
Theoretical Informatics and Applications
Theoret. Informatics Appl. 33 (1999) 383–392

A NOTE ON NEGATIVE TAGGING
FOR LEAST FIXED-POINT FORMULAE ∗

Dilian Gurov
1

and Bruce Kapron
2

Abstract. Proof systems with sequents of the form U ` Φ for
proving validity of a propositional modal µ-calculus formula Φ over
a set U of states in a given model usually handle fixed-point formulae
through unfolding, thus allowing such formulae to reappear in a proof.
Tagging is a technique originated by Winskel for annotating fixed-point
formulae with information about the proof states at which these are
unfolded. This information is used later in the proof to avoid unneces-
sary unfolding, without having to investigate the history of the proof.
Depending on whether tags are used for acceptance or for rejection of
a branch in the proof tree, we refer to “positive” or “negative” tagging,
respectively. In their simplest form, tags consist of the sets U at which
fixed-point formulae are unfolded. In this paper, we generalise results
of earlier work by Andersen et al. which, in the case of least fixed-point
formulae, are applicable to singleton U sets only.

AMS Subject Classification. 03B70, 68Q60.

1. Introduction

The propositional modal µ-calculus is a particularly expressive logic for
reasoning about branching-time properties of communicating systems. Many other
logics, like dynamic logic and CTL, have uniform encodings in this logic [4, 8].
Over the last decade, many proof systems for checking validity of µ-calculus for-
mulae over given states in a model have been proposed, e.g. in [1,3,5,7,9] among
others. The main difficulty in devising such proof systems lies in the handling
of fixed-point formulae. These are usually unfolded during proof construction,

∗ The first author was partially supported by a Swedish Foundation for Strategic Research
Junior Individual Grant.
1 Swedish Institute of Computer Science, Box 1263, SE-164 29 Kista, Sweden;
e-mail: dilian@sics.se
2 Department of Computer Science, University of Victoria, Victoria, B.C., Canada V8W 3P6;
e-mail: bmkapron@csc.uvic.ca

c© EDP Sciences 1999

384 D. GUROV AND B. KAPRON

thus allowing them to reappear in a proof. One therefore needs conditions for
terminating the proof search process based on identifying certain “loops” in a
proof. Important techniques for dealing with fixed-point formulae are the sub-
formula condition of Streett and Emerson [10], the constants of Stirling and
Walker [9], the tags of Winskel [11], and the ordinal variables of Dam et al. [6].
The tagging approach is appealing in that it allows all reasoning to be performed
using local rules only, and also in that it has a simple semantic justification.

Of the two kinds of fixed-point formulae, the least fixed-point ones are more
difficult to handle in general, usually requiring some sort of Noetherian induction
over some well-founded set [1, 3, 7]. When model checking finite-state systems,
however, it is sufficient to perform simple unfolding. In this case, inductive rea-
soning can reduce the size of a proof significantly, but makes proof search far more
complicated. Even if no induction is employed, it still makes sense to record the
states at which a least fixed-point formula has been unfolded, since this informa-
tion can be used to reject a branch. For example, the proof system presented in [2]
has a rule of the shape:

(µ)
s ` Φ[µZ{s, L}.Φ/Z]

s ` µZ{L}.Φ s 6∈ L

which prevents least fixed-point formulae from being unfolded more than once at
the same state. Such a rule can be justified semantically by defining tags L to
denote sets of states, and by defining the denotation of tagged least fixed-point
formulae as follows:

‖µZ{L}.Φ‖V
∆≡ µX.

(
‖Φ‖V[Z 7→X] − L

)
.

Rule (µ) is sound and reversible due to the following equivalence, known as the
Reduction lemma (Kozen [8], Winskel [11]):

s ∈ µX.f(X) ≡ s ∈ f(µX.(f(X)− {s})) (1)

which holds for any monotone mapping f : ℘(S)→ ℘(S). We refer to tagging used
in this way as negative tagging, since tags are in some sense negative assumptions:
we assume that the states in the tag do not belong to the denotation of the tagged
least fixed-point formula.

