BLOWUP OF INCOMPRESSIBLE EULER SOLUTIONS

Johan Hoffman and Claes Johnson

www.bodysoulmath.org, www.fenics.org, www.csc.kth.se/cgjoh

Claes Johnson – KTH – p. 1

D'ALEMBERT: CLAY: FLYING

- D'ALEMBERT'S PARADOX 1752:
 ZERO DRAG/LIFT OF INVISCID FLOW!?
- HOW TO FLY? LIFT: KUTTA-ZHU 1903
 LIFT/DRAG: PRANDTL 1904
- CLAY 2000 MILLENNIUM PROBLEM:
 EXIST SMOOTH SOL OR BLOWUP
 NAVIER-STOKES/EULER?

COST OF SEPARATION

- FLOW AROUND A BODY: ATTACH-SEPARATE
 DIVORCE:
 - LEAVING IDEAS-IDEALS
 - LEAVING PROPERTY-POWER
- GETTING OLDER:
 - BEYOND 60....

HAPPY (NON-SEPARATED) MAN!

Claes Johnson – KTH – p. 4

Claes Johnson – KTH – p. 5

- SPECIFIC DATA: PROOF(II) COMPUT??? ONE MILLION DOLLAR!
- ALL DATA: PROOF(I) ANALYTICAL!
- (II) BLOWUP FOR SPECIFIC DATA?
- NAVIER-STOKES/EULER (INCOMP) (I) EXISTENCE SMOOTH SOL ALL DATA?

CLAY PROBLEM: BLOWUP?

or

BLOWUP OR NON-BLOWUP?

■ BEALE-KATO-MAJDA: BLOWUP at T>0 IFF

 $\int_{0}^{T} \int_{\Omega} \|\omega(\cdot, t)\|_{\infty} dt = \infty \qquad (1984)$ **KELVIN'S THEOREM (\omega VORT)** $\omega(\cdot, 0) = 0 \quad \Rightarrow \quad \omega(\cdot, t) = 0 \quad t > 0.$ KERR 1993-: COMPUT BLOWUP HOU 2006-: COMPUT NON-BLOWUP **CONSTANTIN: MAIN PROBLEM ???**

POT SOL CIRC CYL: DRAG = 0

- INCOMPR INVISC IRROT EULER SOL SLIP
- DRAG = 0! D'ALEMBERT'S PARADOX
- NON-BLOWUP ACC BKM

Claes Johnson – KTH – p. 8

DRAG ≈ 0.33, SLIP BC TURBULENT INCOMPRESSIBLE EULER

VOLVO CAR: BLOWUP EULER

IMPOSSIBLE – POSSIBLE

- MOIN: IMPOSSIBLE: $> 10^{16}$ MESH POINTS
- HENNINGSON KTH: WILL TAKE 50 YEARS
- DAVIDSON CHALMERS: IMPOSSIBLE
- BUT POSSIBLE!! WITH 10⁶ MESH POINTS
- TURBULENT INCOMPRESSIBLE EULER
 SLIP BC

WHAT'S WRONG WITH POT SOL?

PRANDTL (FATHER FM) 1904: SLIP BC: DRAG/LIFT FROM NO-SLIP BOUND LAYER

Claes Johnson – KTH – p. 10

WHAT'S WRONG WITH PRANDTL?

NO-SLIP BC

- MAIN DRAG NOT FROM BOUND LAYER
- SKIN FRICTION SMALL
- ANOTHER SOURCE OF DRAG: WHAT?
- ONE-MILLION DOLLAR QUESTION!

BLOWUP=NON-SMOOTH=TURB

■ SMOOTH:

- SMALL EFFECT OF REGULARIZATION
- NON-SMOOTH:
 LARGE EFFECT OF REG
 = TURBULENT
 - $\bullet = \mathsf{BLOWUP}$

FINITE MESH SIZE COMP

- BLOWUP = TURB!
- DETECT TURB ON MESH SIZE H!
- PROVES BLOWUP FOR ALL h < H?
- TURB $RE_H = 1/H$
- \Rightarrow TURB FOR ALL $RE > RE_H$?!
- TURB NOT DISAPPEAR INCREAS RE!
- BUCKLING: NOT DISAPP INCREAS LENGTH

COMPARE:

LAMINAR FOR *H* or *RE_H*⇒ LAMINAR ALL *h* < *H*, *RE* > *RE_H*?
FALSE!

