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Abstract

Erlang is a functional programming language with sup-
port for concurrency and message passing communication
that is widely used at Ericsson for developing telecommuni-
cation applications. We consider the challenge of verifying
temporal properties of Erlang programs which are used to
implement systems with dynamically evolving process struc-
tures and unbounded data. This is a hard task, which re-
quires a rich verification framework. Building upon such a
framework for goal-directed, proof system–based verifica-
tion, the paper investigates the problem of semi–automating
this task by identifying the proof parameters crucial for suc-
cessful proof search.

I. Introduction

TheErlang programming language [1] is widely used at
Ericsson for programming telecommunication applications.
Such software is usually of a highlyconcurrentand dy-
namicnature, and is therefore hard to debug and test. We
explore the alternative of (proof system-based) Erlangcode
verification. The core fragment of the Erlang language is
economic and clean, allowing a compact transitional se-
mantics, andcomponent interfacescan be elegantly spec-
ified in a modal logic with recursion, suggesting feasibility
of the endeavour.

Verifying recursive temporal properties of systems with
dynamically evolving process structures and unbounded
data is known to be hard. Handling realistic examples re-
quires a rich verification framework [2], [3], [4] which
• is parametric on components andrelativised on their
properties, i.e., does not necessarily require all parts of the
Erlang system in question to be fully specified;
• is compositional, i.e., allows to reduce a property of a
compound Erlang program to arguments about the proper-
ties of its components; and
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• provides support forinductiveandco-inductivereasoning
about the infinitary behaviour of recursively defined compo-
nents.

Due to the concurrency and dynamism inherent in
the systems we address, a variety of (mutual) induction
schemes need to be available; at the same time it is often
difficult to foresee which of these might work. We therefore
employ symbolic program executionand instance check-
ing to “discover” induction schemes lazily. Our machinery
is based on ordinal approximation of fixed points and on
well-founded ordinal induction, and on a global discharge
proof rule for ensuring consistency of the mutual inductions
present in a proof structure. Thus our approach is alternative
to using abstract interpretation followed by model check-
ing as proposed by Huch [5] (the conclusion gives a brief
overview of related approaches).

An efficient implementation of proof search in such a
framework requires access to the internal structures of a
proof. We therefore opted for developing a special-purpose
tool [6], [7] rather than building upon a general-purpose the-
orem proving tool like PVS [8]. We have focused on im-
plementing the features which are new and specific for our
approach; exploring the machine support for symbolic pro-
gram execution, proof decomposition and induction scheme
discovery, and less on “standard” tasks like proving recur-
sive properties of finite components and equational proper-
ties of data which could be delegated to external tools.

The effort on the verification of Erlang programs is taking
place within a collaborative project between the Swedish
Institute of Computer Science1 and the Computer Science
Laboratory of Ericsson. Applications of the proof assistant
tool to industrial code [9] have highlighted the need for rea-
soning about software components on an architecture level
(this problem is investigated in in [10]), and for addressing
within our framework the problem of providing support for
semi-automatic proof search.

It is the latter point which we are going to study in this pa-
per. Its remainder is organized as follows. Section II sum-
marizes the verification framework: the Erlang program-

1Partly funded by the ASTEC (Advanced Software Technology) compe-
tence center



2ming language and its formal semantics, the property spec-
ification language, and the proof system and its implemen-
tation. Section III addresses the problem of proof automa-
tion, both in a general setting and using concrete examples.
Finally, Section IV draws some conclusions and presents
related work.

II. Foundations

A. The Erlang Programming Language

Erlang/OTP is aprogramming platformproviding the
necessary functionality for programming open distributed
(telecom) systems: a functional language (Erlang) with sup-
port for concurrency, and middleware (OTP – Open Tele-
com Platform) providing ready-to-use components and ser-
vices such as e.g. a distributed data base manager.

In the paper we consider a core fragment of the Er-
lang programming language with dynamic networks of pro-
cesses operating on data types such as integers, lists, tuples,
or process identifiers (pid’s), using asynchronous, call–
by–value communication via unbounded ordered message
queues called mailboxes.