Unfortunately, equivalence (1) holds only for single states, and not for sets of
states in general [1]. Rule (µ) would in general be unsound in a proof system with
sequents of the shape U ` µZ{L}.Φ where U is a set of states, and where validity
of sequents is understood as set inclusion.

In this paper, we investigate for what semantics of tags and tagged formulae,
and for what relationship 1 between a set of states U and a tag L, one could

NEGATIVE TAGGING FOR LEAST FIXED-POINT FORMULAE 385

justify a rule of the shape

(µ′)
U ` Φ [µZ{U,L}.Φ/Z]

U ` µZ{L}.Φ U 1 L.

The paper is organised as follows. First, we present the syntax and semantics of
the propositional modal µ-calculus. In the following section we motivate a way
of tagging least fixed-point formulae, and propose a suitable semantics for tagged
least fixed-point formulae, giving rise to a sound and reversible inference rule.
Section 4 presents a proof system in which this proof rule fits naturally. Finally,
some conclusions are drawn in the last section.

2. Propositional modal µ-calculus

This section presents briefly the usual notions and notation for the modal
µ-calculus used in the sequel.

2.1. Syntax

Formulae Φ of the logic are generated by the grammar:

Φ ::= Z | Φ ∧ Φ | Φ ∨ Φ | [a] Φ | 〈a〉Φ | νZ.Φ | µZ.Φ
where Z ranges over a set of propositional variables, and a ranges over a non-empty
set L of labels.

2.2. Semantics

Modal µ-calculus formulae are usually interpreted as sets of states in transition
systems.

Definition 2.1 (Transition System). A transition system is a pair T = (S, { a−→
| a ∈ L}) where S is a non-empty set of states, L is a non-empty set of labels, and
for each a ∈ L, a−→⊆ S × S.

Definition 2.2 (Model). A model for a (possibly open) modal µ-calculus formula
is a pairM = (T ,V), where T is a transition system, and V is a valuation taking
propositional variables to subsets of states of T .

The semantics of a modal µ-calculus formula Φ in a modelM = (T ,V) is given
by its denotation ‖Φ‖TV (we shall sometimes omit the superscript).

Definition 2.3 (Denotation). The denotation ‖Φ‖TV of a modal µ-calculus
formula Φ is defined inductively as follows:

386 D. GUROV AND B. KAPRON

‖Z‖TV
∆= V(Z)

‖Φ1 ∧ Φ2‖TV
∆= ‖Φ1‖TV ∩ ‖Φ2‖TV

‖Φ1 ∨ Φ2‖TV
∆= ‖Φ1‖TV ∪ ‖Φ2‖TV

‖[a] Φ‖TV
∆= ‖[a]‖T ‖Φ‖TV

‖〈a〉Φ‖TV
∆= ‖〈a〉‖T ‖Φ‖TV

‖νZ.Φ‖TV
∆= νX. ‖Φ‖TV[Z 7→X]

‖µZ.Φ‖TV
∆= µX. ‖Φ‖TV[Z 7→X]

where we refer to the predicate transformers

‖[a]‖T ∆= λX.{s ∈ S | ∀s′ : s a−→ s′. s′ ∈ X}
‖〈a〉‖T ∆= λX.{s ∈ S | ∃s′ : s a−→ s′. s′ ∈ X}·

This definition uses the fact that the logic is in positive form, and hence the
predicate transformers λX. ‖Φ‖TV[Z 7→X] are monotone w.r.t. set inclusion and are

guaranteed to have greatest and least fixed points, denoted νX. ‖Φ‖TV[Z 7→X] and

µX. ‖Φ‖TV[Z 7→X], respectively.
We shall also need the notion of Knaster-Tarski fixed-point approximants of

monotone mappings over ℘(S).

Definition 2.4 (Fixed-Point Approximants). Let f : ℘(S)→ ℘(S) be monotone,
let Ord denote the class of all ordinals, and let γ and λ range over ordinals and
limit ordinals, respectively. Fixed-point approximants are defined inductively as
follows:

µ0f
∆= ∅ ν0f

∆= S
µγ+1f

∆= f(µγf) νγ+1f
∆= f(νγf)

µλf
∆=

⋃
γ<λ µ

γf νλf
∆=

⋂
γ<λ ν

γf.

