY e

CONS: MASS, MOM, INT ENERGY

Find ρ , m and ϵ such that in $\Omega \times I$

 $\dot{\rho} + \nabla \cdot (\rho u) = 0$ $\dot{m} + \nabla \cdot (mu) + \nabla p = force$ $\dot{e} + \nabla \cdot (eu) + \gamma e \nabla \cdot u = heatsource$ initial/boundary condition

• $\dot{v} = \frac{\partial v}{\partial t}$ TIME DERIV • $\gamma > 0$ GAS CONSTANT

Claes Johnson – KTH – p. 13

BAUDRILLARD (1929-2007)

- REAL = what can be reproduced
- HYPER-REAL = what is already reproduced
- SIMULATION of NON-EXIST REALITY
- MODELS of REAL without REAL ORIGIN
- MASKS NON-EXIST of REAL REALITY

SIMULATION of BAUDRILLARD

Claes Johnson – KTH – p. 15

1ST-2ND ORDER SIMULATION

BORGES

- EXACTITUDE in SCIENCE
- MAP COVERS TERRITORY

3RD ORDER SIM: HYPERREAL

- MAP REPLACES TERRITORY
- OUTSIDE REALM of GOOD and EVIL
- ONLY PERFORMATIVITY COUNTS
- CYBERNETICS CONTROL
- ALEATORY CHANCE

BANK ROBBERY: GOOD-EVIL

- REAL: PUNISHED for BEING REAL
- SIMULATED: NOT PUNISHED for being SIMULATION
- SIMULATED: PUNISHED for UPSETTING JUDICIARY SYSTEM

DISNEYLAND

IMAGE of

- AMERICAN SOC NEVER EXISTING
- MASKS NON-EXIST of REAL REALITY
- REPLACES REAL
- MODELS of WANTED REALITY

WATERGATE PROCESS

- MASKS NON-EXISTENCE of
- NON-CURRUPT AMERICAN SOC
- SCANDAL:
- NOT BREAK-IN
- NOT COVER-UP of BREAK-IN
- RETURN to ORDER: FORD replaces NIXON
- ILLUSION of NON-CORRUPT SYSTEM

MAGRITTE

Claes Johnson – KTH – p. 21

BARBIE DOLL

Claes Johnson – KTH – p. 22

The GULF WAR did not take place

- CNN REPORTERS WATCH CNN NEWS
- CNNs WAR DID NOT HAPPEN
- NEWS GENERATED by NEWS

BAUDRILLARD

• REAL:

- Why is there SOMETHING, rather than NOTHING?
- THE REAL NO LONGER EXISTS
- HYPERREAL:
- Why is there NOTHING, rather than SOMETHING?

DELEUZE (1925-1995)

HYPER-REALITY:the ONLY REALITY there is

REFLECTIONS of DELEUZE

MODERN vs POSTMODERN

- MODERN: OBJ EXIST REAL WORLD
- POST-MODERN:
- HYPERREAL SIMULACRA of
- NON-EXIST REAL WORLD

SECOND LIFE

COMPUTER GAMES

DOCU-SOAP

PORNOGRAPHY

BIBLE

- God created man in His own image, in the image of God He created him; male and female He created them.
- EXISTENCE of GOD?
- HUMAN BEING HYPERREAL?

DIJKSTRA

 Originally I viewed it as the function of the abstract machine to provide a truthful picture of the physical reality. Later, however, I learned to consider the abstract machine as the *true* one, because that is the only one we can *think*; it is the physical machine's purpose to supply a working model, a (hopefully) sufficiently accurate physical simulation of the true, abstract machine.

HYPERREAL PHYSICS

- SPACE-TIME
- STATISTICAL MECHANICS
- QUANTUM MECHANICS

HYPERREAL PHYSICS

- SIMULATION of
- NON-EXISTING PHYSICS
- APPROXIMATIONS of
- NON-EXISTING EXACT SOLUTIONS

HYPERREAL SOCIETY

APPROXIMATION of NON-EXISTING PERFECT SOCIETY

CLAY INST \$1 MILLION PRIZE

EXISTENCE of

- EXACT SOLUTIONS of
- EULER NAVIER-STOKES EQUATIONS?

PERSPECTIVE: Three Periods

CLASSICAL 1600-1900
 MODERN 1900-2000
 POST-MODERN 2000-

Classical 1600-1900

Mathematics: Calculus: Analytical Solution
 Physics: Newtonian Mechanics
 Industrial Society: Mass Production
 Leibniz Newton Euler Lagrange Laplace...
 Main Challenges:
 N-Body, Heat, Wave, ElectroMagnetism
Solar System

Local Interaction: Aristotle

Action at Distance: Newton

Claes Johnson – KTH – p. 39

Modern 1900-2000

Mathematics: Calculus: Existence of Solution Physics: Quantum Mechanics Relativity Service Society Hilbert Courant von Neumann Lions Lax... Main Challenges: Turbulence, Quantum Mech Why is there something (rather than nothing)? **BIG BANG?**

Schrödinger Equation: Electron Density

Claes Johnson – KTH – p. 41

Post-Modern 2000–

Mathematics: COMPUTATIONAL CALCULUS
 COMPUTATIONAL SOLUTION
 Physics: Nano-Micro-Bio—Cosmology
 INFORMATION SOCIETY:
 SIMULATION-VIRTUAL REALITY
 Why is there nothing rather than something?

