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Abstract. Recent developments in mobile code and embedded systems
have led to an increased interest in open platforms, i.e. platforms which
enable different applications to interact in a dynamic environment. How-
ever, the flexibility of open platforms presents major difficulties for the
(formal) verification of secure interaction between the different appli-
cations. To overcome these difficulties, compositional verification tech-
niques are required.
This paper presents a compositional approach to the specification and
verification of secure applet interactions. This approach involves a com-
positional model of the interface behavior of applet interactions, a tempo-
ral logic property specification language, and a proof system for proving
correctness of property decompositions. The usability of the approach is
demonstrated on a realistic smartcard case study.

1 Introduction

Verification Techniques for Open Platforms. Open platforms allow different soft-
ware components, possibly originating from different issuers, to interact easily
in a single environment. Thanks to their flexibility, such open platforms are be-
coming pervasive in modern software for mobile code, but also for embedded
devices such as smartcards.

Quite unsurprisingly, the flexibility of open platforms raises major difficul-
ties when it comes to establishing global properties of their applications. Such
properties, which capture the interface behavior of the platform’s components,
include many common security properties such as “Component B can only access
resource R after being authorized by Component A”, or “Component A cannot
perform action α between Component B performing action β and Component
C performing action γ”.

Two problems arise with the verification of such global properties:

– the complexity of the platform. In order to reason about the system, one
needs to specify the communication mechanisms supported by the platform.
These can be intrinsic (e.g. in Java1 with privileged instructions and visibil-

1 See http://java.sun.com/java2.
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ity modifiers; in JavaCard2, with firewalls and secure object sharing mecha-
nisms) and can complicate reasoning substantially;

– the availability of the software. In the case of platforms supporting dynamic
loading of software, one often would like to establish properties that are
preserved when new software is loaded. In particular, this is true for security
properties such as confidentiality and integrity.

These problems can be tackled by enforcing the desired properties through strict
local security checks, as is done e.g. in bytecode verification, see e.g. [13], or in
type systems for information flow, see e.g. [17]. However, this requires focusing
on a very restricted set of properties, that excludes many useful global properties.

Open Platforms for Smartcards. New generation smartcards such as JavaCards
are open platforms that support multiple applications on a single card and post-
issuance loading of applets (i.e. applications can be loaded on the card after
being issued to users). As smartcards are typically used as identity documents
and money devices, security issues are particularly at stake, and the need for
formal verification is widely recognized, as testified e.g. by Common Criteria3.

Despite the advent of on-card bytecode verification [14], current technology
prevents complex verifications to be performed on-card, thus applet verification
needs to be performed off-card, presumably prior to loading the applet on the
card. In this setting, one needs to analyze the possible interactions between the
applet being loaded and the applets already on the card without having access
to the code of the latter.

Compositional Verification. One possible verification strategy for programs op-
erating on open platforms consists of:

1. reducing global properties of programs to local properties about their com-
ponents, using compositional verification techniques;

2. verifying local properties of components by standard means, such as model-
checking.

Such a strategy can be used to control state-space explosion and has been em-
ployed to good effect to establish the correctness of realistic, industrial-size open
distributed telecom systems [9]. The main goal of this paper is to show that
such a strategy is also applicable to open platforms such as smartcards. To this
end, we develop a framework which allows to reduce global properties to local
properties about components. The problem of verifying the local properties is
not addressed here, since there are standard algorithmic techniques for this (see
e.g. [4]). Our framework for compositional verification consists of:

– a model of applet interactions that captures, in a language-independent set-
ting, control flow within applets and procedure calls between applets. This
model is inspired by [11], and was motivated and presented informally by
the present authors in [2].

2 See http://java.sun.com/javacard.
3 See http://www.commoncriteria.org.

http://www.commoncriteria.org
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– a specification language based on the modal µ-calculus [12,8], together with
a set of specification patterns, inspired from Bandera [1], that allows higher-
level specifications and reasoning;

– a compositional proof system in the style of [16,7,9] that is used for proving
correctness of property decompositions. This proof system has been proved
sound w.r.t. the underlying model in PVS [15].

To illustrate the benefits of our method, we also detail an example of property
decomposition in the setting of an industrial smartcard case study [3].

Contents. The remainder of the paper is organized as follows. The model, speci-
fication language and proof system are introduced in Sections 2, 3 and 5 respec-
tively, whereas Section 4 provides a brief overview of the language of patterns.
The case study is detailed in Section 6. Finally, Section 7 concludes with related
and future work.

2 Program Model

We focus on the control flow in platforms in which procedure or method calls are
the primary means for interaction between components. For proving validity of
property decompositions we need a model of program behavior which captures
the interaction behavior of programs and program components, and over which
the formulae of property specification languages can be interpreted. Standard
models of this kind are provided by labeled transition systems (LTS), where the
transition labels denote method invocations and returns. Interaction behavior
can then be defined in an abstract and language independent fashion, following
the approach by Jensen et al. [11], as being induced by a transfer/call graph
through a set of transition rules. Composition of behaviors is obtained in process
algebraic style by using imperfect actions which handshake to produce perfect
communications. The program model and its operational semantics have been
motivated and described in greater detail (but less formally) in [2].

Model. We formalize the program model we presented in [2].

