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Abstract
An insurance model can be interpreted as a point process N = f(Tk; Xk) :k = 1; 2; :::g on a particular time-state space. The time components Tk markthe customers' claim arrival times and the state components Xk model theclaim sizes. The basic idea of an approximation of the risk process associatedwith N is to normalize properly the time-state space in such a way that theresulting sequence of point processes f(Tnk; Xnk) : k = 1; 2; :::g; n = 1; 2; :::is vaguely convergent. First an accompanying model with deterministic timepoints is considered and after that the general problem with random timepoints is investigated. The investigation is done under di�erent assumptionson Tk and Xk so that di�erent kinds of approximations arise.
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1 Introduction
An insurance risk model I can be considered as determined if a data point processN = f(Tk; Xk) : k = 1; 2; :::g is given on the time-state space S = (0;1) � (0;1)wherea) the state coordinates Xk represent the claim sizes. We assume that they areindependent random variables (rv's).b) The time coordinates Tk are interpreted as the claim arrival times. We assumethat they are strictly increasing: 0 < T1 < T2 < ::: < Tn !1.

1



c) Both sequences Tk and Xk are supposed to be independent.With the point process N we associate three random processes:
� the counting process N(t) :=Pk IfTk � tg = maxfk : Tk � tg which countsthe number of claims in the interval (0; t];
� the accumulated claim process S(t) :=PN(t)k=1 Xk;
� the risk reserve process R(t) := u + ct � S(t), where u = R(0) is the initialcapital and c > 0 is the premium income rate.
As a measure of risk one usually takes the probability of ruin  (u) = P (R(t) <0 for some t > 0 j R(0) = u). In few cases  (u) can be calculated explicitly. Inmost cases, however, one solves the problem either giving upper and lower boundsfor  (u) or approximating the risk process R(t).It is transparent that the uncertainty of the risk process is borne by the accu-mulated claim whose distribution function (df) has the form

P (S(t) < x) = 1X
k=0 P (S(t) < x j N(t) = n)P (N(t) = n) (1)

= 1X
k=0(FX1 � ::: � FXn)(x)P (N(t) = n):

In view of (1), in fact an approximation of S(t) is pursued.The main goal of our survey is to o�er a uni�ed approach to the approximationof the risk process. As a "back testing" we check our approach on the well knowndi�usion approximation (Section 3) and the �-stable approximation (Section 4).Then, in Section 5, we pay attention to a new approximation using a Sato process.It seems that for �rst time it is introduced by I.Mitov in his Ph.D.Thesis (2009)(see also Mitov et al. (2010)).
2 Preliminaries
Let us make use of the basic idea to change time and space.We apply continuous andstrictly increasing in both coordinates mappings �n(t; x) = (�n(t); un(x)); n � 1 ina way that the claim sizes Xnk = u�1n (Xk) become smaller but their number Nn(t)increases properly. Here Nn(t) = N(�n(t)) = maxfk : Tnk = ��1n (Tk) � tg. In thisway we are supplied with a sequence of point processes Nn = f(Tnk; Xnk) : k =1; 2; :::g; n � 1, and associated random processes Nn(t); Sn(t) = PNn(t)k=1 Xnk andRn(t) = un + cnt � Sn(t). If we succeed in showing that Rn ) R0 in D, then wemight consider R0 as a weak approximation of the initial risk process R.This approach consists of three steps:Step 1 (accompanying point process N (a)n ).The classical limit theory for sums of independent rv's is related to point pro-cesses with deterministic time points N (a)n = f(tnk; Xnk) : k = 1; 2; :::g. Let Xnk be
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the same normalized claim sizes as in the point process Nn. The time points tnkare chosen so that the corresponding counting function kn(t) = maxfk : tnk � tg is�nite for every �xed n and t, tends to 1 as n!1, and (under certain conditionson Xnk) the weak convergence
Zn(:) := kn(t)X

