
Information and Computation 206 (2008) 840–868

Contents lists available at ScienceDirect

Information and Computation

journal homepage: www.elsevier .com/ locate / ic

Compositional verification of sequential programs with procedures

Dilian Gurov a,∗, Marieke Huismanb,1, Christoph Sprenger c,2

a Royal Institute of Technology, Department of Theoretical Computer Science, SE-100 44 Stockholm, Sweden
b INRIA, Sophia Antipolis, 2004, route des Lucioles, FR-06902 Sophia Antipolis, France
c ETH, Zurich, Chair of Information Security, CH-8092 Zurich, Switzerland

A R T I C L E I N F O A B S T R A C T

Article history:

Received 24 August 2006

Accepted 19 December 2007

Available online 9 May 2008

Keywords:

Program verification

Control-flow behaviour

Compositional reasoning

Modal �-calculus
Safety properties

Maximal model

Private procedures

We present a method for algorithmic, compositional verification of control-flow-based

safety properties of sequential programs with procedures. The application of the method

involves three steps: (1) decomposing the desired global property into local properties

of the components, (2) proving the correctness of the property decomposition by using

a maximal model construction, and (3) verifying that the component implementations

obey their local specifications. We consider safety properties of both the structure and

the behaviour of program control flow. Our compositional verification method builds on

a technique proposed by Grumberg and Long that uses maximal models to reduce com-

positional verification of finite-state parallel processes to standard model checking. We

present a novel maximal model construction for the fragment of the modal �-calculus
with boxes and greatest fixed points only, and adapt it to control-flow graphs modelling

components described in a sequential procedural language. We extend our verification

method to programs with private procedures by defining an abstraction, presented as an

inlining transformation. All algorithms have been implemented in a tool set automating all

required verification steps. We validate our approach on an electronic purse case study.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Motivation. Over the last years, computer systems have become increasingly dynamic: they are composed of various com-

municating components that can join the system or be put together dynamically. Typical examples aremobile smart devices

(mobile phones, smart cards, television set top boxes, PDAs, etc.) and dynamically reconfiguring distributed systems. When

allowing the dynamic addition of new components, one wishes to ensure that this will not have any negative impact on the

global behaviour of the system. In particular when the system contains privacy-sensitive information, as is for example the

case for smart cards containing health care information or electronic purses, strong security guarantees are required. With

the acceptance of evaluation schemes such as Common Criteria (see [1]), industry has come to realise that theway to achieve

such high guarantees is to adopt the use of formal methods in industrial practice.

The techniques developed here are applicable in any context concerned with interprocedural control-flow properties of

components communicating via procedure calls. Interesting properties of such components include for example type safety,

memory consumption, and illicit data or control flow. Herewe concentrate on the last category of properties. More precisely,

we study sequential (i.e., single-threaded) programs andpropose a specification and verificationmethod for safety properties

* Corresponding author. Fax: +46 8 790 09 30. This author’s work was partially funded by the SEFROS project of the Swedish Research Council VR, and by

the IST FP6 programme of the EC, under the IST-FP6-STREP-27004 S3MS project.

E-mail addresses: dilian@csc.kth.se (D. Gurov), marieke.huisman@sophia.inria.fr (M. Huisman), christoph.sprenger@inf.ethz.ch (C. Sprenger).
1 This work was funded in part by the IST programme of the EC, FET under the IST-2005-015905 MOBIUS project.
2 This work was partially supported by the Zurich Information Security Center. It represents the views of the authors.

0890-5401/$ - see front matter © 2008 Elsevier Inc. All rights reserved.

doi:10.1016/j.ic.2008.03.003

http://www.sciencedirect.com/science/journal/08905401
http://www.elsevier.com/locate/ic
mailto:dilian@csc.kth.se
mailto:marieke.huisman@sophia.inria.fr
mailto:christoph.sprenger@inf.ethz.ch

D. Gurov et al. / Information and Computation 206 (2008) 840–868 841

of inter-procedural control flow, i.e., properties describing safe sequences of procedure invocations. Typical examples of

control-flow safety properties are: “m1 never callsm2”, “m1 is never called whenm2 is called”, “m1 is only called afterm2 is

called”, and “m1 is only called from within m2” (see Chugunov et al. [2] for a formalisation).

So far, most research on formal verification in this area has focused on the correctness or security of a single program

component (e.g., [3,4,5]). However, in the context of mobile code we also need techniques to support verification of systems

for which it is not known in advance what its components will be. In such situations one needs compositional verification

techniques, that is techniques where one states minimal requirements for the components that can become available later,

and then verifies (at loading time) that the components actually respect these requirements. Only then, existing components

can safely communicate with new components, without corrupting the correctness or security of the whole system. In

particular, such techniques can support the secure post-issuance loading of new applications onto smart devices. To avoid

false negatives, i.e., rejecting components that are actually secure, such compositional verification techniques should not

only be sound, but also complete. Completeness is also crucial to avoid typical social engineering attacks, where the device

user gets so frustrated with the system repeatedly rejecting new components, that he/she will simply accept all, without

actually inspecting whether they passed verification or not.

Approach. Our verification method is compositional: it allows global guarantees of a system to be verified even if the

implementations of some components are not yet available at verification time. This is achieved by abstracting the missing

components by logical assumptions. These assumptions can be verified later, when the implementations become available.

Such a verification approach is embodied by the following proof principle:

� A : φ X : φ � X ⊗ B : ψ
� A ⊗ B : ψ

where A and B are components, and X is a component variable. This principle reduces the problem of showing that the

composition of components A and B satisfies ψ , where the implementation of A is not yet known, to three tasks:

(1) decompose the global property ψ by finding a suitable local property φ of component A,

(2) prove correctness of the decomposition, i.e., verify that for any component X satisfying φ, X composed with B satisfies ψ

(second premise), and

(3) when the implementation of A becomes available, verify that it satisfies the local property φ (first premise).

Notice that this rule can be applied repeatedly, to replace several components by assumptions.

The compositionality of the method supports different scenarios for secure configuration of components on a device (or

platform), where the tasks above can potentially be delegated to different authorities. In one such scenario, the device issuer

(or platform provider) specifies both the global guarantee (e.g., a security policy) and the local assumptions, and verifies—

using the techniques described in this paper—that the decomposition is correct, meaning that the local specification is

sufficient to establish the global specification. Each time a new component is to be added (i.e., loaded on the device), an

algorithm provided by the device issuer checks whether the component implementation satisfies the required specification.

An alternative scenario is that the device issuer only provides the global guarantee (and local assumptions for its own

components), and leaves it to the component provider to comeupwith an appropriate local specification for each component

to be added. As in the previous scenario, an algorithm provided by the device issuer checks the component against the

local specification upon loading, but now also the property decomposition needs to be verified at loading time, potentially

on-device.

Task (1) above is amanual one and requires insight into the system,while the other two can be automated in our approach.

We show how Tasks (2) and (3) can be algorithmically reduced to problems for which standard algorithmic techniques exist.

The approach that we take to handle Task (2) is inspired by the pioneering work on automatic modular verification by

Grumberg and Long [6]. To check whether X : φ |= X ⊗ B : ψ holds we replace X by a maximal model θ(φ) and then verify

|= θ(φ)⊗ B : ψ algorithmically. The maximal model θ(φ) represents all models satisfying φ in the sense that it simulates

exactly those models and thus satisfies precisely the properties enjoyed by all these models. For this technique to be sound

and applicable it is required that maximal models exist for the chosen logic and simulation relation, ⊗ preserves simulation,

and logical properties are preserved by simulation. In earlier work [7], we explored deductive verification of correctness of

decompositions based on a proof system. The logic considered there was more expressive, but the interactive nature of the

approach required considerable time and expertise from the user, rendering the approach less preferable in many situations

as compared to algorithmic solutions like the one presented here.

We are interested in safety properties of both the structure and the behaviour of programs. Since the same behaviour can be

brought about by different structures, a behavioural property language allows properties to be expressed in a more abstract

fashion.However, as a rule, behavioural properties require computationallymore expensive verification techniques. Still, they

can often be (equivalently) reformulated on the structural level, with the advantage of allowingmore efficient verification. To

support both kinds of properties, we distinguish between a structural and a behavioural level of programs. Both structure and

behaviour are cast via the abstract notion ofmodel (or labelled Kripke structure). Then, structural properties are interpreted

over the (finite-state) control-flow graphs themselves, while behavioural properties are interpreted over the (infinite-state)

behaviours induced by the structures. The logic we employ to express such properties is a modal logic with box modalities

and simultaneous greatest fixed points (written in equational form), which is expressively equivalent to the fragment of the

842 D. Gurov et al. / Information and Computation 206 (2008) 840–868

modal�-calculuswith boxmodalities and greatest fixed points only [8]. The fragment is known to be adequate for expressing

safety properties (cf. [9]). Because of the close relationship between logical satisfaction and simulation betweenmodels, and

the compositional properties of simulation, this logic, which for conveniencewe term simulation logic, is particularly suitable

for compositional verification viamaximalmodels.We instantiate simulation logic and simulation at both the structural and

the behavioural levels.

Themethodsprovidedbyanapplet are frequently implementedusing internal, privatemethods. Since theprivatemethods

cannotbeexpected tobeknownbefore theapplet is implemented,we introducepublic interfaces,whichhideprivatemethods.

Accordingly, the (public) interface behaviour of an applet abstracts from (internal) calls to the private methods of an applet.

To handle Task (3) for programswith private procedures, we define an inlining transformation that recursively inlines all calls

to private procedures. This transformation over-approximates the interface behaviour, and reduces the task to showing that

the inlined program respects property φ. For the latter, we apply standard algorithmic verification techniques.

Contributions. The main contribution of the present paper is a sound and complete compositional verification principle for

sequential programs with procedures, for properties expressed in simulation logic, and its adaptation to programs with

private procedures. In more detail, the contributions are as follows.

(1) Program model. Most of the existing work on compositional model checking focuses on the verification of parallel

compositions of finite-state processes. We extend compositional model checking to an important class of infinite-state

programs, namely sequential programs with procedures. In the rest of this paper, we refer to programs as applets and to

procedures as methods, but we would like to stress that our technique is applicable to many different kinds of programs

with procedures.We represent applets as collections ofmethod control-flow graphs equippedwith interfaces of provided

and required methods. Applet composition forms the disjoint union of the respective collections of method graphs and

allows the composed applets to communicate via method invocation. Applets correspond to a subclass of pushdown

processes, with potentially infinite-state behaviour (cf. Burkart et al. [10]).

(2)Maximal model Construction.We establish a logical characterisation of the standard notion of simulation between models

and, vice versa, a behavioural characterisationof logical satisfaction in termsof maximalmodels. In particular,wepresent a

novelmaximalmodel construction, consisting of a step-wise transformation of the formula into a semantically equivalent

normal form,which is isomorphic to amaximalmodel for the formula. In contrast tomore expressive logics, themaximal

models for simulation logic formulae are representable as standard transition systems. To the best of our knowledge, this

is the first maximal model construction for (a variant of) the modal �-calculus, which includes the full expressive power

of simultaneous greatest fixed points.

(3)Maximal applet construction. When tailoring the maximal model technique to applets, we require that the maximal

model for a given property is itself an applet. This is necessary for completeness of the technique. Since the verification of

|= θ(φ)⊗ B : ψ is decidable in our setup, completeness guarantees that if the verification of the correctness of decom-

position fails, there is indeed an applet F among the set of models such that F satisfies φ but F ⊗ B does not satisfy ψ .

Completeness is thus essential in that it eliminates the possibility of false negatives. Therefore, in case |= θ(φ)⊗ B : ψ
fails, we know that we have to strengthen φ and iterate the process.

To adapt the maximal model technique to structural properties, we first give a logical characterisation of interfaces by

defining, for a given interface I a structural formula φI which is satisfied exactly by those models representing applet

structures with this interface, and then define the maximal applet for a given interface I and structural property φ by

θI(φ) = θ(φI ∧ φ). Since θ(φI ∧ φ) satisfies both φ and φI , this guarantees that the resulting maximal model is indeed an

applet structure with interface I satisfying the structural formula φ.

However, for behavioural properties there is in general no unique maximal applet: different applets, incomparable by

simulation, might exist that satisfy the same property. It is ongoing work to investigate under what conditions and how

this collection of maximal applets can be characterised exactly. Preliminary results in this direction are presented by

Gurov and Huisman in [11].

(4) Compositional verification.Our characterisation results, togetherwith results linking the structural and behavioural levels,

give rise to a compositional verification principle of the shape suggested above, where the global guarantee can be either

structural or behavioural, but the local assumptions are always structural. We establish the soundness and completeness

of the principle, and adapt existing algorithmic techniques for dealing with the resulting verification sub-tasks.

(5) Interface abstraction.We extend our compositional verificationmethod to interface properties of applets, i.e., properties of

the interface behaviour.We define an abstractionwhich reduces the set ofmethods of a given applet to the set of its public

methods, while over-approximating the interface behaviour of the applet. This abstraction is based on inlining of private

methods. We show the abstraction to be sound with respect to interface properties: every interface property that holds

for the behaviour of the inlined applet also holds for the interface behaviour of the original applet. Since the abstraction

transformation may introduce new interface behaviours, completeness, on the other hand, does not hold in general.

However, for the case when the concrete implementation is last-call recursive (that is, recursive calls are not followed

in the control-flow graph by any other method calls), the abstraction technique is complete with respect to observable

interface properties: if such a property does not hold of the inlined applet it does not hold of the original applet either.

Last-call recursion is a generalisation of the notion of tail recursion, where recursive calls are the last statements of their

methods. In practice, for industrial code it is very common to be last-call recursive.

D. Gurov et al. / Information and Computation 206 (2008) 840–868 843

(6) Tool support and real-life case study. To support our compositional verification technique, we have developed a tool set.

This tool set integrates our own implementations in Ocaml of themaximal applet construction and the inlining algorithm

with an implementation of a model extractor, build on top of the SOOT framework [12], and a number of external model

checking tools. We have validated this tool set on an industrial case study, namely an electronic purse smart card applet

for which we have verified the absence of certain illicit control flows between Purse and Loyalty applets. In particu-

lar, we ensured that different Loyalty applets on the card cannot communicate information about the transaction log

table – that is needed to correctly compute the points in the loyalty program – among themselves, instead they all need

to register (and pay) to get this information directly from the Purse. In this case study, the inlining technique proved to

be an essential ingredient that enabled the compositional verification of the otherwise too large model.

Our contributions span the complete spectrum from the theoretical underpinnings of the compositional applet verification

technique (our principal contribution) to its support by a tool set and its application to an industrial case study.

Related work. The work presented here is related to several different research areas.

Programmodel. The programmodel used in the present paper has been inspired by thework of Besson et al. [4], who verify

stack properties for Java programs. Typically, the behaviour of programs with recursion is modelled as Pushdown Automata

(as, e.g., in [3,13]).

