
Reducing Behavioural to Structural Properties

of Programs with Procedures

Dilian Gurov1? and Marieke Huisman2??

1 Royal Institute of Technology, Stockholm, Sweden
2 INRIA Sophia Antipolis, France

Abstract There is an intimate link between program structure and be-
haviour. Exploiting this link to phrase program correctness problems in
terms of the structural properties of a program graph rather than in
terms of its unfoldings is a useful strategy for making analyses more
tractable. The present paper presents a characterisation of behavioural
program properties through sets of structural properties by means of a
translation. The characterisation is given in the context of a program
model based on control flow graphs of sequential programs with proced-
ures, and properties expressed in a fragment of the modal µ-calculus with
boxes and greatest fixed-points only. The property translation is based
on a tableau construction that conceptually amounts to symbolic execu-
tion of the behavioural formula, collecting structural constraints along
the way. By keeping track of the subformulae that have been examined,
recursion in the structural constraints can be identified and captured by
fixed-point formulae. The tableau construction terminates, and the char-
acterisation is exact, i.e. the translation is sound and complete. A proto-
type implementation has been developed. We discuss several applications
of the characterisation, in particular sound and complete compositional
verification for behavioural properties based on maximal models.

1 Introduction

The relationship between a program’s syntactical structure and its behaviour is
fundamental in program analysis. For example, type systems analyse the struc-
ture of a program to deduce properties about its behaviour, while program syn-
thesis studies how to realise a program structure for a desired program behaviour.
The relationship is often exploited to phrase program correctness problems in
terms of the structure of a program rather than in terms of its behaviour, in order
to make analyses more tractable. If program data is abstracted away, and only
the control flow of programs with (possibly recursive) procedures is considered,
the relation between structure and behaviour is well-understood in one direction:
program structure, essentially a finite “program graph”, can be represented by a

? Partially funded by the IST FP6 programme of the EC, under the IST-FP6-STREP-
27004 S3MS project.

?? Partially funded by the IST FET programme of the EC, under the IST-2005-015905
MOBIUS project.

pushdown system that induces program behaviour as an “unfolding” of the struc-
ture in a context-free manner. This representation has been exploited widely, for
example for interprocedural dataflow analysis (e.g., in [18]) and for model check-
ing of behavioural properties formalised in temporal logic (e.g., in [8]). However,
in the other direction, this relationship is much less understood: given a pro-
gram behaviour, how can one capture the program structures that admit this
behaviour?

Both program structure and behaviour can be specified by temporal logic
formulae: structural properties concern the textual sequencing of instructions in
a program, while behavioural properties consider their executional sequencing.
The relationship between structure and behaviour is naturally expressed at the
logic level through the following two questions:

1. when does a structural property entail a behavioural one and,
2. can a behavioural property be characterised by a finite set of structural ones?

This paper addresses this characterisation problem in the context of a program
model based on control flow graphs of sequential programs with procedures,
for properties expressed in a fragment of the modal µ-calculus with boxes and
greatest fixed-points only. This temporal logic is suitable for expressing safety
properties (cf. [4]) in terms of sequences of method invocations, such as secur-
ity policies restricting access to given resources by means of API method calls
(cf. [19]). In previous work (see [11] for an overview), we showed how this logic
can be used for the specification and compositional verification of safety prop-
erties, both on the structural and on the behavioural level, and provided tool
support and case studies. In particular, we derived an algorithmic solution to
problem (1) stated above (see [11, p. 855]). Here, we give a precise solution to the
(considerably more complex) problem (2), showing that every disjunction-free
behavioural formula can be characterised by a finite set of structural formulae:
a program satisfies the behavioural formula if and only if it satisfies some struc-
tural formula from the set. For example, the results of this paper allow to derive
that the behavioural property “method a never calls method b” is characterised
by the (set of) structural properties “there is no call–to–b instruction in (the text
of) method a” and “in (the text of) method a, every call–to–b instruction and
every return instruction is preceded by some call–to–a instruction” (and hence,
due to recursion, control can never reach a call–to–b instruction).

Our solution is constructive, by means of a translation Π from behavioural
properties into sets of structural properties. The translation has been implemen-
ted in Ocaml and can be tested online [10]. It conceptually amounts to a symbolic
execution of the behavioural formula, collecting induced structural constraints
along the way. A considerable difficulty is presented by (greatest fixed-point) re-
cursion in the behavioural formula, which has to be captured by recursion in the
structural ones (in the absence of recursion it is considerably easier to define such
a translation, as we show in [13]). We handle recursion by means of a tableau
construction that maintains (during the symbolic execution) a symbolic “call
stack” indicating which subformulae have been explored for which method. We

2

use this stack to (1) identify when a (sub)formula has been sufficiently explored,
so that a branch of the tableau can be finished, and (2) to identify recursion in
the collected structural constraints and capture this by fixed-point formulae. We
prove that the construction terminates. Moreover, we show that the construction
is sound, and in case the behavioural formula is disjunction-free, also complete,
by viewing the tableau system as a proof system.

Applications In addition to its foundational value, the characterisation is useful
in various ways. In earlier work, we defined a maximal model construction for the
logic considered here, and adapted it to the construction of maximal program
structures from structural properties [11]. The combination of this construction
with the property translation Π presented here provides a solution to the prob-
lem of computing maximal program structures from behavioural properties. This
allows several problems to be addressed. First, as Section 4 shows, it can be ex-
ploited to extend the compositional verification technique of [11], where local as-
sumptions are required to be structural, to local behavioural properties. Second,
we obtain a solution to the realisation problem of synthesising (possibly recurs-
ive) program structures from temporal specifications of the permitted method
call sequences. Further, it can also be used to reduce infinite-state verification of
behavioural control flow properties to finite-state verification of structural prop-
erties. Thus, tools supporting structural properties only can in effect be used for
verifying behavioural properties. Moreover, in a mobile code deployment scheme,
where the security policies of the platform are given as behavioural control flow
properties, translating these into structural properties of the loaded applications
enables efficient on-device conformance checking via static analysis.

Related Work Our property translation has been motivated by our previous
work on adapting Grumberg and Long’s approach of using maximal models for
compositional verification [9] in the context of control flow properties of sequen-
tial programs with procedures [11]. A related problem, known to be problematic
for infinite-state systems, is the realisation problem of synthesising a program
(skeleton) from a temporal logic specification (see e.g., [16,25]).

Our research is also related to previous work on tableau systems for the
verification of infinite-state systems [6,20], model checking based on pushdown
systems [5,7,8] or recursive state machines [2], temporal logics for nested calls and
returns [3,1], interprocedural dataflow analysis [18], and abstract interpretation
(cf. e.g., the completeness result of [17]). However, these analyses infer from the
structure of a given program facts about its behaviour; in contrast, our analysis
infers, for all programs, facts about the structure from facts about the behaviour.

Organisation Section 2 formally defines the program model and logic. Next,
Section 3 defines the translation, by means of the tableau construction. Section 4
uses the characterisation to develop a sound and complete compositional verific-
ation principle for local behavioural properties, while Section 5 concludes with
a discussion of possible extensions and optimisations.

3

2 Preliminaries: Program Model and Logic

This section summarises the program model and logic for which we develop
our property translation. For a more detailed account, the reader is referred
to [21,11].

2.1 Specification and Logic

First, we define the general notions of model and specification.

Definition 1. (Model, Specification) A model is a structure M = (S,L,→
, A, λ), where S is a set of states, L a set of labels, →⊆ S × L × S a labelled
transition relation, A a set of atomic propostitions, and λ : S → P(A) a valu-
ation, assigning to each state s the set of atomic propositions that hold in s. A
specification S is a pair (M, E), with M a model and E ⊆ S a set of entry
states.

As a property specification language, we use the fragment of the modal µ-
calculus [14] with boxes and greatest fixed-points only. This temporal logic is
capable of characterising simulation (cf. [21]) and is thus suitable for expressing
safety properties. Throughout, we fix a set of labels L, a set of atomic proposi-
tions A, and a set of propositional variables V .

Definition 2. (Logic) The formulae of our logic are inductively defined by:
φ ::= p | ¬p | X | φ1 ∧φ2 | φ1 ∨φ2 | [a]φ | νX.φ, where p ∈ A, a ∈ L and X ∈ V .

Satisfaction on states (M, s) |= φ (also denoted s |= Mφ) is defined in the
standard fashion [14]. For instance, formula [a]φ holds of state s in model M if φ
holds in all states accessible from s via an edge labelled a. A specification (M, E)
satisfies a formula if all its entry states E satisfy the formula. The constant
formulae true (denoted tt) and false (ff) are definable. For convenience, we use
p ⇒ φ to abbreviate ¬p ∨ φ. We assume that formulae have pair-wise distinct
fixed-point binders, and unless stated otherwise, are closed and guarded (cf. [24]).

2.2 Control Flow Structure and Behaviour

Our program model is control–flow based and thus over–approximates actual
program behaviour. It defines two different views on programs: a structural and
a behavioural view. Both views are instantiations of the general notions of model
and specification. Notice in particular that these instantiations yield a structural
and a behavioural version of the logic. Again, we refer to [21,11] for more detail.

Control Flow Structure As we abstract away from all data, program structure
is defined as a collection of control flow graphs (or flow graphs), one for each of
the program’s methods. Let Meth be a countably infinite set of method names.
A method specification is an instance of the general notion of specification.

4

v5

v6

v7

v1

v3 v9

v0

v2

v4 v8

ε

ε

ε

ε

ε

ε

even

even

even

odd

odd

odd

even

even, r reven,rr odd, odd,

odd

 if (n == 0)
 public static boolean even(int n){

 return true;
 else
 return odd(n−1);
 }

 public static boolean odd(int n){
 if (n == 0)

 else
 return even(n−1);

 }}

 return false;

class Number {

Figure 1. A simple Java class and its flow graph

Definition 3. (Method specification) A flow graph for m ∈ Meth over a set
M ⊆ Meth of method names is a finite model Mm = (Vm, Lm,→m, Am, λm),
with Vm the set of control nodes of m, Lm = M ∪ {ε}, Am = {m, r}, and
λm : Vm → P(Am) so that m ∈ λm(v) for all v ∈ Vm (i.e. each node is tagged
with its method name). The nodes v ∈ Vm with r ∈ λm(v) are return points. A
method specification for m ∈ Meth over M is a pair (Mm, Em), s.t. Mm is a
flow graph for m over M and Em ⊆ Vm a non–empty set of entry points of m.

Next, we define flow graph interfaces. These ensure that control flow graphs can
only be composed if their interfaces match.

Definition 4. (Flow graph interface) A flow graph interface is a pair I =
(I+, I−), where I+, I− ⊆ Meth are finite sets of names of provided and required
methods, respectively. The composition of two interfaces I1 = (I+

1 , I
−
1) and I2 =

(I+
2 , I

−
2) is defined by I1 ∪ I2 = (I+

1 ∪ I+
2 , I

−
1 ∪ I−2).

The flow graph of a program is essentially the (disjoint) union of its method
graphs. To formally define the notion flow graph with interface, we use the notion
of disjoint union of specifications S1] S2, where each state is tagged with 1 or
2, respectively, and (s, i)

a
−→S1]S2 (t, i), for i ∈ {1, 2}, if and only if s

a
−→Si

t.

Definition 5. (Flow graph) A flow graph G with interface I, written G : I, is
defined inductively by

– (Mm, Em) : ({m},M) if (Mm, Em) is a method specification for m ∈ Meth

over M , and
– G1] G2 : I1 ∪ I2 if G1 : I1 and G2 : I2.

Example 1. Figure 1 shows a simple Java class and the (simplified) flow graph it
induces. The flow graph consists of two method specifications - one for method
even and one for method odd. Entry nodes are depicted as usual through edges
without source.

A flow graph is closed if I− ⊆ I+, i.e. it does not require any external methods.
Satisfaction, instantiated to flow graphs, is called structural satisfaction |=s.

5

Example 2. For the flow graph from Example 1, structural formula νX. [even] r∧
[odd] r∧ [ε]X expresses the property “on every path from a program entry node,
the first encountered call edge goes to a return node”, in effect specifying that
the program is tail-recursive.

