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Abstract

We show by computational solution of the incompressible Navier-Stokes equa-
tions with friction force boundary conditions, that the classical inviscid circulation
theory by Kutta-Zhukovsky for lift of a wing and laminar viscous boundary layer
theory by Prandtl for drag, which have dominated 20th century flight mechan-
ics, do not correctly describe the real turbulent airflow around a wing. We show
that lift and drag essentially originate from a turbulent wake of counter-rotating
rolls of low-pressure streamwise vorticity generated by a certain instability mech-
anism of potential flow at rear separation. The new theory opens the possibility
of computational prediction of flight characteristics of anairplane using millions
of meshpoints without resolving thin boundary layers, instead of the imposssible
quadrillions required according to state-of-the-art for boundary layer resolution.

1 New and Old Theories of Flight

As a corollary of the resolution of d’Alembert’s paradox of zero lift/drag of potential
flow recently presented in this journal [26, 28], we outline in this article a mathemat-
ical theory for the generation of lift and drag of a wing in subsonic flight, which is
fundamentally different from the classical theory by Kutta-Zhukovsky for lift in invis-
cid flow and by Prandtl for drag in viscous flow. We give evidence that the turbulent
flow around a wing can be seen as a perturbation of zero-lift/drag potential flow result-
ing from a specific three-dimensional instability mechanism at separation generating a
turbulent wake of counter-rotating low-pressure rolls of streamwise vorticity, a mecha-
nism which changes the pressure distribution around the trailing edge so as to produce
lift but also drag. By mathematical analysis and computation we thus identify the basic
mechanism, seen as a modification of zero lift/drag potential flow, generating both lift
and drag in real turbulent flow around a wing. On the other hand, we give evidence that
the modification by Kutta-Zhukovsky consisting of large scale two-dimensional circu-
lation around the section of the wing, which is the basic mechanism for lift according
to classical theory representing state-of-the-art, is purely fictional without counterpart
in real turbulent flow. We thus identify the true mechanism for both lift and drag of a
wing, which is not captured by classical theory.

The problem of explainingwhy it is possible to fly in the air using wings has
haunted scientists since the birth of mathematical sciences. To fly, an upward force
on the wing, referred to aslift L, has to be generated from the flow of air around the
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wing, while the air resistance to motion ordragD, is not too big. The mystery ishow
a sufficiently large ratioL

D can be created.
In thegliding flightof birds and airplanes with fixed wings at subsonic speeds,L

D is
typically between 10 and 20, which means that a good glider can glide up to 20 meters
upon loosing 1 meter in altitude, or that Charles Lindberg could cross the Atlantic in
1927 at a speed of 50 m/s in his 2000 kgSpirit of St Louisat an effective engine thrust
of 150 kp (with L

D = 2000/150 ≈ 13) from 100 horse powers.
By Newton’s 3rd law, lift must be accompanied bydownwashwith the wing redi-

recting air downwards. The enigma of flight is the mechanism of a wing generating
substantial downwash, which is also the enigma of sailing against the wind with both
sail and keel acting like wings creating substantial lift.

Classical mathematical mechanics could not give an answer:Newton computed by
elementary mechanics the lift of a tilted flat plate redirecting a horisontal stream of
fluid particles, but obtained a disappointingly small valueproportional to the square
of the tilting angle orangle of attack. D’Alembert followed up in 1752 by formulat-
ing his paradox about zero lift/drag ofinviscid incompressible irrotational steady flow
referred to aspotential flow, indicating that flight is mathematically impossible, or at
least inexplicable. To explain flight d’Alembert’s paradoxhad to be resolved.

It is natural to expect that today gliding flight is well understood, but surprisingly
one finds that the authority NASA [39] first dimissses three popular theories for lift
as being incorrect, but then refrains from presenting any theory claimed to be correct
and ends with the empty out of reach:“To truly understand the details of the genera-
tion of lift, one has to have a good working knowledge of the Euler Equations”, and
the Plane&Pilot Magazine [40] has the same message. In short, state-of-the-art litera-
ture [2, 20, 48, 49] presents a two-dimensional theory from 1903 for lift without drag
at small angles of attack in inviscid potential flow by the mathematicians Kutta and
Zhukovsky, called the father of Russian aviation, and another theory for drag without
lift in viscous laminar flow from 1904 by the physicist Prandtl, called the father of
modern fluid dynamics, but no theory for lift and drag inthree-dimensional slightly
viscous turbulent incompressibleflow such as the flow of air around a wing of a jum-
bojet at the critical phase of take-off at large angle of attack (12 degrees) and subsonic
speed (270 km/hour), as evidenced in e.g. [1, 5, 6, 8, 10, 12, 30, 33, 37].

In this article we present such a theory based on the incompressible Navier-Stokes
equations for slightly viscous flow with slip (small friction force) boundary conditions
as a model of a turbulent boundary layer coupling a solid boundary to the free stream
flow through a small skin friction force. We compute turbulent solutions of the Navier-
Stokes equations using a stabilized finite element method with a posteriori error control
of lift and drag, referred to asGeneral Galerkinor G2, available in executable open
source from [18]. The stabilization in G2 acts as an automatic turbulence model, and
thus offers a model forab initio computational simulation of the turbulent flow around
a wing with the only input being the geometry of the wing.

We show that lift and drag of an airplane at subsonic speeds can be accurately
predicted by G2 using millions of mesh points, to be comparedwith the impossible
quadrillions of mesh-points required by state-of-the-artto resolve thin no-slip boundary
layers as dictated by Prandtl [38, 50]. The computations show that Kutta-Zhukovsky’s
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circulation theory is unphysical and that the curse of Prandtl’s laminar boundary layer
theory can be avoided opening new possibilities of flight simulation. Our analysis
includes the following key elements:

(i) Turbulent solutions of the incompressible Navier-Stokes equations with slip/small
friction force boundary conditions.

(ii) Potential flow as Navier-Stokes solution subject to small force perturbations.

(iii) Separation of potential flow only at stagnation.