Recursive state machines were introduced by Alur et al. [5] as a formalism capable of modelling the control flow of

sequential imperative programs containing recursive procedure calls. This programmodel is closely related to our own, but

is finer in that calls and returns relate individual entry and return nodes, thus allowing the effect of data to be modelled. The

authors develop efficient algorithms for (global) model checking of recursive statemachines against LTL and CTL* properties,

and investigate their complexity.

Temporal logic. Related to the above program models is the temporal logic of calls and returns CaRet proposed by Alur

et al. [14]. This logic allows to specify properties in terms of method calls and returns, thus increasing the expressiveness of

temporal logic while retaining decidability of model checking. A special verification strategy is defined, that is able to “jump

over” internal computations. An extension of this logic was recently presented by Alur et al. [15]. Among other modalities,

it introduces the useful “within” modality, which is not expressible in simulation logic. While these logics may be more

adequate than simulation logic for specifying behavioural properties of programs with procedures, they would (arguably)

require more involved techniques for compositional verification.

Compositional verification. There is a wealth of methods for compositional verification of concurrent programs, most no-

tably assumption/commitment based reasoning about processes with synchronousmessage passing, and the rely/guarantee

method for shared-variable concurrency. A systematic overview of these and related proof methods, some of which have

been adapted to support algorithmic verification is given by De Roever et al. [16]. However, these techniques do not address

programs with recursive procedures.

Laster andGrumberg [17] present a compositionalmethod for sequential programswritten in a high-levelWhile language

(without procedures). Their technique partitions the program text into a sequence of sequentially composed subprograms,

which can be model checked individually using assumptions on the properties holding at the cut points.

Alur and Grosu [18] present an assume-guarantee style compositional verification principle for a hierarchic extension of

reactive state machines. However, their approach does not address programs with recursion.

Ly [19] also proposes a compositional method for deciding control-flow properties of procedural programs based on

local structural assumptions and global behavioural guarantees. The author generalises our decidability results to monadic

second-order logic for programs whose control-flow graphs have a bounded tree-width. To the best of our knowledge, so far

this approach has not been implemented in a tool.

The method of partial model checking introduced by Andersen [20] is based on a reduction procedure that removes

the top-level operator from a process algebra term and computes a new property for the reduced term. To verify that the

product P × Q of two processes has some property φ, the reduction “divides” the property φ by Q to yield φ/Q , which can be

effectively computed only if Q is finite.

Maximal models for compositional verification. The original maximal model technique by Grumberg and Long [6] was

designed for ACTL, the universal fragment of CTL, and later extended to ACTL*, the universal fragment of CTL*, by Kupferman

and Vardi [21]. These works study synchronous parallel compositions of sequential processes under fairness assumptions.

Sincewe are interested in safety properties of sequential programs, we do not need to add fairness to ourmodels. Simulation

logic and ACTL* are expressively incomparable: liveness properties such as GFp (“infinitely often p”) are expressible in ACTL*,

but not in simulation logic, while the �-calculus formula νX. p ∧ [−][−]X (“p holds on every other level of the computation

tree”) is easily translated tosimulation logic (which is inequational form),but isnotexpressible inACTL*.Our transformational

approach to the maximal model construction is closer to an implementation than the automata-theoretic constructions in

the cited papers, since it already includes certain optimisations, e.g., removal of duplicate and unreachable equations.

Characterisation results connecting logics and behavioural preorders similar to ours are described by Boudol and Larsen

[22] (see also [23]), who construct maximal models in the form of modal transition systems with respect to the refinement

preorder for Hennessy–Milner logic (HML) [24]. Simulation logic andHML are expressively incomparable: existential proper-

ties arenot expressible in simulation logic,while co-recursiveproperties (such as invariants) arenot expressible inHML. Since

HML does not include fixed points, the constructed maximal models are essentially finite forests. Apart from the absence of

844 D. Gurov et al. / Information and Computation 206 (2008) 840–868

diamond modalities in simulation logic, our construction can be seen as an extension of Larsen and Boudol’s with greatest

fixed points. The extension of HML with greatest fixed points (or, equivalently, simulation logic with diamond modalities)

requires more general models than modal transition systems: a finite maximal modal transition system does not exist for

all formulae of this logic. This is shown by Dams and Namjoshi [25], who introduce focus transition systems, generalising

modal transition systems, in order to construct linear-size maximal models for properties expressed by alternating tree

automata (thus subsuming the full modal �-calculus). In [26] the same authors propose to directly use �-automata obtained

from modal �-calculus formulae as maximal models, for which they define an appropriate notion of simulation. All natural

extensions of simulation logic requiremodelswithmore structure than transition systems to capturemaximalmodels. In our

work, we were interested in safety properties, for which simulation logic and transition systems are an appropriate choice.

Bouajjani et al. [9] define maximal models for a co-recursive modal logic expressing safety properties. Their logic has an

expressivepowersimilar toours, but is somewhat less standardas it includesaconnectivecorresponding tonon-deterministic

choice.

A more recent application of the maximal model technique is presented by Goldman and Katz [27] in the context of

modular verification of aspects. While close in spirit to our verification principle, the principle presented by the authors is

for a more complicated composition operator. The principle is based on the maximal model of the aspect property (which is

not necessary a legal aspect behaviour) and is therefore sound, but not complete.

Organisation. The paper is structured as follows. First, Section 2 presents the theoretical foundation for our work: it defines

the models and logic that we consider, together with appropriate notions of simulation and satisfaction. Next, Section 3

presents our novel maximal model construction, and shows how logical satisfaction of a formula is equivalent to simulation

by the corresponding maximal model. Section 4 then discusses how our results instantiate to applets, at structural and at

behavioural level, and Section 5 presents the compositional verification principle. Section 6 presents the inlining abstraction

that we use to be able to verify interface properties over applets with private methods. Finally, Sections 7 and 8 illustrate

how our approach is implemented as a tool set and is applied to an industrial case study, while Section 9 draws conclusions

and presents future work.

This paper is a combination and extension of several results presented earlier. The maximal model construction and

compositional verification principle are presented in [28]. The abstraction technique for applets with private methods is

presented in [29]. The case study was presented in [30], but without taking the difference between public and private

methods into account.

2. Models, simulation and logic

This section describes the theoretical foundation for our treatment of control-flow structure and behaviour of programs

with recursive procedures. First, we define the (abstract) models that we study, together with the standard notion of simu-

lation. Further, we define the logic that we use to express our program properties. Finally, we transfer all these notions to

the so-called weak setting, where not all actions are observable.

2.1. Model and simulation

First we define models, specifications and simulation. These notions are standard up to some minor variations.

Definition 1 (Model, specification). A model is a structure M = (S, L,→,A, λ), where S is a set of states, → ⊆ S × L × S is a

labelled transition relation with labels taken from L, and λ : S → P(A) is a valuation assigning to each state a set of atomic

propositions taken from A. A specification S is a pair (M, E), where M is a model and E ⊆ S is a set of entry states.

The reachable part of a specification S = (M, E) is defined by R(S) = (M′, E), where M′ is obtained from M by deleting

all states and transitions not reachable from any entry state in E.

Example 2. Fig. 1 shows the graphical representation of the specification S = (M, E), where M = ({s1, s2, s3}, {a, ε},→, {p, q},
{s1 �→ {p, q}, s2 �→ {p}, s3 �→ ∅}) with → = {(s1, ε, s2), (s2, a, s1), (s2, a, s3), (s3, a, s1), (s3, ε, s2)} and E = {s1, s2}. As usual, entry

states are depicted through additional incoming edges without source.

Definition 3 (Simulation). A simulation is a binary relation R on S such that whenever (s, t) ∈ R then λ(s) = λ(t), and whenever

s
a→ s′ then there is some t′ ∈ S such that t

a→ t′ and (s′, t′) ∈ R. We say that t simulates s, written s � t, if there is a simulation R

such that (s, t) ∈ R.

Simulation on two models M1 and M2 is defined as simulation on their disjoint union M1
 M2. The transitions of

M1
 M2 are defined by ini(s)
a→ ini(s

′) if s a→ s′ in Mi and its valuation by λ(ini(s)) = λi(s), where ini (for i ∈ {1, 2}) injects

D. Gurov et al. / Information and Computation 206 (2008) 840–868 845

Fig. 1. Example specification S = (M, E).

Si into S1
 S2. Simulation is extended to specifications (M1, E1) and (M2, E2) by defining (M1, E1) � (M2, E2) if there is a

simulation R on M1
 M2 such that for each s ∈ E1 there is some t ∈ E2 with (in1(s), in2(t)) ∈ R. Specification S1 is simulation

equivalent toS2,writtenS1 � S2, ifS1 � S2 andS2 � S1.Weextenddisjoint union to specifications (by (M1, E1)
 (M2, E2) =
(M1
 M2, E1
 E2)) and show that simulation is preserved by disjoint union.

Theorem 4. If S1 � T1 and S2 � T2 then S1
 S2 � T1
 T2.

2.2. Simulation logic

We define simulation logic in two steps: first we define a basic modal logic, and then we add recursion by means of

equation systems. This results in a logic that is equally expressive as the modal �-calculus with boxes and greatest fixed

points only (cf. Bekič [31]). However, the use of equation systems facilitates the definition of a normal form, where the

correspondence between formulae and specifications is immediate. In particular, this allows to compute maximal models

by transforming the equations into this normal form.

Let V be a countably infinite set of propositional variables. Basic simulation logic is a variant of Hennessy–Milner logic [24]

without diamond modalities:

φ ::= ff | tt | p | ¬p | X | φ1 ∧ φ2 | φ1 ∨ φ2 | [a]φ
where p ∈ A, a ∈ L and X ∈ V . The interpretation ‖φ‖ρ of a basic formula φ is defined with respect to a model M and an

environment ρ interpreting the propositional variables. The definition is standard (cf. Stirling [32]); in particular, for the box

modality we have s ∈ ‖ [a]φ‖ρ if and only if for all t ∈ S such that s
a→ t we have t ∈ ‖φ‖ρ. Formulae like p or ¬p are called

literals. We use n-ary versions of conjunction and disjunction, setting
∨

∅ = ff (false) and
∧

∅ = tt (true). As usual, for finite
K ⊆ L, we write [K]φ for

∧
a∈K [a]φ and [−]φ for [L]φ.

To make the logic expressive enough to characterise all finite models, we follow Larsen [23] and add recursion to basic

simulation logic by introducing modal equation systems. A modal equation system 	 is a finite set of defining equations of

the shape X = φX , where X is a propositional variable and φX is a formula of basic simulation logic. The defined variables X

are pairwise distinct and bound in 	, while all other variables are free. For a simpler presentation, we restrict our attention

here to closed equation systems without free variables.

Since the considered equations systems are closed, it is sufficient to work with environments ρ : bv() → P(S)mapping

the bound variables of	 to sets of states. The equations in	 induce amap
	 : P(S)bv() → P(S)bv() on such environments ρ

definedby
	(ρ)(X) = ‖φX‖ρ. A solutionof	 is an environmentρ such that all equations in	 are satisfied (that is,
	(ρ) = ρ),

and is thus a fixed point of
	 . Environments are ordered by point-wise inclusion. The semantics of a modal equation system

	 with respect to a model M, denoted ‖	‖, is its greatest solution. By the Knaster-Tarski fixed point theorem [33] a greatest

solution always exists, since
	 is a monotone function on the complete lattice of environments ordered by point-wise set

inclusion.

Definition 5 (Simulation logic). A (closed) formula of simulation logic has the shape φ[], where φ is a formula of basic

simulation logic and 	 is a (closed) modal equation system such that all variables occurring in φ are bound in 	. The

semantics of φ[] with respect to model M is defined by ‖φ[]‖ = ‖φ‖‖	‖. We say a specification (M, E) satisfies φ[],
written (M, E) |= φ[], if E ⊆ ‖φ[]‖.

Example 6. Consider the formula φ = (X ∨ Y)[], where

	 =
[
X = [ε]Y ∧ [a]X ∧ p

Y = [ε] (X ∧ Y) ∧ ¬q

]
.

Let us determine the semantics of this formula with respect to the specification S in Fig. 1. The greatest fixed point ‖	‖
of
	 with respect to S can be computed in the standard way by iteration of
	 starting with ρ0 = {X �→ S,Y �→ S}, where

S = {s1, s2, s3}. This yields ‖	‖ = {X �→ {s1},Y �→ {s2}}. So, E = ‖X ∨ Y‖‖	‖ = {s1, s2}, and hence specification S satisfies φ.

846 D. Gurov et al. / Information and Computation 206 (2008) 840–868

Henceforth, we often omit the equation system	 from φ[] if no confusion can arise.We say that φ1 is a logical consequence

of φ0, written φ0 � φ1, if for all specifications S , S |= φ0 implies S |= φ1. The formula φ0 is logically equivalent to φ1, written

φ0 ≡ φ1, if φ0 � φ1 and φ1 � φ0.

Simulation logic is equally expressive as the modal �-calculus [8] without diamond modalities and least fixed points.

The translation from this fragment of the modal �-calculus to simulation logic is straightforward and replaces each fixed

point by an equation. As an example, the formula νX.p1 ∧ (νY .X ∧ [a] (p2 ∨ Y)) is translated into the equivalent formula

X[X = p1 ∧ Y ,Y = X ∧ [a] (p2 ∨ Y)] of simulation logic. The translation in the other direction is based on Bekič’s principle (cf.

[34,31]), which expresses a fixed point in a product lattice in terms of a vector of component-wise fixed points.

2.3. Weak simulation and logic

Often, one is only interested in the observable behaviour of systems. To achieve this, one can identify a distinguished

action ε ∈ A, called the silent action, and define weak transitions s
a⇒ t in terms of the usual (strong) transitions as follows:

s
ε⇒ t whenever s(

ε→)∗t, and s
a⇒ t whenever s

ε⇒ a→ ε⇒ t for all a /= ε. Weak simulation�w (weak simulation equivalence �w)

is then defined as simulation (simulation equivalence) with respect to weak transitions. Similarly, we can interpret the box

modality of simulation logic over the weak transitions rather than the strong transitions of models. To distinguish the two

interpretations, we shall redefine the notion of satisfaction and write S |=w φ in that case. Thus, S |=w [a]φ holds if and only

if all states that can be reached from some entry state of S by a transition labelled a, preceded and followed by an arbitrary

number of ε-steps, satisfy φ.

Example 7. Consider again the specification in Fig. 1. Then (M, {s1}) |=w [ε]p, but not (M, {s3}) |=w [a] q, since s3
a⇒ s2 but

s2 does not satisfy the atomic proposition q.

3. Representation results

This section relates simulation logic to simulation by defining two mappings, χ and θ . The mapping χ translates each

finite specification into a formula, while θ translates formulae into (finite) specifications. The latter map is first defined on

formulae in so-called simulation normal form (SNF), and is then extended to all formulae by showing howany formula can be

transformed intoanequivalentone inSNF.Weshowthatχ logically characterises simulationand θ behaviourally characterises

logical satisfaction. These two maps form a Galois connection between finite specifications ordered by simulation and

formulae ordered by logical consequence. Similar results for somewhat different settings appear in [22,23,9]. In this paper,

we present a novel procedure to construct maximal models, which is similar to the construction by Boudol and Larsen [22],

but handles greatest fixed points. In contrast to constructions for other branching-time logics [6,21], we do not directly build

the model, but proceed by a step-wise transformation of the formula into an equivalent one in SNF, which is isomorphic to

the desired maximal model. Moreover, unlike in constructions for more expressive logics [25,26], our maximal models are

representable as standard transition systems. To the best of our knowledge, this is the first maximal model construction for

a fragment of the modal �-calculus including the full expressive power of greatest fixed points.