Control Flow Behaviour Next, we instantiate specifications on the behavi-
oural level. We use transition label τ to designate internal transfer of control,
label m1 call m2 for the invocation of method m2 by method m1, and label
m2 retm1 for the corresponding return from the call.

Definition 6. (Behaviour) Let G = (M, E) : I be a closed flow graph where
M = (V, L,→, A, λ). The behaviour of G is defined as model b(G) = (Mb, Eb),
where Mb = (Sb, Lb,→b, Ab, λb), such that Sb = V × V ∗, i.e., states are pairs
of control points v and stacks σ, Lb = {m1 k m2 | k ∈ {call, ret}, m1,m2 ∈
I+} ∪ {τ}, Ab = A, λb((v, σ)) = λ(v), and →b⊆ Sb × Lb × Sb is defined by the
rules:

[transfer] (v, σ)
τ
−→b (v′, σ) if m ∈ I+, v

ε
−→m v′, v |= ¬r

[call] (v1, σ)
m1 call m2−−−−−−→b (v2, v

′
1 · σ) if m1,m2 ∈ I+, v1

m2−−→m1 v
′
1, v1 |= ¬r,

v2 |= m2, v2 ∈ E

[return] (v2, v1 · σ)
m2 ret m1−−−−−−→b (v1, σ) if m1,m2 ∈ I+, v2 |= m2 ∧ r, v1 |= m1

The set of initial states is defined by Eb = E × {ε}, where ε denotes the empty
sequence over V .

Flow graph behaviour can alternatively be defined via pushdown automata
(PDA) [11, Def. 34]. This is exploited by using PDA model checking for verifying
behavioural properties (see for instance [5,7]).

Example 3. Consider the flow graph from Example 1. Because of possible un-
bounded recursion, it induces an infinite-state behaviour. One example execution
of the program is represented by the following path from an initial to a final con-
figuration:

(v0, ε)
τ
−→b (v1, ε)

τ
−→b (v2, ε)

even call odd
−−−−−−−→b (v5, v3)

τ
−→b (v6, v3)

τ
−→b

(v7, v3)
odd call even
−−−−−−−→b (v0, v9 · v3)

τ
−→b (v1, v9 · v3)

τ
−→b

(v4, v9 · v3)
even ret odd
−−−−−−−→b (v9, v3)

odd ret even
−−−−−−−→b (v3, ε)

Also on the behavioural level, we instantiate the definition of satisfaction: we
define G |=b φ as b(G) |= φ. The resulting behavioural logic is sufficiently powerful
to express the class of security policies defined by finite state security automata
(cf. e.g. [19]).

Example 4. For the flow graph from Example 1, the behavioural formula ¬even∨
νX. [even call even] ff ∧ [τ]X expresses the property “in every program execution
starting in method even, the first call is not to method even itself”.

6

Clean Flow Graphs Method specifications allow return points to have out-
going edges. However, the characterisation of behavioural properties by a set of
structural formulae defined below is only correct if the flow graph has no such
edges; such flow graphs are called clean. We define cleaning as a behaviour-
preserving unary operation on method specifications, and lift it to flow graphs.

Definition 7. (Cleaning) Given a method specification Mm = (Vm, Lm,→m

, Am, λm), the unary operation of cleaning is defined by: (Mm)• = (Vm, Lm, {s
l
−→m

t | s
l
−→m t ∧ r 6∈ λm(s)}, Am, λm).

It is easy to see that cleaned flow graphs are clean. Cleaning is idempotent
((G•)• = G•) and preserves behavioural properties (G |=b φ ⇔ G• |=b φ).
Moreover, any node that is a return point trivially satisfies any structural box
formula ((G•, s) |=s r ⇒ ∀l, σ. (G•, s) |=s [l]σ). Below, we will use that the set of
nodes that can be reached by a behaviour coincides with the (structural) notion
of path in a clean flow graph.

Notational Conventions We use label ε for transfer edges in flow graph struc-
tures, and τ for silent behavioural transitions, while ε denotes the empty se-
quence.

In our translation of simulation logic formulae we allow sequences α of labels
to appear in box modalities, with the obvious translation ·̂ to standard formulae:

[̂ε]ψ = ψ and ̂[l · α]ψ = [l] [̂α]ψ, where ε denotes the empty sequence, and ψ is
already a standard formula.

3 Mapping Behavioural into Structural Properties

This section defines a mapping Π from behavioural properties to sets of struc-
tural properties. As mentioned above, the implementation of the mapping can be
tested online. Throughout the section we assume that flow graphs are clean, and
that behavioural properties are disjunction-free; in Section 5 we discuss how Π
can be extended to behavioural formulae with disjunction, though at the expense
of completeness. We show that Π computes, from a behavioural property φ and
closed interface I , a set of structural formulae that characterises φ and I . That
is, for any closed flow graph G with interface I and any behavioural formula φ
that only mentions labels that are in the behaviour of G (i.e., Lb in Definition 6):

G |=b φ ⇔ ∃χ∈ΠI (φ).G |=s χ (1)

To deal with the fixed-point formulae of the logic, mapping Π is defined
with the help of a tableau construction. A behavioural formula φ gives rise to a
(maximal) tableau that induces a set of structural formulae through its leaves.
The constructed tableau is finite, i.e., tableau construction terminates.

7

3.1 Tableau Construction

Our translation is based on a symbolic execution of the behavioural property by
means of a tableau construction. When tracing a symbolic execution path, we tag
all subformulae of the formula with unique propositional constants from a set C.
We use a global map S : φ → C to map formulae to their tags. We consider S
as an implicit parameter of the tableau construction (and where necessary, we
also use its inverse S−1). The tableau construction operates on sequents of the
shape `H,U,C φ parametrised on:

– a non-empty history stack H ∈ (I+×(I−∪{ε}∪C)∗)+, where each element is
a pair consisting of the current method name and a sequence (called frame)
of edge labels and propositional constants abbreviating subformulae of φ.
For any frame F ∈ (I− ∪ {ε} ∪ C)∗, we use F̃ to denote this frame cleaned
from propositional constants X ∈ C:

ε̃ = ε m̃ · σ = m · σ̃ ε̃ · σ = ε · σ̃ X̃ · σ = σ̃

– a fixed-point stack U , defining an environment for propositional variables by
means of a sequence of definitions of the shapeX = νX.ψ; an open formula φ
in a sequent parametrised by U can then be understood via a suitable notion
of substitution, based on the standard notion of substitution ψ{θ/X} of a
formula θ for a propositional variable X in a formula ψ: the substitution of
φ under U is inductively defined as follows:

φ[ε] = φ φ[(X = νX.ψ) · U] = (φ{νX.ψ/X})[U]

– a store C, used for accumulating structural constraints during symbolic ex-
ecution1.

We use ∅H,m, ∅U and ∅C to denote the single-element history stack (m, ε) and
the empty fixed-point stack and store, respectively.

For a given closed behavioural formula φ and method m, we construct a max-
imal tableau with root `∅H,m,∅U ,∅C

φ that induces a set of structural formulae
through its leaves, as described below. We denote the set of induced structural
formulae for φ and m with πm(φ). We then define the translation of φ w.r.t. a
given interface I :

ΠI(φ) = {
∧

m∈I+ χm | χm ∈ πm(φ) }

During tableau construction, the history stack, fixed-point stack and store are
updated as follows, provided the current sequent is not a repeat of an earlier
sequent (see below):

1. First, if φ is not a fixed-point formula, the propositional constant S(φ) tag-
ging the behavioural property φ of the current sequent is appended to the
end of the frame of the top element of H ;

1 Using stores is not strictly necessary, but simplifies the presentation of the extraction
of structural formulae and the correctness proofs.

8

2. Next,
– if the behavioural property φ prescribes an internal transfer, then ε is

appended to the end of the frame of the top element of H ;
– if φ prescribes a call from a to b, and the top element ofH is in method a,

then b is added at the end of the frame of the top element of H , and a
new element (b, ε) is pushed onto H ;

– if φ prescribes a return from a to b, the top element of H is in method a
and the next element is in method b, then a new structural constraint is
added to the store, reflecting the possibility of currently not being at a
return point, and the top element is popped from H ; and

– if φ is a fixed-point formula νX.φ, then a new equation X = νX.φ is
pushed onto the fixed-point stack U , if not already there; this conditional
addition is denoted by (X = νX.φ) ◦U .

Below, page 13 and further, contains several example tableaux that illustrate
this symbolic execution. Notice that non-emptiness of the history stack and
closedness of φ[U] are invariants of the tableau construction.

Tableau System The tableau system is given in Figure 2 as a set of goal-
directed rules. Axioms are presented as rules with an empty set of premises
denoted by ’−’. The condition Ret(i, a, b,H) used in the return rules is defined
as i = a ∧ H 6= ε ∧ ∃F,H ′.H = (b, F) · H ′, i.e., there is a pending call from
method b on the top of the history stack. Formally, a tableau T = (T, λ) is a
tree T equipped with a labelling function λ mapping each tree node to a triple
consisting of a sequent, a rule name (of the rule applied to this sequent), and a
set of triples of shape (i, F, q) where q are literals (that is, atomic propositions
in positive or negated form or propositional variables). The triple sets are non-
empty only at applications of axiom rules; such leaves are termed contributing,
and the set of triples is depicted (by convention) as a premise to the rule. A
tableau for formula φ and method m is a tree with root `∅H,m,∅U ,∅C

φ obtained
by applying the rules. A tableau is termed maximal if all its leaves are axioms.

If in a tableau there is a leaf node `(i,F)·H,U,C φ for which there is an internal
node `(i,F ′)·H′,U ′,C′ φ such that F ′ is a prefix of F , U ′ is a suffix of U , and C ′ is
a subset of C, we term the former node a pseudo-repeat ; any node of the latter
kind we term a companion. An internal tableau node is said to be stable if all
its descendant leaves are axioms or pseudo-repeats. A tableau is called stable if
its root node is stable.

Tableau construction proceeds as follows. First, a minimal stable tableau is
computed, i.e. if a node is a pseudo-repeat, it is not further explored. If all
pseudo-repeats in this tableau satisfy some repeat condition for any of their
companions (see below), the tableau is maximal and construction is complete.
Otherwise, all pseudo-repeats that are not satisfying any of the repeat condi-
tions are simultaneously unfolded, using a breadth-first exploration strategy, and
tableau construction continues until the tableau is stable again, upon which the
checking for the repeat conditions is repeated. As discussed below, this process
is guaranteed to terminate, resulting in a finite maximal tableau.

9

p
`(i,F)·H,U,C p

{(i,F,p)}∪{(i′,F ′,ff)|(i′,F ′)∈H}∪C
¬p

`(i,F)·H,U ¬p

{(i,F,¬p)}∪{(i′,F ′,ff)|(i′,F ′)∈H}∪C

νX
`(i,F)·H,U,C νX.φ

`(i,F)·H,(X=νX.φ)◦U,C X
X unf

`(i,F)·H,U,C X

`(i,F ·S(X))·H,U,C φ
(X = νX.φ) ∈ U

∧
`(i,F)·H,U,C φ1∧φ2

`(i,F ·S(φ1∧φ2))·H,U,C φ1 `(i,F ·S(φ1∧φ2))·H,U,C φ2
τ

`(i,F)·H,U,C [τ]φ

`(i,F ·S([τ]φ)·ε)·H,U,C φ

call0
`(i,F)·H,U,C [a call b]φ

−
i 6= a call1

`(i,F)·H,U,C [a call b]φ

`(b,ε)·(i,F ·S([a call b]φ)·b)·H,U,C φ
i = a

ret0
`(i,F)·H,U,C [a ret b]φ

−
¬Ret(i, a, b, H) ret1

`(i,F)·H,U,C [a ret b]φ

`H,U,C∪{(i,F,¬r)}φ
Ret(i, a, b, H)

IRep
`(i,F)·H,U,C φ

{(i,F,S(φ))}∪C
IntRep(S(φ), (i, F)·H) CRep

`(i,F)·H,U,C φ

−
CallRep(S(φ), (i, F)·H, c)

RRep
`(i,F)·H,U,C φ

−
RetRep(S(φ), (i, F) · H, c)

Figure 2. Tableau system

Repeat Conditions We now formulate the three repeat conditions used in the
tableau system, giving rise to three types of repeat nodes. Only repeats of the
first type, i.e., internal repeats, contribute to triples, giving rise to recursion in
structural formulae. In contrast, the other two repeat conditions only recognise
that a similar situation has been reached before, and thus no new information will
be obtained by further exploration. The first repeat condition requires merely
the examination of the top frame of the history stack of the current sequent;
the second one requires the examination of the whole path from the root to
the pseudo-repeat; while the third one requires the examination of all remaining
paths.