(iv) Mechanism of lift/drag from instability at rear separation of retarding opposing
flows generating surface vorticity enhanced by vortex stretching in accellerating
flow after separation into counter-rotating low-pressure rolls of streamwise vor-
ticity, which change the pressure distribution of potential flow into lifting flow
with drag.

Before presenting details of (i)-(iv) we briefly recall the classical theories of lift/drag
and give a shortcut to the new theory, also presented as a Knol[29].

2 Kutta-Zhukowsky and Prandtl

It took 150 years before someone dared to challenge the pessimistic mathematical pre-
dictions by Newton and d’Alembert, expressed by Lord Kelvinas: “I can state flatly
that heavier than air flying machines are impossible”. In the 1890s the German en-
gineer Otto Lilienthal made careful studies of the gliding flight of birds, and designed
wings allowing him to make 2000 successful heavier-than-air gliding flights starting
from a little artificial hill, before in 1896 he broke his neckfalling to the ground af-
ter having stalled at 15 meters altitude. The first sustainedpowered heavier-than-air
flights were performed by the two brothers Orwille and WilburWright, who on the
windy dunes of Kill Devils Hills at Kitty Hawk, North Carolina, on December 17 in
1903, managed to get their 400 kg airplaneFlyer off ground into sustained flight using
a 12 horse power engine.

The undeniable presence of substantial lift now required anexplantion and to this
end Kutta and Zhukovsky augumented inviscid zero-lift potential flow by a large scale
two-dimensionalcirculation or rotation of air around the wing section causing the ve-
locity to increase above and decrease below the wing, thus generating lift proportional
to the angle of attack [49, 48], orders of magnitude larger than Newton’s prediction,
but the drag was still zero. Kutta-Zhukovsky thus showed that if there is circulation
then there is lift, which by a scientific community in desperate search for a theory of
lift was interpreted as an equivalence:“If the airfoil experiences lift, a circulation must
exist”, [48, 31]. State-of-the-art is described in [3] as:“The circulation theory of lift is
still alive... still evolving today, 90 years after its introduction”.

The modified potential solution is illustrated in Fig.1 indicating zones of low (L)
and high (H) pressure, with the switch between high and low pressure at the trailing
edge creating lift as an effect of the circulation. Kutta-Zhukovsky suggested that the
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circulation around the wing section was balanced by a counter-rotating so-calledstart-
ing vortexbehind the wing shown in Fig.1 (right) giving zero total circulation according
to Kelvin’s theorem. Kutta-Zhukovsky’s formula for lift agreed reasonably well with
observations for long wings and small angles of attack, but not for short wings and large
angles of attack. We will below subject Kutta-Zhukovsky’s theory of lift to a reality
test, and we will find that it in fact is pure fiction, as much fiction as zero-lift potential
flow; the true origin of lift is not large scale two-dimensional circulation around the
wing section.

Figure 1: Potential flow (left) past a wing section with zero lift/drag modified by cir-
culation around the section (middle) to give Kutta-Zhukovsky flow (right) leaving the
trailing edge smoothly with downwash/lift and a starting vortex behind, but without
viscous drag.

In 1904 the young physicist Ludwig Prandtl took up the challenge of resolving
d’Alembert’s paradox and explaining the origin of drag in the 8 page sketchy article
Motion of Fluids with Very Little Viscosity[41] described in [43] as“one of the most
important fluid-dynamics papers ever written”and in [20] as“the paper will certainly
prove to be one of the most extraordinary papers of this century, and probably of many
centuries”. Prandtl suggested that the substantial drag (and lift) of a body moving
through aslightly viscousfluid like air, possibly could arise from the presence of a
thin no-slip laminar viscous boundary layer, where the tangential fluid velocity rapidly
changes from zero on the boundary to the free-stream value. Prandtl argued that a
flow canseparatefrom the boundary due to anadverse pressure gradientretarding the
flow in a laminar boundary layer to form alow-pressure wakebehind the body creating
drag. This is the official resolution of d’Alembert’s paradox [42, 45, 49, 14], although
seriously questioned in e.g. [9, 11, 34]. The commonly accepted view on Prandtl’s role
is expressed as follows:

• Prandtl’s contribution was to realize that a proper understanding of the bound-
ary layer allows us to understand how a (vanishingly) small viscosity and a
(vanishingly) small viscous region can modify the global flow features. Thus,
with one insight Prandtl resolved d’Alembert’s paradox andprovided fluid mech-
anists with the physics of both lift and form drag[43].

• The general view in the fluid mechanics community is that, from a practical point
of view, the paradox is solved along the lines suggested by Prandtl. A formal
mathematical proof is missing, and difficult to provide, as in so many other fluid-
flow problems modelled through the NavierStokes equations...The viscous effects
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in the thin boundary layers remain also at very high Reynoldsnumbers they
result in friction drag for streamlined objects, and for bluff bodies the additional
result is flow separation and a low-pressure wake behind the object, leading to
form drag[14].

The suggestion is that substantial drag results from the presence of a thin boundary
layer even for arbitarily small viscosity, that is a substantial effect from a vanishingly
small cause [47]:

• ...great efforts have been made during the last hundred or soyears to propose
alternate theories and to explain how a vanishingly small frictional force in the
fluid can nevertheless have a significant effect on the flow properties.

But to claim that something substantial can result from virtually nothing, is very cum-
bersome from a scientific point of view, since it requires access to an infinitely precise
theory for justification, which is not available. Moreover,d’Alemberts paradox con-
cerns a contradiction between mathematical prediction andpractical observation and
can only be solved by understanding the mathematics leadingto an absurd mathemat-
ical prediction. It is precisely a“mathematical proof” which is needed, which the
fluid mechanics community apparently acknowledges“is missing”. The trouble is that
mathematics predicts zero drag, not that observation showssubstantial drag.

If it is impossible to justify Prandtl’s theory, it can well be possible to disprove it:
It suffices to remove the infinitely small cause (the boundarylayer) and still observe
the effect (substantial drag). This is what we did in our resolution of d’Alembert’s
paradox [26], but we did not remove the viscosity in the interior of the flow, which
creates turbulent dissipation manifested in drag.