3.1. Characteristic formulae

First, we define the mapping from finite specifications to formulae. A finite specification (M, E) is translated into its

characteristic formula χ(M, E) = φE[M], where φE = ∨
s∈E Xs and 	M defines Xs for each s ∈ S by

Xs =
∧
a∈L

[a]

⎛
⎝∨

s
a→t

Xt

⎞
⎠ ∧

∧
p∈λ(s)

p ∧
∧

q∈A−λ(s)
¬q

Recall that
∨

∅ = ff (false) and
∧

∅ = tt (true).

Example 8. Consider the specification S displayed in Fig, 1. Its characteristic formula is χ(S) = (Xs1 ∨ Xs2)[], where

	 =
⎡
⎣Xs1 = [a] ff ∧ [ε]Xs2 ∧ p ∧ q

Xs2 = [a] (Xs1 ∨ Xs3) ∧ [ε] ff ∧ p ∧ ¬q

Xs3 = [a]Xs1 ∧ [ε]Xs2 ∧ ¬p ∧ ¬q

⎤
⎦ .

We have a variation of an earlier result by Larsen [23], stating that specification S1 is simulated by the finite specification

S2 whenever S1 satisfies the characteristic formula of S2.

Theorem 9. Let S1, S2 be specifications and suppose S2 is finite. Then S1 � S2 if and only if S1 |= χ(S2).

D. Gurov et al. / Information and Computation 206 (2008) 840–868 847

Note that using infinite equation systems this theorem generalises to finitely branching S2.

3.2. Maximal models

The next step is to define the inverse mapping. Not all formulae correspond directly to a specification, but those in

simulation normal form do.

Definition 10 (Simulation normal form). A formula φ[] of simulation logic is in simulation normal form (SNF) if φ has the

form
∨

X for some finite set X ⊆ bv() and all equations in 	 are in the following state normal form

X =
∧
a∈L

[a]
(∨

YX ,a

)
∧
∧
p∈BX

p ∧
∧

q∈A−BX

¬q

where each YX ,a ⊆ bv() is a finite set of variables and each BX ⊆ A is a set of atomic propositions.

Notice thatanycharacteristic formulaχ(S) is inSNF. Froma formula (
∨

X)[] inSNFwederive thespecification θ((
∨

X)[]) =
((S, L,→,A, λ), E)where S = bv(), E = X and, for eachX ∈ bv(), the equation forX induces the transitions {X a→ Y | Y ∈ YX ,a}
and the valuation λ(X) = BX .

Lemma 11. χ and θ are each others inverse up to equivalence, that is,

(1) θ(χ(S))∼=S for finite S (where ∼= denotes isomorphism), and

(2) χ(θ(φ)) ≡α φ for φ in SNF (where ≡α denotes α-convertibility).

Here, isomorphism means a label-and-valuation-preserving bijection between the respective states and transitions.

For φ in SNF, the specification θ(φ) is a maximal model of φ with respect to the simulation preorder, in the sense that it

simulates exactly those specifications that satisfy formula φ.

Theorem 12. For φ in SNF, we have S � θ(φ) if and only if S |= φ.

Proof. Follows from Theorem 9 by Lemma 11(2). �

3.3. Transformation to SNF

We now present a step-wise transformation of any simulation logic formula into a logically equivalent formula in SNF.

Before describing the transformation in detail, we introduce some auxiliary notions. First, we use a slightly non-standard

variant of disjunctive normal form: we say that a formula φ of basic simulation logic is in disjunctive normal form (DNF) if it

is a disjunction of conjunctions of box formulae and literals, i.e., it has the shape φ = ∨
i(
∧

j

[
aij
]
ψij ∧∧Li)where Li are sets

of literals and ψij arbitrary formulae in basic simulation logic. Furthermore, the conjunctive decomposition c(ψ) of a formula

ψ into its conjuncts is given by c(ψ) = {ψ1, . . . ,ψm} such that no ψi is a conjunction and ψ = ∧
i ψi (modulo associativity and

commutativity). Note that c(tt) = ∅. The elements of c(ψ) are called conjunctive components of ψ .

We call an occurrence of a subformula top-level if it is not under the scope of a box operator. We say that Y is unguarded in

φX , written X � Y , if there is a top-level occurrence of Y in φX . A modal equation system	 (or formula φ[]) isweakly guarded

if the relation � is acyclic, and strongly guarded if � is empty.

Example 13. Consider the modal equation system

	 =
[
X = [a]X ∨ (q ∧ Y)

Y = [b] (X ∧ [a]Y) ∧ p

]

Variable X is guarded in φX (the only occurrence of X is under the scope of a box operator), but Y is not (it occurs on the

top-level). Both X and Y are guarded in φY . Hence, � = {(X ,Y)} being acyclic but not empty, 	 is weakly guarded but not

strongly guarded.

Any weakly guarded formula can be transformed into a strongly guarded one by repeatedly rewriting each unguarded

occurrence of a variable by its defining equation. Moreover, using a result of Walukiewicz [35] we can also show that any

formula of simulation logic can be transformed into an equivalent weakly guarded one (and thus into a strongly guarded

one).

After these auxiliary definitions, we are ready to present the transformation. It consists of three phases:

Phase I transforms each equation into a disjunction of formulae in state normal form, where only single variables appear

under modalities,

848 D. Gurov et al. / Information and Computation 206 (2008) 840–868

Fig. 2. Maximal model for φ = [b] ff ∧ p.

Phase II splits top-level disjunctions in each equation into a set of new equations, one for each disjunct, yielding an equation

system in state normal form, and

Phase III is an optimisation phase removing unreachable and redundant equations.

The transformation into SNF uses a partial function h that keeps track how sets of formulae are mapped to variables. This

map avoids the repeated introduction of new equations for the same formula, which is essential for the termination of the

transformation. If hmaps a set of formulae
 to variable X , this means that an equation X = ∧

 (such that c(

∧

) =
) has

been introduced earlier and that variable X should be used instead of introducing any further equation for
∧

.

Before going into the details, let us illustrate the basic ideas on a simple example. A more elaborate transformation

example appears in Section 8.3.1.

Example 14. Let φ = [b] ff ∧ p be interpreted as a formula over L = {a, b} and A = {p}. This formula holds for specifications,

where each initial state satisfies p and has no outgoing b transition. We first translate φ to (
∨

X0)[0] with X0 = {X} and
	0 = {X = [b] ff ∧ p}. In the following, the numbers in parentheses refer to the transformation steps detailed below.

The equation for X is already strongly guarded (I.1) and inDNF (I.2). Next, we add themissing box [a] using the equivalence

tt ≡ [a] tt (I.3), yielding X = [a] tt ∧ [b] ff ∧ p. In the next step (I.4), we introduce new variables for the formulae under the

boxes: Y = tt and Z = ff. This is recorded in h with two new entries: (∅,Y) (since tt = ∧
∅) and ({ff}, Z). The equation for X

becomes

X = [a]Y ∧ [b] Z ∧ p

which is already in state normal form.We proceedwith Y = tt. Again, the first stepwith an effect adds themissing boxes (I.3),

producing Y = [a] tt ∧ [b] tt. Next, since c(tt) = ∅ and h(∅) = Y , we know that Y stands for tt, so we replace the subformulae

tt under the boxes by Y , yielding Y = [a]Y ∧ [b]Y . To get a disjunction of state normal forms, we add the missing literals in

positive and negative form, yielding

Y = ([a]Y ∧ [b]Y ∧ p) ∨ ([a]Y ∧ [b]Y ∧ ¬p).

The third equation Z = ff (= ∨
∅) is already a (trivial) disjunction of state normal forms. Note that X remains unchanged

in Phase I. Thus, at the end of Phase I we have the following equation system.

	 =
⎡
⎣X = [a]Y ∧ [b] Z ∧ p

Y = ([a]Y ∧ [b]Y ∧ p) ∨ ([a]Y ∧ [b]Y ∧ ¬p)

Z = ff

⎤
⎦

Next, Phase II splits each top-level disjunction into a set of new equations and substitutes the disjunction of new variables

for the original variable. Concretely, all occurrences of Y are replaced by Y1 ∨ Y2 and Z = ff (= ∨
∅) is substituted back into

φX , yielding

	 =
⎡
⎣X = [a] (Y1 ∨ Y2) ∧ [b] ff ∧ p

Y1 = [a] (Y1 ∨ Y2) ∧ [b] (Y1 ∨ Y2) ∧ p

Y2 = [a] (Y1 ∨ Y2) ∧ [b] (Y1 ∨ Y2) ∧ ¬p

⎤
⎦

Since X is not split into several equations, X = {X} remains unchanged. Phase III is the identity transformation in this

example as there are no unreachable or duplicate equations. Thus, the final result is X[], which is in simulation normal

form. The derived maximal model θ(X[]) is displayed in Fig. 2. Indeed, it simulates exactly all those specifications where

each initial state satisfies p and has no outgoing b transition.

We nowdescribe the actual transformation in detail.We assumewithout loss of generality that the initial formula has the

shape X0[0], where 	0 is weakly guarded (since any formula can be transformed into a weakly guarded one). We initialise

X = {X0}, 	 = 	0 and h = ∅.

D. Gurov et al. / Information and Computation 206 (2008) 840–868 849

Phase I (disjunction of state normal forms)

This phase transforms each equation into a disjunction of formulae in state normal form. Its steps are applied once to

each equation including the new ones introduced in step I.4 below.

(1) (Strong guardedness)Make equation strongly guarded by repeated rewriting of unguarded occurrences of variables using

the original system 	0.

(2) (DNF) Put equation into disjunctive normal form and remove inconsistent disjuncts (those where ff or both p and ¬p

appear).

(3) (Box grouping and completion) Group boxes together using [a]φ1 ∧ [a]φ2 ≡ [a] (φ1 ∧ φ2) and add missing boxes to each

disjunct using tt ≡ [a] tt such that there is a box formula for each a ∈ L. The resulting equation shape is

X =
∨
i

(∧
a∈L

[a]ψia ∧
∧

Li

)

(4) (Modal depth reduction) Apply the following to each top-level box subformula [a]ψia where ψia is not a variable. If

(c(ψia),Y) ∈ h for some variable Y then replace [a]ψia by [a]Y ; otherwise, choose a fresh variable Z �∈ bv(), add the new

equation Z = ψia to 	, replace [a]ψia by [a] Z and extend h to h ∪ {(c(ψia), Z)}. The equation shape is then

X =
∨
i

(∧
a∈L

[a] Zia ∧
∧

Li

)

(5) (Literal completion) Replace equation X = φ by X = φ ∧∧p∈A(p ∨ ¬p), then repeat step (2) to put equation back into DNF.

The equation shape is (for Bi ⊆ A)

X =
∨
i

⎛
⎝∧

a∈L
[a] Zia ∧

∧
p∈Bi

p ∧
∧

q∈A−Bi

¬q

⎞
⎠

Note that step (I.4) might introduce unguarded occurrences of variables in the newly added equations. Thus, the rewriting

step (I.1) is needed to bring these equations into strongly guarded form. For the termination of Phase I, it is crucial to use

the original equation system 	0 and not the current 	 in this step, because this limits the set of subformulae introduced by

the rewriting to those already occurring in 	0. This in turn guarantees that subsequent modal depth reductions in step (I.4)

eventually find already existing variables for the subformulae under the box operator.

Phase II (push disjunctions inside)

This phase eliminates the top-level disjunctions by introducing a new equation for each disjunct, thus pushing these

disjunctions under box modalities. It is applied once to each equation in 	.

(1) Remove an equation of shape X = ∨n
i=1 φi with n /= 1 from 	; note that this includes the case X = ff (for n = 0).

(2) Add a new equation Xi = φi for each non-variable disjunct φi and substitute
∨n

i=1 Xi for X in all equations of 	 (where Xi

is either identical to φi or Xi is the fresh variable introduced for φi).

(3) If X ∈ X then replace X by (X − {X}) ∪ {X1, . . . ,Xn}.
The resulting equation is in state normal form.

Phase III (optimisation)

This optimisation phase iteratively removes unreachable and duplicate equations.

(1) Remove equations Z = ψ from	 in case Z can not be reached fromany variable inX via variable dependencies (X depends

on Y if Y occurs in φX).

(2) If there are equations Z1 = ψ1 and Z2 = ψ2 in 	 such that ψ1[Z1/Z2] = ψ2[Z1/Z2], then remove Z2 = ψ2 from 	 and

substitute Z1 for Z2 in the remaining equations as well as in X .

Theorem 15. The algorithm above terminates and transforms any formula φ of simulation logic into an equivalent formula snf(φ)
in simulation normal form.

Proof. (Sketch; full proof in [36]) LetXi,	i and hi denote the values ofX ,	 and h after i transformation steps.We concentrate

in this sketch on Phase I, which preserves the following two invariants:

J1. for all Y ∈ bv(0)we have Y ∈ bv(i) and Y [i] ≡ Y [0], and
J2. if (
, Z) ∈ hi then
 ⊆
0, where
0 is defined as the set of conjunctive components of subformulae appearing under

some box modality in 	0, that is,
0 = ⋃{c(ψ) | ∃a. [a]ψ is a subformula of 	0}.
Preservation of the semantics by the transformation steps follows from J1 and the fact that X is constant in Phase I. To

see that Phase I terminates, note first that step I.1 terminates, because 	0 is weakly guarded (by assumption) and all steps

preserve weak guardedness. Overall non-termination of Phase I due to the introduction of equations in step I.4 is ruled out

by J2: since
0 is finite, the map h eventually fills up and thus Phase I terminates. �

850 D. Gurov et al. / Information and Computation 206 (2008) 840–868

Weextendthemapping θ toall formulaeof simulation logicbydefining θ(φ) = θ(snf(φ)). Sincesnfpreserves thesemantics,

Theorem 12 can be extended to all formulae, showing that θ(φ) is the maximal model of φ with respect to the simulation

preorder.

Theorem 16. S � θ(φ) if and only if S |= φ.

We conclude with two important consequences of Theorems 9 and 16. The first one is that simulation preserves logical

properties.

Corollary 17. S1 � S2 and S2 |= φ imply S1 |= φ.

The second corollary expresses that themaps χ and θ form aGalois connection between the preorder (S,�) of (isomorphism

classes of) finite specifications ordered by simulation and be the preorder (L,�) of formulae of simulation logic ordered by

logical consequence.

Corollary 18. χ and θ are monotone and, for finite specifications S , S � θ(φ) if and only if χ(S) � φ.