Internal repeat Tableau construction guarantees that every tableau node of
shape `H′·(i,F ′·S(φ)·F ′′)·H′′,U,C φ possesses an ancestor node `(i,F ′)·H′′,U ′,C′ φ
such that U ′ is a suffix of U and C ′ is a subset of C. As a consequence,
every node of shape `(i,F ′·S(φ)·F ′′)·H,U,C φ is a pseudo-repeat (with com-
panion some ancestor node of shape `(i,F ′)·H,U ′,C′ φ); such pseudo-repeats
are termed internal repeats. Intuitively, an internal repeat indicates that a
regularity in the structure of method i has been discovered, and thus this
regularity should be reflected in the structural formulae. Therefore, in this
case (i, F ′ · S(φ) · F ′′,S(φ)) is added to the triple set of the IRep axiom.
(Notice that in fact the propositional constant S(φ) is mapped to a fresh pro-
positional variable, here, and in the construction of the structural formulae.
However, for clarity of presentation, we overload the symbols themselves, as
their intended meaning should be clear from the context.)

Call repeat A pseudo-repeat `(i,F)·H,U,C φ, which has an ancestor node as
companion but is not an internal repeat, is a call repeat if H matches the
call stack of the companion upto the latter’s return depth (where matching

10

means that the same methods are on the stack, with identical frames); in
the special case where both stacks are shorter than the return depth, they
have to be identical.
The return depth of a node is only defined if the subtableau of the companion
is complete (i.e. the pseudo-repeat is the only open branch). When we con-
struct a tableau for a formula with multiple fixed-points, it can happen that
two pseudo-repeats occur in the subtableaux of their respective companions.
In this case, if both nodes are call repeats exploration terminates (for the
current return depth), otherwise, by virtue of the tableau construction, we
know that the pseudo-repeat that is not a call repeat, will never become one
when continuing the tableau construction. Therefore, we can explore this
node further, and break the mutual dependency.
The return depth of a tableau node n, denoted as ρ(n), is defined as the max-
imal difference between the number of applied return rules and the number of
applied call rules on any path from n to a descendant node. Formally, where
r and δ range over rule names and sequences of rule names, respectively,
while rules(π) denotes the sequence of rule names along a tableau path π:

ρ′(ε) = 0 ρ′(r · δ) =

ρ′(δ) + 1 if r ∈ {ret0, ret1}
ρ′(δ) − 1 if r ∈ {call0, call1}
ρ′(δ) otherwise

ρ(n) = max {ρ′(rules(π)) | π a path from n to a descendant node} ∪ {0}

Return repeat A pseudo-repeat is called a return repeat if it has a companion
on a different path from the root, such that its history stack is identical to
the one of the companion.

Formally, the repeat conditions are defined as follows, where X is S(φ), and c is
the companion node of the pseudo-repeat with history stack Hc.

IntRep(X, (i, F) ·H) ⇔ X ∈ F
CallRep(X, (i, F) ·H, c) ⇔ X 6∈ F∧ take(ρ(c) + 1, (i, F) ·H) = take(ρ(c) + 1, Hc)
RetRep(X, (i, F) ·H, c) ⇔ (i, F) ·H = Hc

Termination The repeat conditions ensure termination of tableau construction.

Theorem 1. Maximal tableaux are finite.

Proof. (Sketch) Assume given a behavioural formula φ and a method name m.
First, observe that repeat condition IntRep puts a bound on the length of frames
in stacks, since: (i) φ has a finite set of sub-formulae and thus a finite number of
propositional constants can occur in frames, (ii) each propositional constant can
occur at most once in a frame, and (iii) every method name (or ε) in a frame
is preceded by some propositional constant. As a consequence, since φ can only
mention finitely many method names, the set of possible stores is also finite, and
so is the set of fixed-point stacks.

11

Further, we shall show that repeat condition RetRep puts a bound on the
return depth of nodes in any tableau for φ and m. Hence, since there is only
a finite number of method names and frames that can occur in history stacks,
function take takes values from a finite set. As a consequence (since formula φ
has a finite set of sub-formulae and mentions finitely many method names), there
is a bound on the length of paths from the tableau root without reaching a node
satisfying one of the repeat conditions: a path reaches either (i) an axiom, (ii)
an internal repeat, (iii) a return repeat, or else (iv) eventually a pseudo-repeat
satisfying repeat condition CallRep.

Boundedness of the return depth is established as follows. Assume on the
contrary that no such bound exists; that is, that for each natural number d
there is, in some tableau for φ and m, a tableau node and a path from this node
having return depth d. Notice that every path of the tableau construction can
be viewed as an execution of a pushdown automaton with control state defined
by the formula, fixed point stack and store of the current sequent (thus from a
finite domain), and with stack defined by the history stack. It can be shown, by
referring to the Pumping lemma for context-free languages, but viewed from a
pushdown automata perspective (see Appendix A), that for a sufficiently large
d, any tableau path (from any tableau node) of return depth d contains nodes
n1 :`(i,F)·H,U,C φ , n2 :`(i,F)·H′·H,U ′,C′ φ, n3 :`H′·H,U ′′,C′′ φ′, and n4 :`H,U ′′′,C′′′

φ′ along the path (in the given order), such that sequent `H,U ′′′ ,C′′′ φ′ can be
derived from sequent `(i,F)·H,U,C φ by the same sequence of rules by which
node n3 has been derived from node n2. Therefore, by virtue of the tableau
construction, there must be a node n′

4 :`H,U ′′′ ,C′′′ φ′ on another, shorter path
from node n1, and hence node n4 is a pseudo-repeat satisfying repeat condition
RetRep. But this contradicts the statement that n4 is an internal node, and thus
the initial assumption that no bound exists on the return depth must be wrong.

ut

Structural Formulae Induced by a Tableau A maximal tableau for φ andm
induces, through the sets of triples accumulated in the leaves, a set of structural
formulae πm(φ) in the following manner:

1. Let L be the set of non-empty triple sets collected from the leaves of the
tableau. Build a collection of choice sets Λ(L), by choosing one triple from
each element in L.

2. For each choice set λ ∈ Λ(L),
(a) Group the triples of λ according to method names: for each i ∈ I , define

Ξi = {(F, q) | (i, F, q) ∈ λ}

(b) For each i ∈ I such that Ξi 6= ∅, build a formula i⇒ Ω(Ξi), where

Ω(Ξ) =
∧

φ∈Ω′(Ξ) φ

Ω′(Ξ) = {[a]Ω(Ξ ′) | a ∈ I− ∧Ξ ′ = {(F, q) | (a · F, q) ∈ Ξ} ∧Ξ ′ 6= ∅}∪
{νX.Ω(Ξ ′) | X ∈ C ∧Ξ ′ = {(F, q) | (X · F, q) ∈ Ξ} ∧ Ξ ′ 6= ∅}∪
{q | (ε, q) ∈ Ξ}

12

(c) The induced formula χ for λ is the conjunction of the formulae obtained
in the previous step.

3. The set πm(φ) of induced formulae is the set of induced formulae for λ ∈
Λ(L).

For example, the choice set λ = {(a,X · b,¬r), (a,X · b,X)} induces (by step 2)
the structural formula a ⇒ νX. [b] (¬r ∧ X). Notice that all induced formulae
are closed and guarded whenever the original behavioural one is.

Examples To illustrate the tableau construction, we discuss several examples.
The first example illustrates how an internal repeat gives rise to a structural
formula with fixed point. Consider the behavioural formula φ = νX. [a call b]X∧
[b ret a] (¬r ∧ X). Figure 3 shows the mapping S from the subformulae of φ to
propositional constants, and the tableau that is constructed for this formula.
The first node where a triple is produced is the one labelled ret1; the triple is
then propagated to the two leaves that result from application of the rule for
atomic propositions, and simple repeat, respectively. The tableau has two leaves
with non-empty triple sets; L thus consists of two sets of two triples each.

Thus, to construct the set of structural formulae, we compute structural
formulae for the four choice sets resulting from L:

{(a,X4 ·X1 ·X2 · b ·X5,¬r), (a,X4 ·X1 ·X2 · b ·X5, X4)}
{(a,X4 ·X1 ·X2 · b ·X5,¬r), (b,X4 ·X1,¬r)}
{(b,X4 ·X1,¬r), (a,X4 ·X1 ·X2 · b ·X5, X4)}
{(b,X4 ·X1,¬r)}

The first set gives rise to the structural formula a⇒ νX4.νX1.νX2. [b] νX5.(¬r∧
X4), which simplifies to χ1 = a⇒ νX.[b](¬r ∧X). The last set gives rise to the
formula (after simplification) χ2 = b ⇒ ¬r. The formulae constructed from the
second and third set are subsumed by χ2, and hence πa(φ) = {χ1, χ2}. For φ
and method b there is a single tableau, which has no leaf triples, and hence
πb(φ) = {tt}. Thus, Π(φ) = {χ1, χ2}.

The next example illustrates why the call repeat needs to consider the re-
turn depth. Consider the behavioural formula φ = νX. [a call b]ff ∧ [a call a]X ∧
[a ret a]X . Figure 4 shows the tableau that is constructed for this formula. Dur-
ing tableau construction, the node `(a,ε)·(a,X1·X2·X5·X6·a),X=φ,∅C

X is a pseudo-
repeat (with `(a,ε),X=φ,∅C

X as companion candidate). However, because of the
application of ret0 in the subtree of the companion candidate, the return depth
is 1, and thus this pseudo repeat is not a repeat. After unfolding the fixed point
once more, tableau construction terminates. Notice that if the earlier pseudo
repeat had been a repeat, the triple (a,X1 · X2 · X5,¬r) (and therewith the
structural formula a⇒ [b] ff ∧¬r) would not have been found.