In any case, Prandtl’s resolution of d’Alembert’s paradox took fluid dynamics out of
its crisis in the early 20th century, but led computational aerodynamics into its present
paralysis described by Moin and Kim [38] as follows:

• Consider a transport airplane with a 50-meter-long fuselage and wings with a
chord length (the distance from the leading to the trailing edge) of about five
meters. If the craft is cruising at 250 meters per second at analtitude of 10,000
meters, about1016 grid points are required to simulate the turbulence near the
surface with reasonable detail.

But computation with1016 grid points is beyond the capacity of any thinkable com-
puter, and the only way out is believed to be to designturbulence modelsfor simula-
tion with millions of mesh points instead of quadrillons, but this is an open problem
since 100 years. State-of-the-art is decribed in the sequence ofAIAA Drag Prediction
Work Shops[15], with however a disappointingly large spread of the 15 participating
groups/codes reported in the blind tests of 2006. In addition, the focus is on the simpler
problem of transonic compressible flow at small angles of attack (2 degrees) of rele-
vance for crusing at high speed, leaving out the more demanding problem of subsonic
incompressibleflow at low speed and large angles of attack at take-off and landing,
because a work shop on this topic would not draw any participants. Similar difficulties
of computing lift is reported in [31, 32]:
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• Circulation control applications are difficult to compute reliably using state-of-
the-art CFD methods as demonstrated by the inconsistenciesin CFD prediction
capability described in the 2004 NASA/ONR Circulation Control workshop.

3 Shortcut to the New Theory

The new resolution of d’Alembert’s paradox [25, 26, 24] identifies the basic mechanism
of instability of potential flow described above, which we will find is also an essential
mechanism for generating lift of a wing by depleting the highpressure before rear
separation of potential flow and thereby allowing downwash.This mechanism is illus-
trated in Fig.2 showing a perturbation (middle) consistingof counter-rotating rolls of
low-pressure streamwise vorticity developing at the separation of potential flow (left),
which changes potential flow into turbulent flow (right) witha different pressure dis-
tribution at the trailing edge generating lift. The rolls ofcounter-rotating streamwise
vorticity appear along the entire trailing edge and have a different origin than thewing
tip vortex[17], which adds drag but not lift, which is of minor importance for a long
wing. We shall find that the diameter of the rolls scale with the thickness of the wing
(and not the viscosity), and the intensity with the angle of attack.

Figure 2: Stable physical 3d turbulent flow (right) with lift/drag, generated from po-
tential flow (left) by a perturbation at separation consisting of counter-rotating rolls of
streamwise vorticity (middle), which changes the pressureat the trailing edge generat-
ing downwash/lift and drag.

We see that the difference between Kutta-Zhukovsky and the new explantion is the
nature of the modification/perturbationof zero-lift potential flow: Kutta and Zhukovsky
claim that it consists of a global large scale two-dimensional circulation around the
wing section, that istransversal vorticityorthogonal to the wing section combined with
a transversal starting vortex, while we find that it is a three-dimensional local turbulent
phenomenon of counter-rotating rolls of streamwise vorticity at separation, without
starting vortex. Kutta-Zhukovsky thus claim that lift comes from global transversal
vorticity without drag, while we give evidence that insteadlift is generated by local
turbulent streamwise vorticity with drag.

We observe that the real turbulent flow shares the crucial property of potential flow
of adhering to the upper surface beyond the crest and thus creating downwash, because
the real flow is similar to potential flow before separation, and because potential flow
can only separate at a point of stagnation with opposing flowsmeeting in the rear, as
we will prove below.
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On the other hand, a flow with a viscous no-slip boundary layerwill (correctly ac-
cording to Prandtl) separate on the crest, because in a viscous boundary layer the pres-
sure gradient normal to the boundary vanishes and thus cannot contribute the normal
acceleration required to keep fluid particles following thecurvature of the boundary
after the crest, as shown in [27]. It is thus the slip boundarycondition modeling a
turbulent boundary layer in slightly viscous flow, which forces the flow to suck to the
upper surface and create downwash. This is a feature of incompressible irrotational
slighty viscous flow with slip, thus in particular of potential flow, and is not an effect
of viscosity or molecular attractive forces as often suggested under the name of the
Coanda effect.

This explains why gliding flight is possible for airplanes and larger birds, because
the boundary layer is turbulent and acts like slip preventing early separation, but not
for insects because the boundary layer is laminar and acts like no-slip allowing early
separation. TheReynolds numberof a jumbojet at take-off is about108 with turbulent
skin friction coefficient< 0.005 contributing less than5% to drag, while for an insect
with a Reynolds number of102 viscous laminar effects dominate.

Concerning the size of the viscosity, we recall that for air thekinematic viscosity
(normalized to unit density) is about10−5 (and for water about10−6). Normalizing
also with respect to velocity and length scale, the viscosity is represented by the inverse
of the Reynolds number, which in subsonic flight ranges from105 for medium-size
birds over107 for a smaller airplane up to109 for a jumbojet. We are thus considering
normalized viscosities in the range from10−5 to 10−9 to be compared with density,
velocity and length scale of unit size. We understand that10−5 is smallcompared to 1,
and that10−9 compared to 1 isvery small.

Massive evidence indicates that the incompressible Navier-Stokes equations consti-
tute an accurate mathematical model of slightly viscous flowin subsonic aerodynamics.
We will show that turbulent solutions can be computed on a laptop for simple geome-
tries and on a cluster for complex geometries, with correct mean-value outputs such
as lift, drag and twisting moment of a wing or entire airplane, without resolving thin
boundary layers and without resort to turbulence models. This is made possible by
using skin friction force boundary conditions for tangential stresses instead of no-slip
boundary conditions for tangential velocities, and because the skin friction is small
from a turbulent boundary layer of a fluid with very small viscosity, and because it is
not necessary to resolve the turbulent features in the interior of the flow to physical
scales.