Definition 1 (Program Model). A program model is a tuple

M ∆= (A, V ; app, ret;→T ,→C)

where A is a set of applet names; V is a set of vertices called program points;
app : V ⇀ A is a partial function mapping program points to applet names; ret :
V → bool is a program point predicate identifying the program’s return points;
→T⊆ V × V is a transfer relation respecting applet boundaries, i.e. app(v) = a
and v →T v′ implies app(v′) = a; →C⊆ V ×V is a call relation between program
points, of which the elements 〈v, v′〉 are referred to as calls.

We shall use the notation loca v for app(v) = a. We next define the notions
of applet state and program state.
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Definition 2 (State). Let M = (A, V ; app, ret;→T ,→C) be a program model.

(i) An applet state of M is a pair a.π, where a ∈ A is an applet name, and
π ∈ (V ×V )∗ is a sequence of program point pairs called the applet call stack.
An applet state a.π is active iff the second program point of the last pair in
the call stack π is local to applet a; in this case this program point is referred
to as the active program point.

(ii) A program state s of M is a collection a1.π1 | a2.π2 | . . . | an.πn of applet
states. A program state is active iff it contains an active applet state, and
wellformed iff it mentions applet names at most once and contains at most
one active state. Two program states intersect iff they mention the same
applet name.

Intuitively, an applet state represents the unfinished calls that have been
made from and to an applet. As method calls can cross applet boundaries, both
the source and the destination of a call are remembered, to ensure “proper”
returning (i.e. to the appropriate callee) from a method call. If intra-procedural
execution takes place within an applet, i.e. by following the transfer relation, the
changing of the active program point is reflected by changing the last element
in the call stack. This is described by the operational semantics below.

Operational Semantics. The behavior of programs is given in terms of labeled
transition systems.

Definition 3 (Induced LTS). A program model M induces a LTS TM
∆=

(SM,LM;→M) in a straightforward fashion: SM is the set of wellformed pro-
gram states of M; LM is the set of transition labels consisting of τ and the
triples of the shape v l v′, v l? v′, and v l! v′, where v, v′ ∈ V and l ∈ {call, ret};
and →M ⊆ SM ×LM ×SM is the least transition relation on SM closed under
the transition rules of [2] (see Appendix A).

We write s α−→M s′ for (s, α, s′) ∈→M, and by convention omit τ from such
transition edges, writing s −→M s′ for s τ−→M s′.

Two kinds of transition rules are used: (1) applet transition rules, describing
state changes in a single applet, and (2) transition rules for composite states,
describing the behavior of composed applet sets. An example of a transition rule
in the first category is the rule

[send call]
v1 →C v2 loca v1 ¬loca v2

a.π · 〈v, v1〉
v1 call! v2−−−−−−→ a.π · 〈v, v1〉 · 〈v1, v2〉

which describes under which conditions an applet can invoke a method in another
applet. This rule specifies that if applet a is in a state where v1 is the active
program point, and if there is an outgoing call edge v1 →C v2 to an external
program point v2, then sending a call over applet boundaries is enabled. The
local state of the applet will be extended with a pair 〈v1, v2〉, to reflect this call.



Compositional Verification of Secure Applet Interactions 19

Notice that this implicitly makes a inactive, because the last program point in
the applet state is now no longer local to a.

An example of a transition rule for composite states is the rule

[synchro]
A1

v1 l? v2−−−−→ A′
1 A2

v1 l! v2−−−−→ A′
2
l ∈ call, ret

A1 | A2
v1 l v2−−−−→ A′

1 | A′
2

which describes how two applets synchronize if one sends out a message call
or return, which is received by the other applet. It is said that the imperfectly
labeled transitions v1 l? v2 and v1 l! v2 synchronize into one perfectly labeled
transition v1 l v2.

3 Property Specification Language

Properties of component interaction can be conveniently expressed in a modal
logic with recursion, such as Kozen’s modal µ-calculus [12], extended with model-
specific atomic formulae, where the modalities are indexed by transition labels.
In addition, such a logic is suitable for compositional reasoning (cf. [16,8,9]).

Let a range over applet name variables4, v over program point variables, π
over applet call stack variables, Π over applet call stack terms generated by
Π ::= ε π Π · 〈v, v′〉, X and Y over program state variables, A over program
state terms generated by A ::= a.Π A|A, and α over transition labels, all of
these possibly indexed or primed.

Definition 4 (Syntax). Atomic formulae σ and formulae φ are generated by
the following grammar, where x ranges over program point variables and applet
call stack variables, t over program point variables and applet call stack terms,
α over transition labels, and X over propositional variables:

σ ::= t = t return v localA v
φ ::= σ active ¬φ φ ∧ φ ∀x.φ [α] φ X νX.φ

We write locala v for locala.π v.
An occurrence of a subformula ψ in φ is positive, if ψ appears in the scope of

an even number of negation symbols; otherwise the occurrence is negative. The
formation of fixed point formulae is subject to the usual formal monotonicity
condition that occurrences of X in φ are positive. A formula φ is propositionally
closed if φ does not have free occurrences of propositional variables. Standard
abbreviations apply, like for instance ∃x.φ ∆= ¬∀x.¬φ, 〈α〉φ ∆= ¬ [α]¬φ, and
µX.φ

∆= ¬νX.¬(φ[¬X/X ]).
The semantics of formulae is given relative to a program model M, its in-

duced LTS TM, and an environment ρ mapping variables to members of their

4 By abuse of notation we use the same letters for the variables of the logic and for
arbitrary constants of the respective domain in the model.
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respective domains, lifted to expressions Π and A in the natural way. The se-
mantic interpretation [[σ]]Mρ of an atomic formula σ maps σ to a boolean, while
the semantics ‖φ‖Mρ of a formula φ is described as the set of program states
satisfying formula φ.