3.4. Representation results for weak simulation

A natural question is whether the results of the previous subsection can be used to relate weak simulation and simulation

logic in the same way as simulation and simulation logic are related by the transformation θ (and its adjoint map χ). Note

that applying θ on a formula of simulation logic interpreted over weak transitions would only give us a model in terms of

weak transitions, without the underlying strong transitions. However, there is a standard translation of formulae interpreted

over weak transitions into equivalent formulae interpreted over strong transitions [32]. This translation, let us denote it by

δ, is easily adapted to our setting. It has the property that S |=w φ exactly when S |= δ(φ). We show that θ ◦ δ provides the
desired transformation relating weak simulation and simulation logic.

To this end, we first introduce the notion of saturated model, i.e., a model in which s
a→ t whenever s

a⇒ t. We show that

for all formulae φ, θ (δ (φ)) is simulation equivalent to its saturation, and therefore it is sufficient for a model to be weakly

simulated by θ (δ (φ)) in order to satisfy φ when interpreted over weak transitions.

Definition 19 (Saturation). Let M = (S, L,→,A, λ) be a model. The saturation of M is the model sat(M) = (S, L,→s,A, λ) in

which s
a→s t exactly when s

a⇒ t for all a. The saturation of a specification (M, E) is the specification sat(M, E) = (sat(M), E).

Thus, sat(M) is the least saturated model with respect to the subset ordering on the powerset of S × L × S, containing M.

For instance, in themodel given in Fig. 1 above, we have to add the transition si
a→ sj for all i and j and ε-self-loops to saturate

the model. We have s
a⇒s t in sat(S)whenever s

a→s t in sat(S)whenever s
a⇒ t in S . As consequences, we have the following

properties of weak simulation and simulation logic.

Proposition 20. We have

(i) S1 �w S2 iff S1 � sat(S2), and

(ii) S |=w φ iff sat(S) |=w φ iff S |= δ(φ).

Lemma 21. sat(θ (δ (φ))) � θ (δ (φ)) .

Proof. Clearly, θ (δ (φ)) � sat(θ (δ (φ))) holds; it remains to show the other direction. From reflexivity of � and Theorem 16

we know that θ (δ (φ)) |=δ(φ). Then, by Proposition 20(ii), sat(θ (δ (φ))) |=δ(φ), and again by Theorem 16, sat(θ (δ (φ))) � θ

(δ (φ)). �

These results allow the following characterisation of simulation logic, in the style of Theorem 16.

Theorem 22. S �w θ (δ (φ)) if and only if S |=w φ.

Proof. By Proposition 20(i) and Lemma 21 the following statements are equivalent: (a) S �w θ (δ (φ)), (b) S � sat(θ (δ (φ))),

and (c) S � θ (δ (φ)). Theorem 16 together with Proposition 20(ii) then establish the result. �

Corollary 23. S1 �w S2 and S2 |=w φ imply S1 |=w φ.

D. Gurov et al. / Information and Computation 206 (2008) 840–868 851

Fig. 3. A method graph.

4. Programmodel

This section uses the notions developed above to formally define applet structure and behaviour, structural and be-

havioural simulation logic, and maximal applets. The next section then shows how these support compositional verification

of control-flow-based safety properties of applets.

4.1. Applet structure

Wemodel the control structure of an applet as a collection of method specifications. We first define the notion of applet

interface as the sets of methods which are provided and called by an applet. We shall need this notion for constructing

maximal applets. Let Meth be an infinite set of method names (not containing the special symbols r and ε).

Definition 24 (Applet interface). An applet interface is a pair I = (I+, I−), where I+, I− ⊆ Meth are finite sets of names of

provided and required methods, respectively. We say I is closed if I− ⊆ I+. The composition of two interfaces I1 = (I+
1
, I−
1
) and

I2 = (I+
2
, I−
2
) is defined by I1 ∪ I2 = (I+

1
∪ I+

2
, I−
1

∪ I−
2
).

Next, we define method specifications, which are the basic building blocks of applets. Each method is described by its

control-flow graph and a set of entry points.

Definition 25 (Method specification). A method graph for m ∈ Meth over a set M of method names is a finite model Mm =
(Vm, Lm,→m,Am, λm), where Vm is the set of control nodes of m, Lm = M ∪ {ε}, Am = {m, r}, m ∈ λm(v) for all v ∈ Vm, i.e., each

node is tagged with themethod name. Amethod specification form ∈ Meth overM is a specification (Mm, Em) such that Mm

is a method graph form over M.

The nodes labelled with the distinguished atomic proposition r are the return points ofm.

Example 26. Fig. 3 shows the method graph for the following Java-like method m:

void m() {if c() {p()} else x = 3}

An applet is a collection of method specifications.

Definition 27 (Applet). Applets A with interface I, written A : I, are inductively defined by

• 0M : (∅,M), where 0M is the empty applet over M defined by 0M = ((∅,M ∪ {ε},∅, {r},∅),∅),
• (Mm, Em) : ({m},M) if (Mm, Em) is a method specification for m over M,

• A1
 A2 : I1 ∪ I2 if A1 : I1 and A2 : I2.
An applet A : I is closed if its interface I is closed.

This definition requires that each providedmethodm ∈ I+ of an applet A : I has to be implemented in amethod graph form.

The interface of an applet can be derived from its implementation: a straightforward induction shows that if A is an applet

built from a model over L and A then its interface is (A − {r}, L − {ε}). We write S : I for an arbitrary specification S to mean

that S is (isomorphic to) an applet with interface I. Note that, up to isomorphism, applet composition
 is associative and

commutative with neutral element 0∅.

We have developed a tool to extract applet graphs from Java Card byte code. The tool is based on the SOOT framework

(see Section 7).

852 D. Gurov et al. / Information and Computation 206 (2008) 840–868

Fig. 4. Maximal applet for interface I = ({m1,m2}, {m1,m3}) and φ = tt.

4.1.1. Structural simulation and logic

Structural simulation on applets coincides with simulation on the specifications defining the applets. For conveniencewe

write A1 �s A2 instead of A1 � A2 to denote structural simulation. Since applet composition corresponds to disjoint union,

structural simulation is preserved by applet composition (cf. Theorem 4).

Corollary 28. If A1 �s B1 and A2 �s B2 then A1
 A2 �s B1
 B2.

We also instantiate (weak) simulation logic to this level. For an applet A : I and a formula φ of simulation logic over

L = I− ∪ {ε} and A = I+ ∪ {r} we write for clarity A |=s φ instead of A |= φ and A |=s,w φ instead of A |=w φ.

4.2. Maximal applet structures

In general, the maximal model of a given formula in structural simulation logic is not a legal applet structure. What we

are interested in, then, is computing amaximal applet for the formula, i.e., an applet structurewhich satisfies the formula and

which structurally simulates all other applets satisfying the formula. This problem, however, can only be solved for a fixed

applet interface: one can axiomatise applet structures within structural simulation logic for a given interface. This allows the

maximal model construction presented above to be used for computing a maximal applet for a given formula in structural

simulation logic.

Definition 29 (Interface formula). Let I = (I+, I−) be an applet interface. Define φI[I], the interface formula for I, by

φI = ∨
m∈I+ Xm

	I = {Xm = [I−, ε]Xm ∧ pm | m ∈ I+}
pm = m ∧∧{¬m′ | m′ ∈ I+,m′ /= m}

The formula φI[I] axiomatises the basic structure of an applet with interface I, namely, each initial node belongs to a unique

method m and no transition leaves m. Note that 	I is not in SNF (proposition r is missing).

The maximal applet with respect to a formula φ and interface I is defined as the maximal model of φ conjoined with the

interface formula for I.

Definition 30 (Maximal applet). The maximal applet with respect to interface I and formula φ[] is defined as θI(φ[]) =
θ(φ ∧ φI[,	I]) (where it is assumed without loss of generality that the bound variables of 	 and 	I are disjoint).

Example 31. The interface formula for interface I = ({m1,m2}, {m1,m3}) is given by the formula φI[I], where φI = Xm1
∨ Xm2

and

	I =
[
Xm1

= [m1,m3, ε]Xm1
∧ m1 ∧ ¬m2

Xm2
= [m1,m3, ε]Xm2

∧ m2 ∧ ¬m1

]

The maximal applet for interface I (and formula φ = tt) is shown in Figure 4.

The following result records the main properties of interface formulae and maximal applets.

Theorem 32. Let I be an applet interface. For any specification S = (M, E) over labels L = I− ∪ {ε} and atomic propositions

A = I+ ∪ {r} we have (where R denotes the reachable part of a specification, as defined on page 844)

(1) S |=s φI if and only if R(S) : I, and

D. Gurov et al. / Information and Computation 206 (2008) 840–868 853

(2) S �s θI(φ) if and only if S |=s φ and R(S) : I.

Proof. (1) (Sketch) “⇒” By an induction on the size of I+. The restriction to the reachable part of S is required, because

the formula φI does not constrain the unreachable parts of S . “⇐” By inspection of the definition of applets. (2) Using the

definition of θI(φ) and Theorem 16we know that S �s θI(φ) is equivalent to S |=s φ and S |=s φI . The result then follows from

(1). �

Point (1) of the theorem essentially expresses that the formula φI characterises those specifications that are applets with

interface I, while point (2) extends Theorem 16 from specifications to applets. As a consequence of (2) we have θI(φ) |= φI
and θI(φ) : I, since all nodes of θI(φ) are reachable by construction.

4.3. Applet behaviour

Next, we change our focus to the behavioural level, where we first define the operational semantics of a closed applet.

Since our compositional verification method is based on structural assumptions, there is no need to compose applets on

the behavioural level, so an operational semantics of closed applets is sufficient. This is in contrast with previous work on

semi-automatic compositional applet verification [7] where the use of behavioural assumptions required a more involved

open semantics of applets.

Applet behaviour can be described in terms of Pushdown Automata. We also present an equivalent formulation of applet

behaviour, defining it directly in terms of a model. Applet behaviour is closely connected with applet structure, in the sense

that simulation of applet structure immediately carries over to simulation of applet behaviours. This will be exploited in the

next section, when presenting the compositional verification principle.

4.3.1. Applet behaviour as Pushdown Automaton

Pushdown Automata provide a natural execution model for programs with recursion. They form a well-studied class of

infinite state systems for which many important problems like bisimulation equivalence and model checking are decidable

(see e.g., [10,5] for analysis techniques and [3,2] for applications). Applet behaviour can be described directly in terms of

Pushdown Automata.

Definition 33 (PDA). A non-deterministic Pushdown Automaton is a tuple P = (Q ,	,�,�,Q ′,⊥) where Q is a set of control

states, 	 a finite input alphabet, � a finite stack alphabet, Q ′ ⊆ Q are the start states, ⊥ ∈ � is the initial stack symbol, and

� ⊆ (Q × �)×	 × (Q × �∗) a set of labelled productions (or rewrite rules) of the shape (q1,A)
a
↪→ (q2, γ).

A configuration of a PDA is a pair (q, γ) ∈ Q × �∗. The set of configurations Q ′ × {⊥} are called initial configurations. The

set of productions induces a labelled transition relation on configurations as the least relation which contains the initial

configurations and is closed under the prefix rewrite rule: (q1,A · γ ′) a→ (q2, γ · γ ′)whenever (q1,A)
a
↪→ (q2, γ) ∈ �.

Applet behaviour is induced from the applet PDA through the prefix rewrite rule. The connection between applet structure

and applet PDA is established through the following definition.

Definition 34 (Applet PDA). Let A = (M, E) : (I+, I−) be a closed applet such that M = (V , L,→,A, λ). Then PA = (V , Lb,V ∪
{⊥},�, E,⊥) is the PDA induced by A where

Lb = {m1 l m2 | l ∈ {call, ret}, m1,m2 ∈ I+} ∪ {ε}
� = {(v, v⊥)

ε
↪→ (v′, v⊥) | v |= ¬r ∧ v →m v′}

∪ {(v1, v⊥)
m1 callm2
↪→ (v2, v

′
1

· v⊥) | v1 |= ¬r ∧ v1
m2−→m1

v′
1∧ v2 |= m2 ∧ v2 ∈ E}

∪ {(v2, v1)
m2 retm1
↪→ (v1, ε) | v2 |= r ∧ v2 |= m2 ∧ v1 |= m1}

where v⊥ ranges over V ∪ {⊥}.

Note that the valuation λ also applies to PDA control states and is lifted to configurations by defining λ̂((v, v⊥)) = λ(v).

4.3.2. Applet behaviour by transition rules

An alternative approach is to describe applet behaviour explicitly as a specification, by defining appropriate transition

rules.

Definition 35 (Behaviour). Let A = (M, E) : (I+, I−) be a closed applet such that M = (V , L,→,A, λ). The behaviour of A is

described by the specification b(A) = (Mb, Eb), where Mb = (Sb, Lb,→b,Ab, λb) is defined by Sb = V × V*, that is, states are

854 D. Gurov et al. / Information and Computation 206 (2008) 840–868

Table 1

Applet transition rules

[transfer] (v, σ)
τ→ (v′ , σ) if v

ε→ mv′ , v |= ¬r

[call] (v1, σ)
m1 callm2−→ (v2, v

′
1

· σ) if m1,m2 ∈ I+ , v1
m2−→m1

v′
1
, v1 |= ¬r,

v2 |= m2, v2 ∈ E

[return] (v2, v1 · σ) m2 retm1−→ (v1, σ) if m1,m2 ∈ I+ , v2 |= m2 ∧ r, v1 |= m1

pairs of control points and stacks, Lb = {m1 l m2 | l ∈ {call, ret}, m1,m2 ∈ I+} ∪ {ε}, →b is defined by the transition rules of

Table 1, Ab = A and λb((v, σ)) = λ(v). The set of initial states Eb is defined by Eb = E × {ε}.

A simple inspection of the rules in Table 1 and Definition 34 shows that the behaviour induced by the applet PDA through

the prefix rewrite rule is isomorphic to the explicitly described applet behaviour.

4.3.3. Behavioural simulation and logic

AppletA1 behaviourally simulates appletA2,writtenA1 �b A2, if b(A1) � b(A2). Similarly,we instantiate simulation logic

on the behavioural level. Behavioural properties are more abstract than structural ones as they do not refer to the program

control structure.We define behavioural satisfaction A |=b ψ as b(A) |= ψ for applets A : I andψ a formula of simulation logic

over Lb and Ab. Similarly, weak behavioural satisfaction A |=b,w ψ is defined as b(A) |=w ψ . Since applet behaviour coincides

with behaviour of a Pushdown Automaton, verifying goals of the shape A |=b ψ (or A |=b,w ψ) can be reduced to PDA model

checking, for which standard algorithms exist.

4.3.4. Simulation correspondence

The notions of applet structure and behaviour have been defined so as to ensure that any two applets related by structural

simulation are also related by behavioural simulation. In general, the inverse does not hold, because due to recursion,method

graphs can contain nodes that are never reachable at the behavioural level.

Theorem 36 (Simulation correspondence). If A1 �s A2 then A1 �b A2.