Besides Erlangexpressionse the syntactical categories of
matchesm, patternsp, guardsg, and(basic) valuesv (bv)
are considered. The abstract syntax of Core Erlang expres-
sions is:

e ::= var
| bv | [ e1| e2] | {e1, . . . , en}
| e( e1, . . . , en) function call
| begin e1, . . . , en end sequence
| case e of m end matching
| exiting e throw exception
| catch e handle exception
| receive m end process input
| e1! e2 process output

bv ::= atom| number| pid | [] | {}
v ::= bv | [ v1| v2] | {v1, . . . , vn}

p ::= bv | var | [ p1| p2] | {p1, . . . , pn}
m ::= p1 when g1 -> e1; · · · ; pn when gn -> en
g ::= e1, . . . , en

The Erlang values consists of a set of atom literals (with an
initial lowercase letter), the numbers (here integers only),
pid constants ranged over bypid, tuples, and lists. The vari-
ables (ranged over byvar) are symbols starting with an up-
percase letter.

An Erlangprocess, here writtenproc< e, pid, q>, is a
container for the evaluation of an expressione. A process
has a unique process identifier (pid) which is used to iden-
tify the recipient process in communications. Communi-
cation is always binary, with one (anonymous) party send-
ing a message (a value) to a second party identified by its
process identifier. Messages sent to a process are put in
its mailboxq, queued in arriving order. As in the informal

Erlang semantics, perfect (non-lossy) communication chan-
nels of an unbounded size are assumed. The empty queue
is eps , [[ v]] is the queue containing the one elementv,
andq1@q2 concatenates the queuesq1 andq2. To express
the concurrent execution of two sets of processess1 ands2,
the syntaxs1|| s2 is used.

The main choice construct of Erlang is by matching:

case e of
p1 when g1 -> e1;
...
pn when gn -> en

end

When a guardgi is missing, the trivially true guardtrue is
assumed. The value thate evaluates to is matched sequen-
tially against patterns (values that may contain unbound
variables)pi, respecting the optional guard expressionsgi.
The expressione1!e2 represents sending (the value ofe2 is
sent to the process with process identifiere1) whereasre-
ceive m end inspects the process mailboxq and retrieves
(and removes) the first element inq that matches any pat-
tern inm. Once such an elementv has been found, evalu-
ation proceeds analogously tocase v of m. Expressions
are interpreted relative to an environment of “user defined”
function definitions of the shape:

f(p11, . . . , p1k) when g1 -> e1;
...

f(pn1, . . . , pnk) when gn -> en.

To support compositional reasoning the operational se-
mantics is organised hierarchically, in layers, using different
sets of transition labels at each layer. Thus first the Erlang
expressions are provided with a semantics that does not re-
quire any notion of processes but does represent the strict,
eager evaluation strategy of Erlang, on top of which a pro-
cess level semantics is built [4].

B. The Property Specification Language

Behavioural properties of Erlang programs, and the struc-
ture of program data, are characterised in a many-sorted
first-order logic with explicit fixed point operators. To rea-
son about programs the usual modalities〈α〉φ and [α]φ
are available (as derived operators, referring to recursive
predicates encoding the transitional semantics of Erlang).
Adding least and greatest fixed point operators results in a
powerful specification language, broadly known as theµ–
calculus[11], [12].

In the following we letα range over a set of actions
(labels in the operational semantics),t range over general
terms,T over sort names (including the Erlang expressions,
systems, and various classes of data), andX range over the



3term and fixed point variables. The abstract syntax of logic
formulaeφ is:

φ ::= t1=t2 equality
| tt | ff truth values
| not φ | φ1 and φ2 | φ1 or φ2 connectives
| exists X: T . φ | forall X: T . φ quantifiers
| \ X: T . φ | φ t abstraction/application
| <α>φ | [ α] φ modalities
| gfp X. φ | lfp X. φ | X fixed points
| κ < κ′ ordinal inequations
| t1

α−→ t2 transition assertions

To reinforce the connection with the modalµ-calculus the
syntactic formt: φ is accepted as an alternative for an ap-
plication φ t. In the following fixed point formulas are
named, e.g.,name ⇐ φ abbreviates the least fixed point
lfp X. φ{X/name} andname ⇒ φ abbreviates a great-
est fixed point.

The semantics of a formula in the logic is defined in the
usual (denotational) fashion, as the set of (Erlang) terms that
satisfy the formula (see [2] for details).