MORAL:

- DETECT NON-SMOOTH ON FIN MESH
- CANNOT DETECT SMOOTH ON FIN MESH
- CLAY PROBLEM: DETECT NON-SMOOTH!!
- POSSIBLE ON FINITE MESH!
- DICHOTOMY: LAMINAR/SMOOTH TURBULENT/NON-SMOOTH
- CF BURGERS: SMOOTH SHOCKS

WELLPOSEDNESS

LHADAMARD 1902 SMALL PERTURBATIONS \Rightarrow SMALL EFFECT **ON OUTPUT** ONLY WELLPOSED MEANINGFUL NOT WELLPOSED NOT MEANINGFUL!! $\square \nu > 0$ SAME AS $\nu > 0$ EULER INCLUDED IN CLAY NS PROBLEM!

EXACT SOL from APPROXIMATE

 \square IS THERE x: D(x) = d? $\square D(X) = d + R(X), X \text{ APPROX SOL}$ $\square 2S|R(X)| < TOL$ $S = |D'(X)^{-1}|$ $\square S|D'(y) - D'(X)| < \frac{1}{2}$ for |x - X| < TOL \square THEN D(x) = d with |x - X| < TOL $|\overline{x - X}| \le 2S|R(X) - R(x)|$ **CONTRACTION MAP** $x \to x - D'(X)^{-1}D(x)$

WELLPOSEDNESS

- D(x) = d "EXACT" SOL x
 SUBJECT to PERTURBATION R
- $\square D(X) = d + R$
- *X* EXACT SOL of PERTURBED DATA
- $\square X$ "AS GOOD" AS x IF
- $\square S = D'(X)^{-1}$ MODERATE SIZE!!
- \blacksquare TEST: WELLPOSEDNESS of COMPUTED X
- X REPRESENTATIVE SOLUTION

OUTPUT WELLPOSEDNESS

M(x) OUTPUT FUNCTIONAL WEIGHT ψ
M(X) WELLPOSED IF S MODERATE SIZE
|M(x) - M(X)| ≤ S||R(x) - R(X)||_{-1}
||·||_1 WEAK NORM
S = ||φ||_1
D'(X)^Tφ = ψ

EQ WITHOUT EXACT SOLUTIONS

 EULERS EQUATIONS IN FLUID MECH
 WELLPOS EXACT SOL DO NOT EXIST
 WELLPOS COMP SOLUTIONS DO EXIST!
 APPROX OF NON-EXISTING EXACT SOL!
 SIMULATIONS OF NON-EXISTING REALITY!

HYPERREALITY

QM HYPERREALITY

- SUPERPOSITION?? SCHRÖD CAT? **HARTREE APPROX**: *N*-SYSTEM in \mathbb{R}^3
- KOHN NOBEL PRIZE 1998 $\square \mathbb{R}^{3N}$ WAVE FUNCTION DOES NOT EXIST IF N > 100.
- SCHRÖDINGER'S

EQ WITHOUT EXACT SOLUTIONS

Claes Johnson – KTH – p. 21

BAUDRILLARD (1929-2007)

- REAL = WHAT CAN BE SIMULATED
- HYPER-REAL = WHAT IS SIMULATED
- SIMULATION of NON-EXIST REALITY
- MODELS of REAL without REAL ORIGIN
- MASKS NON-EXIST of REAL REALITY

SIMULATION of BAUDRILLARD

Claes Johnson – KTH – p. 23

1ST-2ND ORDER SIMULATION

BORGES

- EXACTITUDE in SCIENCE
- MAP COVERS TERRITORY

3RD ORDER SIM: HYPERREAL

- MAP REPLACES TERRITORY
- OUTSIDE REALM of GOOD and EVIL
- ONLY PERFORMATIVITY COUNTS
- CONTROL

BANK ROBBERY: GOOD-EVIL

- REAL: PUNISHED for BEING REAL
- SIMULATED: NOT PUNISHED for being SIMULATION
- SIMULATED: PUNISHED for UPSETTING JUDICIARY SYSTEM

