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Abstract A. The Erlang Programming Language
Erlang is a functional programming language with sup-  We consider a core fragment of the Erlang programming

port for concurrency and message passing communicationlanguage with dynamic networks of processes operating on
that is used at Ericsson for developing telecommunication data types using asynchronous, call-by—value communica-
applications. We consider the challenge of verifying tem- tion. Besides Erlangxpressions the syntactical categories
poral properties of systems programmed in Erlang with dy- of matchesn, patternsp, andguardsg are considered:
namically evolving process structures. To accomplish this a

rich verification framework for goal-directed, proof system— o

oD ) _ ! | bv[[ei]es] [{e1,. .., en}
based verification is used. This paper investigates the prob- | e(er, ..., en) function call
lem of semi—automating the verification task by identifying | begine, ..., en end sequence
h f parameters crucial for successful proof search | case e of m end matching
the proot p p : | exiting e throw exception
| catch e handle exception
| receive m end process input
. | eil es process output
l. Introduction
bv = atom|number| pid|[] | {}
i ) v u= bv[[w]wv] [{v1, ..., on}
The Erlang programming language [1] is used at Er-
icsson for programming telecommunication applications. ~ » == bv|var|[pilp2] [{p1. ..., pn}
; ; m  u=  p1 when gi->e1; -+ ;pp WhEN gn->ep
Such software is usually of a highlyoncurrentand dy- g = e e

namicnature, and is therefore hard to debug and test. We ) ) )
explore the alternative of proof system-based Erlaode The Erlang values consists of a set of atom literals (with an
verification Verifying temporal properties of systems with  initial lowercase letter), the numbers, pid constants ranged
dynamically evolving process structures and unbounded OVer bypid, tuples, and lists. The variables (ranged over by
data is hard, requiring a framework [2], [3] which var) are symbols starting with an uppercase letter. An Er-
. is parametric on components anelativised on their  langprocesshere writtenpr oc<e, pid, ¢>, is a container
properties, i.e., does not necessarily require all parts of theor the evaluation of an expressienA process has a unique
Erlang system in question to be fully specified; process identifierpid) which is used to identify the recipi-

« is compositional i.e., allows to reduce a property of a €Nt Process in communications. Communication is binary,
compound Erlang program to arguments about the proper-With one process sending a message to a second process
ties of its components; and identified by its pid. Messages sent to a process are put in

« provides support fanductiveandco-inductivereasoning ~ 1tS Mailboxg, queued in arriving order. Non-lossy commu-
about the infinitary behaviour of components. nication channels of an unbounded size are assumed. The

Due to the concurrency and dynamism inherent in the empty queue ieps, [ [ v] ] is the queue containing the one

systems addressed, a variety of induction schemes are re€lementv, andg; @g» concatenateg, andqz. To express
quired. However, it is often difficult to foresee which of € concurrent execution of two sets of processeandss,
these might work. We therefore emplsymbolic program the syqtax.sﬂ | 52 IS used. The main choice construct of
executionand instance checkindo “discover” induction ~ Erlangis fby rr\:ﬁtchmg: .,

schemes lazily. Our machinery is based on ordinal approx- ©2°¢ ¢ ©' Prvnen g1 Z e «oo i Pnwhen gn->en end
imation of fixed points and on well-founded ordinal induc- The value thate evaluates to is matched sequentially
tion, and on a global discharge proof rule for ensuring con- against patterns (values that may contain unbound vari-
sistency of the mutual inductions in a proof structure. ables)p;, respecting the optional guard expressignsThe



expressiore; les represents sending (the valueesfis sent

to the process with process identifig) whereas ecei ve

m end inspects the process mailbgand retrieves the first

elementv in ¢ that matches any patternin. Then evalu-

ation proceeds analogously¢ase v of m. Expressions

are interpreted relative to an environment of “user defined”

function definitions of the shape:
f(pll,.. ) when g1 ->€1; ..., f(pnl,.

The operational semantics for Erlang developed in [4]
forms the basis for program verification.

..)when gn ->ep.