CHALLENGE: LIFE

Claes Johnson – KTH – p. 43

CHALLENGE: LIFE

•

۲

CHALLENGE: BIG BANG

MODERN PHYSICS

- The effort to understand the universe is one of the very few things that lifts human life a little above the level of farce, and gives it some of the grace of tragedy. (Stephen Weinberg)
- What exactly is the meaning of time and its directionality – the "arrow of time"? Has it something to do with quantum theory, or does it arise at some other level? (David Peat in Superstrings and the SeaRch for the Theory of Everything, 1988)

TRAGEDIES of MODERN PHYSICS

ENTROPY/STATISTICAL MECHANICS
SUPERPOSITION of QM
COPENHAGEN INTERPRET of QM
SPACE-TIME of RELATIVITY

STATISTICAL MECHANICS

ATOMS PLAY ROULETTE
 MICROSCOPIC GAMES of ROULETTE
 PSEUDO-SCIENCE
 IMPOSSIBLE TO DISPROVE/UNDERSTAND
 MICROSCOPICS of MICROSCOPICS

QUANTUM MECHANICS

WAVE FUNCTION $\Psi(t, r_1, r_2,, r_n)$ N ELECTRONS3N SPACE DIMSCHRÖDINGER EQ: $i \frac{\partial \Psi}{\partial t} = H \psi$ H HAMILTONIANLINEAR-SUPERPOSITION

WAVE FUNCTION DOES NOT EXIST

- WALTER KOHN
- NOBEL PRIZE CHEMSITRY 1998
- □ Ψ DOES NOT EXIST if $N \ge 100$
- $\blacksquare \Psi MONSTER$
- INSTEAD ELECTRON DENSITY 3-DIM
- SUPERPOSITION FAILS
- SCHRÖDINGERS CAT DEAD OR ALIVE
 NOT DEAD/ALIVE SUPERPOSITION

TIME

TIME-LINE 0 1 2 3 4 5 6 ... LINEAR TIME ORDERED PAST-PRESENT-FUTURE VIDEO-FILM

ROBINSON CRUSOE

Claes Johnson – KTH – p. 52

RELATIVITY SPACE-TIME

TIME DIM LIKE SPACE DIM
ARROW of TIME?
DIRECTION of TIME?

CAPITALISTIC SYSTEM

INVISIBLE HAND
SHARPEN DIFFERENCE
UNSHARPEN DIFFERENCE
TURBULENCE-CHAOS

CAPITALISTIC SYSTEM

MIGRATION

HYPERREALITY IN PHYSICS

THE ARROW
DIRECTION OF TIME
IRREVERSIBILITY

CLOCK I: INFINITE PRECISION

■ LAPLACE: THE WORLD as a CLOCK INITIAL VALUE PROBLEM MATHEMATICS MECHANICS **EXACT SOLUTIONS** DETERMINISM **NO FREE WILL REVERSIBLE**

CLOCK II: FINITE PRECISION

DIGITAL COMP: FINITE PRECISION
 THE WORLD as an ANALOG COMPUTER
 FINITE PRECISION COMPUTATION
 FREE WILL POSSIBLE
 NO STATISTICS
 IRREVERSIBLE

REAL-HYPERREAL

REAL: II APPROX OF I HYPERREAL: II REPLACES NON-EXIST I

REVERS HAMILT SYST I

PARTICLE SYSTEM
HARMONIC OSCILLATOR: $\ddot{u} + u = 0$ QUANTUM MEECHANIC
TIME REVERSIBLE
Invariant: $t \to -t$, $u \to -u$ IRREVERSIBILITY FROM WHERE?

FEYNMAN

Claes Johnson – KTH – p. 62

FEYNMAN LECTURE NOTES

Where does irreversibility come from? It does not come form Newton's laws. Obviously there must be some law, some obscure but fundamental equation. perhaps in electricty, maybe in neutrino physics, in which it does matter which way time goes.

2ND LAW of THERMODYNAMICS

■ ENTROPY CANNOT DECREASE
 ■ INCREASING ENTROPY-IRREVERSIBILITY
 ■ INCREASING TIME
 ■ ARROW
 ■ HEAT DEATH: ORDER → DISORDER
 ■ WHAT IS ENTROPY? ORDER? DISORDER?

THERMODYNAMICS

■ KINETIC ENERGY → HEAT ENERGY

MATH vs THERMODYNAMICS

- Every mathematician knows it is impossible to understand an elementary course in thermodynamics. (V. Arnold)
- ...no one knows what entropy is, so if you in a debate usethis concept, you will always have an advantage. (von Neumann to Shannon)

As anyone who has taken a course in thermodynamics is well aware, the mathematics used in proving the 2nd Law is of a very special kind, having only the most tenous relation to that known to mathematicians. (S. Brush, The Kind of Motion we call Heat)

THERMODYNAMICS

Thermodynamics is a funny subject. The first time you go through it, y ou don't understand it at all. The second time you go through it, you think you understand it, except for one or two small points. The third time you go through it, you know you don't understand it, but by that time you are so used to it, it doesn't bother you any more. (Sommerfeld)

ENIGMA

■ IRREVERSIBILITY in REVERSIBLE SYST ■ NEWTON'S EQ REVERSIBLE PENDULUM REVERSIBLE **CLOCK REVERSIBLE QUANTUM MECHANICS REVERSIBLE IRREVERSIBILITY FROM WHERE?** HYPERREALITY??