C. The Proof System

Reasoning about Erlang programs requires the ability to
specify their observable behaviour relativised by assump-
tions about certain system parameters. Technically, this is
achieved using a Gentzen–style proof system, allowing free
parameters to occur within theproof judgmentsof the proof
system. The judgments are of the formΓ |- ∆, whereΓ
and∆ are sequences of assertions. A judgment is deemed
valid if, for any interpretation of the free variables, some as-
sertion in∆ is valid whenever all assertions inΓ are valid.
Parameters are variables ranging over specific types of en-
tities, such as messages, functions, or processes. For exam-
ple, the proof judgmentx : ψ |- P (x) : φ states thatP has
propertyφ provided the parameterx of P satisfies property
ψ.

The proof rules of the proof system are standard from
accounts of first-order logic, with the addition of rules for
fixed point manipulation, a cut–like rule for decomposing
proofs about a compound system to proofs about the com-
ponents, and a rule for discharging loops in the proof struc-
ture, via fixed point induction. In combination, these ad-
ditional proof rules permit general and powerful induction
and co–induction principles to be applied, ranging from in-
duction on the dynamically evolving architecture of a sys-
tem to induction on finitary and co–induction on infinitary
datatypes [2].

D. Fixed Point Manipulation

The fixed point rules govern the unfolding of fixed points,
and the annotation of fixed points with ordinal variables

to represent the number of such unfoldings. These ordi-
nal variables are examined by the global discharge rule to
determine whether the proof structure contains a proper in-
ductive or co-inductive argument. For example, the rules for
manipulating a greatest fixed point on the right–hand side,
occurring under applications, are (the ordinal variablesκ
andκ′ are assumed fresh):

(ApprxR)
Γ |- ((gfp X. φ)κ) t1 . . . tn,∆

Γ |- (gfp X. φ) t1 . . . tn,∆

(Unf1R)
Γ, κ′ < κ |- (φ{(gfp X. φ)κ

′
/X}) t1 . . . tn,∆

Γ |- ((gfp X. φ)κ) t1 . . . tn,∆

Intuitively the rule (ApprxR) corresponds to commencing
a co-induction (on the unfolding of the fixed point), and
(Unf1R) records the existence of an lesser ordinal as the
inequationκ′ < κ. As a side-effect the term vectort1 . . . tn
is kept in the unfolded fixed point (as in Winskel’s [13]tag-
ging technique). This is used in proof search to heuristically
determine whether unfolding is a progressing proof step.

E. Compositional Reasoning

The essence of compositional verification is the reduction
of an argument about the behaviour of a compound system
to arguments about the behaviour of its components. This
is achieved through aterm–cutproof rule of the following
shape (technically the rule is derived from the normal cut
rule of Gentzen proof systems).

(TermCut)
Γ |- p: ψ,∆ Γ, X: ψ |- s: φ,∆

Γ |- s{p/X}: φ,∆

F. Checking Discharge Conditions

The global discharge rule is the crucial proof rule on
which inductive and co-inductive reasoning relies. Roughly,
the goal is to identify situations where a latter proof node
can be discharged since is an instance of an earlier one on
the same proof branch, and since appropriate fixed points
have been unfolded. The discharge rule thus takes into ac-
count the history of assertions in the proof tree. A thorough
investigation of the conditions regulating when such a dis-
charge step is sound is given in [2], [14], here only a sketch
is given.

Consider a proof nodeNd, henceforth called thedis-
charge node, representing an open proof goal of the form
Γd|- ∆d. Assume that there exists an ancestor nodeNc in
the proof tree, henceforth called thecompanion node, la-
belled by a sequentΓc|- ∆c.

The discharge proof rule comprises checking three con-
ditions, under which the nodeNd may be discharged due to
the presence of the ancestor nodeNc:
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• Is there a mapping fromNc toNd? That is, does a substi-
tutionρ (mapping parameters to terms) exist such that (i) for
eachφ ∈ Γc, φρ ∈ Γd and (ii) for eachφ ∈ ∆c, φρ ∈ ∆d

• Does some ordinal decrease on the path betweenNc and
Nd? That is, is there some ordinal variableκ occurring in
Nc such thatΓd|- κρ < κ
• The previous two conditions are local, i.e., involve only
one pair of discharge and companion nodes. The third con-
dition is a global one which examines all related discharges
throughout the proof tree to ensure that discharges cannot
cancel each other (theoretical details are elaborated in [2],
[14]). In essence this corresponds to checking whether the
global-proof tree defines a proper simultaneous fixed point
induction scheme.

Combined, the term–cut rule and the discharge rule per-
mit to handle unbounded recursion (e.g. caused by process
spawning) as is illustrated in Section III-C.