4 Navier-Stokes with Force Boundary Conditions

The Navier-Stokes equations for an incompressible fluid of unit density withsmall
viscosityν > 0 andsmall skin frictionβ ≥ 0 filling a volumeΩ in R

3 surrounding a
solid body with boundaryΓ over a time intervalI = [0, T ], read as follows: Find the
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velocityu = (u1, u2, u3) and pressurep depending on(x, t) ∈ Ω ∪ Γ × I, such that

u̇+ (u · ∇)u+ ∇p−∇ · σ = f in Ω × I,
∇ · u = 0 in Ω × I,
un = g onΓ × I,
σs = βus onΓ × I,

u(·, 0) = u0 in Ω,

(1)

whereun is the fluid velocity normal toΓ, us is the tangential velocity,σ = 2νǫ(u) is
the viscous (shear) stress withǫ(u) the usual velocity strain,σs is the tangential stress,
f is a given volume force,g is a given inflow/outflow velocity withg = 0 on a non-
penetrable boundary, andu0 is a given initial condition. We notice the skin friction
boundary condition coupling the tangential stressσs to the tangential velocityus with
the friction coefficientβ with β = 0 for slip, andβ >> 1 for no-slip. We note thatβ is
related to the standardskin friction coeffieientcf = 2τ

U2 with τ the tangential stress per
unit area, by the relationβ = U

2 cf . In particular,β tends to zero withcf (if U stays
bounded).

Prandtl insisted on using a no-slip velocity boundary condition with us = 0 on Γ,
because his resolution of d’Alembert’s paradox hinged on discriminating potential flow
by this condition. On the oher hand, with the new resolution of d’Alembert’s paradox,
relying instead on instability of potential flow, we are freeto choose instead a friction
force boundary condition, if data is available. Now, experiments show [45, 13] that
the skin friction coefficient decreases with increasing Reynolds numberRe ascf ≈
0.07 ∼ Re−0.2, so thatcf ≈ 0.0005 for Re = 1010 andcf ≈ 0.007 for Re = 105.
Accordingly we model a turbulent boundary layer by frictionboundary condition with
a friction parameterβ ≈ 0.03URe−0.2. For very large Reynolds numbers, we can
effectively useβ = 0 in G2 computation corresponding to slip boundary conditions.

We have initiated benchmark computations for tabulating values ofβ (or σs) for
different values ofRe by solving the Navier-Stokes equations with no-slip for simple
geometries such as a flat plate, and more generally for different values ofν, U and
length scale, since the dependence seems to be more complex than simply through the
Reynolds number. Early results are reported in [25] withσs ≈ 0.005 for ν ≈ 10−4 and
U = 1, with corresponding velocity strain in the boundary layer104σs ≈ 50 indicating
that the smallest radius of curvature without separation inthis case could be expected
to be about0.02 [27].

5 Potential Flow

Potential flow(u, p) with velocity u = ∇ϕ, whereϕ is harmonic inΩ and satisfies
a homogeneous Neumann condition onΓ and suitable conditions at infinity, can be
seen as a solution of the Navier-Stokes equations for slightly viscous flow with slip
boundary condition, subject to

• perturbation of the volume forcef = 0 in the form ofσ = ∇ · (2νǫ(u)),

• perturbation of zero friction in the form ofσs = 2νǫ(u)s,
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with both perturbations being small becauseν is small and a potential flow velocityu
is smooth. Potential flow can thus be seen as a solution of the Navier-Stokes equations
with small force perturbations tending to zero with the viscosity. We can thus express
d’Alembert’s paradox as the zero lift/drag of a Navier-Stokes solution in the form of a
potential solution, and resolve the paradox by realizing that potential flow is unstable
and thus cannot be observed as a physical flow.

Potential flow is like an inverted pendulum, which cannot be observed in reality be-
cause it is unstable and under infinitesimal perturbations turns into a swinging motion.
A stationary inverted pendulum is a fictious mathematical solution without physical
correspondence because it is unstable. You can only observephenomena which in
some sense are stable, and an inverted pendelum or potentialflow is not stable in any
sense.

Potential flow has the following crucial property which partly will be inherited by
real turbulent flow, and which explains why a flow over a wing subject to small skin
friction can avoid separating at the crest and thus generatedownwash, unlike viscous
flow with no-slip, which separates at the crest without downwash. We will conclude
that gliding flight is possible only in slightly viscous incompressible flow. For simplic-
ity we consider two-dimensional potential flow around a cylindrical body such as long
wing (or cylinder).

Theorem. Letϕ be harmonic in the domainΩ in the plane and satisfy a homogeneous
Neumann condition on the smooth boundaryΓ of Ω. Then the streamlines of the cor-
responding velocityu = ∇ϕ can only separate fromΓ at a point of stagnation with
u = ∇ϕ = 0.
Proof. Letψ be a harmonic conjugate toϕ with the pair(ϕ, ψ) satisfying the Cauchy-
Riemann equations (locally) inΩ. Then the level lines ofψ are the streamlines ofϕ
and vice versa. This means that as long as∇ϕ 6= 0, the boundary curveΓ will be a
streamline ofu and thus fluid particles cannot separate fromΓ in bounded time.

6 Exponential Instability

Subtracting the NS equations withβ = 0 for two solutions(u, p, σ) and(ū, p̄, σ̄) with
corresponding (slightly) different data, we obtain the following linearized equation for
the difference(v, q, τ) ≡ (u− ū, p− p̄, σ − σ̄) with :

v̇ + (u · ∇)v + (v · ∇)ū + ∇q −∇ · τ = f − f̄ in Ω × I,
∇ · v = 0 in Ω × I,
v · n = g − ḡ onΓ × I,
τs = 0 onΓ × I,

v(·, 0) = u0 − ū0 in Ω,

(2)

Formally, withu andū given, this is a linear convection-reaction-diffusion problem for
(v, q, τ) with the reaction term given by the3 × 3 matrix∇ū being the main term of
concern for stability. By the incompressiblity, the trace of ∇ū is zero, which shows
that in general∇ū has eigenvalues with real value of both signs, of the size of|∇ū|
(with | · | som matrix norm), thus with at least one exponentially unstable eigenvalue.
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Accordingly, we expect local exponential perturbation growth of sizeexp(|∇u|t)
of a solution(u, p, σ), in particular we expect a potential solution to be illposed. This
is seen in G2 solutions with slip initiated as potential flow,which subject to residual
perturbations of mesh sizeh, in log(1/h) time develop into turbulent solutions. We
give computational evidence that these turbulent solutions are wellposed, which we ra-
tionalize by cancellation effects in the linearized problem, which has rapidly oscillating
coefficients when linearized at a turbulent solution.