BREAKING WAVE

BREAKING WAVE

Claes Johnson – KTH – p. 70

CLASSICAL 2ND LAW

CARNOT 1824: \blacksquare EFF of HEAT ENGINE $\leq 1 - T_{cold}/T_{hot}$ CLAUSIUS 1850: Heat cannot by itself flow from cold to hot CLAUSIUS 1865: **ENTROPY CANNOT DECREASE** WHY? ENTROPY? ■ MAXWELL, GIBBS, BOLTZMANN

STATISTICAL MECHANICS

BOLTZMANN'S ASSUMPTION: MOLECULAR CHAOS: Velocities independent BEFORE COLLISION H-THEOREM: ENTROPY cannot decrease Irreversibility BY ASSUMPTION Loschmidt: ASSUMES what is to be proved To derive 2ND LAW from stat mech has so far eluded the deepest thinkers (Lieb 1999)
OBJECTIVE

Thermodynamics WITHOUT ENTROPY!! Thermodynamics WITHOUT STATISTICS!! 2nd Law WITHOUT ENTROPY!! ARROW of TIME WITHOUT ENTROPY!! **COMPUTATION** instead of STATISTICS COMPUTATIONAL THERMODYNAMICS \blacksquare 1ST LAW + FINITE PREC \rightarrow 2ND LAW

FINITE PRECISION + STABILITY

NON-EXISTENCE of POINTWISE SOL
 TURBULENCE SHOCKS
 EDGE STABILITY
 EXISTENCE of COMPUTATIONAL SOL
 EXIST of IRREV COMPLEX WORLD
 NON-EXISTENCE of REV SIMPLE WORLD

TURBULENCE: ARROW

COMP TURB INCOMP FLOW 4

MYSTERIES-PARADOXES:
 d'Alembert, Loschmidt, Sommerfeld, Gibbs
 SECRETS: flying, sailing, ball sports,...
 TURBULENCE
 EULER EQUATIONS
 www.bodysoulmath.org Books: Vol 4

COMP THERMODYNAMICS 5

NEW FOUNDATION:
 COMPUTATIONAL
 DETERMINISTIC
 TURBULENCE/SHOCKS:
 NONEXISTENCE POINTWISE SOLUTIONS
 EULER EQUATIONS

COMP BLACKBODY RADIATION 6

HIGH FREQUENCY IN
LOW FREQUENCY OUT
FINITE PRECISION COMPUTATION

COMP QUANTUM MECHANICS 7

COMP SOL of SCHRÖDINGER
 HARTREE MANY-ELECTRON
 NON-EXISTENCE of
 COMPLETE WAVEFUNCTION

THE CLOCK AND THE ARROW

A BRIEF HISTORY OF TIME **SCIENCE-FICTION** DIALOG: PHIL MAT **SCIENCE** PHILOSOPHY ARTS LITERATURE

FINITE PREC + EDGE STAB
TURBULENCE SHOCKS
SHARP GRADIENTS: EDGE STAB
TURBULENT DISSIPATION: FINITE PREC
CAPITALISM: INCOME DIFF + TAX

MIXING: FAST/LOW PREC
UNMIXING: SLOW/HIGH PREC
IMPRECISE SEP: EASY/FAST
PRECISE SEP: DIFFICULT/SLOW
ANABOLISM: SLOW PRECISE
CATABOLISM: FAST IMPRECISE

ANABOLISM powered by CATABOLISM Claes Johnson - KTH - p. 85

SAWTOOTH DYNAMICS: TENSION

SLOW INCREASE – FAST RELEASE tragedy, detective story, sexual act, music, telling a funny story, winning the Nobel Prize ☐ life-death ARROW!

SAWTOOTH

SLOW BUILD-UP QUICK DECAY

SAWTOOTH POLITICS

INCREASING TENSION – REVOLUTION
 REVERSAL of TROTSKY.

COMPLEXITY

SIMPLE SYSTEM: REVERSIBLE COMPLEX SYSTEM: IRREVERSIBLE **LAMINAR FLOW: REVERSIBLE** TURBULENT FLOW: IRREVERSIBLE EDGE STABILITY \rightarrow **TRANSITION TO TURBULENCE IRREVERSIBILITY IMPOSSIBLE TO AVOID** PERPETUM MOBILE IMPOSSIBLE

EMERGENCE Laughlin:

I simple rules → complex structures
 I mean-values stable
 I point-values unpredictable

d'ALEMBERT'S PARADOX

ZERO DRAG OF POTENTIAL FLOW
 NON-ZERO DRAG OF REAL FLOW
 RESOLUTION: Wikipedia (Vol 4)
 Potential sol UNSTABLE
 Turbulent sol develops with non-zero drag