G. The Erlang Verification Tool

The proof system is realised in a proof assistant – the “Er-
lang verification tool” (EVT) [6], [7]. EVT is implemented
in Standard ML and offers a command-line interface and a
graphical user interface in Java.2

EVT has been tailored to the underlying proof system;
rather than working with a set of open goals, the underlying
data structure is an acyclic proof graph to account for the
checking of the side conditions of the discharge rule. The
main reason for developing a new proof assistant tool pro-
totype is our desire to experiment with different implemen-
tation strategies for the rule of discharge and the underlying
proof graph representation. Moreover most existing theo-
rem provers are rather inflexible in that they offer a set of
predefined induction schemes, from which the user has to
choose one at the outset of the proof. This contrasts with
our ambition to discover induction schemes through a lazy
search procedure in the course of the proof.

Proving a property of an Erlang program involves “back-
ward” (i.e., goal-directed) construction of a proof graph.
The basic proof rules are implemented astactics, which are,
somewhat simplified, functions (in the Standard ML sense)
from a sequent (the current goal, forming the conclusion
of the rule) to a list of sequents (the subgoals, given by
the premises of the rule). As most proof assistants, EVT
providestactic combinatorsor tacticals, for deriving new
sound tactics from basic tactics. For instance, a number of
derived tactics implement more practical rules for deriving
transitions of Erlang components. An additional concept is
that ofproof scripts. These are “commands” which may de-
structively update the proof graph, e.g. discharging an open
proof goal due to a proof loop.

2Further information about EVT is available at the location
http://www.sics.se/fdt/VeriCode/evt.html

III. Proof Organization and Automation

The general verification problem of proving that an Er-
lang system satisfies aµ-calculus property is not decidable.
Therefore, it is crucial to identify the proof tasks that can be
automated, and to organize proofs in a manner which com-
bines in the most suitable way the automatable activities
with the human-guided ones.

A. Proofs and Proof Discovery

In EVT a proof is a tree with some leaves being axiom in-
stances, and the rest being instances of predecessor sequents
and satisfying the global discharge condition. In practice,
searching for such proofs is computationally too expensive,
and moreover the search is not likely to terminate. Instead,
we consider here a more relaxed notion of a proof, which is,
intuitively, a proof tree that exhibits the essential structure
of a complete proof, but where not all proof-branches nec-
essarily are completed or even valid (see below for details).
As we have found in practice, such a “pre-proof” forms a
good starting point for obtaining a successful proof, and is
relatively cheap to search for; in particular, proof-search can
terminate.

Consider the usual shape of a proof goal about Erlang
programs:Γ |- s : φ,∆ wheres is an Erlang behavioural
component (e.g., process, system, expression),φ is the be-
havioural property the component should satisfy,Γ are as-
sumptions about program parameters, and∆ are alternative
properties to prove. The proof structure representing the
proof of such a sequent is governed mainly by two parame-
ters: (i) the behavioural patterns of the Erlang components
(e.g., for a system its communication and network topology,
for a functional expression its call graph), and (ii) the fixed
point structure of the formulaφ. Taking this into account,
and with the experience of a substantial number of Erlang
case studies, we have identified the following main proof
parameters which are crucial for successful semi-automatic
(pre-)proof search:
1. Setting up the main (co-)induction structure: deciding
when to approximate and unfold fixed points.
2. Combatting state-explosion in the proof structure: decid-
ing where to apply the term–cut proof rule, either as an ab-
straction mechanism to abstract away from a concrete pro-
gram term (to reduce the proof-state space), or to continue
an inductive argument. In the example below, both usages
of the term–cut mechanism are illustrated.
3. Terminating (pre-)proof search:here one has to bal-
ance between how often to invoke human intervention and
the need to avoid non-terminating or large redundant com-
putations. A good heuristic is to terminate proof search
when “growing” program components are detected (and no
term–cut policy is in place), notably after process spawning,
which cause the instance checking to fail and can thus give



5rise to non-terminating proof branches. Function calls are
yet another place to stop proof search, usually to allow for
better structuring and reuse of proofs, but also indispensable
in the analysis of non-tail-recursive Erlang functions.
Proof search should also be terminated whenever a leaf
is encountered which is either a “pre-axiom” (for exam-
ple suspected to be propositionally valid), or it is a “pre-
instance” of some predecessor sequent (for example the
main assertion in the sequent is an instance of the corre-
sponding assertion in the predecessor). The second case
represents a strong indication that an (co-)inductive argu-
ment should be performed, and thus indicates how to trans-
form the pre-proof to a proper proof.
4. Choosing locally the next proof rule to be applied:under
this item any non-strategic proof rule application falls such
as, for example, reasoning about the transitions of an Erlang
component using the operational semantics.
5. Maintaining proof invariants:in a typical Erlang proof
sequent assumptions record facts about unknown program
parameters, or relationships between program variables.
For example, classical program invariants are represented
in this fashion. During an automated proof search such as-
sumptions need to be updated, typically after a symbolic
program step has been taken.