DISNEYLAND

IMAGE of

- AMERICAN SOC NEVER EXISTING
- MASKS NON-EXIST of REAL REALITY
- REPLACES REAL
- MODELS of WANTED REALITY

MAGRITTE

Claes Johnson – KTH – p. 28

MODERN vs POSTMODERN

- MODERN: OBJ EXIST REAL WORLD
- POST-MODERN:
- HYPERREAL SIMULACRA of
- NON-EXIST REAL WORLD

DIJKSTRA

 Originally I viewed it as the function of the **ABSTRACT MACHINE to provide a truthful** picture of the physical reality. Later, however, I learned to consider the abstract machine as the TRUE one, because that is the only one we can THINK; it is the PHYSICAL MACHINE's purpose to supply a *working* model, a (hopefully) sufficiently accurate physical SIMULATION OF THE TRUE ABSTRACT MACHINE.

HYPERREAL PHYSICS

- SPACE-TIME
- STATISTICAL MECHANICS
- QUANTUM MECHANICS

HYPERREAL PHYSICS

- SIMULATION of
- NON-EXISTING PHYSICS
- APPROXIMATIONS of
- NON-EXISTING EXACT SOLUTIONS

CLAY INST \$1 MILLION PRIZE

- WILL SHOW BLOWUP OF EULER SOLUTIONS
- NON-EXISTENCE OF EXACT SOLUTIONS
- HYPERREALITY

EULER EQUATIONS

AIR/WATER: SMALL VISC (= 0)
VELOCITY *u* PRESSURE *p*SLIP BC!

$$\dot{u} + u \cdot \nabla u + \nabla p = f \quad \text{in } \Omega \times I$$

$$\nabla \cdot u = 0 \quad \text{in } \Omega \times I$$

$$u \cdot n = 0 \quad \text{on } \Gamma \times I$$

$$u(\cdot, 0) = u^0 \quad \text{in } \Omega$$

LIN EQ: $v = u - \overline{u}$ WELLPOS?

$$\dot{v} + (u \cdot \nabla)v + (v \cdot \nabla)\bar{u} + \nabla q = f - \bar{f}$$
$$\nabla \cdot v = 0$$
$$v \cdot n = g - \bar{g}$$
$$v(\cdot, 0) = u^0 - \bar{u}$$

in $\Omega \times I$ in $\Omega \times I$ on $\Gamma \times$ in Ω . (1)

CONVECTION *u* REACTION $\nabla \bar{u}$ TRACE $\nabla \bar{u} = \nabla \cdot \bar{u} = 0$ UNSTABLE/STABLE EIGENVALUES
EXP UNSTABLE IN RETARD.

Claes Johnson – KTH – p. 35

VORTICITY EQUATION

 $\dot{\omega} + (u \cdot \nabla)\omega - (\omega \cdot \nabla)u = \nabla \times f$ in Ω , (2) EXPONENTIALLY UNSTABLE POINTW DIFFERENT SIGN OF REACT EXP UNSTABLE IN ACC
EG2 EULER GENERAL GALERKIN

RESIDUAL LS STAB GALERKIN: hR^2 MESH SIZE h SLIP BC \square NO PARAMETER (VISC = 0) $K(T) + D_h(T) = K(0), \quad K(T) \quad \text{KIN ENERGY}$ $D_h(t) = \int_0^T \int_0 h R^2 dx dt >> 0$ TURB-NONSMOOTH