NEW 2ND LAW without ENTROPY

EULER EQ IDEAL PERFECT GAS
1ST LAW:
CONSERVATION of
MASS MOMENTUM ENERGY

NEW 2ND LAW without ENTROPY

$$\dot{K} - W = -D, \quad \dot{E} + W = D$$

- K Kinetic energy, E Internal/heat energy
- $W \operatorname{Work} > 0 / < 0$ in expansion/compression
- D > 0 turbulent/shock dissipation
- Transfer $K \to E$ "Internal = Lost"
- Irreversibility: Arrow of Time
- K grows by expansion ONLY
- E grows by compression and turbulence
- 1ST LAW + FINITE PREC \rightarrow 2ND LAW \cdot

NEW 2ND LAW without ENTROPY

$\dot{K} - W = -D, \quad \dot{E} + W = D$

- 1ST LAW + FINITE PREC \rightarrow 2ND LAW
- MULT of MOM EQ BY VEL \rightarrow KIN ENERGY
- VIOL CONS of MOM \rightarrow TURB DISS D
- TRANSFER $K \to E$
- NONEXISTENCE of EXACT SOL \rightarrow IRREV

TRANSFER $K \to E$

- Large scale kinetic energy $K \rightarrow$
- small scale kinetic energy = E = heat energy
- Change of $\$100 \text{ Bill} \rightarrow \text{Coins: Possible}$
- Coins \rightarrow Bill: Impossible:
- Finite Precision Coordination: Impossible
- Drop a stone → heats up
- Reverse: Lift itself by cooling off: Impossible

CLASS vs NEW 2ND Law

New 2nd Law $\dot{E} + W = D$: $dE + pdV = D \ge 0$, D turbulent dissipation Classical 2nd Law:

 $TdS = dE + pdV = D, \quad dS = \frac{D}{T}, \quad dS \ge 0$ New 2nd $(TdS \ge 0) =$ Class 2nd $(dS \ge 0)$ WITHOUT introducing ENTROPY!!

JOULE'S EXPERIMENT 1845

Fig. 358 Concerning overflowing experiment of Joule (Scientific Papers). <u>R</u> contains at first air compressed to 20 atm, <u>E</u> is initially a vacuum, <u>D</u> the tube

JOULE'S EXPECTATION

- T = 1 in both chambers
- High Pressure/Density in 1
- Gas expands from 1 into 2.
- Kinetic energy K increases

- Temperature $T\ {\rm drops} < 1$
- Finally T = ?

Density at two times

Temperature at two times

Average Density in Left/Right Chamber

Average Temp Left/Right

Average kinetic and heat energy

Average Kinetic Energy Left/Right

Irreversibility

- Kinetic energy increases under expansion.
- No tendency of gas to return to Chamber 1 (compression)
- Gas expands by itself but does not compress by itself.
- Compression produces heat: cooling: lost energy.

SUMMARY

NEW 2ND LAW: $\dot{E} + W = D$ EULER EQ INVISCID PERFECT GAS **FINITE PREC** + 1ST LAW \rightarrow 2ND LAW \square COMPLEXITY \rightarrow ARROW ARROW EMERGENT PHENOMENON FINITE PREC instead of STATISTICS ■ APPL: QM, CHEM, BIO, GEO,... HYPERREALITY

Kurzweil: Singularity 2045

- Kurzweil: Synthesizer....
- Moore's law:
- Computational power doubles every 18 months
- DIGITAL SIMULATION
- Computational Technology Blow Up 2045
- Infinite speed of development

Kurzweil: Epochs of Evolution

Baudrillard: SIMULATION

Copy of Reality
 Confusion Simulation–Reality
 Mask of Nonexisting Reality:
 HYPERREALITY
 HyperMarkets

HYPERREALITY (masking reality)

Claes Johnson – KTH – p. 110

Deleuze: SIMULATION

SIMULATION is REALITYREALITY is SIMULATION

SIMULATION

Math: COMPUTATIONAL CALCULUS
 Physics: Basic Conservation Laws
 Chemistry-Biology—: Constitutive Laws
 COMPUTATIONAL TECHNOLOGY

TEST: THERMODYNAMICS

DIFFICULT!!
Why?
TURBULENCE/SHOCKS!!

CIRCULAR CYLINDER RE= 3900

Claes Johnson – KTH – p. 114

CLASSICAL THERMODYNAMICS

DIFFICULT

- 2nd LAW?
- Who can understand and teach?
- Lars Onsager (1903-1976), Nobel Prize 1968
- Ilya Prigogine Nobel Prize 1989
- STATISTICAL MECHANICS
- Microscopic Games of Roulette
- PLANCK: ACT of DESPERATION!

1st LAW: EASY

 CONSERVATION of Mass, Momentum, Energy
 EULER EQ PERFECT IDEAL GAS
 UNDERSTANDABLE.

CLASSICAL 2ND LAW

First Law of Thermodynamics – Conservation of Energy Second Law of Thermodynamics - It is not possible to create a cyclical heat engine that draws heat from a reservoir without wasting some heat energy. **Entropy** – is a measure of the disorder in the Universe. It must always increase; local decreases make a bigger mess elsewhere.