Once a pre-proof has been found, the task of converting
it into a proper proof remains. This task is made easier the
more detail about the above proof parameters is provided
prior to the pre-proof search. In this paper it is left to the
user, who should modify the parameters of the proof search
(the proof schema) by, for instance, adding additional in-
ductions (1), or by adding and maintaining proof invariants
(5), and then repeat the search for a pre-proof.

In the following section we provide concrete tactics, tac-
ticals, and proof scripts, that help automate the search for
proofs of Erlang components. Then, in Section III-C, we
explain the semi-automated proof of a concurrent Erlang
process with process spawning, illustrating the typical steps
in the proof search.

B. Proof Search Facilities

We describe some of the tactics and scripts supporting
the approach to proof search outlined above. Their use is
illustrated in the next subsection.

Given an indexi, tactic (t_choiceless_r i) is used
for local proof search. It begins with thei-th formula to
the right, and recursively applies the tactic corresponding
to the outermost connective of the formula as long as no
choice and no fixed-point unfolding or approximation is in-
volved. Thet_gen_unfold_r tactic combines one un-
folding with t_choiceless_r .

Sequent predicates are functions from sequents to
booleans. These can be combined using the functors

sp_not , sp_or andsp_and . An important use of se-
quent predicates is to capture proof-search termination con-
ditions. For example, (sp_unfoldable_r i) checks
whether the term appearing as the first component of the
satisfaction pair at positioni is not an instance of some term
at which the fixed-point formula, which is the second com-
ponent, has already been unfolded. This is a much weaker
condition than the instance condition of the discharge rule,
and is very useful in practice. The approach is inspired by
the fixed-pointtaggingtechnique of Winskel [13].

Thecase_by script takes as an argument a list of pairs
with first entry a sequent predicate and second entry a tactic.
It executes the tactic corresponding to the first predicate (if
any) which holds for the current sequent. Theloop script
takes as an argument a script such ascase_by and applies
it recursively until no new nodes are generated.

As an example for invariant maintenance, the
(t_queue_invar il ir) tactic transfers the queue
assumption residing at the left indexil to the queue term of
the process at the right indexir.

C. Example

We shall illustrate the ideas presented above on a simple
but typical example. Consider a concurrent server which re-
peatedly takes a request from its message queue and spawns
off a process to serve it by handling the request, here always
assumed to succeed, and responding with the obtained re-
sult to the client specified in the request:

central_server () ->
receive

{request, Request, ClientPid} ->
begin

spawn (serve, [Request, ClientPid]),
central_server ()

end
end.

serve (Request, ClientPid) ->
ClientPid ! {response, handle (Request)}.

handle (Request) -> ok.

C.1 Stabilization

The first formula we consider gives a liveness property
of the server, namelystabilization, i.e. the convergence on
output and silent (estep ) actions. It expresses that, as-
suming that no input is being received, the process is able
to execute only a finite number of output and silent steps:

stabilizes: erlang_system -> prop <=
(forall Pid:erlangPid. forall V:erlangValue.

[Pid!message(V)]stabilizes)
/\ ([estep] stabilizes);

So, the initial proof goal is declared as:

declare P:erlangPid, Q:erlangQueue in
|- proc<central_server (), P, Q> : stabilizes



6An Erlang process, here written as
proc<central_server (), P, Q> , is a con-
tainer for the evaluation of an expression. A process has
a unique process identifierP which is used to identify
the recipient process in communications. Communication
is always binary, with one (anonymous) party sending a
message (a value) to a second party identified by its process
identifier. Messages sent to a process are put in its mailbox
Q, queued in arriving order.

In the proof sketch below we illustrate the interplay be-
tween automated proof search - leading to discovery of
proof structures such as induction strategies - and manual
proof steps realising the discoveries in a revised proof at-
tempt.