k=1 Xnk ) Z(:) in D (2)
holds. Note that kn(t) is not uniquely determined by (2) and depends on the tails1� P (Xnk < x).We denote the class of all nondecreasing cadlag functions y : (0;1) ! (0;1)equipped with the topology of the weak convergence by M(0;1); M� D. It is aPolish space. Denote by P the set of all probability measures on M.The limit process Z has independent increments and sample paths in M. Forsuch processes it is known (cf Whitt (2002)) that:�) the �nite dimensional distributions are determined by the univariate marginaldistributions;�) any sequence of nondecreasing processes is tight;
) the set P is closed with respect to the weak topology.Therefore it is su�cient to prove the convergence Zn(t) d! Z(t) for all t in a densesubset of (0;1) in order to state the weak convergence Zn ) Z in D. Moreover, ifthe limit process is stochastically continuous, then the weak convergence (2) holdsunder the Skorohod's J1-topology.Step 2 (random time change).Here we call random time change any mapping � : (0;1) ! (0;1); �(0) = 0and �(s) ! 1 for s ! 1, which is stochastically continuous and has samplepaths in M(0;1). Given both counting processes Nn (of the point process withrandom time points) and kn (of the accompanying point process with deterministictime points) there exists a random time change �n(t) (cf. Pancheva, Kolkovska andJordanova (2006)) such that

Nn(t) d= kn(�n(t)): (3)
On M(0;1) a convergence in the Skorohod's M1-topology coincides with a point-wise convergence on a dense subset of (0;1), coincides with a convergence for allcontinuity points of the limit function. Hence it is su�cient to assume that

�n(t) d! �(t); n!1 (4)
for all t in a dense subset of (0;1). Then �n ) � in the M1-topology and the limittime process � has sample paths in M.Step 3 (continuity of the composition).Now the accumulated claim associated with the point processNn = f(Tnk; Xnk) :k = 1; 2; :::g can be expressed as

Sn(t) = Nn(t)X
k=1 Xnk = kn(�n(t))X

k=1 Xnk = Zn � �n(t):
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The composition Zn��n mapsM(0;1)�M(0;1) intoM(0;1). The independenceof Tnk and Xnk implies the independence of �n and Zn. Both convergences (2) and(4) then mean that (Zn; �n)) (Z; �) 2 M�M:
Unfortunately, the composition map is in general not continuous at (Z; �) in theM1-topology. Whitt (2002, th. 13.2.4) gives conditions for the M -continuity of thecomposition. These conditions are equivalent to the statement that both processesZ and � do not jump simultaneously. Finally, under this condition, one may claimthat Sn = Zn � �n ) Z � � =: S (5)
in the M1-topology. In a case when both Z and � are stochastically continuous theweak convergence (5) holds also in the stronger J1-topology on M.
3 Di�usion Approximation
In this section we specify the initial model I as follows. De�ne the interarrival timesby Yk := Tk � Tk�1; k � 1; T0 = 0 and assume that

i) fYkg are independent and identically distributed (iid) rv's with �nite variance�2Y and expected value EY = 1� ; � > 0;
ii) fXkg are iid rv's with �2X <1 and EX = �.
Iglehart (1969) investigated this model and suggested a Brownian motion ap-proximation of the accumulated claim process. Indeed, by Donsker Invariance Prin-ciple,

Zn(:) := [n:]X
k=1

Xk � ��xpn ) B(:) in D(0;1): (6)
The sample paths of the Brownian motion B(t) are a.s. continuous. On the spaceC (of all continuous functions), C � D, the Skorohod's J1-topology coincides withthe uniform topology.From (6) we already know what kind of time-space transforms to choose, namely�n(t; x) = (nt; x�Xpn). Hence, in the new coordinates, we have

Nn = f(Tnk = Tkn ;Xnk = Xk�Xpn) : k � 1g
and Nn(t) =Xk IfTkn � tg = N(nt):
Under assumption i) the Law of Large Numbers (LLN) claims that