Classical 2nd LAW

- The 2nd Law cannot be derived from purely mechanical laws. It carries the stamp of the essentially statistical nature of heat.
 (Bergman in Basic Theories of Physics 1951)
- The total energy of the universe is constant; the total entropy is continually increasing. (Rudolf Clausius 1865)
- PHYSICAL SIGNIFICANCE of ENTROPY??FORGET IT!!

Claes Johnson – KTH – p. 118

HYPER-REALITY

NON-EXIST EXACT EULER SOL!! Reason: TURBULENCE/SHOCKS WEAK SOL: NOT STRONG SOL APPROX TURBULENT SOL EXIST G2: GENERAL GALERKIN SIMULATION of NONEXIST EXACT SOL DETERMINISTIC NEW 2nd LAW ARROW of TIME

DETERMINISTIC 2ND LAW

■ G2 satisfies 2nd LAW AUTOMATICALLY PENALTY for not being EXACT **TURBULENT DISSIPATION** \blacksquare Kinetic Energy \rightarrow Heat Energy LOSSES Cooling of engine ARROW of TIME: IRREVERSIBILITY **DETERMINISTIC:** No Statistics!!

2ND LAW

FINITE PRECISION:
 ANALOG or DIGITAL COMPUTATION
 EDGE STABILITY: Not Stable, Not Unstable

EULER EQUATIONS

air/water

- in fixed volume Ω in \mathbb{R}^3 with boundary Γ
- over a time interval I
- very small viscosity and heat conductivity
- density ρ
- momentum $m = \rho u$
- velocity $u = (u_1, u_2, u_3)$
- total energy ϵ

Conserv. Mass, Momentum, Energy

Find ρ , m and ϵ such that in $\Omega \times I$

$$\dot{\rho} + \nabla \cdot (\rho u) = 0$$

$$\dot{m} + \nabla \cdot (mu) + \nabla p = 0$$

$$\dot{\epsilon} + \nabla \cdot (\epsilon u + pu) = 0$$

$$u \cdot n = 0 \quad \text{on } \Gamma \times I$$

initial condition

Claes Johnson – KTH – p. 123

• *p* pressure, $\dot{v} = \frac{\partial v}{\partial t}$ • SLIP BC

Constitutive Equations

- $\epsilon = k + e$ total energy
- $k = \frac{\rho |u|^2}{2}$ kinetic energy
- $e = \rho T$ internal energy
- T temperature.
- $p = (\gamma 1)\rho T = (\gamma 1)e$ perfect gas
- $\gamma > 1$ gas constant, $\gamma = 5/3$ monoatomic gas
- viscosity $\nu = 0$, heat conductivity $\kappa = 0$.

WHAT IS VISCOSITY?

- Nobody knows!!
- kinematic, dynamic, laminar, turbulent,
- molecular, eddy,....??
- solution dependent losses??
- experimental determination??
- ????
- But we know it is small $\nu \leq 10^{-6}$
- Enough!! Euler: $\nu = 0!!$

SKIN FRICTION

- LAMINAR: $\nu^{0.5}$
- TURBULENT: $\nu^{0.2}$
- SLIP/SMALL FRICTION for $\nu < 10^{-5}$
- EULER with SLIP BC!!
- TURBULENT EULER SOLUTIONS

EINSTEIN'S DREAM

- $\gamma = 5/3$, $\nu = 0$, $\kappa = 0$.
- NO PARAMETER
- Predictive Power??
- YES!!
- The World as Analog Computation
- The World as Digital Computation

HYPERREALITY of EULER

- NON-EXISTENCE of EXACT SOL: Inf small scales
- COMPUTATIONAL TURBULENT SOL EXIST
- GIVE USEFUL INFO:
- Predict Drag and Lift of Car/Aircraft!!
- (CALCULUS USELESS)
- (COMPUTATIONAL CALCULUS USEFUL)

NS APPROX EULER

Find $\hat{u} = (\rho, m, \epsilon)$:

$$\dot{\rho} + \nabla \cdot (\rho u) = 0$$
$$R_m(\hat{u}) \equiv \dot{m} + \nabla \cdot (mu) + \nabla p = \nu \Delta u$$
$$\dot{\epsilon} + \nabla \cdot (\epsilon u + pu) = 0$$

 $\int R_m(\hat{u})\varphi \, dx dt = \int \nu \nabla u \nabla \varphi \, dx dt = \sqrt{\nu} \|\varphi\|_{H^1}$ • NS SOL: WEAK APPROX EULER SOL
• $\|R_m(\hat{u})\|_{H^{-1}} \approx \sqrt{\nu}$

NS APPROX EULER

$$\int (\dot{m} + \nabla \cdot (mu) + \nabla p) \cdot u \, dx = \int \nu |\nabla u|^2 \equiv D(u) \approx 1$$

- *u* Hölder 1/3
- D(u) = 0 if u smoother, but u is not (Onsager)
- NS not strong approx Euler: $R_m(\hat{u}) \sim \frac{1}{\sqrt{\nu}}$ pw,

$$\int (\dot{m} + \nabla \cdot (mu) + \nabla p) \cdot u = \int \nu |\nabla u|^2$$