The following proof search script results in a symbolic
execution of the process until either a system which is not
a singleton process, or a repetition of the same control state
is encountered:
loop (case_by [

(sp_and (sp_sat_sysproc_r 1)
(sp_not (sp_sat_is_queue_var_r 1)),

t_queue_flat_r 1),
(sp_and (sp_sat_sysproc_r 1)

(sp_unfoldable_r 1),
t_gen_unfold_r 1) ]);

In the first case, if the first right–hand side formula is
a satisfaction pair the first part of which is a single
process the queue term of which is not a variable, the
t_queue_flat_r tactic is applied which replaces the
term with a fresh variable and adds an equation to the left
equating this fresh variable with the queue term. This is
done to insure that, in the second case, the pre-instance
checking mechanism based onsp_unfoldable_r de-
tects control-point repetition. Execution of the above
proof search script terminates because a new process was
spawned (and thussp_sat_sysproc_r failed). The re-
sult is the sequent:
Q = Q2@[[{request,Req,ClPid}]]@Q3,
Q1 = Q2@Q3, not (P = P1)
|- proc<begin P1, central_server () end, P, Q1> ||

proc<serve (Req, ClPid), P1, eps> : stabilizes

The queueQ2@[[{request,Req,ClPid}]]@Q3 is
built from the concatenation of three parts:Q2, the value
[[{request,Req,ClPid}]] , andQ3. We have now a
clear indication that the number of processes in the system
will grow without bound, so a blind proof search is bound to
fail. Rather, one has to proceed byinduction on the system
structure. This is achieved through compositional reason-
ing by abstracting away the first process component which
is responsible for the unbounded dynamic process creation,
and relativising the argument on a property of this compo-
nent. The choice of a suitable property is crucial, of course,
for the induction to succeed. In our particular example it
happens thatstabilizes composes. We apply the term-
cut rule to obtain the two new goals:

|- proc<begin P1, central_server () end, P, Q1> :
stabilizes

X : stabilizes
|- X || proc<serve (Req, ClPid), P1, eps> :

stabilizes

the first of which corresponding to the induction basis, and
the second corresponding to the induction step. The first of
these can be analysed by the script presented above, termi-
nating with the goal

|- proc<central_server (), P, Q1> : stabilizes

because of detecting a pre-instance (we looped back to the
initial control point), causingsp_unfoldable_r to fail.
One might expect to be able to discharge here w.r.t. the ini-
tial goal, but this fails. The reason is that no ordinal has been
decreased. However, by inspecting the proof state we real-
ize that the length of the queue of the process has decreased,
and that indeed stabilization of the server is a consequence
of the well-foundedness of message queues. Therefore we
add an explicit assumption on the well-foundedness of the
queue, which will be maintained throughout the proof:

declare P:erlangPid, Q:erlangQueue in Q : queue
|- proc<central_server (), P, Q> : stabilizes

queue: erlangQueue -> prop <=
\Q:erlangQueue .

Q = eps \/
(exists V:erlangValue .

exists Q1:erlangQueue .
exists Q2:erlangQueue .
Q = Q1@[[V]]@Q2 /\ (is_queue Q1@Q2));

The revised proof will turn out to be, at least partly, byin-
duction on the queue-term structure. All we have to change
in the beginning is to approximate the left formula, resulting
in Q : queue being replaced byQ : queue(K) where
K is an approximation ordinal, and to proceed as before.
This eventually results in:

Q2@[[{request,Req,ClPid}]]@Q3 : queue(K),
Q1 = Q2@Q3
|- proc<central_server (), P, Q1> : stabilizes

in place of the unsuccessful goal we ended up with
earlier. This goal is “almost” dischargable w.r.t. the
initial goal after approximation. For the instance
check to go through, one needsQ1 : queue(K1) ,
for some ordinal variable K1<K, instead of
Q2@[[{request,Req,ClPid}]]@Q3 : queue(K)
to appear as an assumption in the sequent. We there-
fore unfold queue(K) via t_gen_unfold_l , fol-
lowed by transferring the queue-term assumption via
t_queue_invar_l to obtain a dischargable goal.

The important goal we are left with is the sequent corre-
sponding to the induction step. Fortunately, it can be dealt
with by the same proof script as the initial goal, with the im-
portant difference that no new processes will be spawned.
Parameter-assumption transfer, however, concerns in this
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Fig. 1. The Graphical User Interface of EVT
figure

case not the queue but the process parameterX. And the
number of control states will grow due to the presence of
two concurrent processes.