Formally applying the curl operator∇× to the momentum equation of (1), with
ν = β = 0 for simplicity, we obtain thevorticity equation

ω̇ + (u · ∇)ω − (ω · ∇)u = ∇× f in Ω, (3)

which is a convection-reaction equation in the vorticityω = ∇ × u with coefficients
depending onu, of the same form as the linearized equation (2), with similar prop-
erties of exponential perturbation growthexp(|∇u|t) referred to asvortex stretching.
Kelvin’s theorem formally follows from this equation assuming the initial vorticity is
zero and∇× f = 0 (andg = 0), but exponential perturbation growth makes this con-
clusion physically incorrect: We will see below that large vorticity can develop from
irrotational potential flow even with slip boundary conditions.

7 Energy Estimate with Turbulent Dissipation

The standardenergy estimatefor (1) is obtained by multiplying the momentum equa-
tion

u̇+ (u · ∇)u+ ∇p−∇ · σ − f = 0,

with u and integrating in space and time, to get in the casef = 0 andg = 0,

∫ t

0

∫
Ω

Rν(u, p) · u dxdt = Dν(u; t) +Bβ(u; t) (4)

where
Rν(u, p) = u̇+ (u · ∇)u + ∇p

is theEuler residualfor a given solution(u, p) with ν > 0,

Dν(u; t) =

∫ t

0

∫
Ω

ν|ǫ(u(t̄, x))|2dxdt̄

is theinternal turbulent viscous dissipation, and

Bβ(u; t) =

∫ t

0

∫
Γ

β|us(t̄, x)|2dxdt̄

is theboundary turbulent viscous dissipation, from which follows by standard manip-
ulations of the left hand side of (4),

Kν(u; t) +Dν(u; t) +Bβ(u; t) = K(u0), t > 0, (5)
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where

Kν(u; t) =
1

2

∫
Ω

|u(t, x)|2dx.

This estimate shows a balance of thekinetic energyK(u; t) and theturbulent viscous
dissipationDν(u; t) + Bβ(u; t), with any loss in kinetic energy appearing as viscous
dissipation, and vice versa. In particular,

Dν(u; t) +Bβ(u; t) ≤ K(0),

and thus the viscous dissipation is bounded (iff = 0 andg = 0).
Turbulent solutionsof (1) are characterized bysubstantial internal turbulent dissi-

pation, that is (fort bounded away from zero),

D(t) ≡ lim
ν→0

D(uν ; t) >> 0, (6)

which is Kolmogorov’s conjecture[19]. On the other hand, the boundary dissipation
decreases with decreasing friction

lim
ν→0

Bβ(u; t) = 0, (7)

sinceβ ∼ ν0.2 tends to zero with the viscosityν and the tangential velocityus ap-
proaches the (bounded) free-stream velocity, which is not in accordance with Prandtl’s
conjecture that substantial drag and turbulent dissipation originates from the boundary
layer. Kolmogorov’s conjecture (6) is consistent with

‖∇u‖0 ∼ 1√
ν
, ‖Rν(u, p)‖0 ∼ 1√

ν
, (8)

where‖ · ‖0 denotes theL2(Q)-norm withQ = Ω × I. On the other hand, it follows
by standard arguments from (5) that

‖Rν(u, p)‖−1 ≤
√
ν, (9)

where‖ · ‖−1 is the norm inL2(I;H
−1(Ω)). Kolmogorov thus conjectures that the

Euler residualRν(u, p) for smallν is strongly (inL2) large, while being small weakly
(in H−1).

Altogether, we understand that the resolution of d’Alembert’s paradox of explain-
ing substantial drag from vanishing viscosity, consists ofrealizing that the internal
turbulent dissipationD can be positive under vanishing viscosity, while the boundary
dissipationB will vanish. In contradiction to Prandtl, we conclude that drag does not
result from boundary layer effects, but from internal turbulent dissipation, originating
from instability at separation.

8 G2 Computational Solution

We show in [25, 24, 26] that the Navier-Stokes equations (1) can be solved by G2
producing turbulent solutions characterized by substantial turbulent dissipation from
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the least squares stabilization acting as an automatic turbulence model, reflecting that
the Euler residual cannot be made small in turbulent regions. G2 has a posteriori error
control based on duality and shows output uniqueness in mean-values such as lift and
drag [25, 22, 23]

We find that G2 with slip is capable of modeling slightly viscous turbulent flow
with Re > 106 of relevance in many applications in aero/hydro dynamics, including
flying, sailing, boating and car racing, with hundred thousands of mesh points in sim-
ple geometry and millions in complex geometry, while according to state-of-the-art
quadrillions is required [38]. This is because a friction-force/slip boundary condition
can model a turbulent blundary layer, and interior turbulence does not have to be re-
solved to physical scales to capture mean-value outputs [25].

The idea of circumventing boundary layer resolution by relaxing no-slip boundary
conditions introduced in [22, 25], was used in [7] in the formof weak satisfaction of
no-slip, which however misses the main point of using a forcecondition instead of a
velocity condition.

An G2 solution(U,P ) on a mesh with local mesh sizeh(x, t) according to [25],
satisfies the following energy estimate (withf = 0, g = 0 andβ = 0):

K(U(t)) +Dh(U ; t) = K(u0), (10)

where

Dh(U ; t) =

∫ t

0

∫
Ω

h|Rh(U,P )|2 dxdt, (11)

is an analog ofDν(u; t) with h ∼ ν, whereRh(U,P ) is the Euler residual of(U,P )
We see that the G2 turbulent viscosityDh(U ; t) arises from penalization of a non-zero
Euler residualRh(U,P ) with the penalty directly connecting to the violation (accord-
ing the theory of criminology). A turbulent solution is characterized by substantial
dissipationDh(U ; t) with ‖Rh(U,P )‖0 ∼ h−1/2, and

‖Rh(U,P )‖−1 ≤
√
h (12)

in accordance with (8) and (9).