LARGE = LARGE or LARGE - LARGE =0

Claes Johnson - KTH - p. 130

G2 APPROX EULER

LEAST-SQUARES STABILIZED GALERKIN

Claes Johnson – KTH – p. 131

- MESH SIZE h
- G2 SOL: WEAK APPROX EULER SOL
- $\|R_m(\hat{u})\|_{H^{-1}} \approx \sqrt{h}, R_m(\hat{u}) \sim \frac{1}{\sqrt{h}} pw$
- $\nu \sim h$

STABILIZATION $\delta \sim h$

$$(\dot{\rho} + \nabla \cdot (\rho u), v) + (\delta u \cdot \nabla \rho, u \cdot \nabla v) = 0$$

$$(\dot{m} + \nabla \cdot (mu) + \nabla p, v) + (\delta u \cdot \nabla m, u \cdot \nabla v) = 0$$

$$(\dot{\epsilon} + \nabla \cdot (\epsilon u + pu), v) + (\delta u \cdot \nabla \epsilon, u \cdot \nabla v) = 0$$

STABILITY: $v = u$ in MOMENTUM:

$$D_h(u) = \int h
ho |u \cdot
abla u|^2 dx dt$$
 PENALTY
 $D(u) = \int
u |
abla u|^2 dx$

PENALTY vs VIOLATION

$R_m(\hat{u}) = \dots + \rho u \cdot \nabla u + \dots = \mathsf{LARGE}$

- PENALTY on PART of $R_m(\hat{u})$
- STREAMLINE DIFFUSION
- SMART ARTIFICIAL VISCOSITY
- PENALTY = VIOLATION
- IDEAL according to FOUCAULT:
- Discpline and Punishment, The Birth of the Prison, 1991.

WEAK UNIQUENESS

- MEAN-VALUE INDEPENDENT of h or ν
- INDEPENDENCE on STABILIZATION
- FOCUS on $R(\hat{u})$ NOT $-\nu\Delta u$
- $R(\hat{u})$ CANNOT BE STRONGLY SMALL!!

DRAG of SPHERE: Vorticity

DRAG CRISIS $c_D = 0.5, 0.3, 0.2, 0.2$

$\beta = 0.082, 0.032, 0.022, 0.018 \sim \nu^{0.2}$

Claes Johnson – KTH – p. 136

DRAG CRISIS $c_D = 0.2, 0.2, 0.2, 0.1$

$\beta=0.013, 0.012, 0.011, 0.0097$

Claes Johnson – KTH – p. 137

EG2: EULER G2

- STABILIZATION PENALTY: $D(u) = \int hR^2 dx$
- $h \text{ mesh size, } R(u) \text{ Residual} \approx h^{-1/2} >> 1$
- D(u) NOT SMALL ≈ 1 : TURBULENCE
- 10⁷ meshpoints for COMPLEX GEOM
- output error $\leq S \|hR\|_{L2} < 1$, S Stability factor
- NO VISCOUS BOUNDARY LAYER
- 10^{18} for DNS: IMPOSSIBLE USELESS

1D EULER: Find $\hat{u} \equiv (\rho, m, e)$:

$$R_{\rho}(\hat{u}) \equiv \dot{\rho} + (\rho u)' = 0 \quad \text{in } Q,$$

$$R_{m}(\hat{u}) \equiv \dot{m} + (mu + p)' = 0 \quad \text{in } Q,$$

$$R_{e}(\hat{u}) \equiv \dot{e} + (eu)' + pu' = 0 \quad \text{in } Q,$$

$$u(0, t) = u(1, t) = 0 \quad t \in I,$$

$$\hat{u}(\cdot, 0) = \hat{u}^{0} \quad \text{in } \Omega,$$

where $p = (\gamma - 1)e$, $u = \frac{m}{\rho}$,

 $R(\hat{u}) = 0, \quad R = (R_{\rho}, R_m, R_e).$

REG EULER: Find $\hat{u} = \hat{u}_{\nu,\mu}$:

$$\dot{\rho} + (\rho u)' = 0 \quad \text{in } Q,$$

$$\dot{m} + (mu + p)' = (\nu u')' + (\mu p u')' \quad \text{in } Q,$$

$$\dot{e} + (eu)' + pu' = \nu(u')^2 \quad \text{in } Q,$$

$$u(0, t) = u(1, t) = 0 \quad t \in I,$$

$$\hat{u}(\cdot, 0) = \hat{u}^0 \quad \text{in } \Omega,$$
(2)

where

ν > 0 shear viscosity
μ >> ν small bulk viscosity (μ = 0 if u' < 0).