A screenshot of a proof session using the graphical user
interface of EVT, to prove the stabilization property, is
shown in Figure 1.

C.2 Absence of Exceptions

The second property we consider is a safety prop-
erty, namely, that calls to thecentral_server func-
tion do not cause runtime exceptions, terminating the
execution of the process in whose context the call to
central_server is executed (unless the exception is
explicitly handled). Exceptions are caused by e.g., typing
errors discovered at runtime, invocation of undefined func-
tions, etc. The property can be specified as

no_exceptions : erlangExpression -> prop =>
forall A:erlangIntAction .
[A](not(exists V:erlangValue . A=exiting(V)) /\

no_exceptions);

where exiting(V) represents a runtime exception ac-
tion. The goal to prove is:

|- central_server() : no_exceptions

For this example we will indicate the parameters (standard
automated tactics) needed to produce a proof.

The main proof structure (1) will be a co-induction on the
no_exceptions property (a greatest fixed point). Thus,
first theno_exceptions property is approximated with
an ordinal variableK. The reason for the state explosion
(proof parameter 2) in this example are non-tail recursive
function calls, in particular the call tospawn . Here we sim-
ply cut all function calls using the current approximation of

no_exceptions , which is always a good first approxi-
mation. That is, the goal

K1<K, K2<K1
|- begin

spawn(serve, [Request, ClientPid]),
central_server()

end :
no_exceptions(K2)

is reduced by an automated tactic (applying term–cut) re-
sulting in goals (g1,g2,g3)

K1<K, K2<K1
|- spawn(serve, [Request, ClientPid]) :

no_exceptions(K2)

K1<K, K2<K1
|- central_server() : no_exceptions(K2)

K1<K, K2<K1,
X1 : no_exceptions(K2), X2 : no_exceptions(K2)
|- begin X1, X2 end : no_exceptions(K2)

Pre-proof search (3) is terminated when a pre-instance is
found, i.e., an instance of the current expression has already
been considered. In this case the discharge rule is applied.
For local reasoning (4) we apply a simple tactic similar to
t_choiceless_r to reduce the proof state.

The proof state invariants to maintain (5) are the result of
applications of term-cut. For instance, when reducing the
goal g3 above the assumptions

X1 : no_exceptions(K2)
X2 : no_exceptions(K2)

act as invariants that have to be maintained in order to com-
plete the proof.

With this machinery in place the resulting, automatically
obtained, proof tree has 12 nodes, of which 3 are discharged
with respect to ancestor proof node instances. Moreover the
proof is linear in the size of the program (the functions) –
when one employs a clever representation of the ordinal in-
equations. To scale up this example, a more involved cut-
formula is needed, as discovered using our semi-automated
proof method, to take into account the return values of func-
tion applications.

IV. Conclusion

We have demonstrated an approach to semi-automated
verification of program code – for a language used in critical
industrial applications – which combines proof discovery
(finding induction schemes, perhaps partly manually) with
proof automation. The setting is general and rich, admitting
the use of the same machinery for addressing both program
and data behaviours.

Previous experiences [9], [2] indicate that proof graphs
of a size up to105 nodes can be handled. In our experience,
larger programs do usually not lead to more difficult proof



8structures (implying increased difficulties in finding induc-
tion schemes), but rather just to additional (tedious) proof
obligations.

However, a real complication when addressing produc-
tion code is that additional program structuring concepts,
such as generic components, are utilised. Either program
abstraction techniques will have to be adapted, or, as in [10],
the new concepts have to be modelled directly.

A. Related Work

In this section we briefly review the support for automa-
tion that is offered by other verification frameworks than the
one represented by EVT. Of course, due to lack of space,
our exposition cannot be exhaustive in any way. We ex-
clude theorem–proving systems designed for the formaliza-
tion of classical or constructive mathematics, such as Coq,
HOL, or Nuprl. Rather we concentrate on (meta–)logical
frameworks which support (the specification of and) the
formal reasoning using deductive systems tailored towards
programming languages.