The next example shows why the repeat condition has to be tested on all
subformulae, and not only on fixed points . Consider the behavioural formula
φ = [a call b] (νX.r ∧ [b ret a] (¬r ∧ [a call b]X)). Figure 5 shows the tableau that
is constructed for this formula. When symbolically executing the formula, the

X0 νX. [a call b] X ∧ [b ret a] (¬r ∧ X) X4 [b ret a] (¬r ∧ X)

X1 X X5 ¬r ∧ X

X2 [a call b] X ∧ [b ret a] (¬r ∧ X) X6 ¬r

X3 [a call b] X

`(a,ε),∅U ,∅C
νX. [a call b] X ∧ [b ret a] (¬r ∧ X)

νX

*`(a,ε),X=φ,∅C
X

X unf

`(a,X1),X=φ,∅C
[a call b] X ∧ [b ret a] (¬r ∧ X)

∧

`(a,X1·X2),X=φ,∅C
[a call b] X

call1

`(b,ε)·(a,X1 ·X2·X3·b),X=φ,∅C
X

X unf

`(b,X1)·(a,X1 ·X2·X3·b),X=φ,∅C
[a call b] X ∧ [b ret a] (¬r ∧ X)

∧

`(b,X1 ·X2)·(a,X1 ·X2·X3·b),X=φ,∅C
[a call b] X

call0

−

`(b,X1 ·X2)·(a,X1·X2·X3·b),X=φ,∅C
[b ret a] (¬r ∧ X)

ret1

`(a,X1 ·X2·X3·b),X=φ,{(b,X1·X2,¬r)} ¬r ∧ X

∧

`(a,X1 ·X2·X3·b·X5),X=φ,{(b,X1·X2,¬r)} ¬r

¬r

(a, X1 · X2 · X3 · b · X5, ¬r)
(b, X1 · X2, ¬r)

`(a,X1 ·X2·X3·b·X5),X=φ,{(b,X1·X2,¬r)} X

IRep(∗)

(a, X1 · X2 · X3 · b · X5, X1)
(b, X1 · X2, ¬r)

`(a,X1·X2),X=φ,∅C
[b ret a] (¬r ∧ X)

ret0

−

Figure 3. Tableau for νX. [a call b] X ∧ [b ret a] (¬r ∧ X) and a, giving rise to {a ⇒ νX. [b] (¬r ∧ X), b ⇒ ¬r}

1
4

X0 νX. [a call b] ff ∧ [a call a] X ∧ [a ret a] X X4 ff

X1 X X5 [a call a] X ∧ [a ret a] X

X2 [a call b] ff ∧ [a call a]X ∧ [a ret a] X X6 [a call a] X

X3 [a call b] ff X7 [a ret a] X

`(a,ε),∅U ,∅C
νX. [a call b] ff ∧ [a call a] X ∧ [a ret a] X

νX
`(a,ε),X=φ,∅C

X
X unf

`(a,X1),X=φ,∅C
[a call b] ff ∧ [a call a] X ∧ [a ret a] X

∧
`(a,X1·X2),X=φ,∅C

[a call b] ff
call1

`(b,ε)·(a,X1·X2·X3·b),X=φ,∅C
ff

ff
(b, ε, ff)
(a, X1 · X2 · X3 · b, ff)

*`(a,X1·X2),X=φ,∅C
[a call a] X ∧ [a ret a] X

∧
`(a,X1·X2·X5),X=φ,∅C

[a call a] X
call1

(1)

`(a,X1·X2·X5),X=φ,∅C
[a ret a] X

ret0
-

(1)
call1

**`(a,ε)·(a,X1·X2·X5·X6·a),X=φ,∅C
X

X unf
`(a,X1)·(a,X1·X2·X5·X6·a),X=φ,∅C

[a call b] ff ∧ [a call a] X ∧ [a ret a]X
∧

`(a,X1·X2)·(a,X1·X2·X5·X6·a),X=φ,∅C
[a call b] ff

call1
`(b,ε)·(a,X1·X2·X3·b)·(a,X1·X2·X5·X6·a),X=φ,∅C

ff
ff

(b, ε, ff)
(a, X1 · X2 · X3 · b, ff)
(a, X1 · X2 · X5 · X6 · a,ff)

`(a,X1·X2)·(a,X1·X2·X5·X6·a),X=φ,∅C
[a call a] X ∧ [a ret a] X

∧
`(a,X1·X2·X5)·(a,X1·X2·X5·X6·a),X=φ,∅C

[a call a] X
CRep(∗)

-

`(a,X1·X2·X5)·(a,X1·X2·X5·X6·a),X=φ,∅C
[a ret a] X

ret1
`(a,X1·X2·X5·X6·a),X=φ,{(a,X1·X2·X5,¬r)} X

IRep(∗∗)
(a, X1 · X2 · X5 · X6 · a, X)
(a, X1 · X2 · X5,¬r)

Figure 4. Tableau for νX. [a call b] ff ∧ [a call a] X ∧ [a ret a] X and a, giving rise to {a ⇒ νX1. [b] ff ∧ [a] X1, a ⇒ [b] ff ∧¬r}

1
5

X0 [a call b] (νX.r ∧ [b ret a] (¬r ∧ [a call b] X)) X5 [b ret a] (¬r ∧ [a call b] X)

X1 νX.r ∧ [b ret a] (¬r ∧ [a call b] X) X6 ¬r ∧ [a call b] X

X2 X X7 ¬r

X3 r ∧ [b ret a] (¬r ∧ [a call b] X) X8 [a call b] X

X4 r

`(a,ε),∅U ,∅C
[a call b] (νX.r ∧ [b ret a] (¬r ∧ [a call b] X))

call1
`(b,ε)·(a,X0·b),∅U ,∅C

νX.r ∧ [b ret a] (¬r ∧ [a call b] X)
νX

`(b,ε)·(a,X0·b),X=X1,∅C
X

X unf
`(b,X2)·(a,X0·b),X=X1,∅C

r ∧ [b ret a] (¬r ∧ [a call b] X)
∧

`(b,X2·X3)·(a,X0·b),X=X1,∅C
r

r
(b, X2 · X3, r)
(a, X0 · b, ff)

`(b,X2·X3)·(a,X0·b),X=X1,∅C
[b ret a] (¬r ∧ [a call b] X)

ret1
*`(a,X0·b),X=X1,{(b,X2·X3,¬r)} ¬r ∧ [a call b] X

∧
`(a,X0·b·X6),X=X1,{(b,X2·X3,¬r)} ¬r

¬r
(a, X0 · b · X6,¬r)
(b, X2 · X3,¬r)

`(a,X0·b·X6),X=X1,{(b,X2·X3,¬r)} [a call b] X
call1

(1)

(1)

`(b,ε)·(a,X0·b·X6·X8·b),X=X1,{(b,X2·X3,¬r)} X
X unf

`(b,X2)·(a,X0·b·X6·X8·b),X=X1,{(b,X2·X3,¬r)} r ∧ [b ret a] (¬r ∧ [a call b] X)
∧

`(b,X2·X3)·(a,X0·b·X6·X8·b),X=X1,{(b,X2·X3,¬r)} r
r

(b, X2 · X3, r)
(a, X0 · b · X6 · X8 · b, ff)
(b, X2 · X3,¬r)

`(b,X2·X3)·(a,X0·b·X6·X8·b),X=X1,{(b,X2·X3,¬r)} [b ret a] (¬r ∧ [a call b] X)
ret1

`(a,X0·b·X6·X8·b),X=X1,{(b,X2·X3,¬r)} ¬r ∧ [a call b] X
IRep(∗)

(a,X0 · b · X6 · X8 · b, X6)
(b, X2 · X3,¬r)

Figure 5. Tableau for [a call b] (νX.r ∧ [b ret a] (¬r ∧ [a call b] X)) and a, giving rise to {(a ⇒ [b] (νX6.¬r ∧ [b] X6)) ∧ (b ⇒ r)}

1
6

fixed point is unfolded in method b. However, the subsequent return from b to a
removes the frame related to this call to b, and thus destroys the tag that the fixed
point was unfolded. However, because we tag occurrences of all subformulae, the
tableau construction recognises the repeat after returning from b to a.

Finally, the last example concerns a behavioural formula with a return loop
within a call loop: φ = νX.νY. [a ret a] (¬r∧Y)∧ [τ]X ∧ [a call a]X . For termin-
ation of the tableau, all three different repeat conditions are necessary. Figure 6
shows the tableau that is constructed for this formula (over 2 pages).

3.2 Tableau Unfolding

A maximal tableau gives rise to a (potentially infinite) unfolded tableau defined
as follows.

Definition 8. (Tableau unfolding) Let T = (T, λ) be a maximal tableau. The
unfolding (T ∗, τ) of T consists of a maximal tableau T ∗ = (T ∗, λ∗) for the same
root sequent but in a modified tableau system without repeat rules, and of a tree
morphism τ : T ∗ → T satisfying the following constraints:

(i) τ preserves the root and respects the order of children;
(ii) τ preserves rule names in labels, except for nodes mapped to repeat nodes;
(iii) if a node n∗ is mapped to a repeat node n with companion n′, then the rule

name of n∗ is the one of n′, and the child of n∗ is mapped to the child of n′.

The repeat conditions guarantee well-formedness of the unfolding, since applic-
ability of the tableau rules (in the modified system) depends only on the history
stack up to the return depth of the corresponding sequent in the original tableau.
Figure 7 shows an initial fragment of the unfolding of the tableau in Figure 3.

To prove correctness of the tableau construction in the next section, we show
how triples in the leaves of the tableau unfolding correspond to valid formulae.
For this, we first define the notion of projection of a structural formula. Given
a structural formula χ and label α, the projection of χ on α, denoted χα, is
inductively defined as follows.

mα = m
(¬m)α = ¬m

rα = ff

(¬r)α = tt

(χ1 ∧ χ2)α = (χ1)α ∧ (χ2)α

(χ1 ∨ χ2)α = (χ1)α ∨ (χ2)α

([β]φ)α =

{
φ
tt

if β = α
otherwise

(νX.φ)α = (φ[νX.φ/X])α

Intuitively, χα denotes the strongest property induced by χ on the nodes
reachable from the current one by following an edge labelled α. Note that
projection is well-defined for guarded formulae. As an example, for χ = a ⇒
νX. [b] (¬r ∧X) we have χb = a⇒ (¬r ∧ νX. [b] (¬r ∧X)).

We lift projection to clean frames F by inductively defining χε = χ and
χα·F = (χα)F . The following result establishes an essential property of χF ,
where (here) |=s χ denotes validity of χ in all clean control flow graphs.

17

X0 νX.νY. [a ret a] (¬r ∧ Y) ∧ [τ]X ∧ [a call a] X X6 ¬r ∧ Y

X1 X X7 ¬r

X2 νY. [a ret a] (¬r ∧ Y) ∧ [τ]X ∧ [a call a] X X8 [τ]X ∧ [a call a]X

X3 νY. [a ret a] (¬r ∧ Y) X9 [τ]X

X4 Y X10 [a call a] X

X5 [a ret a] (¬r ∧ Y)

`(a,ε),∅U ,∅C
νX.νY. [a ret a] (¬r ∧ Y) ∧ [τ] X ∧ [a call a] X

νX
*`(a,ε),X=φ,∅C

X
X unf

`(a,X1),X=φ,∅C
νY. [a ret a] (¬r ∧ Y) ∧ [τ]X ∧ [a call a] X

∧
`(a,X1·X2),X=φ,∅C

νY. [a ret a] (¬r ∧ Y)
νY

`(a,X1·X2),(Y =X3)·(X=φ),∅C
Y

Y unf
`(a,X1·X2·X4),(Y =X3)·(X=φ),∅C

[a ret a] (¬r ∧ Y)
ret0

-

`(a,X1·X2),X=φ,∅C
[τ] X ∧ [a call a] X

∧
`(a,X1·X2·X8),X=φ,∅C

[τ]X
τ

`(a,X1·X2·X8·X9·ε),X=φ,∅C
X

IRep(∗)
(a, X1 · X2 · X8 · X9 · ε, X)

`(a,X1·X2·X8),X=φ,∅C
[a call a] X

call1
**`(a,ε)·(a,X1·X2·X8·X10·a),X=φ,∅C

X
X unf

(1)

(1)
X unf

`(a,X1)·(a,X1·X2·X8·X10·a),X=φ,∅C
νY. [a ret a] (¬r ∧ Y) ∧ [τ] X ∧ [a call a] X

∧
`(a,X1·X2)·(a,X1·X2·X8·X10·a),X=φ,∅C

νY. [a ret a] (¬r ∧ Y)
νY

(2)

****`(a,X1·X2)·(a,X1·X2·X8·X10·a),X=φ,∅C
[τ] X ∧ [a call a] X

∧
`(a,X1·X2·X8)·(a,X1·X2·X8·X10·a),X=φ,∅C

[τ]X
τ

`(a,X1·X2·X8·X9·ε)·(a,X1·X2·X8·X10·a),X=φ,∅C
X

IRep(∗∗)
(a,X1 · X2 · X8 · X9 · ε, X1)

`(a,X1·X2·X8)·(a,X1·X2·X8·X10·a),X=φ,∅C
[a call a]X

call1
`(a,ε)·(a,X1·X2·X8·X10·a)·(a,X1·X2·X8·X10·a),X=φ,∅C

X
X unf

(3)