3. Negative tagging for sets of states

Let us start by analysing why it is that the equivalence (1) fails for sets of states.
If we adopt the notation µX{U}.f(X) for µX.(f(X)− U), this equivalence could
be rewritten as:

s ∈ µX.f(X) ≡ s ∈ f(µX{s}.f(X)).
Consider the following LTS:

s3
a−→ s2

a−→ s1
a−→ s0

and the formula µZ. [a]Z, the denotation of which is the least fixed-point µf of the
state transformer f ∆= λX. ‖[a]‖X . We have µX{s2}.f(X) = {s0, s1} and hence
f(µX{s2}.f(X)) = f({s0, s1}) = {s0, s1, s2} includes s2. In terms of fixed-point

NEGATIVE TAGGING FOR LEAST FIXED-POINT FORMULAE 387

approximants, µX{s}.f(X) contains µαf for the greatest ordinal α such that µαf
does not include s, since this is the first point in the iterative construction of the
fixed-point where s comes into play1. In this example α equals two. Since f is
monotone, s ∈ µf implies:

s ∈ µα+1f = f(µαf) ⊆ f(µX{s}.f(X))

and therefore s ∈ f(µX{s}.f(X)). This is exactly the point where we cannot
extend this reasoning to an arbitrary set of states U : if α is the greatest ordinal2

for which µαf does not intersect U , then U ⊆ µα+1f is guaranteed only when U
is a singleton set. For example, for U = {s1, s2} we have µX{U}.f(X) = {s0}
and hence f(µX{U}.f(X)) = {s0, s1} which includes s1 but does not include s2.
On the other hand, the following observation can be made: a relationship of the
shape

U ⊆ µα+1f = f(µαf) ⊆ f(µX{U}.f(X))

would still hold if we redefined:

• α to be the greatest ordinal (if there is such) so that µαf does not contain
(rather than “does not intersect”) U . Then U ⊆ µα+1.
• Tags to be sets of states U denoting not themselves, but rather those elements

of U only which are not in µαf . Then µαf ⊆ µX{U}.f(X) and therefore
f(µαf) ⊆ f(µX{U}.f(X)).

We now proceed to formalise the above intuitive ideas. Let S be a set (of states),
and let f : ℘(S)→ ℘(S) be monotone.

Definition 3.1. Let U ⊆ S be a set of states. The closure ordinal cofU and
closure elements cefU of U w.r.t. f are defined as follows:

cofU
∆= the least ordinal α such that U ∩ µf ⊆ µαf

cefU
∆= U −

⋃
β<cofU

µβf.

Note 3.2. µcofUf can be partitioned into cefU ∩µf and
⋃
β<cofU

µβf , the latter
set being equal to µαf whenever cofU is the successor ordinal of α.

Proposition 3.3. Let U ⊆ S be a set of states. Then:
(i) (U ∩ µf) ⊆ µcofUf .
(ii) cefU ∩ µf 6= ∅ if and only if cofU is a successor ordinal.
(iii) If U is finite, then cofU is not a limit ordinal.
(iv) If s ∈ S, then cef{s} = {s}.

Proof. These properties are established as follows.

(i) Follows directly from the definition of cofU .

1Or alternatively, α+ 1 is the least ordinal such that µα+1f includes s.
2It should also be noted here, that such a greatest ordinal is guaranteed to exist only when

U is finite.

388 D. GUROV AND B. KAPRON

(ii) We have:

cefU ∩ µf 6= ∅ ≡
⋃
β<cofU

µβf 6= µcofUf {Note 3.2}
≡ cofU is a successor ordinal {Def. 2.4}·

(iii) From the definition of fixed-point approximants follows immediately that
the closure ordinal for singleton sets is not a limit ordinal. If U is finite, the
closure ordinals of the singletons formed by the elements of U have a greatest
element α which is not a limit ordinal. This ordinal is also the closure ordinal
of U .