The first category of frameworks we consider can be
characterized as being based solely on theorem–proving
methods. Probably the most popular representative of this
class is theIsabellegeneric theorem proving environment3.
Its meta logic, called Isabelle/Pure, is used to declare the
(concrete and abstract) syntax and the semantics (i.e., the
inference rules) of a concrete logic. Moreover it allows
to instantiate generic proof tools such as a general tableau
prover to obtain a specific prover, or to manually code spe-
cialized proof procedures. Concrete programming–oriented
applications of this framework comprise verification tools
for the Java programming language, for distributed systems
specified using I/O automata or the UNITY language, and
for object–oriented programs.

Isabelle’s principal proof method isresolution, involving
higher–order unification. Proof automation is provided by
tactics, which support backward reasoning by refining goals
into subgoals, andtacticals, which combine tactics. Exam-
ples for the latter areTHEN, which sequentially composes
two tactics,ORELSE, which chooses between tactics, and
REPEAT, which iteratively applies a tactic.

Examples for other verification systems of this kind are
ELAN4 and Larch5.

With regard to proof automation, theorem–proving sys-
tems which integrate model–checking methods deserve our
special attention. Their motivation is to benefit from both
the automation of model checking and the generality of the-
orem proving. Here (at least) two approaches can be distin-
guished. The first one embeds model checking as a decision

3http://www.cl.cam.ac.uk/Research/HVG/Isabelle/
4http://www.loria.fr/ELAN/
5http://www.sds.lcs.mit.edu/spd/larch/

procedure within a deductive framework. The latter is used
to decompose a verification goal into model–checkable sub-
goals, and to apply inductive reasoning methods to “lift” the
result to the whole structure.

In thePVStheorem prover6, for example, a BDD–based
model checker is used as a decision procedure for theµ–
calculus restricted to finite types, and CTL model checking
is implemented as a derived proof procedure on top of that.
The PVS specification language is based on classical, typed
higher–order logic supporting functions, sets, records, tu-
ples, enumerations, recursively–defined abstract data types,
predicate subtypes, and dependent typing. PVS provides a
collection of proof rules that are applied interactively under
user guidance within a sequent calculus framework. Just
like EVT the prover maintains a proof tree where the nodes
are labeled by sequents. The primitive proof rules include
propositional and quantifier rules, equational reasoning, in-
duction, rewriting, and decision procedures for linear arith-
metic.

The basic means for high–level reasoning in PVS are
proof strategies. They are intended to combine primitive
proof rules by capturing patterns of inference steps. Ade-
fined proof ruleis a strategy that is applied in a single atomic
step so that only the final effect is visible and the intermedi-
ate results are hidden from the user. Thus it represents the
PVS counterpart of EVT’s tactics.

Access to theµ–calculus model checker is provided by
the musimp command. In combination with induction it
can be used to, e.g., verify systems composed of networks
of finite–state processes. A similar mechanism could be in-
tegrated in the EVT tool where theterm-cut could be
used to isolate a model–checkable property of a finite–state
subsystem.

All of the above frameworks could be applied, at least
in principle, to the verification of Erlang programs as well.
To this aim, the syntactic constructs and their meaning have
to be defined in the corresponding specification formalism.
With regard to the logic, however, one would be depen-
dent on those proof methods which are predefined in the
respective system. For example this means that, at the out-
set of a proof, the user has to choose from a collection of
predefined induction schemes. This requirement is in con-
tradiction to our intention to support the lazy discovery of
complicated induction schemes through symbolic program
execution, which is essential for the practical verification of
temporal properties of programs with dynamic behaviour.

Of course the price to be paid for this flexibility is the
missing generality of our system with respect to the specifi-
cation language, which makes it a special–purpose theorem
prover tailored towards the Erlang language.

In the second combined approach, theorem–proving
methods are applied to formally justify abstractions which

6http://pvs.csl.sri.com/



9map infinite state spaces to finite–state form, followed by
model checking. The crucial point here is to find abstrac-
tions which, on the one hand, are powerful enough to yield
model–checkable systems and, on the other hand, preserve
the property to be verified. A corresponding approach to the
verification of Erlang programs is presented in [5] where ab-
stract interpretation is used to derive a finite–state abstrac-
tion such that all computation paths are maintained, which
means that linear–time properties are preserved. Property–
preserving abstractions for branching–time logics are thor-
oughly studied in [15].

A special kind of abstraction is also supported by the PVS
system in form of theabstract command. It constructs
a Boolean abstraction, where Boolean variables replace the
concrete predicates occurring in the respective program.
The combination with model checking is provided by the
abstract-and-mc command (see also [16]).
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