Definition 5 (Semantics). Let M be a program model, TM be its induced LTS,
and let ρ be an environment. The semantics of atomic formulae is defined by:

[[t1 = t2]]Mρ
∆= t1ρ = t2ρ

[[return v]]Mρ
∆= ret(vρ)

[[localA v]]Mρ
∆= app(vρ) is defined and occurs in Aρ

The semantics of formulae is standard [12], except for:

‖σ‖Mρ
∆= if [[σ]]Mρ then SM else ∅

‖active‖Mρ
∆= {s ∈ SM | s is active}

4 Specification Patterns

The property specification language presented above is rather low-level. To fa-
cilitate high-level formal reasoning, we introduce a collection of specification
patterns, following the approach of the Bandera project [6].

In the context of the present work, the use of specification patterns has an
additional purpose: as explained in the introduction, we have two different kind
of verification tasks in our framework, namely model-checking the local prop-
erties of the individual applets, and proving property decompositions correct.
The use of general temporal logic patterns allows us to use different verification
techniques (based on different logics) for the different tasks. For example, we
can model check the local applet properties by translating, as appropriate, the
specifications into CTL (e.g. as input for NuSMV [5]) or LTL (e.g. as input for
SPIN [10]), while we can use the modal µ-calculus to prove the correctness of
the property decomposition, as this is more suitable for the task.

A typical specification pattern used to express invariant properties is:

Always φ
∆= νX. φ ∧ [τ ]X

∧ ∀v1. ∀v2. [v1 call v2]X
∧ [v1 call? v2]X
∧ [v1 call! v2]X
∧ [v1 ret v2]X
∧ [v1 ret? v2]X
∧ [v1 ret! v2]X

When components communicate via procedure or method calls one frequently
needs to specify that some property φ holds within a call, i.e. from the point of
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invocation to the point of return. For these purposes we propose the following
pattern:

Within v φ
∆= ∀v1. [v1 call v] Always−ret v1φ

∧ [v1 call? v] Always−ret! v1φ

where Always−λ v φ is defined as Always φ, but with the corresponding con-
junct [v1λ v2]X replaced by [v1λ v2] ((v2 = v) ∨X).

In the example of Section 6 we also use the abbreviations:

CallsExtOnly V
∆= ∀v1. ∀v2. [v1 call! v2] v2 ∈ V

CannotCall a V
∆= ∀v1. ∀v2. [v1 call v2]¬ (locala v1 ∧ v2 ∈ V )

∧ [v1 call! v2]¬ (locala v1 ∧ v2 ∈ V )

where V denotes an explicit enumeration v1, . . . , vn of vertices and v ∈ V is
syntactic sugar for v = v1 ∨ · · · ∨ v = vn.

5 Proof System

For proving correctness of property decompositions, we develop a Gentzen-style
proof system based on the compositional approach advocated by Simpson [16].
This approach has been successfully used for the compositional verification of
CCS programs [7], and even of complex telecommunications software written in
the Erlang programming language [9].

The proof system uses Gentzen style sequents, i.e. proof judgments of the
form φ1, . . . , φn � ψ1, . . . , ψn. The intuitive interpretation of such a sequent
is that the conjunction of the antecedents implies the disjunction of the conse-
quents, i.e. φ1∧ . . .∧φn ⇒ ψ1∨ . . .∨ψn. Formally, we define the building blocks
of our proof system as follows.

Definition 6 (Assertion, Sequent).

(i) An assertion γ is either a satisfaction assertion A : φ, where φ is a proposi-
tionally closed formula, a transition assertion A1

α−→ A2, an atomic formula
assertion σ, a transfer-edge assertion v →T v′, a call-edge assertion v →C v′,
or a wellformedness assertion wf(A).

(ii) Assertion A : φ is valid for program model M and environment ρ if Aρ ∈
‖φ‖Mρ . A1

α−→ A2 is valid for M and ρ if A1ρ
αρ−→M A2ρ. σ is valid for M

and ρ if [[σ]]Mρ . v →T v′ is valid for M and ρ if vρ →T v′ρ in M. v →C v′

is valid for M and ρ if vρ→C v′ρ in M. wf(A) is valid for M and ρ if Aρ
is wellformed in M.

(iii) A sequent is a proof judgment of the form Γ � ∆, where Γ and ∆ are sets
of assertions.

(iv) Sequent Γ � ∆ is valid if, for all program models M and environments ρ,
whenever all assertions in Γ are valid for M and ρ then also some assertion
in ∆ is valid for M and ρ.
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Note that wellformedness of program states does not lift to program-state terms
in a way which can be captured purely syntactically, and therefore has to be
dealt with explicitly in the proof system.

We now present, in groups, the proof rules of our proof system. Since many of
these are standard, we only show the most interesting ones here; the remaining
rules can be found in Appendix B. The side condition “fresh x” appearing in
some of the rules means “x does not appear free in the conclusion of the rule”.

Structural and Logical Rules. As structural rules, we assume the standard iden-
tity, cut and weakening rules of Gentzen-style proof systems. We have rules for
the various atomic formula constructs. Equality is handled through standard
congruence rules, plus standard rules for freely generated datatypes (for deal-
ing with equality on program stack terms). The rules for localA v proceed by
decomposing the program state terms; in addition we have:

(LocInt)
·

Γ, localA1 v, localA2 v � intersect(A1,A2), ∆

(LocTransf)
·

Γ, localA v, v →T v′ � localA v′, ∆

where intersect(A1,A2) is an auxiliary assertion used to capture program state
intersection.