1
8

(2)
νY

`(a,X1·X2)·(a,X1·X2·X8·X10·a),(Y =X3)·(X=φ),∅C
Y

Y unf
`(a,X1·X2·X4)·(a,X1·X2·X8·X10·a),(Y =X3)·(X=φ),∅C

[a ret a] (¬r ∧ Y)
ret1

***`(a,X1·X2·X8·X10·a),(Y =X3)·(X=φ),{(a,X1·X2·X4,¬r)} ¬r ∧ Y
∧

`(a,X1·X2·X8·X10·a·X6),(Y =X3)·(X=φ),{(a,X1·X2·X4,¬r)} ¬r
¬r

(a,X1 · X2 · X8 · X10 · a · X6,¬r)
(a,X1 · X2 · X4,¬r)

`(a,X1·X2·X8·X10·a·X6),(Y =X3)·(X=φ),{(a,X1·X2·X4,¬r)} Y
Y unf

`(a,X1·X2·X8·X10·a·X6·X4),(Y =X3)·(X=φ),{(a,X1·X2·X4,¬r)} [a ret a] (¬r ∧ Y)
ret0

-

(3)
X unf

`(a,X1)·(a,X1·X2·X8·X10·a)·(a,X1·X2·X8·X10·a),X=φ,∅C
νY. [a ret a] (¬r ∧ Y) ∧ [τ] X ∧ [a call a] X

∧
`(a,X1·X2)·(a,X1·X2·X8·X10·a)·(a,X1·X2·X8·X10·a),X=φ,∅C

νY. [a ret a] (¬r ∧ Y)
νY

`(a,X1·X2)·(a,X1·X2·X8·X10·a)·(a,X1·X2·X8·X10·a),(Y =X3)·(X=φ),∅C
Y

Y unf
(4)

`(a,X1·X2)·(a,X1·X2·X8·X10·a)·(a,X1·X2·X8·X10·a),X=φ,∅C
[τ] X ∧ [a call a] X

CRep(∗ ∗ ∗∗)
-

(4)
Y unf

`(a,X1·X2·X4)·(a,X1·X2·X8·X10·a)·(a,X1·X2·X8·X10·a),(Y =X3)·(X=φ),∅C
[a ret a] (¬r ∧ Y)

ret1
`(a,X1·X2·X8·X10·a)·(a,X1·X2·X8·X10·a),(Y =X3)·(X=φ),{(a,X1·X2·X4,¬r)} ¬r ∧ Y

∧
`(a,X1·X2·X8·X10·a·X6)·(a,X1·X2·X8·X10·a),(Y =X3)·(X=φ),{(a,X1·X2·X4,¬r)} ¬r

¬r
(a, X1 · X2 · X8 · X10 · a · X6,¬r)
(a, X1 · X2 · X8 · X10 · a, ff)
(a, X1 · X2 · X4,¬r)

`(a,X1·X2·X8·X10·a·X6)·(a,X1·X2·X8·X10·a),(Y =X3)·(X=φ),{(a,X1·X2·X4,¬r)} Y
Y unf

`(a,X1·X2·X8·X10·a·X6·X4)·(a,X1·X2·X8·X10·a),(Y =X3)·(X=φ),{(a,X1·X2·X4,¬r)} [a ret a] (¬r ∧ Y)
ret1

`(a,X1·X2·X8·X10·a),(Y =X3)·(X=φ),{(a,X1·X2·X4,¬r),(a,X1·X2·X8·X10·a·X6·X4,¬r)} ¬r ∧ Y
RRep(∗ ∗ ∗)

-

Figure 6. Tableau for νX.νY. [a ret a] (¬r ∧ Y) ∧ [τ]X ∧ [a call a] X and a, giving rise to {a ⇒ νX1.¬r ∧ [ε] X1, a ⇒ νX1. [ε] X1 ∧ [a]¬r}

1
9

`(a,ε),∅U ,∅C
νX. [a call b] X ∧ [b ret a] (¬r ∧ X)

νX

*`(a,ε),X=φ,∅C
X

X unf

`(a,X1),X=φ,∅C
[a call b] X ∧ [b ret a] (¬r ∧ X)

∧

`(a,X1·X2),X=φ,∅C
[a call b] X

call1

`(b,ε)·(a,X1 ·X2·X3·b),X=φ,∅C
X

X unf

`(b,X1)·(a,X1 ·X2·X3·b),X=φ,∅C
[a call b] X ∧ [b ret a] (¬r ∧ X)

∧

`(b,X1 ·X2)·(a,X1 ·X2·X3·b),X=φ,∅C
[a call b] X

call0

−

`(b,X1 ·X2)·(a,X1·X2·X3·b),X=φ,∅C
[b ret a] (¬r ∧ X)

ret1

`(a,X1 ·X2·X3·b),X=φ,{(b,X1·X2,¬r)} ¬r ∧ X

∧

`(a,X1 ·X2·X3·b·X5),X=φ,{(b,X1·X2,¬r)} ¬r

¬r

(a, X1 · X2 · X3 · b · X5, ¬r)
(b, X1 · X2, ¬r)

`(a,X1 ·X2·X3·b·X5),X=φ,{(b,X1·X2,¬r)} X

X unf

(1)

`(a,X1·X2),X=φ,∅C
[b ret a] (¬r ∧ X)

ret0

−

(1)

`(a,X1 ·X2·X3·b·X5·X1),X=φ,... [a call b] X ∧ [b ret a] (¬r ∧ X)

∧
.
.
.

`(b,X1 ·X2)·(a,X1 ·X2·X3·b·X5·X1·X2·X3·b),X=φ,... [a call b] X

call0

−

.

.

.

`(a,X1·X2·X3·b·X5·X1·X2·X3·b·X5),X=φ,{...} ¬r

¬r

(a, X1 · X2 · X3 · b · X5 · X1 · X2 · X3 · b · X5, ¬r)
(b, X1 · X2, ¬r)

`(a,X1·X2·X3·b·X5·X1·X2·X3·b·X5),X=φ,{...} X

X unf
.
.
.

.

.

.

.

.

.

`(a,X1 ·X2·X3·b·X5·X1·X2),X=φ,... [b ret a] (¬r ∧ X)
ret0

−

Figure 7. Unfolding of tableau for νX. [a call b] X ∧ [b ret a] (¬r ∧ X) and a

2
0

Proposition 1. For all structural formulae χ, χ′ and clean frames F

|=s χ⇒ [F]χ′ ⇔ |=s χF ⇒ χ′

Proof. We prove

|=s χ⇒ [α]χ′ ⇔ |=s χα ⇒ χ′

from which the result follows by a straightforward induction on the length of F .
The proof is by well-founded induction on χ, on the usual ordering ≺ on the
Fisher-Ladner closure of fixed-point formulae [14], where φ[νX.φ/X] ≺ νX.φ
and where minimal elements are literals and box formulae. We consider the
possible shapes of χ, assuming the equivalence holds for all χ′′ ≺ χ.

Case m (base case).
|=s (m)α ⇒ χ′

⇔ |=s m⇒ χ′ {Def. χα}
⇔ |=s m⇒ [α]χ′ {Prop. |=s}

Case ¬m (base case). Similar.

Case r (base case).
|=s rα ⇒ χ′

⇔ |=s ff ⇒ χ′ {Def. χα}
⇔ true {Prop. |=s}
⇔ |=s r ⇒ [α]χ′ {Clean applet}

Case ¬r (base case).
|=s (¬r)α ⇒ χ′

⇔ |=s tt ⇒ χ′ {Def. χα}
⇔ |=s χ

′ {Prop. |=s}
⇔ |=s ¬r ⇒ [α]χ′ {Prop. |=s}
Case χ1 ∧ χ2.

|=s (χ1 ∧ χ2)α ⇒ χ′

⇔ |=s (χ1)α ∧ (χ2)α ⇒ χ′ {Def. χα}
⇔ ∃χ′

1, χ
′
2 :|=s χ

′ ⇔ χ′
1 ∧ χ

′
2. |=s ((χ1)α ⇒ χ′

1) ∧ ((χ2)α ⇒ χ′
2) {Prop. |=s}

⇔ ∃χ′
1, χ

′
2 :|=s χ

′ ⇔ χ′
1 ∧ χ

′
2. |=s (χ1)α ⇒ χ′

1 ∧ |=s (χ2)α ⇒ χ′
2 {Prop. |=s}

⇔ ∃χ′
1, χ

′
2 :|=s χ

′ ⇔ χ′
1 ∧ χ

′
2. |=s χ1 ⇒ [α]χ′

1 ∧ |=s χ2 ⇒ [α]χ′
2 {Ind. hyp.}

⇔ ∃χ′
1, χ

′
2 :|=s χ

′ ⇔ χ′
1 ∧ χ

′
2. |=s (χ1 ⇒ [α]χ′

1) ∧ (χ2 ⇒ [α]χ′
2) {Prop. |=s}

⇔ ∃χ′
1, χ

′
2 :|=s [α]χ′ ⇔ [α]χ′

1 ∧ [α]χ′
2. |=s (χ1 ⇒ [α]χ′

1) ∧ (χ2 ⇒ [α]χ′
2) {Prop. |=s}

⇔ ∃χ′′
1 , χ

′′
2 :|=s [α]χ′ ⇔ χ′′

1 ∧ χ′′
2 . |=s (χ1 ⇒ χ′′

1) ∧ (χ2 ⇒ χ′′
2) {Prop. |=s}

⇔ |=s χ1 ∧ χ2 ⇒ [α]χ′ {Prop. |=s}
Case χ1 ∨ χ2.

|=s (χ1 ∨ χ2)α ⇒ χ′

⇔ |=s (χ1)α ∨ (χ2)α ⇒ χ′ {Def. χα}
⇔ |=s ((χ1)α ⇒ χ′) ∧ ((χ2)α ⇒ χ′) {Prop. |=s}
⇔ |=s (χ1)α ⇒ χ′ ∧ |=s (χ2)α ⇒ χ′ {Prop. |=s}
⇔ |=s χ1 ⇒ [α]χ′ ∧ |=s χ2 ⇒ [α]χ′ {Ind. hyp.}
⇔ |=s (χ1 ⇒ [α]χ′) ∧ (χ2 ⇒ [α]χ′) {Prop. |=s}
⇔ |=s χ1χb=a⇒(¬r∧[b]νX.[b](¬r∧X)) ∨ χ2 ⇒ [α]χ′ {Prop. |=s}

Case [α] φ (base case).

21

|=s ([α]φ)α ⇒ χ′

⇔ |=s φ⇒ χ′ {Def. χα}
⇔ |=s [α]φ ⇒ [α]χ′ {Prop. |=s}
Case [β]φ where β 6= α (base case).

|=s ([β]φ)α ⇒ χ′

⇔ |=s tt ⇒ χ′ {Def. χα}
⇔ |=s χ

′ {Prop. |=s}
⇔ |=s [β]φ ⇒ [α]χ′ {Prop. |=s}
Case νX.φ.

|=s (νX.φ)α ⇒ χ′

⇔ |=s (φ[νX.φ/X])α ⇒ χ′ {Def. χα}
⇔ |=s φ[νX.φ/X] ⇒ [α]χ′ {Ind. hyp.}
⇔ |=s νX.φ⇒ [α]χ′ {Def. |=s}

ut

Further, we state two more auxiliary results that are used to relate triples to
valid formulae.

Proposition 2. Let λ be a choice set of a maximal tableau, let χ be the induced
structural formula, and let (i, F, q) be a triple in λ, where q is p or ¬p for some
p ∈ A. Then |=s i⇒ (χ eF ⇒ q).

Proof. (Sketch) If (i, F, q) is a triple in λ, where q is p or ¬p for some p ∈ A,
then, by construction of χ, the latter must contain a conjunct i⇒ Ω(Ξi) where
(F, q) ∈ Ξi, and therefore, by definition of Ω(Ξ) and projection, χ eF must be

of the shape (i ⇒ ν
−→
X.(q ∧ χ′) ∧ χ′′) ∧ χ′′′ for some (optional) χ′, χ′′, χ′′′ and

(zero or more) propositional variables
−→
X . Hence i ⇒ (χ eF ⇒ q) is valid in all

flow graph structures. ut

Example 5. For the tableau in Figure 3, the choice set λ = {(a,X4 ·X1 ·X2 · b ·
X5,¬r), (a,X4 ·X1 ·X2 ·b ·X5, X)}gives rise to the formula χ = a⇒ νX. [b] (¬r∧
X). Only the first triple in this set is of the form (i, F, q), where q is p or ¬p. For
this triple, F̃ = b, and as mentioned above, χb = ¬r ∧ νX. [b] (¬r ∧X). Clearly,
|=s a⇒ (χb ⇒ ¬r).