�n(t) := N(nt)n p! �t:
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Further, in view of (3) and (6), we observe that kn(t) = [nt] and
Nn(t) = N(nt) = [n�n(t)] = kn(�n(t)):

Under assumption ii) the accumulated claim process Sn(t), associated with Nn, canbe expressed as
Sn(t) = Nn(t)X

k=1 Xnk = kn(�n(t))X
k=1

Xk�Xpn
= Zn(�n(t)) + ��X (N(nt)� �ntpn ) + ��nt�Xpn:

Thus, the risk process in the new coordinates is de�ned as Rn(t) := R(nt)�Xpn =
= u�Xpn + ���X ( c�� � 1)tpn� Zn(�n(t))� ��X (N(nt)� �ntpn ):

In order to guarantee the weak convergence of Rn we assume additionally that asecond order LLN holds, namely
iii) N(nt)��ntpn p! 0; n!1.
The risk process in the new coordinates is connected with an increasing numberof customers in [0; t]. Thus it is reasonable to assume that the initial capital u = u(n)increases with n whereas the safety loading � = ( c�� � 1) = �(n) decreases in n insuch a way that
iv) u(n)�Xpn ! u0; ���X �(n)pn! �0; n!1.
Then Rn(t)) R0(t) = u0 + �0t� �1=2B(t) in D;

where we have used the selfsimilarity B(�t) d= �1=2B(t) of the Brownian motion.
4 �-stable Levy motion approximation
In this section we look at the results of Meerschaert and Sche�er (2004) throughthe three-steps approach to the risk process approximation performed in Section 2.The initial model I is speci�ed here by assuming thati) the claim sizes fXkg are iii rv's whose df belongs to the domain of attractionof an �-stable law (brie
y X 2 DA(Z�)) with � 2 (0; 1);ii) the interarrival times fYkg are iid rv's, Y 2 DA(D�); � 2 (0; 1).Under these conditions the stable Functional Central Limit Theorem (FCLT)claims that there exist normalizing sequences B(n) > 0 and b(n) > 0 such that forall t in a dense subset in (0;1)

Zn(t) := [nt]X
k=1

XkB(n) d! Z(t); Z(1) = Z� (7)
5



and T[nt]b(n) =
[nt]X
k=1

Ykb(n) d! D(t); D(1) = D�: (8)
The limit process Z(t) is an �-stable one-sided Levy motion and hence 1� -selfsimilarand stochastically continuous. Its sample paths belong to M(0;1). Similarly,the process D(t) is one-sided �-stable Levy motion, stochastically continuous withsample paths in M(0;1). Consequently,

Zn ) Z and T[n:]b(n) ) D(:) in M
with respect to the J1-topology.De�ne the hitting time process of D(:) by E(t) := inffx : D(x) > tg. It is�-selfsimilar, hence stochastically continuous, but not any more a Levy process.Its sample paths belong to M(0;1). Take a sequence ~b(n) asymptotically inverseto b(n) in the sense that b(~b(n)) � n. Then convergence (8) implies the weakconvergence of the random time changes

�n(:) := N(n:)~b(n) ) E(:); n!1;
in M(0;1) with respect to the J1-topology (cf Theorem 3 in Bingham (1971)).Now take convergence (7) along the subsequence fn0 = ~b(n)g. We get

Z 0n(:) := [~b(n):]X
k=1

XkB(~b(n)) ) Z(:) in M: (9)
Convergences (8) and (9) suggest the choice of the proper time-space changes,namely �n(t; x) = (nt; xB(~b(n))). Then we have

Nn = f(Tnk = Tkn ;Xnk = XkB(~b(n))) : k � 1g:
Consequently, Nn(t) = N(nt) = ~b(n)�n(t) = kn(�n(t))and

Sn(t) = Nn(t)X
k=1 Xnk = ~b(n)�n(t)X

k=1
XkB(~b(n)) = Z 0n � �n(t):