9 Wellposedness of Mean-Value Outputs

LetM(v) =
∫

Q vψdxdt be amean-value outputof a velocityv defined by a smooth
weight-functionψ(x, t), and let(u, p) and(U,P ) be two G2-solutions on two meshes
with maximal mesh sizeh. Let (ϕ, θ) be the solution to thedual linearized problem

−ϕ̇− (u · ∇)ϕ+ ∇U⊤ϕ+ ∇θ = ψ in Ω × I,
∇ · ϕ = 0 in Ω × I,
ϕ · n = g onΓ × I,

ϕ(·, T ) = 0 in Ω,

(13)

where⊤ denotes transpose. Multiplying the first equation byu−U and integrating by
parts, we obtain the following output error representation[25, ?]:

M(u) −M(U) =

∫
Q

(Rh(u, p) −Rh(U,P )) · ϕdxdt (14)
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where for simplicity the dissipative terms are here omitted, from which follows the a
posteriori error estimate:

|M(u) −M(U)| ≤ S(‖Rh(u, p)‖−1 + ‖Rh(U,P )‖−1), (15)

where the stability factor

S = S(u, U,M) = S(u, U) = ‖ϕ‖H1(Q). (16)

In [25] we present a variety of evidence, obtained by computational solution of the
dual problem, that for global mean-value outputs such as drag and lift,S << 1/

√
h,

while‖R‖−1 ∼
√
h, allowing computation of of drag/lift with a posteriori error control

of the output within a tolerance of a few percent. In short, mean-value outputs such as
lift amd drag are wellposed and thus physically meaningful.

We explain in [25] the crucial fact thatS << 1/
√
h, heuristically as an effect of

cancellationrapidly oscillating reaction coefficients of turbulent solutions combined
with smooth data in the dual problem for mean-value outputs.In smooth potential
flow there is no cancellation, which explains why zero lift/drag cannot be observed in
physical flows.

As an example, we show in Fig.3 turbulent G2 flow around a car with substantial
drag in accordance with wind-tunnel experiments. We see a pattern of streamwise
vorticity forming in the rear wake. We also see surface vorticity forming on the hood
transversal to the main flow direction. We will below discover similar features in the
flow of air around a wing.

Figure 3: Velocity of turbulent G2 flow with slip around a car

10 Scenario for Separation without Stagnation

We now present a scenario for transition of potential flow into turbulent flow, based
on identifying perturbations of strong growth in the linearized equations (2) and (3) at
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separation generating rolls of low pressure streamwise vorticity changing the pressure
distribution to give both lift and drag of a wing.

As a model of potential flow at rear separation, we consider the potential flow
u(x) = (x1,−x2, 0) in the half-plane{x1 > 0}. Assumingx1 andx2 are small, we
approximate thev2-equation of (2) by

v̇2 − v2 = f2,

wheref2 = f2(x3) is an oscillating mesh residual perturbation depending onx3 (in-
cluding also a pressure-gradient), for examplef2(x3) = h sin(x3/δ), with δ > 0. It
is natural to assume that the amplitude off2 decreases withδ. We conclude, assuming
v2(0, x) = 0, that

v2(t, x3) = t exp(t)f2(x3),

and for the discussion, we assumev3 = 0. Next we approximate theω1-vorticity
equation forx2 small andx1 ≥ x̄1 > 0 with x̄1 small, by

ω̇1 + x1
∂ω1

∂x1
− ω1 = 0,

with the “inflow boundary condition”

ω1(x̄1, x2, x3) =
∂v2
∂x3

= t exp(t)
∂f2
∂x3

.

The equation forω1 thus exhibits exponential growth, which is combined with expo-
nential growth of the “inflow condition”. We can see these features in Fig.?? show-
ing how opposing flows on the back generate a pattern of co-rotating surface vortices
which act as initial conditions for vorticity stretching into the fluid generating rolls of
low-pressure streamwise vorticity, as displayed in Figs.4and 3.

Altogether we expectexp(t) perturbation growth of residual perturbations of size
h, resulting in a global change of the flow after timeT ∼ log(1/h), which can be
traced in the computations.

We thus understand that the formation of streamwise streaksas the result of a force
perturbation oscillating in thex3 direction, which in the retardation of the flow in the
x2-direction creates exponentially increasing vorticity inthex1-direction, which acts as
inflow to theω1-vorticity equation with exponential growth by vortex stretching. Thus,
we find exponential growth at rear separation in both the retardation in thex2-direction
and the accelleration in thex1 direction. This scenario is illustrated in principle and
computation in Fig.4. Note that since the perturbation is convected with the base flow,
the absolute size of the growth is related to the length of time the perturbation stays in
a zone of exponential growth. Since the combined exponential growth is independent
of δ, it follows that large-scale perturbations with large amplitude have largest growth,
which is also seen in computations withδ the distance between streamwise rollss as
seen in Fig.3 which does not seem to decrease with decreasingh.

Notice that at forward attachment of the flow the retardationdoes not come from
opposing flows, and the zone of exponential growth ofω2 is short, resulting in much
smaller perturbation growth than at rear separation.
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We can view the occurence of the rear surface vorticities as amechanism of sep-
aration with non-zero tangential speed, by diminishing thenormal pressure gradient
of potential flow, which allows separation only at stagnation. The surface vorticities
thus allow separation without stagnation but the price is generation of a system of low-
pressure tubes of streamwise vorticity creating drag in a form of “separation trauma”
or “cost of divorce”.

The scenario for separation can briefly be described as follows: Velocity instability
in retardation as opposing flows meet in the rear of the cylinder, generates a zig-zag
pattern of surface vorticity from which by vorticity instability in accelleration, a pattern
of rolls of low-pressure vorticity develops. We depict thisscenario is depicted in Fig.4.