B. The Property Specification Language

Behavioural properties of Erlang programs, and the struc-

variables are examined by the global discharge rule to deter-
mine whether a proof structure contains a proper inductive
or co-inductive argument. Consider two example rules
|- ((gfp X.¢)")t1 ... ta, A
T[-(ofp X.9)t1 ... tr, A
D,k <rl- (p{(0fp X. )" /XDt ... tn, A
T|- ((afp X.9)") t1 ... ta,A

The ruleApprxz commences a co-induction (on the unfold-
ing of the fixed point) and introduces a fresh ordinal variable
k. The ruleunf1z unfolds the fixed point and records the ex-
istence of a lesser ordinal as the inequatidn< . As a
side-effect the term vectay . . . ¢, is recorded and used in
proof search to heuristically determine whether unfolding is
a progressing proof step.

In compositional verification an argument about the be-

Apprxgr

Unflg

ture of program data, are characterised in a many-sortedhaviour of a compound system is reduced to arguments

first-order logic with explicit fixed point operators. To
reason about behaviour the modalitigg ¢ and[«a] ¢ are
available. The addition of least and greatest fixed point op-
erators results in a powerful specification language, known
as theu—calculus[5]. In the following we leta range over
a set of program actionsyange over general ternis,over
sort names and ranges over the term and fixed point vari-
ables. The abstract syntax of logic formulaés:

¢u=t1=t2 [t |ff [not ¢|¢1 and ¢z | $1 Or ¢

| exists X:T.¢|forall X:T.¢ quantifiers
| \X:T. ¢ |t abstraction/application
| <a>¢|[a] ¢ modalities
| ofp X.¢|1fp X.¢| X fixed points
| k<& ordinal inequations
| t1 Sty transition assertions

The syntactic form: ¢ is an alternative for an application
¢ t. Fixed point formulas can be named, ergane < ¢
abbreviates the least fixed pointp X. ¢{X/nanme} and
name = ¢ abbreviates a greatest fixed point.

C. The Proof System

about the behaviour of its components, which is achieved
through aterm—cutproof rule of the shape
Tl-p Y, A ,X:v|- s, A

Ll- s{p/X}:6,A
The global discharge rule is the crucial proof rule on which
inductive and co-inductive reasoning relies. Roughly, the
goal is to identify situations where a latter proof node can
be discharged since is an instance of an earlier one on the
same proof branch, and since appropriate fixed points have
been unfolded [2].

TermCut

D. The Erlang Verification Tool

The proof system is realised in the Erlang Verification
Tool (EVT) proof assistant [6}. EVT has been tailored
to the underlying proof system; rather than working with
a set of open goals, the underlying data structure is an
acyclic proof graph to account for the checking of the dis-
charge rule. Proving a property of an Erlang program in-
volves goal-directed construction of a proof graph. The ba-
sic proof rules are implemented &&ctics which are func-
tions from a sequent (the current goal, forming the conclu-

Program verification uses a Gentzen-style proof system,sjon of the rule) to a list of sequents (the subgoals, given

allowing free parameters to occur within tipgoof judg-
mentsof the proof system. The judgments are of the form
I'| - A, wherel andA are sequences of assertions. A judg-
ment isvalid if, for any interpretation of the free variables,
some assertion iA is valid whenever all assertionslinare

valid. Parameters are variables ranging over specific typesII
of entities, such as messages, functions, or processes. The’

proof rules of the proof system are standard from first-order
logic, with the addition of rules for fixed point manipula-
tion, a cut—like rule for decomposing proofs about a com-

pound system to proofs about the components, and a rule

for discharging loops in a proof, via fixed point induction.
The fixed point rules govern the unfolding of fixed points,
and the annotation of fixed points with ordinal variables

by the premises of the rule). As most proof assistants, EVT
providestactic combinatorsor tacticals for deriving new
tactics. A number of higher-level tactics provide practical
proof rules for deriving transitions of Erlang components.