Most of the logical rules (dealing with satisfaction assertions A : φ) are
standard. Not so are the proof rules for active:

(ActComL)
Γ, A1 : active � ∆ Γ, A2 : active � ∆

Γ, A1 |A2 : active � ∆

(ActComR)
Γ � A1 : active, A2 : active, ∆

Γ � A1 |A2 : active, ∆

(ActL)
Γ, Π = π · 〈v1, v2〉 , locala v2 � ∆

fresh π, v1, v2
Γ, a.Π : active � ∆

(ActR)
Γ � Π = Π ′ · 〈v1, v2〉 , ∆ Γ � locala v2, ∆

Γ � a.Π : active, ∆

Fixed–point formulae are handled as in [8] through fixed-point approximation
by using explicit ordinal variables κ to represent approximation ordinals:

(NuL)
Γ, A : φ[νX.φ/X ] � ∆

Γ, A : νX.φ � ∆
(NuR)

Γ � A : (νX.φ)κ, ∆
fresh κ

Γ � A : νX.φ, ∆

(ApproxR)
Γ, κ′ < κ � A : φ[(νX.φ)κ

′
/X ], ∆

fresh κ′
Γ � A : (νX.φ)κ, ∆
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These ordinal variables are examined by a global discharge rule, which checks
whether the proof tree constitutes a valid well-founded induction scheme. Infor-
mally, the discharge rule applies if (1) every non-axiom leaf of the proof tree is
an instance (up to a substitution) of some ancestor sequent in the proof tree, (2)
for each such sequent, this substitution maps some ordinal variable approximat-
ing a fixed-point formula to an ordinal variable which is assumed to be smaller,
and (3) these separate induction schemes are consistent with each other. For the
technical details the interested reader is referred to [8,7,9].

Transition Rules. These rules deal with transition assertions A1
α−→ A2.

We first consider the case where A is a composite state. The r.h.s. rules
follow directly from the transition rules for program states (see Appendix A),
after making the wellformedness conditions explicit.

(ComTauR)
Γ � A1 −→ A′

1, ∆ Γ � wf(A1 |A2), ∆ Γ � wf(A′
1 |A2), ∆

Γ � A1 |A2 −→ A′
1 |A2, ∆

(ComSyncR)

Γ � A1
v1 l! v2−−−−→ A′

1, ∆ Γ � wf(A1 |A2), ∆

Γ � A2
v1 l? v2−−−−−→ A′

2, ∆ Γ � wf(A′
1 |A′

2), ∆

Γ � A1 |A2
v1 l v2−−−−→ A′

1 |A′
2, ∆

(ComPropR)

Γ, localA2 v1 � ∆ Γ � wf(A1 |A2), ∆

Γ � A1
v1 λ v2−−−−→ A′

1, ∆ Γ, localA2 v2 � ∆ Γ � wf(A′
1 |A2), ∆

Γ � A1 |A2
v1 λ v2−−−−→ A′

1 |A2, ∆

where l is call or ret and λ is l, l? or l!. All three rules have symmetric counterparts
which we omit.

Notice that in each rule two proof obligations arise on the wellformedness
of the state. This may seem a heavy proof burden, but almost all these proof
obligations can be discharged immediately. It is future work to derive optimized
proof rules which result in less proof obligations.

The l.h.s. rules apply when we assume that a certain transition is possible.
By the closure condition of the transition semantics, the possible transitions
are exactly those inferable by the transition rules, thus these proof rules have
to capture the conditions under which we can assume that this transition is
possible.

For example, a transition A1 |A2
v1 call v2−−−−−→ X only is possible if the transition

rules [synchro] or [propagation] apply. The transition rule [synchro] applies if:
(1) A1 can do a transition to A′

1 labeled v1 call! v2, (2) A2 can do a transition
to A′

2, labeled v1 call? v2, and (3) X is of the form A′
1 | A′

2, or the symmetric
counterpart of this applies. Similarly, it can be decided under which conditions
the transition rule [propagation] applies. If we assume that such a transition
A1 |A2

v1 call v2−−−−−→ X is possible, one of these rules must have been applied, and
thus for one of these rules all conditions must have been satisfied. This is exactly
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captured by the proof rule (ComPerfL), with explicit wellformedness conditions
added.

(ComTauL)

Γ [(Y |A2)/X ], A1 −→ Y, wf(A1 |A2), wf(Y |A2) � ∆[(Y |A2)/X ]
Γ [(A1 |Y)/X ], A2 −→ Y, wf(A1 |A2), wf(A1 |Y) � ∆[(A1 |Y)/X ]

fresh Y
Γ, A1 |A2 −→ X � ∆

(ComImpL)

Γ [(Y |A2)/X ], A1
v1l?!v2−−−−−−→ Y, wf(A1 |A2), wf(Y |A2) � localA2

v1, localA2
v2, ∆[(Y |A2)/X ]

Γ [(A1 |Y)/X ], A2
v1l?!v2−−−−−−→ Y, wf(A1 |A2), wf(A1 |Y) � localA1

v1, localA1
v2, ∆[(A1 |Y)/X ]

Γ, A1 |A2
v1l?!v2−−−−−−→ X � ∆

fresh Y

(ComPerfL)