POT SOL CIRC CYL: DRAG = 0

EG2 REAL SOL DRAG ≈ 1

START NO-SLIP: $c_D = 1.03$

SLIP: t=0.25: $c_D = 0.06$

Velocity & pressure: t=0.5: $c_D = 0.10$

Velocity & pressure: t=0.75: $c_D = 0.15$

Velocity & pressure: t=1.0: $c_D = 0.22$

Velocity & pressure: t=1.25: $c_D = 0.25$

Velocity & pressure: t=1.5: $c_D = 0.28$

Velocity & pressure: t=1.75: $c_D = 0.36$

Velocity & pressure: t=2.0: $c_D = 0.51$

Velocity & pressure: t=2.25: $c_D = 0.78$

Velocity & pressure: t=2.5: $c_D = 1.14$

•

Velocity & pressure: t=2.75: $c_D = 1.04$

Velocity & pressure: t=3.0: $c_D = 1.05$

Velocity & pressure: t=4.5: $c_D = 1.63$

Velocity & pressure: t=5.0: $c_D = 1.79$

Velocity & pressure: t=5.5: $c_D = 1.96$

Velocity & pressure: t=5.75: $c_D = 1.90$

Velocity & pressure: t=11.0: $c_D = 1.82$

Vorticity: $\omega_1, \omega_2, \omega_3$: **t=0.0**: $c_D = 1.03$

Vorticity: $\omega_1, \omega_2, \omega_3$: t=0.25: $c_D = 0.06$

Vorticity: $\omega_1, \omega_2, \omega_3$: **t=0.5:** $c_D = 0.10$

Vorticity: $\omega_1, \omega_2, \omega_3$: t=0.75: $c_D = 0.15$

Vorticity: $\omega_1, \omega_2, \omega_3$: **t=1.0:** $c_D = 0.22$

Vorticity: $\omega_1, \omega_2, \omega_3$: t=1.25: $c_D = 0.25$

Vorticity: $\omega_1, \omega_2, \omega_3$: t=1.5: $c_D = 0.28$

Vorticity: $\omega_1, \omega_2, \omega_3$: t=1.75: $c_D = 0.36$

Vorticity: $\omega_1, \omega_2, \omega_3$: t=2.0: $c_D = 0.51$

Vorticity: $\omega_1, \omega_2, \omega_3$: t=2.25: $c_D = 0.78$

Vorticity: $\omega_1, \omega_2, \omega_3$: t=2.5: $c_D = 1.14$

Vorticity: $\omega_1, \omega_2, \omega_3$: t=2.75: $c_D = 1.04$

Vorticity: $\omega_1, \omega_2, \omega_3$: **t=0.0:** $c_D = 1.03$

Vorticity: $\omega_1, \omega_2, \omega_3$: **t=0.25**: $c_D = 0.06$

Vorticity: $\omega_1, \omega_2, \omega_3$: **t=0.5:** $c_D = 0.10$

Vorticity: $\omega_1, \omega_2, \omega_3$: t=0.75: $c_D = 0.15$

Vorticity: $\omega_1, \omega_2, \omega_3$: **t=1.0:** $c_D = 0.22$

Vorticity: $\omega_1, \omega_2, \omega_3$: t=1.25: $c_D = 0.25$

Vorticity: $\omega_1, \omega_2, \omega_3$: t=1.5: $c_D = 0.28$

Vorticity: $\omega_1, \omega_2, \omega_3$: t=1.75: $c_D = 0.36$

Vorticity: $\omega_1, \omega_2, \omega_3$: t=2.0: $c_D = 0.51$

Vorticity: $\omega_1, \omega_2, \omega_3$: t=2.25: $c_D = 0.78$

Vorticity: $\omega_1, \omega_2, \omega_3$: t=2.5: $c_D = 1.14$

Vorticity: $\omega_1, \omega_2, \omega_3$: t=2.75: $c_D = 1.04$

Vorticity: $\omega_1, \omega_2, \omega_3$: **t=0.0**: $c_D = 1.03$

Vorticity: $\omega_1, \omega_2, \omega_3$: t=0.25: $c_D = 0.06$

Vorticity: $\omega_1, \omega_2, \omega_3$: **t=0.5:** $c_D = 0.10$

Vorticity: $\omega_1, \omega_2, \omega_3$: t=0.75: $c_D = 0.15$