Proof Organization and Automation

The general verification problem of proving that an Er-
lang system satisfiesiacalculus property is not decidable.
Therefore, it is crucial to identify the proof tasks that can be
automated, and to organize proofs in a manner which com-
bines in the most suitable way the automatable activities
with the human-guided ones.

to represent the number of such unfoldings. These ordinal 'Seehttp://ww. si cs. se/ fdt/ Veri Code/ evt . ht m



A. Proofs and Proof Discovery as reasoning about the transitions of an Erlang component
using the operational semantics.

In EVT a proof is a tree with some leaves being axiom in- 5. Maintaining proof invariantsin an Erlang proof sequent
stances, and the rest being instances of predecessor sequerasssumptions record facts about unknown program parame-
and satisfying the global discharge condition. In practice, ters, or relationships between program variables, in the form
searching for such proofs is computationally too expensive, of program invariants. During an automated proof search
and moreover the search is not likely to terminate. Instead, such assumptions need to be updated, after a symbolic pro-
we consider here a more relaxed notion of a proof, which gram step has been taken.
is, intuitively, a proof tree that exhibits the essential struc-  Once a pre-proof has been found, the task of converting it
ture of a complete proof, but where not all proof-branches into a proper proof remains. In this paper itis left to the user,
necessarily are completed or even valid. As we have foundwho should modify the parameters of the proof search (the
in practice, such a “pre-proof” forms a good starting point proof schema) by, for instance, adding additional inductions
for obtaining a successful proof, and is relatively cheap to (1), or by adding and maintaining proof invariants (5), and
search for; in particular, proof-search can terminate. then repeat the search for a pre-proof.

Consider the usual shape of a proof goal about Erlang
programsl| - s : ¢ wheres is an Erlang behavioural com- B. Proof Search Facilities
ponent (e.g., process, system, expressign)s the be-
havioural property the component should sati§hgre as- We describe some of the tactics and scripts supporting
sumptions about program parameters. The proof structurethe approach to proof search outlined above. Their use is
representing the proof of such a sequent is governed mainlyillustrated in the next subsection. Given an indexactic
by two parameters: (i) the behavioural patterns of the Erlang (t _choi cel ess_r i) is used for local proof search. It
component (e.g., for a system its communication and net- begins with the&-th formula to the right, and recursively ap-
work topology, for a functional expression its call graph), plies the tactic corresponding to the outermost connective of
and (ii) the fixed point structure of the formuéa Thus the formula as long as no choice and no fixed-point unfold-
the following proof parameters crucial for successful semi- ing or approximation is involved. The _gen_unf ol d_r

automatic (pre-)proof search can be identified: tactic combines one unfolding with choi cel ess_r.

1. Setting up the main (co-)induction structurdeciding Sequent predicates are functions from sequents to
when to approximate and unfold fixed points. booleans. These can be combined using the functors
2. Combatting state-explosion in the proof structulecid- sp_not, sp_or andsp_and. An important use of se-

ing where to apply therrmcut rule, either as a mechanismto quent predicates is to capture proof-search termination con-
abstract away from a concrete program term to reduce theditions. For example, s(p_unf ol dabl e_r ) checks
proof-state space, or to continue an inductive argument. ~ whether the term appearing as the first component of the
3. Terminating (pre-)proof searchhere one has to bal- satisfaction pair at positioinis not an instance of some term
ance between how often to invoke human intervention and at which the fixed-point formula, which is the second com-
the need to avoid non-terminating or large redundant com- ponent, has already been unfolded. This is a much weaker
putations. A good heuristic is to terminate proof search condition than the instance condition of the discharge rule,
when “growing” program components are detected (and no and is very useful in practice. The approach is inspired by
termcut policy is in place), notably after process spawning, the fixed-pointaggingtechnique of Winskel [7].

which cause the instance checking to fail and can thus give The case_by script takes as argument a list of pairs
rise to non-terminating proof branches. Function calls are consisting of a sequent predicate and a tactic. It executes
yet another place to stop proof search, usually to allow for the tactic corresponding to the first predicate (if any) which
better structuring and reuse of proofs, but also indispensableholds for the current sequent. Theop script takes as an

in the analysis of non-tail-recursive Erlang functions. argument a script such asase_by and applies it recur-
Proof search should also be terminated whenever a leafsively until no new nodes are generated. As an example for
is encountered which is either a “pre-axiom” (for exam- invariant maintenance, thé (queue_i nvar i; i,) tactic

ple suspected to be propositionally valid), or it is a “pre- transfers the queue assumption residing at the left iigex
instance” of some predecessor sequent (for example theto the queue term of the process at the right index