(iv) This is a direct consequence of (iii).

Definition 3.4. Let U ⊆ S. We define tagged mappings as follows:

f{U}
∆= λX.(f(X)− cefU)

and use the notation f{U,V1,... ,Vn} for (f{V1,... ,Vn}){U}.

Note 3.5. In the chosen notation µf{U} equals µX{cefU}.f(X). Because of
Proposition 3.3 (iv), this semantics of tags coincides with the one already given in
the Introduction for the case of singleton sets.

Proposition 3.6. Let U ⊆ S be a set of states. Then:
(i) µf{U} ⊆ µf
(ii) if cofU is the successor of some ordinal α, then µαf = µαf{U}.

Proof. These properties are established as follows.
(i) Follows directly from the well-known equation:

µg =
⋂
{X | g(X) ⊆ X}

since f(X) ⊆ X implies f(X)− cefU ⊆ X .
(ii) Let cofU = α + 1. Then cefU ∩ µαf = ∅ by Definition 3.1 and Note 3.2.

From Definitions 2.4 and 3.4 it follows that µβf{U} ⊆ µβf for any β, and
consequently cefU ∩ µβf{U} = ∅ holds for all β ≤ α, implying the result.

The following proposition will be used to justify the side condition of the new
proof rule (µ′).

Proposition 3.7. For any finite non-empty set U ,

U 6⊆ µf{V1,... ,U,... ,Vn}.

NEGATIVE TAGGING FOR LEAST FIXED-POINT FORMULAE 389

Proof. By induction on n. The base case (i.e., empty tag) holds vacuously. The
induction hypothesis assumes the property for an arbitrary k. Assume U is a
finite non-empty set. If U = Vi for some i such that 2 ≤ i ≤ k + 1 then the
property holds, since µf{V2,... ,Vk+1} ⊆ µf{V1,V2,... ,Vk+1} by Proposition 3.6 (i) and
U 6⊆ µf{V2,... ,U,... ,Vk+1} by the induction hypothesis. The case that remains to
be considered is U = V1. Let g denote µf{V2,... ,Vk+1}. We have to show that
U 6⊆ µg{U}. This obviously holds when U 6⊆ µg, so assume U ⊆ µg instead. Since
U is non-empty and finite, it follows from Propositions 3.3 (ii) and (iii) that cegU
is also non-empty. But cegU ⊆ U by Definition 3.1, and µg{U} ∩ cegU = ∅ by
Definition 3.4, implying the desired U 6⊆ µg{U}.

The following lemma plays the same rôle as Kozen’s Reduction lemma.

Lemma 3.8 (Reduction lemma). For any set U ⊆ S the following equivalence
holds:

U ⊆ µf ≡ U ⊆ f(µf{U}).

Proof. The two directions are established as follows:
(⇐) this direction holds simply because f(µf{U}) ⊆ f(µf) = µf .
(⇒) If cefU ∩ µf is empty, then the implication holds trivially since in this

case µf = µf{U} = f(µf) = f(µf{U}). If cefU ∩ µf is not empty, then by
Proposition 3.3 (ii) cofU is the successor of some ordinal α. Then:

U ⊆ µf ≡ U ⊆ µcofUf {Prop. 3.3(i)}
≡ U ⊆ µα+1f {cofU = α+ 1}
≡ U ⊆ f(µαf) {Def. fixed− point approximants}
≡ U ⊆ f(µαf{U}) {Prop. 3.6(ii)}
⇒ U ⊆ f(µf{U}) {µαf{U} ⊆ µf{U}}·

We are now ready to give a suitable semantics to formulae tagged with lists of sets
of states.

Definition 3.9. The denotation of negatively tagged formulae is defined as
follows:

‖µZ{V1, . . . , Vn}.Φ‖TV
∆= µf{V1,... ,Vn}, where f = λX. ‖Φ‖TV[Z 7→X] .