Figure 4: Turbulent separation without stagnation in principle and simulation in flow
around a circular cylinder.

11 Separation vs Normal Pressure Gradient

Fluid particles with non-zero tangential velocity can onlyseparate from a smooth
boundary tangentially, because the normal velocity vanishes on the boundary. By ele-
mentary Newtonian mechanics it follows that fluid particlesfollow the curvature of the
boundary without separation if

∂p

∂n
=
U2

R
(17)

and separate tangentially if
∂p

∂n
<
U2

R
, (18)

wherep is the pressure,n denotes the unit normal pointing into the fluid,U is the tan-
gential fluid speed andR is the radius of curvature of the boundary counted positive if
the body is convex. This is because a certain pressure gradient normal to the boundary
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Figure 5: Separation in slightly viscous flow with slip over asmooth hill by generation
of surface vorticity. Notice that the flow separates after the crest

is required to accelerate fluid particles to follow the curvature of the boundary. By mo-
mentum balance normal to the boundary, it follows that∂p

∂n scales with the strain rate
relating separation toR as indicated in Section 4.

One of Prandtl’s boundary layer equations for a laminar viscous no-slip boundary
layer states that∂p

∂n = 0, from which follows separation at the crest of a wing without
downwash and lift [27]. However, Prandtl erronously associates separation with an
adverse pressure gradient retarding the flow in a tangentially to the boundary. In any
case, gliding flight in viscous laminar flow with no-slip is impossible. It is the slip
boundary condition resulting from a turbulent boundary layer, which makes the flow
stick to the upper surface of a wing and thus generate downwash and lift.

12 Mechanisms of Lift and Drag

We have given evidence that the basic mechanism for the generation of lift of a wing
consists of counter-rotating rolls of low-pressure streamwise vorticity generated by
instability at separation, which reduce the high pressure on top of the wing before the
trailing edge of potential flow and thus allow downwash, but which also generate drag.
At a closer examination of the quantitative distributions of lift and drag forces around
the wing, we discover large lift at the expense of small drag resulting from leading edge
suction, which answers the opening question of of how a wing can generate a lift/drag
ratio larger than 10.

The secret of flight is in concise form uncovered in Fig. 6 showing G2 computed
lift and and drag coefficients of a Naca 0012 3d wing as functions of the angle of attack
α, as well as the circulation around the wing. We see that the lift and drag increase
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roughly linearly up to 16 degrees, with a lift/drag ratio of about 13 forα > 3 degrees,
and that lift peaks at stall atα = 20 after a quick increase of drag. and flow separation
at the leading edge.

We see that the circulation remains small forα less than 10 degrees without con-
nection to lift, and conclude that the theory of lift of by Kutta-Zhukovsky is fictional
without physical correspondence: There is lift but no circulation. Lift does not origi-
nate from circulation.

Inspecting Figs. 7-9 showing velocity, pressure and vorticity and Fig. 10 showing
lift and drag distributions over the upper and lower surfaces of the wing (allowing
also pitching moment to be computed), we can now, with experience from the above
preparatory analysis, identify the basic mechanisms for the generation of lift and drag
in incompressible high Reynolds number flow around a wing at different angles of
attackα: We find two regimes before stall atα = 20 with different, more or less linear
growth inα of both lift and drag, a main phase0 ≤ α < 16 with the slope of the lift
(coefficient) curve equal to0.09 and of the drag curve equal to0.08 with L/D ≈ 14,
and a final phase16 ≤ α < 20 with increased slope of both lift and drag. The main
phase can be divided into an initial phase0 ≤ α < 4 − 6 and an intermediate phase
4 − 6 ≤ α < 16, with somewhat smaller slope of drag in the initial phase. Wenow
present details of this general picture.

13 Phase 1: 0 ≤ α ≤ 4 − 6

At zero angle of attack with zero lift there is high pressure at the leading edge and
equal low pressures on the upper and lower crests of the wing because the flow is essen-
tially potential and thus satisfies Bernouilli’s law of high/low pressure where velocity
is low/high. The drag is about 0.01 and results from rolls of low-pressure streamwise
vorticity attaching to the trailing edge. Asα increases the low pressure below gets
depleted as the incoming flow becomes parallel to the lower surface at the trailing edge
for α = 6, while the low pressure above intenisfies and moves towards the leading
edge. The streamwise vortices at the trailing edge essentially stay constant in strength
but gradually shift attachement towards the upper surface.The high pressure at the
leading edge moves somewhat down, but contributes little tolift. Drag increases only
slowly because of negative drag at the leading edge.

14 Phase 2: 4 − 6 ≤ α ≤ 16

The low pressure on top of the leading edge intensifies to create a normal gradient pre-
venting separation, and thus creates lift by suction peaking on top of the leading edge.
The slip boundary condition prevents separation and downwash is created with the help
of the low-pressure wake of streamwise vorticity at rear separation. The high pressure
at the leading edge moves further down and the pressure belowincreases slowly, con-
tributing to the main lift coming from suction above. The netdrag from the upper
surface is close to zero because of the negative drag at the leading edge, known as
leading edge suction, while the drag from the lower surface increases (linearly)with
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Figure 6: G2 lift coefficient and circulation as functions ofthe angle of attack (top),
drag coefficient (middle) and lift/drag ratio (bottom) as functions of the angle of attack.
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the angle of the incoming flow, with somewhat increased but still small drag slope.
This explains why the line to a flying kite can be almost vertical even in strong wind,
and that a thick wing can have less drag than a thin.

15 Phase 3: 16 ≤ α ≤ 20

This is the phase creating maximal lift just before stall in which the wing partly acts as a
bluff body with a turbulent low-pressure wake attaching at the rear upper surface, which
contributes extra drag and lift, doubling the slope of the lift curve to give maximal lift
≈ 2.5 atα = 20 with rapid loss of lift after stall.