REG SOL EXIST/SATISFIES

$$\begin{split} \|R_m(\hat{u})\|_{-1} &\leq \frac{\sqrt{\nu}}{\sqrt{\mu}} + \sqrt{\mu} << 1 \quad (small) \\ R_\rho(\hat{u}) &= 0, \quad R_e(\hat{u}) \geq 0 \quad \text{pointwise.} \\ \text{nd Law:} \end{split}$$

$$\dot{K} \le W - D, \quad \dot{E} = -W + D,$$

where $K = \int_J k dx$, $E = \int_J e dx$,

2

$$W = \int_J pu' dx, \quad D = \int_J \nu(u')^2 dx > 0.$$

NEW 2ND LAW

$\dot{E} + w = D, \quad \dot{K} - W \leq -D$

$dE + pdV = D > 0 \quad dK - pdV = -D$

CLASS 2ND LAW

Classical entropy S satisfies Classical 2nd Law: $S = \rho \log(e\rho^{-\gamma}) = \rho \log(T\rho^{-\gamma+1}) = \rho \log(TV^{\gamma-1}),$ satisfies $\dot{S} + \nabla \cdot (Su) \ge 0 \quad (\frac{D}{T})$ or in symbolic form $TdS = dE + pdV, \quad dS \ge 0$ $TdS \ge 0$ NEW

MULT MOMENTUM by u:

Use the mass balance in the form

$$\frac{u^2}{2}(\dot{\rho} + (\rho u)') = 0$$

to get

$$\dot{k} + (ku)' + p'u - \mu(pu')'u - \nu u''u = 0.$$

By integration in space it follows that

 $\dot{K} - W \le -D,$

and similarly from the equation for e,

 $\dot{E} + W = D.$

Claes Johnson – KTH – p. 144
ADD K and E:

$$\dot{K} + \dot{E} + \int_0^1 \mu p(u')^2 \, dx = 0,$$

$$K(1) + E(1) + \int_Q \mu p(u')^2 \, dx \, dt = K(0) + E(0).$$

Need to show that $E(1) \ge 0$. Energy eq:

$$\frac{De}{Dt} + \gamma eu' = \nu (u')^2,$$

where $\frac{De}{Dt} = \dot{e} + ue'$ is the material derivative of e following the fluid particles with velocity u. Assuming that e(x, 0) > 0for $0 \le x \le 1$, it follows that e(x, 1) > 0 for $0 \le x \le 1$, and thus E(1) > 0.

CONTROL of WORK W

Assuming K(0) + E(0) = 1:

 $\int_{O} \mu p(u')^2 \, dx \, dt \le 1,$

 $0 \le E(t) \le 1$

INT KINETIC ENERGY:

$$\begin{split} K(1) + \int_{Q} \nu(u')^{2} dx dt &= \int_{Q} pu' dx dt - \int_{Q} \mu p(u')^{2} dx dt \\ &\leq \frac{1}{\mu} \int_{Q} p dx dt \leq \frac{1}{\mu}, \end{split}$$

where

$$\int_{Q} p dx dt = (\gamma - 1) \int_{Q} e dx dt \le \int_{I} E(t) \le 1.$$

Hence

 $\int_{Q} \nu(u')^2 dx dt \le \frac{1}{\mu}.$

Claes Johnson – KTH – p. 147

EXISTENCE of REGULARIZED SOL

 $\|R_m(\hat{u})\|_{-1} \le \sqrt{\mu} + \frac{\sqrt{\nu}}{\sqrt{\mu}} \quad (\mathsf{SMALL}),$ $R_{\rho}(\hat{u}) = 0, \quad R_e(\hat{u}) \ge 0$ $\dot{E} + W = D \quad \dot{K} - W = -D$ MEANVALUE INDEP of REG WEAK UNIQUENESS of REG SOL CLAY PRIZE

MEAN VALUE OUTPUT STABLE ■ COMPLEX FLOW EXISTS, SIMPLE NOT ■ WORLD EXISTS BECAUSE IT IS COMPLEX FLYING POSSIBLE by TURBULENCE!!

NEW 2ND LAW: $\dot{E} + W = D > 0$

- **FINITE PRECISION COMPUTATION** IRREVERSIBILITY by FINITE PRECISION
- **NO ENTROPY**
- $\square LARGE SCALE KE \rightarrow SMALL SCALE KE$

SUMMARY

SECRET of FLYING

Claes Johnson – KTH – p. 150

LIFT DRAG vs ANGLE of ATTACK

<u>Claes J</u>ohnson – KTH – p. 151

EG2 BREAKTHROUGH

- NO VISCOUS BOUNDARY LAYER
- 10^7 meshpoints for COMPLEX GEOM
- OUTPUT ERROR $\leq S \|hR\|_{L^2} < 1$,
- S Stability factor

2nd Law for EG2

MULT of MOMENTUM by u gives:

 $\dot{K} = W - D, \quad \dot{E} = -W + D$

Claes Johnson – KTH – p. 153

- D > 0 NOT SMALL = TURBULENCE
- K(t) (total) KINETIC energy at time t
- E(t) (total) HEAT energy
- $W = \int_{\Omega} p \nabla \cdot u \, dx$ WORK rate
- W > / < 0 under EXPANSION/COMPRESSION
- W = 0 incompressible flow

ESSENCE of THERMODYNAMICS

- $\dot{K} = W D$, $\dot{E} = -W + D$
- Transfer of kinetic energy K to heat energy E
- Irreversibility Arrow of Time
- K grows by expansion ONLY
- E grows by compression
- Entropy: NO ROLE
- NOBODY knows what Entropy is (Neumann)
- G2 THERMODYN: Understandable + Useful
 COMPUTATIONAL CALCULUS!!