Proof. Let R be a structural simulation between A1 and A2. We lift R from the structural level to Rb on the behavioural level

by defining ((v, σ), (v′, σ ′)) ∈ Rb if and only if (v, v′) ∈ R, |σ | = |σ ′| and (σ (i), σ ′(i)) ∈ R for all 0 � i < |σ |. It is easy to check that

Rb is a behavioural simulation between A1 and A2. �
As a consequence, in the set of applets satisfying a given structural formula φ[], the maximal applet for this formula

(with respect to structural simulation) θI(φ[]) is also maximal with respect to behavioural simulation.

4.4. Behavioural maximal applets

Defining the maximal applet behaviour for a given behavioural formula is more problematic. As in the structural case, in

general, themaximal model of a formula in behavioural simulation logic is not a legal applet behaviour. Unlike the structural

case, however, one cannot axiomatise applet behaviour within behavioural simulation logic (in order to use the maximal

model construction for generating maximal applet behaviours), since simulation logic is only able of capturing regular

properties and not the context-free properties exhibited by Pushdown Automata.

Furthermore, amaximal applet behaviourwould in general be infinite-state; therefore, amaximal behaviour construction

has to return a finite representation of this behaviour. The obvious (but not only) choice for such a representation would be

an applet structure. Given a formula in behavioural simulation logic, the problem then reduces to finding an applet which

satisfies the formula and which behaviourally simulates all other applets satisfying the formula. However, in general such a

maximal applet is not unique.

Example 37. Consider the behavioural formula [m1 callm2] r over an interface I = ({m1,m2}, {m1,m2}). The formula gives

rise to two maximal applets:

(1) the maximal applet for I, but without edges labelled m2 whose source is a non-return entry node of m1 (representable

as θI(¬m1 ∨ r ∨ [m2] ff)), i.e., the applet where m1 can never call m2 immediately; and

(2) the maximal applet for I, but where every entry point of m2 is valuated r (representable as θI(¬m2 ∨ r)), i.e., the applet

where m2 always returns immediately.

Every applet satisfying the formula is behaviourally simulated by one of these two applets; however, neither of the two

applets simulates the other.

D. Gurov et al. / Information and Computation 206 (2008) 840–868 855

We are currently investigating under what conditions and how such a collection of maximal applets can be characterised

exactly, by means of a translation from behavioural properties into collections of structural properties. Preliminary results

are presented by Gurov and Huisman in [11].

5. Compositional verification

The results of the preceding sections form the basis for compositional verification of applets using maximal models.

5.1. Structural properties

In the realmof structural properties, i.e.,whenglobal guarantees and local assumptions are all givenas structural formulae,

we obtain a compositional verification principle of the desired form, embodied by the following rule:

(struct− comp) A |=s φ θI(φ)
 B |=s ψ

A
 B |=s ψ
A : I

This principle states that in order to show that a composed applet A
 B has a structural property ψ , it is sufficient to find

a structural property φ which is satisfied by A and for which θI(φ)
 B |=s ψ . The rule is sound and complete. The proof of

this rule follows closely the (slightlymore involved) proof for rule (compos) presented below (Theorem 39), and is therefore

omitted. Verifying the premises is achieved by standard, finite-state model checking.

Since applet composition is commutative, one can apply the compositional reasoning principle alsowith respect to applet

B in the second premise of the rule to yield a further decomposition of the global property.

5.2. Behavioural properties

As explained above, decomposition of global behavioural properties is more problematic, as behavioural properties in

general do not give rise to unique maximal applets. We can represent the set of applets satisfying the local assumption by

a model that behaviourally simulates these applets, but this necessarily leads to approximative (i.e., sound but incomplete)

solutions, since such a model cannot be guaranteed to be a legal applet behaviour itself. However, by restricting local

assumptions to structural properties, we obtain a complete compositional verification rule, thus avoiding the possibility of

false negatives. This rule exploits the result that structural simulation implies behavioural simulation (Theorem 36).

Let A : I and B : J be applets such that I ∪ J is closed and let φ and ψ be formulae of structural and behavioural simulation

logic, respectively. We propose a compositional verification principle embodied by the following rule:

(compos)
A |=s φ θI(φ)
 B |=b ψ

A
 B |=b ψ
A : I

We establish soundness and completeness of the rule with the help of the following result, which characterises its second

premise.

Proposition 38. Let B : J be an applet and I an interface such that I ∪ J is closed. Then θI(φ)
 B |=b ψ if and only if for all A : I
with A |=s φ we have A
 B |=b ψ.

Proof. “⇒” Suppose θI(φ)
 B |=b ψ , A : I and A |=s φ. Then certainly also R(A) : I and so we get A �s θI(φ) by Theorem

32(2). From Corollary 28 and Theorem 36 we derive that A
 B �b θI(φ)
 B. Hence, A
 B |=b ψ by Corollary 17. “⇐” By

Theorem 32(2) we have θI(φ) : I and θI(φ) |=s φ, thus θI(φ)
 B |=b ψ . �

Theorem 39. Rule (compos) is sound and complete.

Proof. Soundness is immediate by Proposition 38. For completeness suppose A
 B |=b ψ and set φ = χ(A). By Theorem 9

we have A |=b χ(A). To establish the second premise of the rule, we use Proposition 38 and show C
 B |=b ψ for an arbitrary

C : I with C |=s X (A). We use Theorem 9 to derive C �s A. The result then follows by Theorem 36 and Corollaries 17 and 28.

�
Again, since applet composition is commutative, one can apply the compositional reasoning principle (compos) alsowith

respect to applet B in the second premise of the rule to yield a further decomposition of the global property.

Note that by taking B to be the empty applet∅J− , (compos) reduces to a rule relating behavioural properties to structural

ones:

(struct-beh)
A |=s φ θI(φ) |=b ψ

A |=b ψ
A : I

Thus, given appletA : I, the satisfaction of behavioural propertyψ can be reduced to the satisfaction of structural property

φ if and only if the maximal applet with respect to I and φ (behaviourally) satisfies property ψ .

856 D. Gurov et al. / Information and Computation 206 (2008) 840–868

6. Interface abstraction

So far we have only considered applets where all provided methods are public, meaning that they can be called from

the outside. However, in practice the public methods will be implemented using private methods which are hidden from

the outside world. Thus, when one wishes to check that an actual applet implementation (using private methods) satisfies

a specified property, one needs to abstract away from the private methods, which are not observable from the outside. In

particular, in a compositional verification setting, local assumptions (and global guarantees) will typically be expressed at

the public interface level of an applet, while the concrete applet implementationwill use privatemethods. For the case study

presented in Section 8, the ability to distinguish between public and private method is crucial to make verification feasible.

Given an applet A with interface I = (I+, I−) and a set of public methods M ⊆ I+, we define the public interface of A by

Î(M) = (M, I− − (I+ − M)). The methods in the set I+ − M are called private methods of A.

We introduce the notion of interface behaviour, which – intuitively speaking – projects the applet behaviour onto the

observable methods declared in the public interface. For the purpose of practical verification, we present the interface

abstraction of an applet, produced by an inlining algorithm, which over-approximates the applet’s interface behaviour by

inlining its private methods. We also show that, under the (very common) restriction that an applet is last-call recursive, an

inlined applet is weakly simulation equivalent to the interface behaviour of the original applet. We then propose a modified

principle for compositional verification based on the interface abstraction of applets and the maximal model obtained for

the public interface of the corresponding applet.

6.1. Interface behaviour

The next section defines an inlining algorithm that transforms a concrete applet implementation into an applet that

contains only method calls to public methods. We want to prove that for any closed applet, every behaviour of the concrete

applet is also a behaviour of the inlined applet. However, for this to hold, we have to abstract the concrete behaviour to the

level of public methods. Therefore, we introduce the notion of interface behaviour of an applet with respect to a set of public

methods M.

First, we define the top public method with respect toM, which for a given call stack σ is the first public method to which

a node in the call stack belongs. For convenience, below we will often write the states of the behavioural model as a simple

sequence of states, i.e., v · σ , instead of (v, σ). We use reverse indexing to denote the ith element from the back of a sequence,

so that (v · σ)|σ | = v (where |σ | denotes the length of sequence σ), and σ0 is the last element of σ . Let λMeth(v) denote the

method to which node v belongs.

topindexM(σ) = max{i | 0 � i < |σ | ∧ λMeth(σi) ∈ M}
topM(σ) = λMeth(σ topindexM (σ))

Using these definitions, we can define a relabelling ρM of transition labels to the public level. Labels for calls and returns

between public methods are left unchanged. A call from a private to a public method is relabelled as a call from the top

public method in the pending call stack. A return from a public to a private method is relabelled as a return to the top public

method. All other transitions get labelled as silent actions.

ρM((v, σ), �) =

⎧⎪⎪⎨
⎪⎪⎩
� if � = m1{call/ret}m2 ∧ m1,m2 ∈ M

topM(σ) callm2 if � = m1 callm2 ∧ m1 �∈ M,m2 ∈ M

m1 ret topM(σ) if � = m1 retm2 ∧ m1 ∈ M,m2 �∈ M

ε otherwise

Now we are ready to define the interface behaviour of applet A with respect to a set of public methods M.

Definition 40 (Interface behaviour). Let A : I be a closed applet with behaviour b(A) = ((S, L,→,A, λ), E). Let M ⊆ I+ be a set

of public methods. The interface behaviour of A with respect to M is defined as

bM(A) =
(
(S, LM ,→M ,AM , λM), EM

)
where

• LM = {m1 l m2 | m1,m2 ∈ M ∧ l ∈ {call, ret}} ∪ {ε}
• →M= {((v, σ), �, (v′, σ ′)) | ∃a ∈ L. (v, σ)

a→ (v′, σ ′) ∧ ρM((v, σ), a) = � }
• AM = M ∪ {r}
• λM = (v, σ) �→ {topM(v · σ)} ∪ if(v ∈ M ∧ v |= r) then {r}else∅

• EM = {v | v ∈ E ∧ λMeth(v) ∈ M}.
The interface behaviour of an applet also defines a Pushdown Automaton.

Proposition 41. The interface behaviour of A with respect to I+ is identical to its behaviour, i.e., bI
+
(A) = b(A).

D. Gurov et al. / Information and Computation 206 (2008) 840–868 857

We define behavioural interface simulationA �M
b B as bM(A) � bM(B), andweak behavioural interface simulationA �M

b,w B
as bM(A) �w bM(B). Notice that A and B need not have the same interfaces – we only requireM ⊆ I+A andM ⊆ I+B . Similarly,

for any formula φ in simulation logic over LMand AM , we define behavioural interface satisfaction A |=M
b
φ as bM(A) |= φ, and

weak behavioural interface satisfaction A |=M
b,w

φ as bM(A) |=w φ.

6.2. The inlining transformation

Next we define an inlining algorithm αM that, given a set of public methodsM, transforms an applet graph by inlining all

private calls. Recursive calls to private methods are not inlined, but create loops in the resulting graph. We prove that the

interface behaviour of the original applet A is simulated by the behaviour of the inlined applet αM(A), thus (by Corollary

17) all properties φ of the latter, i.e., αM(A) |=b φ, are also properties of the former, i.e., A |=M
b
φ. Moreover, we prove that if

the applet is last-call recursive, the two behaviours are weakly simulation equivalent – thus both applets satisfy exactly the

same observable properties at the public interface level.

Notice that the inlining algorithm does not require the applet to be closed: it treats all external methods as public.

6.2.1. The inlining algorithm

The algorithm is applied to each public method and (recursively) inlines all calls to private methods. Intuitively, con-

structing the transformed (or inlined) graph for a public method m corresponds to executing the interface behaviour of m,

where method calls to public methods are skipped and recursion is replaced by iteration. The nodes of the inlined applet

can thus be seen as states of the (interface) behaviour of the original applet, modulo an abstraction function which replaces

recursion by iteration.

During the inlining, each edge that represents internal transfer or a call to a public method is left unchanged. Each edge

that represents a call to a private method is replaced by two internal edges: one from the calling point to the entry point

of the method; and another from the return point of the method to the destination of the calling edge. If a method has

several entry or return points, several internal edges are created. The private method is inlined recursively. Each node is

replaced by a sequence denoting the fragment of the call stack from the activation of the public method up to the current

node (except for the case of a recursive call). Since we keep track of the pending call stack, we can recognise recursive

calls to private methods. In that case, the appropriate initial fragment of the call stack is used to decide the exact new

edges.

For the formal definition of the inlining algorithm, we need some new notions. Let A : I be an applet andM ⊆ I+ be a set

of public methods. An M-frame is a sequence of nodes σ of which only λMeth(σ0) is in M. An M-frame is called normal, if all

nodes in the frame belong to differentmethods. The nodes of the inlined applet are represented by normalM-frames derived

from the behaviour of the original applet. The abstraction function mentioned above (replacing recursion by iteration) is

formalised by means of the (normalising) conditional rewrite rule σ · v · σ ′ · v′ · σ ′′ ↪→ σ · v · σ ′′ if λMeth(v) = λMeth(v
′) and

σ ′ · v′ · σ ′′ is a normal M-frame. Let ν(σ) denote the normal form of σ with respect to the rule. Note that if σ is an M-frame,

then ν(σ) is a normal M-frame. Moreover, for anyM-frame σ we have topM(σ) = λMeth(σ0).

Further, for methodmwe define Int(m) and Call(M,m), denoting the sets of its internal edges and call edges with respect

to methods in a set M, respectively.

Int(m) = {(v, ε, v′) | v →m v′ ∧ v |= ¬r}
Call(M,m) = {(v,m′, v′) | v m′→m v′ ∧ v |= ¬r ∧ m′ ∈ M}

The definition of the inlining algorithm uses auxiliary functions η and ζ . The function η considers all edges related to

a method: it returns internal and public call edges with renamed nodes – using the pending call stack, and calls function

ζ on private call edges. Function ζ adds edges to the entry point, and from the return point of the private method, using

the pending call stack argument, and if necessary normalising the result (this uses the fact that the pending call stack is

always a normalisedM-frame). Then it checks if the private call is non-recursive, in which case the private method is inlined

recursively.

Definition 42 (Inlined applet). Let A : I be an applet, and let (M, P) be a partitioning of I+ into public and private methods,

respectively. We define the inlined applet

αM(A) = ((V ′, L′,→′,A′, λ′), E′)

where

• V ′ = {w ∈ V+ | w is a normalM-frame},
• L′ = (I− − P) ∪ {ε},
• →′= ⋃

m∈M η(m, ε) where

858 D. Gurov et al. / Information and Computation 206 (2008) 840–868

Fig. 5. Example applet before and after inlining.

η(m, σ) = {(v · σ , �, v′ · σ) | (v, �, v′) ∈ Int(m) ∪ Call(I− − P,m)}
∪ ⋃{ζ(σ , (v,m′, v′)) | (v,m′, v′) ∈ Call(P,m)}

ζ(σ , (v,m′, v′)) = {(v · σ , ε, ν(e · v′ · σ)) | e |= m′ ∧ e ∈ E}
∪ {(ν(rt · v′ · σ), ε, v′ · σ) | rt |= (m′ ∧ r)}
∪ if ¬∃i. (0 � i � |σ | ∧ (v′ · σ)i |= m′)

then η(m′, v′ · σ)else ∅

• A′ = M ∪ {r}
• λ′ = σ �→{λMeth(σ0)} ∪ if (|σ | = 1 ∧ σ0 |= r) then {r}else∅

• E′ = {v ∈ E | λMeth(v) ∈ M}.
Before discussing properties of the inlining algorithm, we first show an example.