Proposition 3. Let T be a maximal tableau and let (T ∗, τ) be its unfolding.
Let n be a leaf node in T ∗ mapped by τ to a leaf node n′ in T , and let (i, F ′, q)
be a triple in the label of n′. Then, there is a triple (i, F, q) in the label of n,
a (possibly empty) index set J so that Xj ∈ F ′ for all j ∈ J , a mapping β
from indices j ∈ J to nonempty index sets β(j), and a set of rewrite rules
∆ = {Xj → Xj · Fj,k · Xj | j ∈ J, k ∈ β(j), Fj,k ∈ (I− ∪ {ε} ∪ C)∗}, such that
F ′ can be rewritten to F under ∆ by applying each rewrite rule at least once.

Proof. (Sketch) Let T , (T ∗, τ), n, n′ and (i, F ′, q) be as described above. There
are three possible shapes of the sequent by which n′ is labelled, depending on
which part of the sequent has contributed the triple (i, F ′, q), namely (i) of shape
`(i,F ′)·H′,U ′,C′ q, (ii) of shape `H′

1·(i,F
′)·H′

2,U ′,C′ q1 (but only if q = ff), or finally

22

(iii) of shape `H′,U ′,C′∪{(i,F ′,q)} q1 (but only if q = ¬r). We shall consider the
first case here only; the remaining two cases are handled similarly.

Let n′ be labelled by a sequent `(i,F ′)·H′,U ′,C′ q. Consider the path from the
root node of T ∗ to the leaf node n. The mapping τ maps this path to a path
in T (if we identify in T repeat nodes with their companions). Then, let Xj be
the constants in F ′ for which n′ has ancestor nodes n′

j :`(i,F ′
j
)·H′,U ′

j
,C′

j
S−1(Xj)

that are companions to internal repeats n′
j,k :`(i,F ′

j
·Xj ·Fj,k)·H′,U ′

j,k
,C′

j,k
S−1(Xj)

visited along the latter path, where F ′
j is the prefix of F ′ up to the occurrence

of Xj , and let every such repeat n′
j,k contribute a production Xj → Xj ·Fj,k ·Xj

in ∆ (and thus a frame fragment Fj,k in β(j)). Every repeat n′
j,k contains a

triple (i, F ′
j ·Xj ·Fj,k, Xj) in its label; the result then follows by virtue of tableau

construction and unfolding. ut

Example 6. Consider the tableau unfolding displayed in Figure 7. The leaf node
n `(a,X1·X2·X3·b·X5·X1·X2·X3·b·X5),X=φ,{(b,X1·X2,¬r)} ¬r maps to the leaf node n′

`(a,X1·X2·X3·b·X5),X=φ,{(b,X1·X2,¬r) ¬r in the tableau in Figure 3. The triple
(b,X1 · X2,¬r) of n′ is trivially written (by the identity rewrite rule) into a
triple of n. The triple (a,X1 · X2 · X3 · b · X5,¬r) of n′ is rewritten into the
triple (a,X1 ·X2 ·X3 · b ·X5 ·X1 ·X2 ·X3 · b ·X5,¬r) of n by the rewrite rule
X1 → X1 ·X2 ·X3 · b ·X5 ·X1.

Lemma 1. Let T be a maximal tableau, let (T ∗, τ) be its unfolding, and let χ be
one of the structural formulae induced by T . Then, in the label of every contrib-
uting leaf of T ∗ there is a triple (i, F, q) such that for all flow graphs G, G |=s χ

implies G |=s i⇒
[
F̃

]
q.

Proof. (Sketch) Let n be a leaf node of the unfolding T ∗, let τ map this leaf to
a leaf n′ in T , and let (i, F ′, q) be the triple in the label of n′ that is in the
choice set λ inducing χ. By Proposition 3, there is a triple (i, F, q) in the label
of n, a (possibly empty) index set J so that Xj ∈ F ′ for all j ∈ J , a mapping
β from indices j ∈ J to nonempty index sets β(j), and a set of rewrite rules
∆ = {Xj → Xj · Fj,k ·Xj | j ∈ J, k ∈ β(j), Fj,k ∈ (I− ∪ {ε} ∪ C)∗}, such that
F ′ can be rewritten to F under ∆ by applying each rewrite rule at least once.
In the case of ∆ = ∅, and hence F = F ′, the result holds by Proposition 2.
Consider the remaining case when ∆ 6= ∅. Again, we consider here only the case
of n′ being labelled by a sequent of shape `(i,F ′)·H′,U ′,C′ q.

Let nodes n′
j and n′

j,k be as described in the proof of Proposition 3. If for
any such node n′

j,k the triple (i, F ′
j ·Xj ·Fj,k, Xj) is not in the choice set λ, then

λ must have selected at n′
j,k some triple from the store C ′

j,k, which must then
also be in the store of the sequent at node n, and hence in the set of triples in
the label of n; the result then follows immediately from Proposition 2.

So, consider the remaining case when λ has chosen from the label of every
node n′

j,k exactly the triple (i, F ′
j · Xj · Fj,k , Xj). Then, by the definitions of

induced formula and projection, for all j ∈ J and k ∈ β(j), the structural
formula (Ω(Ξi))fF ′

j

must be identical to (Ω(Ξi))fF ′
j
· gFj,k

up to repeating or trivial

conjuncts. By induction on the length of the rewriting sequence deriving F from

23

F ′, (Ω(Ξi)) eF must be identical to (Ω(Ξi))fF ′ up to repeating or trivial conjuncts.

Since by assumption (i, F ′, q) is in λ, (Ω(Ξi))fF ′ must be of shape ν
−→
X.(q∧χ′)∧χ′′

for some (optional) χ′, χ′′ and (zero or more) propositional variables
−→
X , and

hence also (Ω(Ξi)) eF must be of this shape. Therefore i ⇒ (χ eF ⇒ q) is valid in
all flow graph structures, and thus, because of Proposition 1, we can conclude

that G |=s χ implies G |=s i⇒
[
F̃

]
q for all flow graphs G. ut

Example 7. Consider again the tableau unfolding in 7. All contributing leaves
are of the shape`(a,X1·(X2·X3·b·X5·X1)∗·X2·X3·b·X5,X=φ,{(b,X1·X2,¬r)} ¬r, i.e., they
contain triples (a,X1 ·(X2 ·X3 ·b ·X5 ·X1)

∗ ·X2 ·X3 ·b ·X5,¬r and (b,X1 ·X2,¬r).
Thus, for the first triple we have that F = b+, i.e., it contains one or more b’s.
Consider the induced formula χ = a⇒ νX. [b] (¬r∧X). Clearly, for this formula
we have that for any flow graph G: G |=s χ implies G |=s a⇒ [b+]¬r.

3.3 Correctness of the Translation

We use a proof system and an isomorphic translation of tableau unfoldings into
proof trees to show correctness of the tableau system. We show that the proof
tree induced by the unfolding of the tableau for behavioural formula φ and
method m generating the set of structural formulae X constitutes a proof that
every flow graph satisfying some χ ∈ X also satisfies φ.

Proof System The sequents of the proof system are of shape X `(i,F)·H,U,C φ.
To define validity of a sequent, we first define a function reach that computes for
a given flow graph G, set of nodes V and sequence of labels L, the set of nodes
reachable in G from the nodes in V by following edges with the labels in L (via
non-return nodes).

reachG(V, ε) = V reachG(V, l · L) = reachG({v′ | v ∈ V ∧ v
l
−→G v

′}, L)

For clean flow graphs, reachability coincides with a structural box formula.

Proposition 4. For all flow graphs G, method names m, clean frames F and
structural formulae χ:

G |=s m⇒ [F]χ ⇔ ∀v ∈ reachG(Em, F). v |=G
s χ

One can easily show ∀v ∈ V.v |=G
s [L]χ ⇔ ∀v′ ∈ reachG(V, L).v′ |=G

s χ by
induction on the length of L. The result then follows, since by definition and
simple logic G |=s m⇒ φ ⇔ ∀v ∈ Em.v |=G

s φ, by instantiating L with F . ut

Next, we define a matching predicate γG(σ,H) relating history stacks H and
call stacks σ. Note that γG(v · σ,∅H,m) holds exactly when v ∈ Em and σ = ε.

γG(ε, ε) ⇔ tt γG(v · σ, ε) ⇔ ff γG(ε, (m,F) ·H) ⇔ ff

γG(v · σ, (m,F) ·H) ⇔ v ∈ reachG(Em, F̃) ∧ γG(σ,H)

24

Prop
X`(i,F)·H,U,C p

V({(i,F,p)}∪{(i′,F ′,ff)|(i′,F ′)∈H}∪C,X)
NegProp

X`(i,F)·H,U,C¬p

V({(i,F,¬p)}∪{(i′,F ′,ff)|(i′,F ′)∈H}∪C,X)

NuX
X`(i,F)·H,U,C

νX.φ

X`(i,F)·H,(X=νX.φ)◦U,C X
XUnf

X`(i,F)·H,U,C
X

X`
(i,F ·S(X))·H,U,C

φ
(X = νX.φ) ∈ U

And
X`(i,F)·H,U,C

φ1∧φ2

X`
(i,F ·S(φ1∧φ2))·H,U,C

φ1 X`A
(i,F ·S(φ1∧φ2))·H,U,C

φ2
Tau

X`(i,F)·H,U,C
[τ]φ

X`(i,F ·S([τ]φ)·ε)·H,U,C φ

Call0
X`(i,F)·H,U,C

[a call b]φ

−
i 6= a Call1

X`(i,F)·H,U,C
[a call b]φ

X`
(b,ε)·(i,F ·S([a call b]φ)·b)·H,U,C

φ
i = a

Ret0
X`(i,F)·H,U,C

[a ret b]φ

−
¬Ret(i, a, b, H) Ret1

X`(i,F)·H,U,C
[a ret b]φ

X`
H,U,C∪{(i,F,¬r)}

φ
Ret(i, a, b, H)

Figure 8. Proof system

Finally, for a set C of structural constraints of shape (i, F, q), where q is p or

¬p, let V (C,G) abbreviate ∃(i, F, q) ∈ C.G |=s i ⇒
[
F̃

]
q, V (C, χ) abbreviate

∀G. (G |=s χ ⇒ V (C,G)), and V (C,X) abbreviate ∀χ ∈ X .V (C, χ).
We are now ready to define validity of sequents.

Definition 9. (Sequent validity) Let X a set of structural formulae, and φ a
behavioural formula. Sequent X `(i,F)·H,U,C φ is valid, denoted X |=(i,F)·H,U,C φ,

iff for every χ ∈ X and every flow graph G such that G |=s χ,

V (C,G) ∨ ∀v, σ. (γG(v · σ, (i, F) ·H) ⇒ (v, σ) |=G
b φ[U])

Figure 8 gives the proof system as a set of goal-directed rules. Notice that there
is a one-to-one correspondence between proof rules and tableau rules used in
tableau unfolding, where the tableau rules giving rise to sets of triples C corres-
pond to axiom rules giving rise to a proof obligation of shape V (C,X).

A (potentially infinite) proof tree is a proof if (cf. [22]):

1. all leaves are axioms giving rise to valid proof obligations; and
2. the global discharge condition holds: along every infinite path, some propos-

itional variable X is unfolded infinitely often.

Notice that in our proof system the second condition holds trivially.
The proof system is locally sound, in the sense that all local rules of the proof

system are sound (in the standard sense), and locally complete, in the sense that
if a sequent is valid, then a rule is applicable (backwards) to this sequent that
yields valid sequents only.

Lemma 2. The proof system is locally sound and complete.