Due to Note 3.5 this semantics is equivalent to the one already given in the
Introduction for the case when the tag sets are singletons, and is hence a proper
generalisation of the latter. It gives rise to the following inference rule:

(µ′)
U ` Φ [µZ{U,L}.Φ/Z]

U ` µZ{L}.Φ U finite ⇒ ∀V ∈ L. V 6⊆ U.

390 D. GUROV AND B. KAPRON

In general, a proof rule is called sound if it preserves validity, i.e., whenever the
premises to the rule are valid and the side-condition holds, then the conclusion is
also valid. If the opposite holds, the rule is called reversible. In the rule above,
the purpose of the side-condition is somewhat unusual, since it is not needed
to ensure soundness, but rather to avoid unnecessary application of the rule in
case the conclusion is invalid. Reversibility of the rule ensures that validity of the
conclusion implies the side-condition; in fact we use, and prove, the counterpositive
statement.

Theorem 3.10. Rule (µ′) is sound and reversible.

Proof. As a straightforward consequence of Definition 3.9 and the Reduction
lemma, validity of the premise implies validity of the conclusion, and vice versa.
Now assume the side condition does not hold, i.e., U is finite and some set Vi in
the tag is a subset of U . Then Vi is also finite, and hence, due to Proposition 3.7,
the sequent Vi ` µZ{V1, . . . , Vn}.Φ is invalid, and hence U ` µZ{V1, . . . , Vn}.Φ
is invalid as well.

Rule (µ′) is easily seen to be a proper generalisation of rule (µ) presented in
the Introduction. The most interesting question that offers itself immediately is
whether finiteness of U is really relevant for rejecting a branch in a proof tree.
This turns out to be the case, as Example 4.2 in the next section shows.

4. Applications

The proof rule (µ′) can be plugged into any standard proof system for
establishing satisfaction between a set of states U in a model and a modal µ-
calculus formula. In Figure 1 below we present one such proof system, borrowed
from Andersen [1], in which rule (µ′) replaces the rules for least fixed-point for-
mulae of the original proof system. In these rules the following notation is used:

(a→U) ∆= {s ∈ S | ∃s′ ∈ U. s a−→ s′}

(U a→) ∆= {s ∈ S | ∃s′ ∈ U. s′ a−→ s}·
A proof for a sequent is a proof tree with this sequent at the root and axiom leaves
only. Proof trees are constructed in a goal-oriented fashion, beginning with the
sequent to be proved at the bottom and applying the rules upwards.

Example 4.1. Consider a LTS with two states s1 and s2 and two labelled tran-
sitions s1

a−→ s1 and s1
a−→ s2. State s1 can engage in an infinite a-sequence, and

therefore the attempt of proving the opposite, namely {s1} ` µZ. [a]Z, fails:

{s1, s2} ` µZ{s1}. [a]Z
([])

{s1} ` [a]µZ{s1}. [a]Z
(µ′).

{s1} ` µZ. [a]Z

NEGATIVE TAGGING FOR LEAST FIXED-POINT FORMULAE 391

(∅) ∅ ` Φ

(∧)
U ` Φ1 U ` Φ2

U ` Φ1 ∧ Φ2
(∨)

U1 ` Φ1 U2 ` Φ2

U1 ∪ U2 ` Φ1 ∨ Φ2

([]) (U a→) ` Φ
U ` [a] Φ

(〈〉) U ` Φ
U ′ ` 〈a〉Φ (a→U) ⊇ U ′

(ν0)
U ` νZ{V }.Φ U ⊆ V (ν1)

U ` Φ [νZ{U ∪ V }.Φ/Z]
U ` νZ{V }.Φ U 6⊆ V

(µ′)
U ` Φ [µZ{U,L}.Φ/Z]

U ` µZ{L}.Φ U finite ⇒ ∀V ∈ L. V 6⊆ U

Figure 1. An example proof system.

At the leaf sequent {s1, s2} ` µZ{s1}. [a]Z, rule µ′ is not applicable since its
side-condition is violated, indicating that the leaf sequent is invalid. A proof-
search mechanism would use such information to enforce backtracking in such
points in the proof.