Example 43. Suppose we have an applet as depicted in the left-hand column of Figure 5. Inlining this applet with the public

method set {m} results in the applet depicted in the right-hand column of Figure 5. Notice that all internal and public call

edges are preserved, while private method calls are replaced by two edges: to the entry and from the return point of the

called method, respectively.

6.2.2. Properties

We state several useful properties of the inlining algorithm. First of all, the inlining algorithm computes an applet having

as interface the public interface of the original applet.

Proposition 44. Let A : I be an applet and M ⊆ I+ a set of public methods. Then αM(A) is an applet with interface Î(M), i.e.,

αM(A) : Î(M).

By Proposition 41 we thus get:

bM(αM(A)) = b(αM(A))

Since the inlining transformation αM only inlines provided methods not in M, αI+ is the identity operation.

Proposition 45. Let A : I be an applet. Then αI+ (A) = A.

Finally, the inlining algorithm enjoys the following distributivity property.

Proposition 46. Let A : IA and B : IB be applets such that I+A and I+B are disjoint and let MA ⊆ I+A and MB ⊆ I+B be sets of public

methods such that I−A ⊆ I+A ∪ MB and I−B ⊆ I+B ∪ MA. Then

αMA∪MB (A
 B) = αMA (A)
 αMB (B)

6.2.3. Simulation results

As already mentioned, the interface behaviour of the original applet is over-approximated by the inlining algorithm,

i.e., every execution of the interface behaviour of A is an execution of the behaviour of αM(A). This is due to the close

correspondence between the interface behaviour of A and the structure of αM(A). We provide an “inlining” transformation

α′
M on the states of bM(A) by defining α′

M (v, σ) = (
hd(γ), tl(γ)

)
, where γ = βM(v · σ) and where βM(σ) denotes the sequence

of normalised M-frames. Notice that we always have hd(hd(γ)) = hd(v · σ). We show that α′
M is a simulation relating the

original interface behaviour with the inlined behaviour.

Theorem 47. Let A : I be a closed applet, and let M ⊆ I+. Then bM(A) � b(αM(A)).

D. Gurov et al. / Information and Computation 206 (2008) 840–868 859

Proof. We show by co-induction that α′
M is a simulation between bM(A) and b(αM(A)), i.e., we show that (1) the valuations

of (v, σ) in bM(A) and α′
M(v, σ) in b(αM(A)) agree, and (2) if (v, σ)

l→(
v′, σ ′) in bM(A), then we have α′

M (v, σ)
l→ α′

M

(
v′, σ ′) in

b(αM(A)). The result then follows since α′
M maps the entry states of bM(A) to entry states of b(αM(A)) (in fact, the entry states

coincide, and α′
M maps every entry state to itself). It is easy to check that the valuations agree and that the transitions are

simulated. For the full proof we refer to our technical report [37]. �

Notice that in general we do not have behavioural simulation equivalence. The inlining construction introduces transfer

edges for calls to and returns from private methods. Because of the latter, the behaviour of the inlined applet can contain

a silent transition corresponding to a return from a private method in the original applet, even when the inlined applet

has not yet followed a silent transition corresponding to a call to this private method in the original applet. For instance,

the execution (v0, ε) → (v2.v1, ε) → (v4.v3.v1, ε) → (v7.v3.v1, ε) → (v3.v1, ε) → (v6.v3.v1, ε)
m callm−→ (v0, v7.v3.v1) of the inlined

applet in Figure 5 does not correspond to any execution in the original applet. The inlining transformation thus introduces

new behaviours. Notice however, that these new behaviours are only observable in applets which are not last-call recursive.

A set of methods is recursive if every method in the set contains a (reachable) call edge to some method in the set. A call

edge is recursive if the calling and the called methods belong to some minimal (and thus, mutually) recursive method set. A

program is called last-call recursive if from any destination node of any recursive call edge, only transfer edges are reachable.

In addition, we shall assume that a return node is reachable from every such destination node.

For last-call recursive applets, we prove the reverse correspondence for observable behaviours.

Theorem 48. Let A : I be a closed last-call recursive applet, and let M ⊆ I+. Then b(αM(A)) �w bM(A).

Proof. Consider a state (w, γ) in b(αM(A)), where λMeth(hd(w)) /∈ M andhd(w) |= r. For last-call recursive applets, the inlining

transformationαM has theproperty that for anysuchw, thenodesw′ such that ν(hd(w) · w′) = wbuthd(w) · w′ /= w andwhich

are structurally reachable fromw in αM(A) form (together withw) a strongly connected component and are equivalent with

respect to structural simulation. As a consequence, in b(αM(A)), all states (w′, γ) for a given γ also form a strongly connected

component and are weak simulation equivalent. Modulo such “return” equivalence classes, we show by co-induction that

(α′
M)

−1 is aweak simulation between b(αM(A)) and bM(A). More exactly, we show that (1) the valuations of α′
M(v, σ) and (v, σ)

agree, and (2) if α′
M(v, σ)

l→ (w′, γ ′) is a transition in b(αM(A)) other than a (silent) transitionwithin a return equivalence class,

then (v, σ)
l⇒ (v′, σ ′) in bM(A) for some v′and σ ′ such that α′

M(v
′, σ ′) = (w′, γ ′) (inmost caseswe even show the corresponding

strong transition). The result then follows since α′
M maps entry states of b(αM(A)) to entry states of bM(A). It is easy to check

that the valuations agree and that the transitions are simulated. For the full proof we again refer to [37]. �

Since weak simulation contains simulation we have the following.

Corollary 49. Let A : I be a closed last-call recursive applet, and let M ⊆ I+. Then bM(A) �w b(αM(A)).

6.3. Interface abstraction and compositional reasoning

Using the results obtained above, we can state several verification principles that can be used to prove properties of

applet interface behaviour. We first present two abstraction principles, and then show how these can be combined with our

compositional verification principle from Section 5.

6.3.1. Abstraction rules

Let A : I be a closed applet, and let M ⊆ I+. With the results established above, we can justify the following abstraction

principle (abstract), where ψ is a behavioural interface formula.

(abstract)
αM(A) |=b ψ

A |=M
b
ψ

Theorem 50. Rule (abstract) is sound.

Proof. Follows from the definition of behavioural satisfaction, Theorem 47, Corollary 17, and the definition of behavioural

interface satisfaction. �

When A is last-call recursive, we can even provide a faithful abstraction principle (weak-abstract) for properties of the

observable behaviour by using transformation δ mentioned in Section 3.4.

860 D. Gurov et al. / Information and Computation 206 (2008) 840–868

(weak-abstract)
αM(A) |=b δ(ψ)

A |=M
b,w

ψ

Theorem 51. For last-call recursive applets A rule (weak-abstract) is sound and complete.

Proof. Follows fromthedefinitionofbehavioural satisfaction, Proposition20(ii), Corollary49, Corollary23, and thedefinition

of weak behavioural interface satisfaction, all of which are equivalences. �

6.3.2. Compositional reasoning

Let A :IA and B : IB be applets such that IA ∩ IB = ∅ and let MA ⊆ I+A and MB ⊆ I+B be sets of public methods such that

I−A ⊆ I+A ∪ MB and I−B ⊆ I+B ∪ MA. The latter condition says that each applet only calls its ownmethods and the others’ public

methods and implies that their composition is closed. We combine the compositional verification principle (compos) from
Section 5 with the abstraction principle (abstract) to obtain the following abstract compositional verification principle:

(abstract-compos)
αMA (A) |=s φ θ

Î(MA)
(φ)
 αMB (B) |=b ψ

A
 B |=MA∪MB
b

ψ

Notice that the maximal model construction is based on the public interface Î(MA) = (MA, I−A − (I+A − MA)) of applet A.

Theorem 52. Rule (abstract-compos) is sound.

Proof. Follows from the soundness of (abstract) and (compos) together with Proposition 46. �

Similarly as for the abstraction principle, we can state a faithful compositional verification principle (weak-abstract-compos)
for properties of the observable interface behaviour of applets which are last-call recursive:

(weak-abstract-compos)
αMA (A) |=s φ θ

Î(MA)
(φ)
 αMB (B) |=b δ(ψ)

A
 B |=MA∪MB
b,w

ψ

Theorem 53. Rule (weak-abstract-compos) is sound and complete for last-call recursive applets A and B.

Notice that rule (weak-abstract-compos) is also sound for applets that are not last-call recursive: last-call recursiveness is

only needed to ensure completeness.

Our scenario for secure post-issuance loading of applets is based on the verification principle embodied by these rules

and its derivatives. In particular, a combined application of rules (weak-abstract-compos) and (compos) yields the rule

(w(eak)-a(bstract)-c(ompos)-2), which we apply in our case study in Section 8:

(wac-2)
αMA (A) |=s φ αMB (B) |=s ξ θ

Î(MA)
(φ)
 θ

Î(MB)
(ξ) |=b δ(ψ)

A
 B |=MA∪MB
b,w

ψ

Here, an application of rule (compos) has introduced a secondmaximal model for the public interface of B and structural

property ξ . Notice that this rule is sound and complete for last-call recursive applets.

7. A tool set for compositional verification

To support our compositional verification method, we have developed a tool set implementing the various algorithms

presented above and providing translations into the input formats of appropriate, existing model checkers. Figure 6 gives a

general overview of the tool set.

As input we have for each applet either an implementation (in Java bytecode), or a structural property, restricting its

possible implementations, plus a public interface, specifying the methods provided and required by the applet. For these

inputs, we construct an applet representation according to Definition 27.

In case we have the applet implementation, we use the Applet Analyser to extract the concrete applet graph. The Applet

Analyser is a static analysis tool, built on top of the SOOT Java Optimisation Framework [12]. The byte code of an applet is

transformed into Jimple basic blocks, while abstracting away variables, method parameters, and calls to API methods. We

use SOOT’s standard class hierarchy analysis to produce a safe over-approximation of the call graph. If, for example, the

static analysis cannot determine the receiver of a virtual method call, a call edge is generated for every possible method

implementation. Next we use the Inliner, which is an Ocaml implementation of the inlining algorithm of Definition 42. The

Inliner takes the extracted method graph and the public interface as input, and produces the graph at the public interface

level.

D. Gurov et al. / Information and Computation 206 (2008) 840–868 861

Fig. 6. Tool set for compositional applet verification.

In case we have a structural property, we use the Maximal Model Constructor. This is an Ocaml implementation of the

SNF transformation as defined in Section 3.3, which we use to construct maximal models. The structural properties and the

applet interface are used to produce an applet graph that simulates all possible implementations of applets respecting the

formula.

If required, the resulting applets can be composed with the
 operator, which is basically a concatenation of the textual

graph representations. Since the applet analyser appends package names to the method names, there are no name conflicts

to be resolved here. Using the Model Generator the resulting applet graphs are translated into models which serve as input

for different model checkers. If we want to check structural properties, we exploit the fact that applet graphs can be viewed

as finite Kripke structures. Therefore, structural properties can be expressed in temporal logics and they can be checked

using standard model checking tools such as the ConcurrencyWorkbench (CWB) [38]. The Kripke structures of the CWB are

labelled transition systems generated from CCS process definitions. For this purpose, we use theModel Generator to convert

applet graphs into a representation as CCS processes. Since CCS does not have the notion of valuation, atomic propositions

p assigned to a node in an applet are represented by probes, that is, self-loops labelled by p. The translation also produces a

set of process constants corresponding to the entry nodes of the respective applet. To model check an applet graph against

a structural safety property, all initial states have to be checked individually. We encode the properties to be checked as �-
calculus formulae, replacing atomic propositions p by 〈p〉 true. Since CWB supports parametrised formulae, our specification

patterns can be encoded directly.

If for a composed system we want to verify whether it respects a behavioural safety property, we use the fact that the

behaviour of an applet is an infinite statemodel generated by a PushdownAutomaton (PDA) given as a set of production rules

induced by the applet. Themodel checking problem for this class of models is exponential both in the size of the formula and

in the number of control states of the PDA [10]. Ideally we would like to use an existing model checker for PDAs (PDA MC).

Unfortunately, there is currently no efficient tool available formodel checking (alternation-free)modal�-calculus properties
of PDAs. We experimented with Alfred [39], a demonstrator tool implementing the model checking algorithm of Bouajjani

et al. [40], and we are currently developing such a model checker.

8. Case study

To evaluate its validity, we apply our compositional verification method to a realistic smart card case study, which

illustrates typical unwanted applet interactions. The application, an electronic purse, has been provided by smart card

producer Gemplus as a test case for formal methods. Even though it is not actually used by Gemplus, it demonstrates all the

relevant issues related to smart card applications. In this section, we introduce the electronic purse case study, present the

local and global specifications for the different applets, and describe their verification using the tool set presented above.

8.1. Illicit applet interactions in the electronic purse

The Gemplus electronic purse case study PACAP [41] is developed to provide a realistic case study for applying formal

methods to Java Card applications. It defines three applications: CardIssuer, Purse and Loyalty. Typically, a card will contain

one card issuer and one purse applet, but several loyalty applets. The case study has been previously used in connectionwith

several other formal techniques. For example, functional source code level specifications have been given and checked with

automatic and interactive verification techniques [42]. The case study also has been used to illustrate an approach where

different privacy levels are assigned to information, andmodel checking is used to ensure that the information flow respects

the restrictions imposed by these privacy levels [43]. The property described in the latter work motivates the property we

862 D. Gurov et al. / Information and Computation 206 (2008) 840–868

study here. However, our technique is more general, allowing the verification of arbitrary behavioural control-flow safety

properties.

The property that we verify for this case study is only concerned with Purse and Loyalty, we shall therefore not discuss

CardIssuer any further. If the card holder wishes to join a loyalty program, the appropriate applet can be loaded on the card.

Subsequently, the purse and the different loyalties will exchange information about the purchases made, so that the loyalty

points can be credited. Current versions of Java Card use sharable interfaces to exchange this kind of information. Even

though in the future this is likely to change, for our techniques to be applicable it is not relevant how this communication

exactly takes place, as long as it is in terms of method calls (rather than in terms of shared state). The goal of our case study

is to ensure that no illicit interactions can happen between the various applets on the card. The code of the application is

last-call recursive, thus our verification will be exact, and the inlining step will not introduce any new observable interface

behaviours. In this particular case study, we can verify correctness of the decomposition, thus we rely only on soundness of

the compositional verificationprinciple.However, if correctness of thedecomposition couldnot be verified, the completeness

for last-call recursive applets would tell us that our local assumption is too weak.

To understand the propertywhichwe verify here, let us look closer at how the purse and the loyalties communicate about

the purchases made with the card. The electronic purse keeps a log table of all credit and debit transactions, and the loyalty

applets can request the (relevant) information stored in this table. Further, loyalties might have so-called partner loyalties,

which means that a user can add up the points obtained with the different loyalty programs. Therefore, each loyalty should

keep track of its local balance and its extended balance. If the user wishes to know how many loyalty points are available

exactly, the loyalty applet will ask for the relevant entries of the purse log table in order to update its balance, and it will also

ask the balances of partner loyalties in order to compute the extended balance.