Γ [(Y |A2)/X ], A1
v1lv2−−−−−→ Y, wf(A1 |A2), wf(Y |A2) � localA2

v1, localA2
v2, ∆[(Y |A2)/X ]

Γ [(A1 |Y)/X ], A2
v1lv2−−−−−→ Y, wf(A1 |A2), wf(A1 |Y) � localA1

v1, localA1
v2, ∆[(A1 |Y)/X ]

Γ [(X1 |X2)/X ], A1
v1l!v2−−−−−→ X1, A2

v1l?v2−−−−−−→ X2, wf(A1 |A2), wf(X1 |X2) � ∆[(X1 |X2)/X ]

Γ [(X1 |X2)/X ], A1
v1l?v2−−−−−−→ X1, A2

v1l!v2−−−−−→ X2, wf(A1 |A2), wf(X1 |X2) � ∆[(X1 |X2)/X ]

Γ, A1 |A2
v1lv2−−−−−→ X � ∆

fresh X1,X2,Y
In rule (ComImpL), l?! stands for either l? or l!.

We now turn to the case when A is a singleton set, i.e. an applet state. Again,
the r.h.s. rules follow immediately from the transition rules. However, in many
transition rules there is an implicit condition on the form of the applet state,
e.g. to be able to apply the rule [send call], the call stack has to be of the form
Π · 〈v1, v2〉. These conditions are made explicit in the proof rules.

(LocCallR)

Γ � v1 →C v2, ∆ Γ � locala v1, ∆
Γ � Π = Π ′ · 〈v, v1〉 , ∆ Γ � locala v2, ∆

Γ � a.Π
v1 call v2−−−−−→ a.(Π · 〈v1, v2〉), ∆

(LocRetR)

Γ � v1 →T v2, ∆ Γ � locala v1, ∆

Γ � Π = Π′ · 〈v, v1〉 · 〈v1, v3〉 , ∆ Γ � locala v3, ∆ Γ � return v3, ∆

Γ � a.Π
v3 ret v1−−−−−−−→ a.(Π′ · 〈v, v2〉), ∆

(LocTransfR)

Γ � v1 →T v2, ∆ Γ � locala v1, ∆
Γ, v1 →C v3 � ∆ Γ � Π = Π ′ · 〈v, v1〉 , ∆

fresh v3

Γ � a.Π −→ a.(Π ′ · 〈v, v2〉), ∆

(SendCallR)

Γ � v1 →C v2, ∆ Γ � locala v1, ∆
Γ � Π = Π ′ · 〈v, v1〉 , ∆ Γ, locala v2 � ∆

Γ � a.Π
v1 call! v2−−−−−−→ a.(Π · 〈v1, v2〉), ∆

(RecCallR)

Γ � v1 →C v2, ∆ Γ, locala v1 � ∆
Γ, a.Π : active � ∆ Γ � locala v2, ∆

Γ � a.Π
v1 call? v2−−−−−−→ a.(Π · 〈v1, v2〉), ∆

(SendRetR)

Γ, locala v1 � ∆ Γ � locala v2, ∆
Γ � Π = Π ′ · 〈v1, v2〉 , ∆ Γ � return v2, ∆

Γ � a.Π
v2 ret! v1−−−−−→ a.Π ′, ∆

(RecRetR)

Γ � v1 →T v2, ∆ Γ, locala v3 � ∆

Γ � Π = Π′ · 〈v, v1〉 · 〈v1, v3〉 , ∆ Γ, locala v4 � ∆ Γ � locala v1, ∆

Γ � a.Π
v4 ret? v1−−−−−−−→ a.(Π′ · 〈v, v2〉), ∆
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The l.h.s. rules are constructed from the transition rules in the same way as
the l.h.s. rules for composite states above.

(LocCallL)

Γ [a.(Π · 〈v1, v2〉)/X ], Π = π · 〈v, v1〉 , v1 →C v2, locala v1, locala v2 �
∆[a.(Π · 〈v1, v2〉)/X ]

fresh v, π
Γ, a.Π

v1 call v2−−−−−−→ X � ∆

(LocRetL)

Γ [a.(π · 〈v, v2〉)/X ], Π = π · 〈v, v1〉 · 〈v1, v3〉 , v1 →T v2, locala v1, locala v3, return v3 �
∆[a.(π · 〈v, v2〉)/X ]

Γ, a.Π
v3 ret v1−−−−−−−→ X � ∆

fresh v, v2, π

(LocTransfL)

Γ [a.(π · 〈v, v2〉)/X ], Π = π · 〈v, v1〉 , v1 →T v2, locala v1 �
v1 →C v3, ∆[a.(π · 〈v, v2〉)/X ]

fresh v, v1, v2, π
Γ, a.Π −→ X � ∆

(SendCallL)

Γ [a.(Π · 〈v1, v2〉)/X ], Π = π · 〈v, v1〉 , v1 →C v2, locala v1 �
locala v2, ∆[a.(Π · 〈v1, v2〉)/X ]

Γ, a.Π
v1 call! v2−−−−−−→ X � ∆

fresh v, π

(RecCallL)

Γ [a.(Π · 〈v1, v2〉)/X ], v1 →C v2, locala v2 �
locala v1, a.Π : active, ∆[a.(Π · 〈v1, v2〉)/X ]

Γ, a.Π
v1 call? v2−−−−−−→ X � ∆

(SendRetL)

Γ [a.π/X ], Π = π · 〈v1, v2〉 , locala v2, return v2 �
locala v1, ∆[a.π/X ]

fresh π
Γ, a.Π

v2 ret! v1−−−−−→ X � ∆

(RecRetL)

Γ [a.(π · 〈v, v2〉)/X ], Π = π · 〈v, v1〉 · 〈v1, v3〉 , v1 →T v2, locala v1 �
locala v3, locala v4, ∆[a.(π · 〈v, v2〉)/X ]

Γ, a.Π
v4 ret? v1−−−−−−→ X � ∆

fresh v, v2, v3, π

Wellformedness Rules. These rules reflect Definition 2, which states that a com-
posed state A1 |A2 is wellformed iff its components are wellformed, at most one
of the components is active, and the applet names in the components do not
intersect.