Vorticity: $\omega_1, \omega_2, \omega_3$: **t=1.0:** $c_D = 0.22$

Vorticity: $\omega_1, \omega_2, \omega_3$: t=1.25: $c_D = 0.25$

Vorticity: $\omega_1, \omega_2, \omega_3$: t=1.5: $c_D = 0.28$

Vorticity: $\omega_1, \omega_2, \omega_3$: t=1.75: $c_D = 0.36$

Vorticity: $\omega_1, \omega_2, \omega_3$: t=2.0: $c_D = 0.51$

Vorticity: $\omega_1, \omega_2, \omega_3$: t=2.25: $c_D = 0.78$

Vorticity: $\omega_1, \omega_2, \omega_3$: t=2.5: $c_D = 1.14$

Vorticity: $\omega_1, \omega_2, \omega_3$: t=2.75: $c_D = 1.04$

Drag Coefficient

PRANDTL EXP vs EULER/G2

Guadalupe Aug 20 1999

PROOF OF BLOWUP

(A) EG2 WELLPOSED DRAG: H^{-1} PERTURB (B) POT SOL NOT WELLPOSED (C) EG2 TURB NONSMOOTH: $||R||_0 \approx h^{-1/2}$ $||R||_{-1} \approx h^{1/2}$

(D) FINITE MESH SIZE ENOUGH

EG2 WELLPOSED

- COMPUTED S MODERATE SIZE!! NEW!!
- CANCELLATION/SMOOTH DATA IN DUAL!!
- EG2 SOL REPRESENTATIVE SOLUTION!!
- EG2 BLOWUP \Rightarrow BLOWUP
- SOLVES D'ALEMBERT'S PARADOX

STREAMW VORTICITY AT SEP

LOW PRESSURE: DRAGWING: LIFT/DRAG

BLOWUP REAR SEPARATION

- POT FLOW in half-plane $\{x_1 > 0\}$:
- $u = (x_1, -x_2, 0)$
- LIN EQ: $\dot{\varphi}_2 \varphi_2 = f_2 \text{ RETARD}$
- $f_2 = f_2(x_3)$ oscill residual perturb
- $\varphi_2(t, x_3) = t \exp(t) f_2(x_3)$
- ω_1 -vorticity: $\dot{\omega}_1 + x_1 \frac{\partial \omega_1}{\partial x_1} \omega_1 = 0$, ACC
- INFLOW BC $\omega_1(\bar{x}_1, x_2, x_3) = \frac{\partial v_2}{\partial x_3} = t \exp(t) \frac{\partial f_2}{\partial x_3}$.
- Double exp growth $\exp(t) \Rightarrow \mathsf{BLOWUP}$

REAR SEPARATION

DECENTERD OPPOSING VEL STREAMWISE VORTICITY ON SURFACE

SURFACE VORTICITY

VORTEX STRETCHING

VORTEX STRETCHING INTO WAKE
OSC DIAGONAL PATTERN
LOW PRESSURE!!

STREAMLINES

PRESSURE LEVEL SURFACES

CLASSICAL SEPARATION

- **PRANDTL:** ADVERSE ∇P : $\frac{\partial P}{\partial \tau} < 0$
- TANGENT $VEL = 0 \Rightarrow NORMAL \nabla P$
- = $\frac{\partial P}{\partial n} = 0$
- DOES NOT STICK
- WRONG FOR LARGE REYNOLDS!!

<u> Claes Johnson – KTH – p. 106</u>

NON-SEPARATION

 $\frac{\partial P}{\partial n} = \frac{U^2}{R}$

SLIP ⇒ ∂p/∂n > 0
STICK: NON-SEPARATION
TURBULENT BL ≈ SLIP/FRICTION
EXPLAINS DRAG/LIFT FLYING
NO TURBULENCE – NO FLYING

Claes Johnson – KTH – p. 108

DRAG ≈ 0.33. VIRTUAL WIND TUNNEL

VOLVO CAR
CAR: PRESSURE

CAR: PRESSURE

CAR: VELOCITY

CAR: VELOCITY

CAR: DRAG

Claes Johnson – KTH – p. 113

•

HILL SEPARATION

SECRET FLYING: KUTTA: WRONG

SECRET FLYING: NEW: CORRECT

• LIFT = DOWNWASH • LIFT \Rightarrow DRAG

CONCLUSION

- BLOWUP OF EULER
- POT SOL \Rightarrow TURB SOL WITH DRAG
- TRUE HYPERREALITY
- SOLVES D'ALEMBERT/CLAY/FLYING
- PUBLISHED IN BIT/JMFM/BOOK
- REACTION: MATH, FLUIDMECH, OTHER?