For efficiency reasons, the log table is of fixed length, arranged as a ring. If the log table is full, existing entries will be

replaced by new transactions. In order to ensure that loyalties do not miss any of the logged transactions, they can subscribe

to the so-called logFull service. This service signals all subscribed loyalties that the log table will be overwritten soon, and

that therefore they should update their balances. Typically, loyalties will have to pay for this service.

Suppose we have an electronic purse, which contains besides the electronic purse itself two partner loyalties, say L1 and

L2. Further, suppose that L1 has subscribed to the logFull service, while L2 has not. If in reaction to the logFull message L1
always calls an interface method of L2 (say to ask for its balance when computing the extended balance), L2 can implicitly

deduce that the log table might be full. A malicious implementation of L2 might therefore request the information stored in

the log table before returning the value of its local balance to L1. If loyalties have to pay for the logFull service, such control

flow is unwanted, since the owner of the Purse applet will not want other loyalties to get this information for free.

This is a typical example of an illicit applet interaction, that our compositional verification technique can detect. Below,

we show how the absence of this particular undesired scenario can be specified and verified algorithmically. We use com-

positional reasoning to reduce the global behavioural property expressing the absence of the scenario described above to

local structural properties of the purse and loyalty applet classes. We assume there is only one purse applet on the card, but

we allow an arbitrary number of loyalty applets on the card. However, since all loyalty applets have the same interface, we

can apply class-based analysis, and treat all loyalty instances in a similar way. The case study provides implementations for

the purse and the loyalty applet. These are checked against the corresponding structural properties. Notice that a typical use

of the card initially only will have the purse applet installed on the card. After the card has been issued, new loyalty applets

will be installed whenever the card holder wishes to join a loyalty program. Every time a new loyalty applet is installed, it

will have to be verified against the structural specification of the loyalty applet.

8.2. Specification

This section presents the formalisation of the global and local security properties that we need for our example. The

following section then shows how the tool set is used for the verification of the decomposition and of the implementations

with respect to the local properties.

8.2.1. Specification patterns

Since writing specifications in the modal �-calculus is known to be difficult (even in the simulation logic fragment), we

define a collection of commonly used specification patterns (inspired by the Bandera Specification Pattern project [44]). In

our experience, all relevant behavioural control-flow safety properties can be expressed using a small set of such patterns –

however, it is important to remember that one can always fall back on the full expressiveness of simulation logic.We present

several specification patterns, both at structural and behavioural level, which are all used in the case study at hand. From

now on we shall adopt the convention of denoting structural properties by σ and behavioural ones by φ.

Structural specification patterns We shall use Everywhere with the obvious formalisation:

Everywhere σ = νY . σ ∧ [ε, I−]Y
= Y [Y = σ ∧ [ε, I−]Y]

as well as the following patterns, for method setsM and M′ of an applet with interface I:

D. Gurov et al. / Information and Computation 206 (2008) 840–868 863

M HasNoCallsTo M′ = (∧
m∈M ¬m

) ∨ (Everywhere [M′] ff
)

HasNoOutsideCalls M = M HasNoCallsTo (I− − M)

The first pattern specifies that method graphs in the setM do not contain edges labelled with elements of the setM′. The
second specifies a closed set of methods M, i.e., methods in M only contain calls to methods inM.

Behavioural specification patterns Pattern Always is standard:

Always φ = νZ. φ ∧ [Lb]Z
= Z[Z = φ ∧ [Lb]Z]

For specifying that a property φ is to hold within a call to method m, we use the Within pattern formalised as follows:

Within m φ = ¬m ∨ (Always φ
)

More precisely, this pattern states that φ always holds as soon as m is called. However, since we do not use this pattern

inside other formulae, the given description is correct. Notice that this is a typical behavioural pattern: the notion of Within

a method invocation encompasses all methods that might be invoked during the call to m. This reachability notion cannot

be directly expressed at the structural level.

Finally, for applet A : (I+, I−) and method set M, we define:

CanNotCall A M =
∧
m∈I+

∧
m′∈M

[mcall m′]ff

This pattern holds for state (v, σ) if no call to a method in M is possible.

8.2.2. The security properties

We express the security properties at the public level, that is, structural properties refer to the interface abstraction

(i.e., inlined version) and behavioural properties to the interface behaviour of applets. As mentioned above, communication

between applets takes place via so-called sharable interfaces. The Purse applet defines a sharable interface SIP for com-

munication with loyalty applets, containing the methods getTransaction, isThereTransaction, getInvExchangeRateIntPart and

getInvExchangeRateDecPart. The Loyalty applet defines two sharable interfaces: one, SILP , for communication with a Purse,

containing the methods logFull and exchangeRate, and one, SILL , for communication with other loyalty applets, contain-

ing methods getBalance and getDebit. If we define SIL = SILP ∪ SILL , then we can identify the following public interfaces:

IP = (SIP , SIP ∪ SIL) for Purse, and IL = (SIL , SIP ∪ SIL) for Loyalty.

The global security property To guarantee that no loyalty will get the opportunity to circumvent subscribing to the logFull

service, we require that if the Purse calls the logFull method of a loyalty, within this call the loyalty does not communicate

with other loyalties. However, as the logFullmethod is supposed to call the Purse for its transactions, we also have to exclude

indirect communications, via the Purse. We require the following global property of the interface behaviour:

A call to Loyalty.logFull does not trigger any calls to any other loyalty.

This property can be formalised with the help of behavioural patterns:

φ = Within Loyalty.logFull

(CanNotCall Loyalty SIL ∧ CanNotCall Purse SIL)

Thus, if a loyalty receives a logFull message, it cannot call any other loyalty (because it cannot call any of its sharable

interface methods), and in addition, if the Purse is (re)activated within the call to logFull, it cannot call any loyalty applet.

Property decomposition We apply rule (wac-2) from Section 6.3 and therefore introduce local structural properties for the

inlined versions of Purse and Loyalty. Here we explain the formalisation of the local properties; below we describe how

we actually verify that these are sufficient to guarantee the global behavioural property. Within Loyalty.logFull, the Loyalty

applet has to call the methods Purse.isThereTransaction and Purse.getTransaction, but it should not make any other external

calls (where calls to sharable interface methods of Loyalty are considered external). Notice that since we are performing

class-based analysis, we cannot distinguish between calls to interface methods of other instances, and those of the same

instance. Thus, a natural structural property for Loyalty would be, informally:

From any entry point of Loyalty.logFull, the only reachable external calls are calls to Purse.isThereTransaction and

Purse.getTransaction.

Thus, within a call to Loyalty.logFull the Purse applet can only be activated via Purse.isThereTransaction or Purse.getTransaction.

For Purse we can therefore propose the following informal structural property:

From any entry point of Purse.isThereTransaction or Purse.getTransaction, no edge labelled by an external call is

reachable.

Using the structural specification patterns, we can specify these properties as follows.

864 D. Gurov et al. / Information and Computation 206 (2008) 840–868

σL = {Loyalty.logFull} HasNoCallsTo
(SIP ∪ SIL)− {Purse.isThereTransaction, Purse.getTransaction}

σP = HasNoOutsideCalls {Purse.isThereTransaction} ∧
HasNoOutsideCalls {Purse.getTransaction}

Notice that these specifications are expressed with respect to the inlined versions of the applets. Excluding external

calls from a method at the public level is equivalent to excluding external calls from any private method that can be

called transitively from the public method at the implementation level - a property which is not directly expressible (at

the implementation level) in our logic (cf. Huisman et al. [30]).

8.3. Verification

After the global and local security properties have been specified, we have to show that: (1) the local properties are

sufficient to establish the global security property, and (2) the implementations of the different applets respect the local

properties. In order to do this, we identify the following (independent) tasks, considered in detail below.

(1) Verifying the correctness of the property decomposition by:

(a) building θIP (σP) and θIL (σL), the maximal applets for σP and σL , respectively; and

(b)model checking θIP (σP)
 θIL (σL) |=b δ(φ).

(2) Verifying the local structural properties by:

(a) extracting the applet graphs P of the Purse and L of the Loyalty;

(b) computing αSIP (P) and αSIL (L) using the inlining algorithm; and

(c)model checking αSIP (P) |=s σP and αSIL (L) |=s σL .

We then apply rule (wac-2) to conclude that P
 L |=SIP∪SIL
b,w

φ as required.

8.3.1. Verification of the property decomposition

To illustrate the procedure of constructing a maximal applet, we present in some detail the construction of the maximal

applet for σL; for σP the construction is similar. First, we write σL as a modal equation system, where we use lf to abbreviate

Loyalty.logFull, gT for Purse.getTransaction, iTT for Purse.isThereTransaction, and M for (SIP ∪ SIL)− {
iTT , gT

}
:

σL = ¬lf ∨ Y [Y = [M]ff ∧ [ε, gT , iTT]Y]
Next, we build the interface formula φIL for interface IL (recall that the maximal applet for σL is the maximal model for

σL ∧ φIL). For clarity of presentation we shall make here the simplifying assumption that SIL = {lf }; the actual case study has

naturally been performed for the full sharable interface. Thus φIL = Xlf [Xlf = [ε, lf , SIP]Xlf ∧ lf]. We then form the conjunction

σL ∧ φIL , which by introducing a new variable Z yields:

Z

⎡
⎣ Z = (¬lf ∨ Y) ∧ Xlf

Y = [M]ff ∧ [ε, gT , iTT]Y
Xlf = [ε, lf , SIP]Xlf ∧ lf

⎤
⎦

The next step is to transform this formula into SNF. First, in Phase I of the transformation, each equation is transformed

into a disjunction of state normal forms. Suppose we start with the equation defining Z .

(1)Make equation strongly guarded, by rewriting with the original equations:

Z = (¬lf∨([M]ff ∧ [ε, gT , iTT]Y)) ∧ [ε, lf , SIP]Xlf ∧ lf

(2) Put equation into DNF and simplify:

Z = [M]ff ∧ [ε, gT , iTT]Y ∧ [ε, lf , SIP]Xlf ∧ lf

(3) Group and complete boxes. No boxes are missing, thus we only group them (remember M = (SIP ∪ SIL)− {gT , iTT} =
(SIP ∪ {lf })− {gT , iTT}):

Z = [M]ff ∧ [ε, gT , iTT](Y ∧ Xlf) ∧ lf

(4) Introduce new equations for formulae under boxes. Since the map h does not yet contain an entry for {Y ,Xlf }, we choose

a fresh variable U and add ({Y ,Xlf },U) to h. The equation defining Z becomes

Z = [M]ff ∧ [ε, gT , iTT]U ∧ lf

while we introduce the new equation U = Y ∧ Xlf .

(5) Finally, complete the equation by addingmissing literals and put the formula intoDNF again. Here, only literal r ismissing.

Adding this gives:

D. Gurov et al. / Information and Computation 206 (2008) 840–868 865

(a) (c)(b)

Fig. 7. Maximal applets for σL and σP .

Z = ([M]ff ∧ [ε, gT , iTT]U ∧ lf ∧ r)∨
([M]ff ∧ [ε, gT , iTT]U ∧ lf ∧ ¬r)

The equations defining Y and Xlf are handled in a similar way. The only step that has some effect is step 5, which introduces

the missing literal r. More interesting is how Phase I is applied to the new equation U = Y ∧ Xlf .

(1) Rewriting into strongly guarded form yields:

U = [M]ff ∧ [ε, gT , iTT]Y ∧ [ε, lf , SIP]Xlf ∧ lf

(2) Formula φU is already in DNF and cannot be simplified.

(3) Grouping boxes results in the following equation:

U = [M]ff ∧ [ε, lf , SIP](Y ∧ Xlf) ∧ lf

(4) The map h contains the pair ({Y ,Xlf },U), so we replace Y ∧ Xlf by U.

U = [M]ff ∧ [ε, gT , iTT]U ∧ lf

(5) Literal completion again introduces r.

U = ([M]ff ∧ [ε, gT , iTT]U ∧ lf ∧ r)∨
([M]ff ∧ [ε, gT , iTT]U ∧ lf ∧ ¬r)

After applying Phase I to all equations, Phase II introduces a new equation for each disjunct and replaces each old variable

by the disjunction of the new variables. For example, the equation defining U gets replaced by:

U1 = [M]ff ∧ [ε, gT , iTT](U1 ∨ U2) ∧ lf ∧ r

U2 = [M]ff ∧ [ε, gT , iTT](U1 ∨ U2) ∧ lf ∧ ¬r

The remaining equations are treated similarly. Notice that also Z in X gets replaced by {Z1, Z2}, where Z1 and Z2 are the

equations replacing Z .

During the optimisation in Phase III, we find that the equations for Z1 and U1, and Z2 and U2 are duplicates of each other.

Therefore, we remove the equations for Z1 and Z2, and replace {Z1, Z2} in X by {U1,U2}. Further, the equations Y1, Y2, Xlf1 and

Xlf2 (replacing Y andXlf in Phase II), are not reachable fromany variable inX = {U1,U2}. Hence, the final result is (U1 ∨ U2)[],
where

	 =
[
U1 = [M]ff ∧ [ε, gT , iTT](U1 ∨ U2) ∧ lf ∧ r

U2 = [M]ff ∧ [ε, gT , iTT](U1 ∨ U2) ∧ lf ∧ ¬r

]

The specification extracted from this modal equation system (which is in simulation normal form) is the maximal applet

θIL (σL) for σL . It is shown in Figure 7(a). The method graph has two nodes; both of them are entry points of the method,

but only one is labelled as a return point. The edges are labelled only with internal actions and calls to getTransaction and

isThereTransaction. As mentioned above, in the computation above we simplified SIL to {lf }. If we do the computation for the

complete shareable interface SIL , we find that for all other methods m in SIL , the method graph is a maximal method graph

without restrictions, as in Figure 7(b). If we do the same computation for σP , we find themethod graph for isThereTransaction

in the maximal model for the Purse as in Figure 7(c), i.e., the method can only call itself or make internal transitions. The

method graph for getTransaction is similar, with all edges labelled with getTransaction or ε, while the method graphs for the

other methods provided by the Purse are maximal method graphs, without any restrictions.

Using our implementation of the maximal model construction in Ocaml, computing the maximal applets for σL and σP
takes less than a second. Table 2 shows the relevant information.

Once the maximal applets θIP (σP) and θIL (σL) are constructed, we produce their composition θIP (σP)
 θIL (σL), and we use

the Model Generator to translate the applet graph to a PDA representation, serving as input to a PDA model checker.

866 D. Gurov et al. / Information and Computation 206 (2008) 840–868

Table 2

Size and timing for maximal applet construction

θIL (σL) θIP (σP)

Nodes 8 8

Edges 120 88

Constr. time (s) 0.05 0.05

Table 3

Statistics on applet graph extraction and verification

Classes # Methods # Nodes # Edges Extr. time (s) Inline time (s) Mod. gen. time (s) Verif. time (s)

Loyalty 11 237 3 782 4 372 5.6 0.6 2.8 10.1

Purse 15 367 5 882 7 205 7.5 0.6 0.6 3.6

8.3.2. Correctness of the local structural properties

We use the Applet Analyser to extract applet graphs and the appropriate set of entry points from the byte code of the

loyalty and purse implementations. Table 3 provides statistics on the extracted applet graphs.