(WfAppletR)
·

Γ � wf(a.Π), ∆

(WfComR)

Γ � wf(A1), ∆ Γ, intersect(A1,A2) � ∆
Γ � wf(A2), ∆ Γ, A1 : active, A2 : active � ∆

Γ � wf(A1 |A2), ∆

(WfComL)

Γ, wf(A1), wf(A2), A1 : active � intersect(A1,A2), A2 : active, ∆
Γ, wf(A1), wf(A2), A2 : active � intersect(A1,A2), A1 : active, ∆
Γ, wf(A1), wf(A2) � intersect(A1,A2), A1 : active, A2 : active, ∆

Γ, wf(A1 |A2) � ∆

Soundness. The program model has been formalized and the proof rules have
been proven sound w.r.t. the underlying model in PVS [15].
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6 Example: Electronic Purse

To illustrate the working of the proof system, we take the electronic purse smart-
card example of [3], which we discussed in greater detail (by providing the pro-
gram model) in [2], and we outline the correctness proof of the decomposition of
its specification. In this example an electronic purse is presented, which contains
three applets: a Purse applet, and two loyalty applets: AirFrance and RentACar,
with the standard functionalities. Besides, the Purse keeps a log table of bounded
size of all transactions. Loyalties can subscribe to a (paying) logFull service,
which signals that the log table is full and entries will be overridden. In the ex-
ample, AirFrance is subscribed to this service. If it gets a logFull message, it
will update its local balance, by asking the entries of the log table of the Purse,
and by asking the balances of loyalty partners (RentACar in this example). In
this way, RentACar can implicitly deduce that the log table is full, because it
receives a getBalance message from AirFrance. A malicious implementation of
RentACar can therefore request the information stored in the log table, before
returning the value of its local balance. This is unwanted, because RentACar has
not paid for the logFull service.

Thus, an invocation of logFull in the AirFrance applet by the Purse should
not trigger a call from RentACar to getTrs (to ask the transactions) in the Purse.
Using the macro definitions from Section 4 we can formally specify this as:

Spec
∆= Within AirFrance.logFull Spec′

Spec′ ∆= CannotCall RentACar Purse.getTrs

The individual applets are specified as follows:

SpecP
∆= localPurse Purse.getTrs ∧ Spec′

P

Spec′
P

∆= Always (Within Purse.getTrs (CallsExtOnly ∅))

SpecAF
∆= localAirFrance AirFrance.logFull ∧ Spec′

AF

Spec′
AF

∆= Always (Within AirFrance.logFull Spec′′
AF)

Spec′′
AF

∆= CallsExtOnly Purse.getTrs, RentACar.getBalance

SpecRaC
∆= localRentACar RentACar.getBalance ∧ Spec′

RaC

Spec′
RaC

∆= Always (Within RentACar.getBalance(CallsExtOnly ∅))

To show that this property decomposition is correct, we have to parameterize
these specifications by replacing the concrete applet names Purse, AirFrance
and RentACar by the applet variables aP , aAF and aRaC, and the concrete
method names Purse.getTrs, AirFrance.logFull and RentACar.getBalance
by the program point variables vGT, vLF and vGB, respectively. We employ the
proof system presented above to prove validity of the following sequent:
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aP .πP : SpecP, aAF.πAF : SpecAF, aRaC.πRaC : SpecRaC

� aP .πP |aAF.πAF |aRaC.πRaC : Spec

There is a systematic method of proving validity of such sequents based on
stepwise symbolic execution and loop detection. Symbolic execution refers to the
process of computing the symbolic next-states of a program-state term (here
aP .πP | aAF.πAF | aRaC.πRaC) guided by the modalities of the formula (here
Spec). In this process some parameter terms of the program-state term might
change. This requires the assumptions on these parameter terms to be updated.
Some of the resulting symbolic next-states might be impossible, for example due
to the accumulation of contradicting assumptions about the locality of program
points, or because they violate the wellformedness restrictions on program states.
Loop detection refers to detecting when a sequent is an instance of some ancestor
sequent in the proof tree. This is necessary for checking the discharge condition.

We exemplify the method on the sequent above. First, we unfold the pattern
and apply logical rules based on the outermost logical connectives of Spec until
reaching a box-formula. In this way two subgoals are obtained; we focus on the
first (the correctness proof of the second subgoal will follow the same structure):

localaP vGT, localaAF vLF, localaRaC vGB,
aP .πP : Spec′

P, aAF.πAF : Spec′
AF, aRaC.πRaC : Spec′

RaC

� aP .πP |aAF.πAF |aRaC.πRaC : [v1 call vLF] Always−ret v1Spec′

Second, we apply rule BoxR followed by left transition rules for composite states
until possible; this yields nine sequents corresponding to the nine different ways
in which a perfect call action can come about in a system composed of three
applets. Of these, four subgoals consider the cases where aAF is not involved in
the communication, and these can immediately be discarded (by applying the Id
rule) due to contradicting assumptions about locality of vLF. Two other sequents
contain an assumption aAF.πAF

v1 call! vLF−−−−−−→ X , i.e. aAF sends a call to an external
vLF, and these can be discarded immediately by applying SendCallL and Id. The
remaining three subgoals consider the three possible ways of producing a perfect
call to vertex vLF which is local to aAF: by making a local call from within aAF,
or by calling from aP or aRaC.