Figure 7: G2 computation of velocity magnitude (upper), pressure (middle), and non-
transversal vorticity (lower), for angles of attack 2, 4, and 8◦ (from left to right). Notice
in particular the rolls of streamwise vorticity at separation.
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Figure 8: G2 computation of velocity magnitude (upper), pressure (middle), and non-
transversal vorticity (lower), for angles of attack 10, 14,and 18◦ (from left to right).
Notice in particular the rolls of streamwise vorticity at separation.
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Figure 9: G2 computation of velocity magnitude (upper), pressure (middle), and non-
transversal vorticity (lower), for angles of attack 20, 22,and 24◦ (from left to right).
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contributions acting along the lower and upper parts of the wing, for angles of attack 0,
2 ,4 ,10 and 18◦, each curve translated 0.2 to the right and 1.0 up, with the zero force
level indicated for each curve.
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16 Lift and Drag Distribution Curves

The distributions of lift and drag forces over the wing resulting from projecting the
pressure acting perpendicular to the wing surface onto relevant directions, are plotted
in Fig.10. The total lift and drag results from integrating these distributions around the
wing. In potential flow computations (with circulation according to Kutta-Zhukovsky),
only the pressure distribution orcp-distribution is considered to carry releveant infor-
mation, because a potential solution by construction has zero drag. In the perspective
of Kutta-Zhukovsky, it is thus remarkable that the projected cp-curves carry correct
information for both lift and drag.

The lift generation in Phase 1 and 3 can rather easily be envisioned, while both the
lift and drag in Phase 2 results from a (fortunate) intricateinterplay of stability and
instability of potential flow: The main lift comes from uppersurface suction arising
from a turbulent boundary layer with small skin friction combined with rear separation
instability generating low-pressure streamwise vorticity, while the drag is kept small
by negative drag from the leading edge. We conclude that preventing transition to
turbulence at the leading edge can lead to both decreased lift and increased drag.

17 Comparing Computation with Experiment

Comparing G2 computations with about 150 000 mesh points with experiments [21,
36], we find good agreement with the main difference that the boost of the lift co-
efficient in phase 3 is lacking in experiments. This is probably an effect of smaller
Reynolds numbers in experiments, with a separation bubble forming on the leading
edge reducing lift at high angles of attack. The oil-film pictures in [21] show surface
vorticity generating streamwise vorticity at separation as observed also in [24, 27].

A jumbojet can only be tested in a wind tunnel as a smaller scale model, and upscal-
ing test results is cumbersome because boundary layers do not scale. This means that
computations can be closer to reality than wind tunnel experiments. Of particular im-
portance is the maximal lift coefficient, which cannot be predicted by Kutta-Zhukovsky
nor in model experiments, which for Boeing 737 is reported tobe 2.73 in landing in
correspondence with the computation. In take-off the maximal lift is reported to be
1.75, reflected by the rapidly increasing drag beyondα = 16 in computation.

18 Kutta-Zhukovsky’s Lift Theory is Non-Physical

We understand that the above scenario of the action of a wing for different angles of
attack, is fundamentally different from that of Kutta-Zhukovsky, although for lift there
is a superficial similarity because both scenarios involve modified potential flow. The
slope of the lift curve according to Kutta-Zhukovsky is2π2/180 ≈ 0.10 as compared
to the computed0.09.

Fig.6 shows that the circulation is small without any increase up toα = 10, which
gives evidence that Kutta-Zhukovsky’s circulation theorycoupling lift to circulation
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does not describe real flow. Apparently Kutta-Zhukovsky manage to capture some
physics using fully incorrect physics, which is not science.

Kutta-Zhukovsky’s explanation of lift is analogous to an outdated explanation of
the Robin-Magnus effect causing a top-spin tennis ball to curve down as an effect
of circulation, which in modern fluid mechanics is instead understood as an effect of
non-symmetric different separation in laminar and turbulent boundary layers [27]. Our
results show that Kutta-Zhukovsky’s lift theory for a wing also needs to be replaced.

19 Sailing

Both the sail and keel of a sailing boat under tacking againstthe wind, act like wings
generating lift and drag, but the action, geometrical shapeand angle of attack of the sail
and the keel are different. The effective angle of attack of asail is typically 20 degrees
and that of a keel 10 degrees, for reasons which we now give.

The boat is pulled forward by the sail, assuming for simplicity that the beam is
parallel to the direction of the boat at a minimal tacking angle, by the component
L sin(20) of the lift L, as above assumed to be perpendicular to the effective wind
direction, but also by the following contributions from thedrag assumed to be parallel
to the effective wind direction: The negative drag on the leeeward side at the leading
edge close to the mast gives a positive pull which largely compensates for the positive
drag from the rear leeward side, while there is less positivedrag from the windward
side of the sail as compared to a wing profile, because of the difference in shape.
The result is a forward pull≈ sin(20)L ≈ 0.2L combined with a side (heeling) force
≈ L cos(20) ≈ L, which tilts the boat and needs to be balanced by lift from thethe keel
in the opposite direction. Assuming the lift/drag ratio forthe keel is 13, the forward
pull is then reduced to≈ (0.2 − 1/13)L ≈ 0.1L, which can be used to overcome the
drag from the hull minus the keel.

The shape of a sail is different from that of a wing which givessmaller drag from
the windward side and thus improved forward pull, while the keel has the shape of a
wing and acts like a wing. A sail with aoa20 degrees gives maximal pull forward at
maximal heeling/lift with contribution also from the rear part of the sail, like for a wing
just before stall, while the drag is smaller than for a wing at20 degrees aoa (for which
the lift/drag ratio is about 3), with the motivation given above. The lift/drag curve for
a sail is thus different from that of wing with lift/drag larger for a sail at aoa 20. On
the other hand, a keel with aoa 10 degrees has a lift/drag ratio about 13. A sail at aoa
20 thus gives maximal pull at strong heeling force and small drag, which together with
a keel at aoa 10 with strong lift and small drag, makes an efficient combination. This
explains why modern designs combine a deep narrow keel acting efficiently for small
aoa, with a broader sail acting efficiently at a larger aoa.
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