Proof. We consider each rule in turn, implicitly quantifying over all χ ∈ X . We
present here the more interesting cases only.

25

Rule Prop.
χ |=(i,F)·H,U,C p

⇔ ∀G. (G |=s χ ⇒ {Def. 9}

∀v, σ. (γG(v · σ, (i, F) ·H) ⇒ (v, σ) |=G
b p) ∨ V (C,G))

⇔ ∀G. (G |=s χ ⇒ {Def. γG}

∀v, σ. (v ∈ reachG(Ei, F̃) ∧ γG(σ,H) ⇒ (v, σ) |=G
b p) ∨ V (C,G))

⇔ ∀G. (G |=s χ ⇒
{
Def. |=G

b

}

∀v, σ. (v ∈ reachG(Ei, F̃) ∧ γG(σ,H) ⇒ v |=G
s p) ∨ V (C,G)Proof.P roof.)

⇔ ∀G. (G |=s χ ⇒ {Logic}

∀v ∈ reachG(Ei, F̃). v |=G
s p ∨ ∀σ.¬γG(σ,H) ∨ V (C,G))

⇔ ∀G. (G |=s χ ⇒ {Def. γG}

∀v ∈ reachG(Ei, F̃). v |=G
s p ∨

∃(i′, F ′) ∈ H. ∀v ∈ reachG(Ei′ , F̃ ′). v |=G
s ff ∨V (C,G))

⇔ ∀G. (G |=s χ ⇒ {Prop. 4}

G |=s i⇒
[
F̃

]
p ∨

∃(i′, F ′) ∈ H.G |=s i
′ ⇒

[
F̃ ′

]
ff ∨V (C,G))

⇔ V ({(i, F, p)} ∪ {(i′, F ′,ff) | (i′, F ′) ∈ H} ∪ C, χ) {Def. V (C, χ)}

Rule NuX.
χ |=(i,F)·H,U,C νX.φ

⇔ ∀G. (G |=s χ ⇒ {Def. 9}

∀v, σ.(γG(v · σ, (i, F) ·H) ⇒ (v, σ) |=G
b (νX.φ)[U]) ∨ V (C,G))

⇔ ∀G. (G |=s χ ⇒ {Def. φ[U]}

∀v, σ.(γG(v · σ, (i, F) ·H) ⇒ (v, σ) |=G
b X [(X = νX.φ) · U]) ∨ V (C,G))

⇔ χ |=(i,F)·H,(X=νX.φ)·U,C X {Def. 9}

Rule Call1.
Let i = a.

χ |=(i,F)·H,U,C [a call b]φ

⇔ ∀G. (G |=s χ ⇒ {Def. 9, γG}

∀v, σ. (v ∈ reachG(Ei, F̃) ∧ γG(σ,H) ⇒
(v, σ) |=G

b [a call b]φ[U]) ∨ V (C, χ))

⇔ ∀G. (G |=s χ ⇒
{
Def. |=G

b

}

∀v, σ. (v ∈ reachG(Ei, F̃) ∧ γG(σ,H) ⇒

∀v1, v2.(v
b
−→a v1 ∧ v2 ∈ Eb ⇒ (v2, v1 · σ) |=G

b φ[U])) ∨ V (C, χ))
⇔ ∀G. (G |=s χ ⇒ {Logic}

∀v, v1, v2, σ. (v ∈ reachG(Ei, F̃) ∧ γG(σ,H) ∧ v
b
−→a v1 ∧ v2 ∈ Eb ⇒

(v2, v1 · σ) |=G
b φ[U])) ∨ V (C, χ))

⇔ ∀G. (G |=s χ ⇒ {Def. reachG ,̃ }

∀v1, v2, σ. (v1 ∈ reachG(Ei, ˜F · S([a call b]φ) · b)∧
γG(σ,H) ∧ v2 ∈ reachG(Eb, ε) ⇒

(v2, v1 · σ) |=G
b φ[U])) ∨ V (C, χ))

⇔ χ |=(b,ε)·(i,F ·S([a call b]φ)·b)·H,U,C φ {Def. 9, γG}

26

Rule Ret1.
Let Ret(i, a, b,H). We use σ] and σ[to denote the head and tail of σ, re-

spectively.
χ |=(i,F)·H,U,C [a ret b]φ

⇔ ∀G. (G |=s χ ⇒ {Def. 9, γG}

∀v, σ. (v ∈ reachG(Ei, F̃) ∧ γG(σ,H) ⇒

(v, σ) |=G
b [a ret b]φ[U]) ∨ V (C, χ))

⇔ ∀G. (G |=s χ ⇒
{
Def. |=G

b

}

∀v, σ. (v ∈ reachG(Ei, F̃) ∧ γG(σ,H) ⇒

v |=G
s (r ∧ a) ∧ σ 6= ε ∧ σ] |=G

s b⇒ (σ], σ[) |=G
b φ[U]) ∨ V (C, χ))

⇔ ∀G. (G |=s χ ⇒ {Ret(i, a, b,H)}

∀v. (v ∈ reachG(Ei, F̃) ⇒ v |=G
s ¬r)∨

∀σ. (γG(σ,H) ⇒ (σ], σ[) |=G
b φ[U]) ∨ V (C, χ))

⇔ ∀G. (G |=s χ ⇒ {Prop. 4}

G |=s i⇒
[
F̃

]
¬r ∨

∀σ. (γG(σ,H) ⇒ (σ], σ[) |=G
b φ[U]) ∨ V (C, χ))

⇔ ∀G. (G |=s χ ⇒ ∀σ. (γG(σ,H) ⇒ (σ], σ[) |=G
b φ[U]) ∨ V (C ∪ {(i, F,¬r)}, χ)) {Def. V (C, χ)}

⇔ χ |=H,U,C∪{(i,F,¬r)} φ {Def. 9, γG}
ut

The proof system is sound in the standard sense.

Theorem 2. X |=
∅H,m,∅U ,∅C

φ if there is a proof with root X `
∅H,m,∅U ,∅C

φ.

Proof. Assume on the contrary that there is a proof with root X `∅H,m,∅U ,∅C
φ

but X |=∅H,m,∅U ,∅C
φ does not hold. From local soundness of the proof system

it follows that there must be an infinite path in the proof starting from the root
and consisting of invalid sequents only, and along this path, some propositional
variable is unfolded infinitely often.

Define the signature of a sequent as the least mapping from propositional
variables to ordinals for which the approximated fixed-point formula makes the
sequent invalid (cf. [23]). Formally, pick a total ordering ≺φ on the propositional
variables Vφ occurring in φ so that X ≺φ Y whenever X 6= Y and νY is in the
scope of νX in φ. This ordering induces a well-founded, lexicographic ordering
on the set of mappings of type κ : Vφ → Ord , where Ord denotes the set of
ordinals. Let (φ[U])κ denote the fixed-point approximant of φ[U] induced by κ.
Then, the signature of X `(i,F)·H,U,C φ is defined as the least κ : V → Ord for
which there exists a structural formula χ ∈ X and a control flow graph G so
that G |=s χ, with node v and stack σ so that γG(v · σ, (i, F) · H), for which
(v, σ) 6|=G

b (φ[U])κ.
The signature decreases along the path every time unfolding is applied, since

φ is guarded, and is preserved by all other proof rules. Hence, the signature must
decrease infinitely often along the path. This, however, is impossible, and hence
the initial assumption must be wrong. Therefore, the proof system is sound. ut

27

Soundness and Completeness of Translation The tableau for behavioural
formula φ and method m giving rise to the set of structural formulae X induces,
through its unfolding, a proof tree with root X `∅H,m,∅U ,∅C

φ by applying the
corresponding rules. This proof tree constitutes a proof.

Lemma 3. Maximal tableaux induce proofs.

Proof. Let T be a tableau for behavioural formula φ and method m inducing
X , let (T ∗, τ) be its unfolding, and let P be the induced proof tree with root
X `∅H,m,∅U ,∅C

φ. By Lemma 1, for every leaf of P labelled by a proof obligation
V (C,X), and for every χ ∈ X , there is a triple (i, F, q) in C such that G |=s χ

implies G |=s i⇒
[
F̃

]
q for all flow graphs G. But:

∀G. (G |=s χ ⇒ G |=s i⇒
[
F̃

]
q)

⇒ ∀G. (G |=s χ ⇒ V (C,G)) {Definition V (C,G)}
⇔ V (C, χ) {Definition V (C, χ)}

and therefore the proof obligation V (C,X) is valid. Furthermore, the global
discharge condition holds by virtue of the tableau construction and tableau un-
folding. Therefore P constitutes a proof. ut

The translation from behavioural to structural formulae is sound, i.e., every
flow graph satisfying a structural formula χ induced by a behavioural formula φ
by means of the translation Π defined above, also satisfies φ.

Theorem 3. Translation Π from behavioural to structural formulae is sound.

Proof. Let φ be a behavioural formula, and let χ ∈ ΠIG (φ). Then, by the trans-
lation, for every method m ∈ I+ there is a conjunct χm of χ induced by a
maximal tableau for φ and m. We therefore have:

G |=s χ
⇒ ∀m ∈ I+. ∃χm ∈ πm(φ). (G |=s χm ∧ χm `

∅H,m,∅U ,∅C
φ) {Lemma 3}

⇒ ∀m ∈ I+. ∃χm ∈ πm(φ). (G |=s χm ∧ χm |=
∅H,m,∅U ,∅C

φ) {Theorem 2}

⇒ ∀m ∈ I+. ∀v ∈ Em. (v, ε) |=
G
b φ {Definition 9}

⇔ G |=b φ {Definition |=b}

and hence the translation is sound. ut

The translation is complete, i.e., every flow graph satisfying a behavioural for-
mula φ also satisfies a structural formula χ induced by φ by means of Π .

Theorem 4. Translation Π from behavioural to structural formulae is complete.

Proof. (Sketch) First, we show that for every structural formula χ and methodm,

χ |=
∅H,m,∅U ,∅C

φ ⇒ ∀G. (G |=s χ⇒ ∃χ′ ∈ πm(φ).G |=s χ
′) (2)

28

Then, we use the notion of characteristic formula of a specification S, de-
noted χS , and its properties (viz. Theorem 2.7, Theorem 3.9, and Corollary 2.16
in [21]), to obtain:

G |=b φ
⇔ ∀G′. (G′ |=s χG ⇒ G′ |=b φ) {Properties χG}

⇔ ∀G′. (G′ |=s χG ⇒ ∀m ∈ I+. ∀v ∈ Em. (v, ε) |=
G′

b φ) {Definition |=b}

⇔ ∀m ∈ I+. ∀G′. (G′ |=s χG ⇒ ∀v ∈ Em. (v, ε) |=
G′

b φ) {Logic}
⇔ ∀m ∈ I+. χG |=

∅H,m,∅U ,∅C
φ {Definition 9}

⇒ ∀m ∈ I+. ∀G′. (G′ |=s χG ⇒ ∃χ′ ∈ πm(φ).G′ |=s χ
′) {Implication (2)}

⇒ ∀m ∈ I+. ∃χ′ ∈ πm(φ).G |=s χ
′ {Properties χG}

⇔ ∃χ′′ ∈ Π(φ).G |=s χ
′′ {Definition Π(φ)}

which proves completeness.
Implication (2) is established as follows. Assume χ |=

∅H,m,∅U ,∅C
φ. Beha-

vioural formula φ and method m induce a tableau T giving rise to a set of
structural formulae πm(φ), an unfolding (T ∗, τ), and a corresponding proof with
root sequent πm(φ) `

∅H,m,∅U ,∅C
φ. Consider the proof tree obtained from this

proof by replacing, in all sequents, πm(φ) by χ. By local completeness of the
proof system, it follows that for every leaf of the latter proof tree correspond-
ing to a contributing leaf of T ∗ labelled with triple set C, the proof obligation

V (C, χ) must be valid, that is ∀G. (G |=s χ ⇒ ∃(i, F, q) ∈ C.G |=s i ⇒
[
F̃

]
q).