Here, we focus on the case that vLF is invoked by a local call from within
aAF. Verification of the other two cases continues along the same lines.

localaP vGT, localaAF vLF, localaRaC vGB,
aP .πP : Spec′

P, aAF.πAF : Spec′
AF, aRaC.πRaC : Spec′

RaC,
wf(aP .πP |aAF.πAF |aRaC.πRaC), wf(aP .πP |X |aRaC.πRaC),
aAF.πAF

v1 call vLF−−−−−−→ X
� aP .πP |X |aRaC.πRaC : Always−ret v1Spec′

Next, we derive from the assumption(s) about aAF.πAF assumptions about X .
We do this by applying l.h.s. logical rules (including NuL), until we obtain a box-
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formula with label v1 call vLF. To this formula we apply BoxL (taking X for A′),
which results in two subgoals. The first subgoals requires to show the transition
assertion aAF.πAF

v1 call vLF−−−−−−→ X , and can immediately be discarded (by Id). The
other sequent looks as follows (after weakening):

localaP vGT, localaAF vLF, localaRaC vGB,
aP .πP : Spec′

P, X : Always−ret v1Spec′′
AF, aRaC.πRaC : Spec′

RaC,

aAF.πAF
v1 call vLF−−−−−−→ X ,

wf(aP .πP |aAF.πAF |aRaC.πRaC), wf(aP .πP |X |aRaC.πRaC)
� aP .πP |X |aRaC.πRaC : Always−ret v1Spec′

And fourth, the transition assertion on the left is eliminated by applying the
appropriate l.h.s. local transition rule, here LocCallL:

localaP vGT, localaAF vLF, localaAF v1, localaRaC vGB,
aP .πP : Spec′

P, aAF.πAF · 〈v1, vLF〉 : Always−ret v1Spec′′
AF,

aRaC.πRaC : Spec′
RaC, πAF = π · 〈v, v1〉 , v1 →C vLF,

wf(aP .πP |aAF.πAF |aRaC.πRaC), wf(aP .πP |aAF.πAF · 〈v1, vLF〉 |aRaC.πRaC)
� aP .πP |aAF.πAF · 〈v1, vLF〉 |aRaC.πRaC : Always−ret v1Spec′

As a result of the above steps we computed a symbolic next-state aP .πP |
aAF.πAF ·〈v1, vLF〉 |aRaC.πRaC from the original symbolic state aP .πP |aAF.πAF |
aRaC.πRaC and updated the assumptions on its parameters.

Proof search continues by showing that in this symbolic next-state the for-
mula Always−ret v1Spec′ is true. This amounts to showing that (by applying
NuR, ApproxR, and AndR) in this state Spec′ is true, and in all possible next
states within the call (i.e. those that are reached through transitions which are
not labeled v ret v1), again Always−ret v1Spec′ holds. Spec′ says that aRaC

does not call vGT, thus it follows immediately that aP .πP |aAF.πAF · 〈v1, vLF〉 |
aRaC.πRaC : Spec′ is satisfied from the wellformedness of the current state: aAF

is the active applet, thus aRaC cannot issue calls.
We consider all possible next states of aP .πP |aAF.πAF · 〈v1, vLF〉 |aRaC.πRaC

within the call. In most cases, we detect a loop and immediately can apply
the discharge condition, but in the case that the next state is reached because
aAF has sent out an external call, we cannot do this. Here we have to use the
assumption on aAF, which says that such a call can only be to vGT or vGB.
Thus there are two possible symbolic next states and for both these states we
have to show that Always−ret v1Spec′ holds. This is done by showing that in
this state Spec′ holds (either because aP is active, thus aRaC cannot send a
message, or because of the specification on aRaC, which says that it does not
make outgoing calls from within vGB), and that in all possible next states again
Always−ret v1Spec′ holds. Thus, proof search continues in the same way from
these states, considering all possible computations, until all branches of the proof
tree can be discharged, therewith concluding our proof.
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Notice that the construction of the proof is exactly prescribed by the struc-
ture of the formula. Therefore we believe that having a tailored proof tool and
well-developed proof strategies will help us to achieve a sufficiently high degree
of automation in constructing the decomposition correctness proofs.

7 Conclusion and Future Work

This paper introduces a language-independent framework for the specification
and verification of secure applet interactions in open platforms. It is shown that
the framework can be instantiated to JavaCard and that it allows the decom-
position of global properties about applet interactions into local properties of
applets, as shown on a realistic case study.

Related Work. Our program models can alternatively be cast in terms of context-
free processes; for these there exist algorithmic verification techniques w.r.t.
modal µ-calculus specifications [4]. The development of our program model fol-
lows earlier work by Jensen et al. [11] which addresses security properties ex-
pressible as stack invariants. These form a strict subset of the properties which
can be expressed in our framework, but allow for more efficient model checking
procedures.