Next, we applied the implementation of the inlining algorithm to the extracted applet graphs, which took 0.6 seconds on

both Loyalty and Purse. Since the applets are last-call recursive, the inlining does not introduce any new observable interface

behaviours. Even though theoretically the worst-case blowup in the number of nodes of the inlined applets, determined by

the number of normal M-frames, is exponential in the number of private methods, in practice this is not likely to happen.

In our case, we even observed a reduction in size of the graphs due to the following two facts: first, the call dependency

graph is sparse and, second, the inlining focuses on interaction between applets, and thus any code that is not reachable by

a shareable interface method is abstracted away by the inlining (as it is not relevant to the property we are interested in).

Finally, we used the Model Generator to translate the inlined applet graphs into input for CWB, and we verified the

structural properties. Table 3 also provides statistics for the model generation and verification time.

Remark. Initially, we did not distinguish between public and private methods when we performed the case study (see [30]).

This gave significant performance problems: the maximal applets contained implementations for (and calls to) all private

methods as well, which resulted in huge structures. Moreover, without the distinction between public and private methods

we had to compute the transitive closure of method calls to be able to express the local structural specifications, which

resulted in a non-robust specification: for example splitting a private method into two would break the local specification.

Adding thedistinction betweenpublic andprivatemethods thus resulted in a conceptually cleaner compositional verification

method, with a drastically improved performance.

9. Conclusion

We have developed a compositional verification method for sequential programs with procedures. The method is partic-

ularly suited for supporting the secure dynamic loading of applets onto smart cards and other smart devices, but dynamically

reconfiguring distributed systems based on remote procedure call communication also provides a suitable application area

for the method. Using our verification method, secure dynamic loading can be achieved through the following scenario:

(1) Specify global security property φ (at structural or behavioural public level).

(2) For any initially unavailable applet A with public interface I containing public methods M, specify a local specification

σA (at structural public level).

(3) Compute amaximal applet θI(σA), and verify that thismaximal applet, composedwith the inlining of the already available

applets B (with public methods N) satisfies φ, i.e., verify θI(σA)
 αN(B) |= φ. This establishes the correctness of the

decomposition.

(4)When applet A becomes available, compute its abstraction αM(A) by inlining its private methods, and verify that this

abstraction respects the local specification, i.e., αM(A) |= σA.

Notice that we restrict attention to control-flow safety properties. We have shown applicability of this approach on an

industrial case study. To support the above scenario, we have developed the following theoretical contributions:

(1) a logical characterisation of simulation, and vice versa, a behavioural characterisation of logical satisfaction (for safety

properties) in terms of maximal models;

(2) adaptation of the maximal model technique to procedural programs;

(3) a sound and complete compositional verification method for procedural programs; and

(4) a behaviour-preserving inlining transformation of procedural programs.

Future work The program model which forms the basis for our analyses is rather abstract. We are currently investigating

how to extend our techniques to finer program models. In particular, we are considering program models capturing multi-

D. Gurov et al. / Information and Computation 206 (2008) 840–868 867

threading and exceptions. Our compositional verification principle remains valid, as long as the notions of structure and

behaviour (and the corresponding notions of simulation and logic) can be extended so that the necessary technical conditions

still apply. However, the verification problem for the global behavioural property becomes undecidable in the presence of

multi-threading [45] (when considering the same primitives as in e.g., Java), thus appropriate abstraction techniques have

to be employed for this task (as proposed in e.g., [46,47,48]). A further extension of significant interest is adding data to the

programmodel, so that a more precise control flow can bemodelled, and properties over data can be specified. This requires

again the use of appropriate abstractions in order to retain decidability of the verification problems.

In principle, our verification technique canbe extended tomore expressive logics, for example to the fullmodal�-calculus.
However, adding diamond modalities and least fixed-point recursion to the logic requires a more general notion of model

(and hence applet structures and behaviours) in the framework; for example, see [26,49] for suchmodels and corresponding

maximal model constructions.

Further, we are investigating under what restrictions one can construct maximal applets for behavioural properties,

thus extending the method to deal with local behavioural properties. The approach we take is to define a translation from

behavioural properties into collections of structural properties, such that any applet that is simulated by a maximal applet

for one of the structural properties satisfies the original behavioural one. Preliminary results in this direction are presented

in [11].

References

[1] Common Criteria. Available from: http://www.commoncriteriaportal.org.
[2] G. Chugunov, L. Fredlund, D. Gurov, Model checking of multi-applet JavaCard applications, Smart Card Research and Advanced Application Conference

(CARDIS ’02), USENIX Publications, 2002, pp. 87–95.
[3] J. Esparza, D. Hansel, P. Rossmanith, S. Schwoon, Efficient algorithms for model checking pushdown systems, Computer Aided Verification (CAV ’00),

LNCS, vol. 1855, Springer Verlag, 2000, pp. 232–247.
[4] F. Besson, T. Jensen, D. Le Métayer, T. Thorn, Model checking security properties of control flow graphs, Journal of Computer Security 9 (3) (2001)

217–250.
[5] R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. Reps, M. Yannakakis, Analysis of recursive state machines, ACM TOPLAS 27 (2005) 786–818.
[6] O. Grumberg, D. Long, Model checking and modular verification, ACM TOPLAS 16 (3) (1994) 843–871.
[7] G. Barthe, D. Gurov, M. Huisman, Compositional verification of secure applet interactions, Fundamental Approaches to Software Engineering (FASE

’02), LNCS, vol. 2306, Springer Verlag, 2002, pp. 15–32.
[8] D. Kozen, Results on the propositional �-calculus, Theoretical Computer Science 27 (1983) 333–354.
[9] A. Bouajjani, J. Fernandez, S. Graf, C. Rodriguez, J. Sifakis, Safety for branching time semantics, Automata, Languages and Programming (ICALP ’91),

LNCS, vol. 501, Springer Verlag, 1991, pp. 76–92.
[10] O. Burkart, D. Caucal, F. Moller, B. Steffen, Verification on infinite structures, in: J. Bergstra, A. Ponse, S. Smolka (Eds.), Handbook of Process Algebra,

North Holland, 2000, pp. 545–623.
[11] D. Gurov, M. Huisman, Reducing behavioural to structural properties of programs with procedures, Tech. Rep. TRITA-CSC-TCS 2007:3, KTH Royal

Institute of Technology, Stockholm. 2007. Available from: http://www.csc.kth.se/∼dilian/Papers/techrep-07-3.pdf.
[12] R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, P. Co, Soot—a Java Optimization Framework, in: CASCON ’99, 1999, pp. 125–135. Available

from: http://www.sable.mcgill.ca/soot/.
[13] A. Lal, T.W. Reps, Improving pushdown system model checking, Computer Aided Verification (CAV ’06), LNCS, vol. 4144, Springer Verlag, 2006, pp.

343–357.
[14] R. Alur, K. Etessami, P. Madhusudan, A temporal logic for nested calls and returns, Tools and Algorithms for the Analysis and Construction of Software

(TACAS ’04), LNCS, vol. 2998, Springer Verlag, 2004, pp. 467–481.
[15] R. Alur, M. Arenas, P. Barcelo, K. Etessami, N. Immerman, L. Libkin, First-order and temporal logics for nested words, Logic in Computer Science (LICS

’07), IEEE Computer Society, Washington, DC, USA, 2007, pp. 151–160.
[16] W.-P. de Roever, F. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech, M. Poel, J. Zwiers, Concurrency Verification: Introduction to Compositional and

Noncompositional Methods, No. 54 in Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, 2001.
[17] K. Laster, O. Grumberg,Modularmodel checking of software, Proceedings of the 4th International Conference on Tools and Algorithms for Construction

and Analysis of Systems (TACAS ’98), LNCS, vol. 1384, Springer Verlag, 1998, pp. 20–35.
[18] R. Alur, R. Grosu, Modular refinement of hierarchic reactive machines, ACM TOPLAS 26 (2004) 339–360.
[19] O. Ly, Compositional verification: Decidability issues using graph substitutions, Proceedings of the 29th Mathematical Foundations of Computer

Science (MFCS ’04), LNCS, vol. 3153, Springer Verlag, 2004, pp. 537–549.
[20] H. Andersen, Partial model checking (extended abstract), Logic in Computer Science (LICS ’95), IEEE Computer Society Press, 1995, pp. 398–407.
[21] O. Kupferman, M. Vardi, An automata-theoretic approach to modular model checking, ACM TOPLAS 22 (1) (2000) 87–128.
[22] G. Boudol, K. Larsen, Graphical versus logical specifications, Theoretical Computer Science 106 (1992) 3–20.
[23] K. Larsen, Modal specifications, Automatic Verification Methods for Finite State Systems, LNCS, vol. 407, Springer Verlag, 1989, pp. 232–246.
[24] M. Hennessy, R. Milner, Algebraic laws for nondeterminism and concurrency, Journal of the ACM 32 (1985) 137–161.
[25] D.Dams, K.Namjoshi, The existence of finite abstractions for branching timemodel checking,NineteenthAnnual IEEE SymposiumonLogic in Computer

Science (LICS ’04), IEEE Computer Society Press, 2004, pp. 335–344.
[26] D. Dams, K. Namjoshi, Automata as abstractions, Verification, Model Checking, and Abstract Interpretation (VMCAI ’05), LNCS, vol. 3385, Springer

Verlag, 2005, pp. 216–232.
[27] M. Goldman, S. Katz, MAVEN: Modular aspect verification, Tools and Algorithms for the Construction and Analysis of Systems (TACAS ’07), LNCS, vol.

4424, Springer Verlag, 2007, pp. 308–322.
[28] C. Sprenger, D. Gurov, M. Huisman, Compositional verification for secure loading of smart card applets, Formal Methods and Models for Co-Design

(MEMOCODE ’04), IEEE Computer Society, 2004, pp. 211–222.
[29] D. Gurov, M. Huisman, Interface abstraction for compositional verification, Software Engineering and Formal Methods (SEFM’05), IEEE Computer

Society, 2005, pp. 414–423.
[30] M. Huisman, D. Gurov, C. Sprenger, G. Chugunov, Checking absence of illicit applet interactions: a case study, Fundamental Approaches to Software

Engineering (FASE ’04), LNCS, vol. 2984, Springer Verlag, 2004, pp. 84–98.
[31] H. Bekič, Definable operators in general algebras, and the theory of automata and flowcharts, Tech. Rep., IBM Laboratory, 1967.
[32] C. Stirling, Modal and Temporal Logics of Processes, Springer Verlag, 2001.
[33] A. Tarski, A lattice-theoretical fixpoint theorem and its applications, Pacific Journal of Mathematics 5 (1955) 285–310.
[34] A. Arnold, D. Niwiński, Rudiments of μ-calculus, Studies in Logic and the Foundations of Mathematics, vol. 146, Elsevier Publishing, 2001.

http://www.commoncriteriaportal.org
http://www.csc.kth.se/${sim }$dilian/Papers/techrep-07-3.pdf
http://www.sable.mcgill.ca/soot/

868 D. Gurov et al. / Information and Computation 206 (2008) 840–868

[35] I. Walukiewicz, Pushdown processes: games and model checking, in: Computer Aided Verification (CAV ’96), LNCS, vol. 1102, 1996, pp. 62–75.
[36] C. Sprenger, D. Gurov, M. Huisman, Simulation logic, applets and compositional verification, Tech. Rep. RR-4890, INRIA, 2003.
[37] D. Gurov, M. Huisman, Abstraction over public interfaces, Tech. Rep. RR-5330, INRIA, 2004.
[38] R. Cleaveland, J. Parrow, B. Steffen, A semantics based verification tool for finite state systems, International Symposium on Protocol Specification,

Testing and Verification, North-Holland Publishing Co., Amsterdam, The Netherlands, 1990, pp. 287–302.
[39] D. Polanský, Verifying properties of infinite-state systems, Master’s thesis, Masaryk University, Faculty of Informatics, Brno, 2000.
[40] A. Bouajjani, J. Esparza, O. Maler, Reachability analysis of pushdown automata: Application to model-checking, in: International Conference on

Concurrency Theory (CONCUR ’97), vol. 1243 of LNCS, 1997, pp. 135–150.
[41] E. Bretagne, A.E. Marouani, P. Girard, J.-L. Lanet, PACAP purse and loyalty specification, Tech. Rep. V 0.4, Gemplus, 2000.
[42] C. Breunesse, N. Cataño, M. Huisman, B. Jacobs, Formal methods for smart cards: an experience report, Science of Computer Programming 55 (1–3)

(2005) 53–80.
[43] P. Bieber, J. Cazin, P. Girard, J.-L. Lanet, V. Wiels, G. Zanon, Checking secure interactions of smart card applets, Journal of Computer Security 10 (4)

(2002) 369–398.
[44] J. Corbett, M. Dwyer, J. Hatcliff, Robby, A language framework for expressing checkable properties of dynamic software, International SPINWorkshop

on SPIN Model Checking and Software Verification, LNCS, vol. 1885, Springer Verlag, 2000, pp. 205–223.
[45] G. Ramalingam, Context-sensitive synchronization-sensitive analysis is undecidable, ACM TOPLAS 22 (2) (2000) 416–430.
[46] A. Bouajjani, J. Esparza, T. Touili, A generic approach to the static analysis of concurrent programs with procedures, SIGPLAN Notes 38 (1) (2003)

62–73.
[47] A. Bouajjani, J. Esparza, S. Schwoon, J. Strejček, Reachability analysis of multithreaded software with asynchronous communication, Foundations of

Software Technology and Theoretical Computer Science (FSTTCS ’05), LNCS, vol. 3821, Springer Verlag, 2005, pp. 348–359.
[48] S. Qadeer, J. Rehof, Context-boundedmodel checking of concurrent software, Tools andAlgorithms for the Construction andAnalysis of Systems (TACAS

’05), LNCS, vol. 3440, Springer Verlag, 2005, pp. 93–107.
[49] I. Aktug, D. Gurov, State space representation for verification of open systems, Algebraic Methodology And Software Technology (AMAST ’06), LNCS,

vol. 4019, Springer Verlag, 2006, pp. 5–20.

	Introduction
	Models, simulation and logic
	Model and simulation
	Simulation logic
	Weak simulation and logic

	Representation results
	Characteristic formulae
	Maximal models
	Transformation to SNF
	Representation results for weak simulation

	Program model
	Applet structure
	Maximal applet structures
	Applet behaviour
	Behavioural maximal applets

	Compositional verification
	Structural properties
	Behavioural properties

	Interface abstraction
	Interface behaviour
	The inlining transformation
	Interface abstraction and compositional reasoning

	A tool set for compositional verification
	Case study
	Illicit applet interactions in the electronic purse
	Specification
	Verification

	Conclusion
	References