PENDULUM

$$\dot{v} = -u, \quad \dot{u} = v$$

 $\frac{d}{dt}(\frac{v^2}{2}) = -uv, \frac{d}{dt}(\frac{u^2}{2}) = uv,$
 $\dot{K} = W, \quad \dot{E} = -W, \quad W = -uv$
 K kinetic energy, E potential energy
 W work rate, $D = 0$: reversible
Oscillation: kinetic-potential energy
Thermodyn = Oscill: kinetic-heat energy

JOULE EXPERIMENT

- T = 1 in both chambers
- Gas expands from 1 into 2.
- Kinetic energy K increases
- Temperature T drops < 1
- Turbulence develops in 2
- Kinetic energy transforms into heat energy
- Temperature increases
- Final state T = 1 in both chambers.
- Simple Clear: Dynamics: No Mystery

SHEEP

U-GLASS

۲

Boltzmann: Statistical Mechanics?

- Entropy/disorder increases
- More disorder in bigger volume
- Small probability that gas will return.
- Difficult Unclear: NO DYNAMICS: MYSTERY

CLASSICAL ENTROPY

CLASSSICAL 2nd LAW:

 $TdS = T + pdV, \quad dS \ge 0$ $S = \log(p\rho^{-\gamma}) \sim \log(V)$ • Physical significance of S?? NEW 2nd LAW:

 $T + pdV \ge 0$

Claes Johnson – KTH – p. 160

No significance of S^{*}

CLAY \$1 MILLION PRIZE

- NON-EXISTENCE: EXACT EULER SOL
- EXISTENCE: APPROX TURB EULER SOL:
- WEAK LERAY NS OR G2 SOL
- INCOMPRESS and COMPRESS (NEW)
- WEAK UNIQUENESS: OUTPUT ERROR CONTROL
- ANY REGULARIZATION!!
- NONTRIVIAL SOL of PRIZE PROBLEM??
- $||R(\hat{u})||_{H^{-1}} \le \sqrt{h}, \quad \sqrt{\nu}$

SIGNIFICANCE of COMPUTATIONA

- Referee: To me a computation means nothing
- COMPUTATIONAL SOL APPROX MATH SOL!!

SOCIETY of FINITE PRECISION

FLAG FLAT in PERFECT SOCIETY .

Claes Johnson – KTH – p. 163

TURBULENCE

Analytical Turbulence: IMPOSSIBLE
 Computational Turbulence: POSSIBLE

Computational Calculus vs Calculus?

Mathematicians: MINOR Modification
 BUT MAJOR CHANGE!!
 Calculus: DIFFICULT
 Computational Calculus: EASY!!
 Calculus: IMPOSSIBLE to Teach
 Computational Calculus: POSSIBLE!!

CHINA CHALLENGE

China: 400.000 Engineers/year Europe: Tradition Math Education stable for 100 years: Calculus–Classical–Analytical **REFORM: COMPUTATIONAL CALCULUS** COMPUTATIONAL TECHNOLOGY Start: First Day of First Year

INVESTMENTS

CALCULUS 1700-2000: 300 years!!
 FLUID DYNAMICS: DNS Impossible!!
 RESISTANCE to REFORM!!

REFEREE COMMENTS

- Well written, Interesting, Provocative
- I strongly recommend rejection
- I did not read their numerical papers
- To me their numerics proves nothing
- Not new, Too new
- Full of prentiousness, Sterile polemic
- Ignores modern work in fluid mech/numerics
- Play with words
- REJECT: SIAM SciComp, JFM, JMFM, M3AS

BODY&SOUL: www.bodysoulmath.org

Solve

 $\dot{u} = f(u)$

- Derivative, integral, lin alg, Gauss, Stokes
- Compute general ODE
- Compute general PDE: Poisson, heat, wave, convection, Maxwell
- Compute Euler/Navier-Stokes, Schrödinger...
- Turbulence...Computer Games...

BOOKS

- Vol 1: Derivatives and Geometry in \mathbb{R}^3 2003
- Vol 2: Integrals and Geometry in \mathbb{R}^n 2003
- Vol 3: Calculus in Several Dimensions 2003
- Vol 4: Comp Turbulent Incompress Flow 2007
- Vol 5: Computational Thermodynamics 2007
- Vol 6. The Arrow of Time 2007
- Vol 7: Many-Minds Relativity 2000
- Vol 8: Many-Minds Quantum Mechanics 2008
- Vol 9: Comp Solid Mech 2008....Vol 10...

FENICS: AUTOMATION of CC

G2 General PDE
FEniCS Form Compiler
Adaptivity-Duality
A Posteriori Error Control
Optimization- Control
www.fenics.org

ICARUS: www.icarusmath.com

Web version of BODY&SOUL
Computer Game = CC
DEMO: Crash Course Thermodynamics

COMPUTER GAMES

u = f(u)
Interactive Model
Input: Data
Output: Solution
CONTROL
Stimulate Students: Active Learning

SUMMARY

COMPUTATIONAL CALCULUS
 COMPLEX MODELING: TURBULENCE
 HYPERREALITY: SIMULATION
 KNOWLEDGE SOCIETY
 REFORM? WHEN?