main assertion in the sequent is an instance of the corre-

sponding assertion in the predecessor). The second cas€. Example

represents a strong indication that an (co-)inductive argu-

ment should be performed, and thus indicates how to trans- We shall illustrate the ideas presented above on a simple
form the pre-proof to a proper proof. but typical example. Consider a concurrent server which re-
4. Choosing locally the next proof rule to be appliadider peatedly takes a request from its message queue and spawns
this item any non-strategic proof rule application falls such off a process to serve it by handling the request, here always



assumed to succeed, and responding with the obtained reThe queue@@ [ {request, Req, C Pid}]] @B is

sult to the client specified in the request: built from the concatenation of three par&2, the value
central_server() - [ [{r_eql_Jes_t , Req, d Pid}]],and@®. We ha_lve now a
recei ve {request, Request,C Pid} -> clear indication that the number of processes in the system
begi n . will grow without bound, so a blind proof search is bound to
zgz‘;"’?gfe;‘éf;/gf‘(e?“e“ A Pid]), fail. Rather, one has to proceed ingluction on the system
end - structure This is achieved through compositional reasoning
end. by abstracting away the first process component which is re-

sponsible for the unbounded dynamic process creation, and

relativising the argument on a property of this component.

C.1 Stabilization The choice of a suitable property is crucial, of course, for
the induction to succeed. In our particular example it hap-

The first formula we consider gives a liveness property pens thast abi | i zes composes. We apply thermeut
of the server, namelgtabilization i.e. the convergence on  yje to obtain the two new goals:

output and silentgst ep) actions. It expresses that, as-
suming that no input is being received, the process is able! -
to execute only a finite number of output and silent steps:

serve(Request,d Pid) -> O Pid!{response, ok}.

proc<begin Pl1, central _server() end, P, Ql> :
stabilizes

X : stabilizes |-

stabilizes: erlang_system-> prop <= ; . S
(forall Pid:erlangPid. forall V:erlangVal ue. X || proc<serve(Req, A Pid), P1, eps>: stabilizes
[Pi di message(V)] stabilizes) the first of which corresponding to the induction basis, and
I\ ([estep] stabilizes); . . . .
the second corresponding to the induction step. The first of
So, the initial proof goal is declared as: these can be analysed by the script presented above, termi-

declare P:erlangPid, Q erlangQueue in nating with the goal

| - proc<central _server(), P, Q@ : stabilizes |- proc<central server(), P, Q> : stabilizes

In the proof sketch below we illustrate the interplay be- pecause of detecting a pre-instance (we looped back to the
tween automated proof search - leading to discovery of jnitial control point), causingp_unf ol dabl e_r to fail.

proof structures such as induction strategies - and manualpne might expect to be able to discharge here w.r.t. the ini-
proof steps realising the discoveries in a revised proof at- tja| goal, but this fails. The reason is that no ordinal has been
tempt. The following proof search script results in a sym- decreased. However, by inspecting the proof state we real-
bolic execution of the process until either a system which is ize that the |ength of the queue of the process has decreased,
not a singleton process, or a repetition of the same controlgnd that indeed stabilization of the server is a consequence

state is encountered: of the well-foundedness of message queues. Therefore we
| oop (case_ by [ add an explicit assumption on the well-foundedness of the
(sp_and (sp_sat_sysproc_r 1) gueue, which will be maintained throughout the proof:
(sp_not (sp_sat_is_queue_var_r 1)),
t_queue_flat_r 1), declare P:erlangPid, QerlangQueue in Q: queue
(sp_and (sp_sat_sysproc_r 1) | - proc<central _server(), P, @ : stabilizes
(sp_unfol dable_r 1), . L
t gen_unfoldr 1) 1); given the definition

In the first case, if the first right-hand side formula is % erl angQueue -> prop <=
L . . ' . . X Q erl angQueue .
a satisfaction pair the first part of which is a single "= eps \/
process the queue term of which is not a variable, the (exists V:erlangvalue, QI Q:erlangQueue .
t _queue_flat _r tactic is applied which replaces the Q= aa@v]@z /\ (is_queue QL@X))

term with a fresh variable and adds an equation to the left The revised proof will turn out to be, at least partly, iny

equating this fresh variable with the queue term. This is qyction on the queue-term structurll we have to change
done to insure that, in the second case, the pre-instancen, the beginning is to approximate the left formula, result-

tects control-point repetition. Execution of the above s an approximation ordinal, and to proceed as before. This
proof search script terminates because a new process Wagyentually results in:

spawned (and thusp_sat _syspr oc_r failed). The re-

sult is the sequent:

EQR@[{request,Req, d Pid}]] @B, QL=Q@XB, not (P=P1) . .

|- proc<begin P1, central server() end, P. QL> || in place of the unsuccessful goal we ended up with
proc<serve(Req, O Pid), Pl, eps> : stabilizes earlier. This goal is “almost” dischargable w.r.t. the

Q@[ {request, Req, A Pid}]] @8B: queue(K), QL=QR@B

| - proc<central _server(), P, QL> : stabilizes



initial goal after approximation. For the instance
check to go through, one need@l: queue( K1),

Pre-proof search (3) is terminated when a pre-instance is
found, i.e., an instance of the current expression has already
for some ordinal variable K1<K, instead of been considered. In this case the discharge rule is applied.
Q@[ {request,Req, d Pid}]] @B: queue(K) For local reasoning (4) we apply a simple tactic similar to
to appear as an assumption in the sequent. We theret choi cel ess_r to reduce the proof state. The proof
fore unfold queue(K) via t_gen_unfold_|, fol- state invariants to maintain (5) are the result of applications
lowed by transferring the queue-term assumption via of termcut. For instance, when reducing the third goal the
t _queue_i nvar _| to obtain a dischargable goal. assumptions

The important goal we are left with is the sequent corre- y, .
sponding to the induction step. Fortunately, it can be dealt
with by the same proof script as the initial goal, with the im- actas invariants that have to be maintained in order to com-
portant difference that no new processes will be spawned.Plete the proof. With this machinery in place the resulting,
Parameter-assumption transfer, however, concerns in thisautomatically obtained, proof tree has 12 nodes, of which
case not the queue but the process paramétémd the 3 are discharged with respect to ancestor proof node in-

number of control states will grow due to the presence of Stances. Moreover the proof is linear in the size of the pro-
two concurrent processes. gram (the functions) — when one employs a clever represen-

tation of the ordinal inequations. To scale up this example,
a more involved cut-formula is needed, to take into account
the return values of function applications.

no_exceptions(K2), X2 : no_exceptions(K2)

C.2 Absence of Exceptions

The second property we consider is a safety property,
namely, that calls to theent r al _ser ver function do
not cause runtime exceptions, terminating the execution of Ill. Conclusion
the process in whose context the call is executed (unless the

exception is explicitly handled). Exceptions are caused by  We have demonstrated an approach to semi-automated
e.g., typing errors discovered at runtime, invocation of un- verification of program code — for a language used in critical

defined functions, etc. The property can be specified as

no_exceptions : erlangExpression -> prop =>
forall A erlanglntAction .
[ Al (not (exists V:erlangValue .
no_exceptions);

A=exi ting(V)) /\

whereexi ti ng(V) represents a runtime exception ac-
tion. The goal to prove is:

| - central _server() no_exceptions

The main proof structure (1) will be a co-induction on the
no_except i ons property (a greatest fixed point). Thus,
first theno_excepti ons property is approximated with
an ordinal variablek. The reason for the state explosion
(proof parameter 2) in this example are non-tail recursive
function calls, in particular the call ®pawn. Here we sim-
ply cut all function calls using the current approximation of
no_except i ons, which is always a good first approxi-
mation. That is, the goal
K1<K, K2<K1 | -
begi n

spawn(serve, [ Request,ientPid]), central _server()
end : no_exceptions(K2)

is reduced by an automated tactic (applyigencut) to

K1<K, K2<K1 | - spawn(serve, [Request, dientPid])

no_excepti ons(K2)
K1<K, K2<K1 |- central _server() no_excepti ons(K2)
K1<K, K2<K1,
X1 : no_exceptions(K2),
|- begin X1, X2 end :

X2 : no_exceptions(K2)
no_excepti ons(K2)

industrial applications — which combines proof discovery
(finding induction schemes, perhaps partly manually) with
proof automation. The setting is general and rich, admitting
the use of the same machinery for addressing both program
and data behaviours. Previous experiences [8], [2] indicate
that proof graphs of a size up 19° nodes can be handled.

In our experience, larger programs do usually not lead to
more difficult proof structures, but rather just to additional
proof obligations.
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