Recall that from Section 2, in order to use the continuity property of the composition
Z 0n � �n ) Z � E

in M with respect to the Skorohod M1-topology, we need one more assumption,namely
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iii) both limit random processes do not jump together with probability 1.Now, the risk process Rn(t), associated with Nn, can be expressed as
Rn(t) := R(nt)B(~b(n)) = u(n)B(~b(n)) + c(n)ntB(~b(n)) � Z 0n(�n(t)):

In addition assume that the initial capital and the income rate increase with n in away that
iv) u(n)B(~b(n)) ! u0; c(n)nB(~b(n)) ! c0; n!1.
Finally, we may claim that

Rn(t)) R0(t) = u0 + c0t� Z(E(t)) in D:
Here the random time-changed �-stable Levy motion Z �E is not anymore a Levyprocess but a �=� -selfsimilar process whose increments are neither independent norstationary.To this section also belongs the risk approximation studied by Furrer H. etal. (1997). In their model the claim sizes Xk are iid rv's with EX = � andX 2 DA(Z�); � 2 (1; 2). The interarrival times Yk are iid rv's such that thecounting process Nn(t) is a renewal process satisfying the �rst and second orderLLN: Nn(t)n ! �t and Nn(t)� n�tB(n) ! 0; n!1:
Then, under the usual assumptions, the limiting risk process has the form R0(t) =u0 + c0t� �1=�Z�(t), where Z� is the �-stable Levy motion.
5 Approximation by a subordinated Sato process
De�nition: A selfsimilar random process (cf. Embrechts and Maejima (2002)) with
independent but not necessarily stationary additive increments is referred to as a
Sato process.In this section we drop the assumption of identically distributed claim sizes andspecify the initial insurance model I by the assumptions:i) The claim sizes Xk are independent Pareto-distributed rv's with

P (Xk > x) = �Ck�x
�� for x > Ck�; � 2 (0; 1);

ii) the interarrival times Yk are iid rv's whose df G has a regularly varying tail1�G(x) � x��L(x) with � 2 (0; 1) and L(x) - slowly varying function.In this very heavy-tailed case the stable FCLT applies and we get that thereexist normalizing sequences C(n) > 0 and b(n) > 0 such that the weak covergences
Sn(:) := [n:]X

k=1
XkC(n) ) S(:) (10)
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and T[n:]b(n) =
[n:]X
k=1

Ykb(n) ) D(:) (11)
hold inM. The process S(t) in (10) is a Sato process with stochastically continuoussample paths in M(0;1). Its selfsimilarity parameter is H = � + 1=�. The limitprocess D(t) in (11) is the �-stable Levy motion. As before we denote its hittingtime process by E(t) and obtain from (11) that

�n(:) := N(b(n):)n ) E(:); n!1:
Now, it is clear that the time-space changed initial point process has the form:

f(Tnk = Tkb(n) ; Xnk = XkC(n)) : k � 1g:
The associated random processes are:

� the counting process Nn(t) = N(b(n)t) = n�n(t) = kn(�n(t)),
� the accumulated claim ~Sn(t) :=PNn(t)k=1 Xnk =Pn�n(t)k=1 XkC(n) = Sn � �n(t),
� the risk process Rn(t) := R(b(n)t)C(n) = u(n)C(n) + c(n)b(n)tC(n) � Sn � �n(t).

Let us assume condition iii) from the previous section and
iv) u(n)C(n) ! u0; c(n)b(n)C(n) ! c0; n!1.

Then we observe that
Rn(t)) R0(t) = u0 + c0t� S � E(t) in D:

Moreover, using the selfsimilarity of S and E, since E(1) d= D��(1) one gets
S � E(t) d= �D(1)t

���H S(1):
The last simple formula appears to be very useful in simulating the subordinatedSato process (cf. Mitov (2009)).
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