Example 4.2. Consider the infinite-state LTS with states S:

· · · a−→ s3
a−→ s2

a−→ s1
a−→ s0

and the formula µZ. [a]Z. Consider the following derivation:

S ` µZ{S}. [a]Z
([])

S ` [a]µZ{S}. [a]Z
(µ′).

S ` µZ. [a]Z

While in this case it still makes sense to backtrack at the leaf sequent, since there
is nothing to be gained from repeating the above steps, it is unsound to conclude
that this sequent is invalid.

This proof system is complete for finite-state systems and tag-free closed
formulae (i.e., tags only emerge during proof construction). To see this, first ob-
serve that the only rules which do not increase the size of formulae are the tagging
rules (i.e., the rules for unfolding fixed-point formulae), and that tags can only be
of finite length with the chosen tagging discipline enforced by the side-conditions.
Proof tableaux are hence of finite size only. On the other hand, it can easily be
shown that every valid sequent can be derived from some (possibly empty) set of
valid sequents. Together, these two observations imply that for every valid sequent
there is a finished tableau, i.e. a finite tableau with axiom leaves only. A formal
proof of completeness can easily be obtained along the lines of the completeness
proof for the original proof system [1].

392 D. GUROV AND B. KAPRON

5. Conclusion

In this paper we present a way of tagging, together with a suitable semantics,
for least fixed-point formulae of the propositional modal µ-calculus. These are
used to justify a proof rule for unfolding, combined with tagging, of such formulae
in proof systems with sequents of the shape U ` Φ where U is a set of states, and
Φ is a formula. The proof rule is plugged into a standard proof system for model
checking, yielding a complete proof system for finite-state systems.

The result is an extension of previous results on negative tagging to the case
of sets of states. This suggests that it can be used for devising similar proof rules
in other settings. For example, formulae can be understood as sets of states, and
so can parametrised processes, and consequently, proof systems with sequents of
the shape Φ ` Ψ or P (x) ` Ψ can benefit from the proposed negative tagging
technique to provide additional termination conditions, thus aiding both proof
search and the theoretical investigation of these proof systems.
We would like to thank Mads Dam and Lars-̊ake Fredlund, as well as the anonymous
referee for valuable comments on the manuscript.

References

[1] H.R. Andersen, Verification of Temporal Properties of Concurrent Systems. Ph.D. Thesis,
Computer Science Department, Aarhus University, Denmark (1993).

[2] H.R. Andersen, C. Stirling and G. Winskel, A compositional proof system for the modal
mu-calculus, in Proc. of LICS’94 (1994).

[3] J. Bradfield, Verifying Temporal Properties of Systems. Birkhauser (1992).
[4] M. Dam, CTL* and ECTL* as fragments of the modal µ-calculus. Theoret. Comput. Sci.

126 (1994) 77–96.
[5] M. Dam, Proving properties of dynamic process networks. Inform. and Comput. 140 (1998)

95–114.
[6] M. Dam, L. Fredlund and D. Gurov, Toward parametric verification of open distributed

systems, H. Langmaack, A. Pnueli and W.-P. De Roever, Eds., Compositionality: The
Significant Difference. Springer, Lecture Notes in Comput. Sci. 1536 (1998) 150–158.

[7] D. Gurov, S. Berezin and B. Kapron, A modal µ-calculus and a proof system for value
passing processes. Electron. Notes Theoret. Comput. Sci. 5 (1996).

[8] D. Kozen, Results on the propositional µ-calculus. Theoret. Comput. Sci. 27 (1983) 333–354.
[9] C. Stirling and D. Walker, Local model checking in the modal mu-calculus. Theoret. Comput.

Sci. 89 (1991) 161–177.
[10] R.S. Streett and E.A. Emerson, An automata theoretic decision procedure for the proposi-

tional mu-calculus. Inform. and Comput. 81 (1989) 249–264.
[11] G. Winskel, A note on model checking the modal nu-calculus. Theoret. Comput. Sci. 83

(1991) 157–167.

Received October 30, 1998. Revised June 1, 1999.