Future Work. Our primary objective is to complete our work on the proof sys-
tem by studying completeness and decidability issues for suitable fragments of
the logic. This is crucial for providing adequate automated tools for property de-
composition. Further, we intend to combine such tools with off-the-shelf model
checkers, so that local properties of applets can be checked automatically. We
believe that such a combination will provide an effective environment to address
further, more challenging, case studies.

In a different line of work, it would be of interest to enhance our model
with data – so as to capture properties such as “Action Credit increases the
balance of the Purse Component” – and with multi-threading, but the theoretical
underpinnings of such extensions remain to be unveiled.
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A Transition Rules

We use loca v as abbreviation for app v = a.

Transition Rules for Composite States (With Symmetric Counterparts).

[tau]
A1

τ−→ A′
1

A1 | A2
τ−→ A′

1 | A2

[synchro]
A1

v1 l? v2−−−−−→ A′
1 A2

v1 l! v2−−−−→ A′
2

l ∈ call, ret
A1 | A2

v1 l v2−−−−→ A′
1 | A′

2

[propagation]
A1

v1 l?! v2−−−−−→ A′
1 ¬locA2 v1 ¬locA2 v2

l ∈ call, ret
A1 | A2

v1 l?! v2−−−−−→ A′
1 | A2

Applet Transition Rules.

[local call]
v1 →C v2 loca v1 loca v2

a.π · 〈v, v1〉 v1 call v2−−−−−→ a.π · 〈v, v1〉 · 〈v1, v2〉
[local return]

v1 →T v2 loca v1 loca v3 ret v3

a.π · 〈v, v1〉 · 〈v1, v3〉 v3 ret v1−−−−−→ a.π · 〈v, v2〉
[local transfer]

v1 →T v2 loca v1 v1 �→C

a.π · 〈v, v1〉 −→ a.π · 〈v, v2〉
[send call]

v1 →C v2 loca v1 ¬loca v2

a.π · 〈v, v1〉 v1 call! v2−−−−−−→ a.π · 〈v, v1〉 · 〈v1, v2〉
[receive call]

v1 →C v2 ¬loca v1 loca v2 ¬active a

a.π
v1 call? v2−−−−−−→ a.π · 〈v1, v2〉

[send return]
¬loca v1 loca v2 ret v2

a.π · 〈v1, v2〉 v2 ret! v1−−−−−→ a.π

[receive return]
v1 →T v2 loca v1 ¬loca v3 ¬loca v4

a.π · 〈v, v1〉 · 〈v1, v3〉 v4 ret? v1−−−−−−→ a.π · 〈v, v2〉

B Remaining Proof Rules of the Proof System

Structural Rules.
(Id)

·
Γ, γ � γ, ∆

(Cut)
Γ, γ � ∆ Γ � γ, ∆

Γ � ∆

(WeakL)
Γ � ∆

Γ, γ � ∆
(WeakR)

Γ � ∆

Γ � γ, ∆
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Atomic Formula Rules.

(EqSymL)
Γ, t2 = t1 � ∆

Γ, t1 = t2 � ∆
(EqReflR)

·
Γ � t = t, ∆

(EqSubstL)
Γ [t/x] � ∆[t/x]

Γ, x = t � ∆

(EqNilL)
·

Γ, ε = Π · 〈v1, v2〉 � ∆

(EqConsL)
Γ, Π = Π ′, v1 = v′

1, v2 = v′
2 � ∆

Γ, Π · 〈v1, v2〉 = Π ′ · 〈v′
1, v

′
2

〉 � ∆

(EqConsR)
Γ � Π = Π ′, ∆ Γ � v1 = v′

1, ∆ Γ � v2 = v′
2, ∆

Γ � Π · 〈v1, v2〉 = Π ′ · 〈v′
1, v

′
2

〉
, ∆

(LocComL)
Γ, localA1 v � ∆ Γ, localA2 v � ∆

Γ, localA1|A2 v � ∆

(LocComR)
Γ � localA1 v, localA2 v, ∆

Γ � localA1|A2 v, ∆

Logical Rules.

(PredL)
Γ, σ � ∆

Γ, A : σ � ∆
(PredR)

Γ � σ,∆

Γ � A : σ, ∆

(NotL)
Γ � A : φ, ∆

Γ, A : ¬φ � ∆
(NotR)

Γ, A : φ � ∆

Γ � A : ¬φ, ∆

(AndL)
Γ, A : φ, A : ψ � ∆

Γ, A : φ ∧ ψ � ∆
(AndR)

Γ � A : φ, ∆ Γ � A : ψ, ∆

Γ � A : φ ∧ ψ, ∆

(AllL)
Γ, A : φ[t/x] � ∆

Γ, A : ∀x.φ � ∆

(AllR)
Γ � A : φ, ∆

fresh x
Γ � A : ∀x.φ, ∆

(BoxL)
Γ � A α−→ A′, ∆ Γ, A′ : φ � ∆

Γ, A : [α]φ � ∆

(BoxR)
Γ,A α−→ X � X : φ, ∆

fresh X
Γ � A : [α] φ, ∆

Auxiliary Rules for Intersection.

(IntR)
·

Γ � intersect(a.Π1, a.Π2), ∆
(IntReflR)

·
Γ � intersect(A,A), ∆

(IntComL)
Γ, intersect(A1,A3) � ∆ Γ, intersect(A2,A3) � ∆

Γ, intersect(A1 |A2,A3) � ∆

(IntComR)
Γ � intersect(A1,A3), intersect(A2,A3), ∆

Γ � intersect(A1 |A2,A3), ∆

(with symmetric counterparts).
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