Let G be a flow graph such that G |=s χ. Then, from every leaf we can choose

a triple (i, F, q) for which G |=s i ⇒
[
F̃

]
q holds. Furthermore, one can show

that these triples can be chosen consistently, that is, in accordance with the
relationship between the leaves of the tableau (called primary leaves) and its
unfolding established in Proposition 3. Then, the choices made on the primary
leaves define a choice set λ, which induces a structural formula χ′ ∈ πm(φ). In

addition, one can show that the conjunction over all formulae i⇒
[
F̃

]
q defined

by the consistently chosen triples (i, F, q) is logically equivalent to the conjunc-
tion over the fixed-point approximants of χ′, and thus to χ′ itself. Therefore,
G |=s χ

′ holds. ut

Theorem 3 and Theorem 4 together establish equivalence (1).

4 Application: Compositional Verification

The original motivation for the present work has been the wish to extend an
earlier developed compositional verification method [11] to behavioural prop-
erties. The compositional verification method is based on the computation of
maximal models: a model is said to be maximal for a given property φ, if it sat-
isfies φ and simulates (w.r.t. a property-preserving simulation relation) all other
models satisfying φ. Due to the close connection between simulation and satis-
faction in our logic, we obtain the following compositional verification principle:

29

to show G1]G2 |= ψ, it suffices to show G1 |= φ (component G1 satisfies a suitably
chosen local assumption φ) and Gφ] G2 |= ψ (component G2, when composed
with the maximal flow graph Gφ for φ, satisfies the global guarantee ψ).

Thus, the compositional verification problem is reduced to finding maximal
flow graphs. However, given a property φ over a flow graph (behaviour), there
is no guarantee that the maximal model of φ is a valid flow graph (behaviour).
At the structural level this problem can be solved, because we can precisely
characterise legal flow graphs w.r.t. an interface I as a structural formula θI in
our logic. Then, if φ is an arbitrary structural formula, the maximal model of the
formula φ ∧ θI is a flow graph Gφ,I which precisely characterises all flow graphs
with interface I that satisfy φ.

However, there is no such way to precisely characterise flow graph behaviour
(cf. [11]), and thus one cannot directly apply the compositional verification prin-
ciple to behavioural properties. In [11], we proposed a “mixed” rule where global
guarantees are behavioural, but local assumptions are structural. With the res-
ults of the present paper, however, this rule can be combined with the character-
isation (1) to yield the following sound and complete compositional verification
principle, where both the global guarantee (required to be disjunction-free) and
the local assumption are behavioural.

G1 |=b φ
{
Gχ,IG1

] G2 |=b ψ
}

χ∈ΠIG1
(φ)

G1] G2 |=b ψ
G1 closed

Notice that when applying the rule, instead of showing G1 |=b φ it suffices to
show G•

1 |=s χ for some χ ∈ ΠIG1
(φ). Completeness of the principle guarantees

that no false negatives are possible: if the second premise fails, then there is
indeed a legal flow graph G with interface IG1 such that G |=b φ but G]G2 6|=b ψ.

Another way of using the characterisation equivalence result (1) for com-
positional verification is to apply it on the global guarantee, and then to ap-
ply a variation of the compositional verification principle, involving structural
formulae only. This leads to the following sound and complete compositional
verification principle.

G1 |=s χ
′ ∃χ ∈ ΠIG1]G2

(ψ). (Gχ′ ,IG1
] G2 |=s χ)

G1] G2 |=b ψ

Notice that this rule does not restrict component G1 to be closed; however, it
restricts property χ′ to be structural.

5 Conclusion

This report presents a precise characterisation of (disjunction-free) behavioural
formulae as sets of structural formulae, in a context where programs are ab-
stracted as flow graphs, and properties are expressed in a fragment of the modal
µ-calculus with boxes and greatest fixed points only. To the best of our know-
ledge, no similar characterisations exist that are based on temporal logic. As one

30

significant application, we state a sound and complete compositional verification
principle for behavioural properties based on maximal models. Other possible
applications of the translation are the reduction of infinite-state verification of
behavioural control flow properties to finite-state verification of structural prop-
erties, and in the area of program synthesis.

Extensions Unlike the other connectives of the logic, validity of sequents is
not compositional w.r.t. disjunction in our tableau system. Disjunction can still
be handled, though at the expense of completeness, by adding two symmetric
tableau rules that simply “drop” the right respectively the left disjunct. A beha-
vioural formula and a method will thus give rise to a set of tableaux, for which
we take the union of their induced sets of structural formulae. Alternatively, to
obtain a complete translation, we plan to generalise the sequent format, e.g., in
the style of Gentzen sequents, and then also tableau construction and formula
extraction. We also plan to study whether the characterisation can be exten-
ded for the logic with diamonds and least fixed points, and for richer program
models (e.g., with exceptions, or multithreading, as in [12]), and whether the
compositional verification principle can be generalised to open components. For
the last extension, two different approaches will be considered: (i) the transla-
tion is generalised to formulae over open interfaces, requiring the generalisation
of Definition 6 for open flow graphs, and (ii) every open component is “closed”
by composing it with a most general environment before the characterisation is
applied.

Implementation An implementation of the translation has been developed
in Ocaml, and is available via a web-based interface [10]. It returns a tableau
per method, plus a set of structural formulae (after applying some basic logical
simplifications, e.g., removing unused fixed-points, to make the output more
readable). It has been applied on all examples in this report. In all cases, the
output is produced within seconds. Various optimisations of the translation are
possible. For instance, since logically subsumed formulae are redundant in the
characterisation, the construction of choice sets can be optimised as follows: if a
triple is picked from a contributing leaf, then the same triple must be selected
from all other contributing leaves containing it.

In future work, the complexity of the tableau construction will be studied by
finding upper bounds for the size of generated tableaux, and for the number and
size of generated formulae.

References

1. R. Alur, M. Arenas, P. Barcelo, K. Etessami, N. Immerman, and L. Libkin. First-
order and temporal logics for nested words. In Logic in Computer Science (LICS
’07), pages 151–160, Washington, DC, USA, 2007. IEEE Computer Society.

2. R. Alur, M. Benedikt, K. Etessami, P. Godefroid, T. Reps, and M. Yannakakis.
Analysis of recursive state machines. ACM TOPLAS, 27:786–818, 2005.

3. R. Alur, K. Etessami, and P. Madhusudan. A temporal logic for nested calls and
returns. In Tools and Algorithms for the Analysis and Construction of Software
(TACAS ’04), volume 2998 of LNCS, pages 467–481. Springer, 2004.

31

4. A. Bouajjani, J.C. Fernandez, S. Graf, C. Rodriguez, and J. Sifakis. Safety for
branching time semantics. In Automata, Languages and Programming (ICALP
’91), volume 501 of LNCS, pages 76–92. Springer Verlag, 1991.

5. O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification on infinite structures.
In J.A. Bergstra, A. Ponse, and S.A. Smolka, editors, Handbook of Process Algebra,
pages 545–623. North Holland, 2000.

6. M. Dam and D. Gurov. µ-calculus with explicit points and approximations. Journal
of Logic and Computation, 12(2):43–57, 2002.

7. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for
model checking pushdown systems. In Computer Aided Verification (CAV ’00),
volume 1855 of LNCS, pages 232–247. Springer, 2000.

8. J. Esparza and S. Schwoon. A BDD-based model checker for recursive programs.
In Computer Aided Verification (CAV ’01), volume 2102 of LNCS, pages 324–336.
Springer, 2001.

9. O. Grumberg and D. Long. Model checking and modular verification. ACM TO-
PLAS, 16(3):843–871, 1994.

10. D. Gurov and M. Huisman. From behavioural to structural properties: A tool web
interface. http://www.csc.kth.se/~dilian/Projects/CVPP/beh2struct.php.

11. D. Gurov, M. Huisman, and C. Sprenger. Compositional verification of sequential
programs with procedures. Information and Computation, 206(7):840–868, 2008.

12. M. Huisman, I. Aktug, and D. Gurov. Program models for compositional verific-
ation. In International Conference on Formal Engineering Methods (ICFEM ’08),
volume 5256 of LNCS, pages 147–166. Springer, 2008.

13. M. Huisman and D. Gurov. Composing modal properties of programs with proced-
ures. In Formal Foundations of Embedded Software and Component-Based Software
Architectures (FESCA ’07), Electronic Notes in Theoretical Computer Science,
2008. To appear.

14. D. Kozen. Results on the propositional µ-calculus. Theoretical Computer Science,
27:333–354, 1983.

15. D. Kozen. Automata and Computability. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 1997.

16. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Principles of
Programming Languages, (POPL ’89), pages 179–190. ACM, 1989.

17. U. Reddy and S. Kamin. On the power of abstract interpretation. Computer
Languages, 19(2):79–89, 1993.

18. T. Reps, S. Schwoon, S. Jha, and D. Melski. Weighted pushdown systems and
their application to interprocedural dataflow analysis. Science of Computer Pro-
gramming, 58(1-2):206–263, 2005.

19. F. B. Schneider. Enforceable security policies. ACM Trans. Infinite Systems Se-
curity, 3(1):30–50, 2000.

20. U. Schöpp and A. K. Simpson. Verifying temporal properties using explicit ap-
proximants: Completeness for context-free processes. In Foundations of Software
Science and Computation Structures (FoSSaCS ’02), volume 2303 of LNCS, pages
372–386. Springer, 2002.

21. C. Sprenger, D. Gurov, and M. Huisman. Compositional verification for secure
loading of smart card applets. In Formal Methods and Models for Co-Design
(MEMOCODE ’04), pages 211–222. IEEE Computer Society, 2004.

22. C. Stirling. Modal and Temporal Logics of Processes. Springer, 2001.
23. R. S. Streett and E. A. Emerson. An automata theoretic decision procedure for

the propositional µ-calculus. Information and Computation, 81(3):249–264, 1989.

32

24. I. Walukiewicz. Completeness of Kozen’s axiomatisation of the propositional mu-
calculus. In Logic in Computer Science (LICS ’95), pages 14–24, 1995.

25. P. Wolper. On the relation of programs and computations to models of temporal
logic. In Time and logic: a computational approach, pages 131–178, London, UK,
UK, 1995. UCL Press Ltd.

33

A Pumping Lemma for CFLs: A PDA view

The well-known Pumping lemma for context-free languages (see e.g. [15], pp.148-
156) is usually proved by referring to parse trees of words of the given context-
free language, generated by some context-free grammar (in Chomsky normal
form) for that language. The main property of (binary) trees which the proof is
based on is that the depth of a tree is bound by the number of its leaves. As a
consequence, for any sufficiently long word of the given context-free language,
every parse tree must repeat some non-terminal along some path from the root
to some leaf. The sub-trees induced by the repeating occurrences of the non-
terminal can be substituted for each other in a context-free fashion, thus giving
rise to the “pumping” nature of CFLs.

The Pumping lemma could - less conveniently in general, but relevant for
the present work - be phrased by referring to (non-deterministic) pushdown
automata instead of context-free grammars.

Lemma 4 (Pumping Lemma for PDAs). Let M = (Q,Σ, Γ, δ, s,⊥) be a
non-deterministic PDA accepting on empty stack. Then, there exists k ≥ 0,
such that for every z ∈ Σ∗ accepted by M such that |z| ≥ k, there exist strings
u, v, w, x, y ∈ Σ∗ where z = uvwxy, vx 6= ε and |vwx| ≤ k, control states
q, q′, q′′ ∈ Q, non-terminal T ∈ Γ and non-terminal strings X ,Y ∈ Γ ∗, such
that for all i ≥ 0 there is a run of the PDA of the shape

〈s,⊥〉
u

=⇒ 〈q, TY〉
vi

=⇒
〈
q, TX iY

〉 w
=⇒

〈
q′,X iY

〉 xi

=⇒ 〈q′,Y〉
y

=⇒ 〈q′′, ε〉

Proof. (Sketch) Each production 〈q1, A〉
a
↪→ 〈q2, γ〉 of a PDA can be viewed as a

CFG production A→ aγ (in Greibach normal form) with an associated rewriting
q1 → q2 of the control state. So, an accepting run (i.e. one that empties the
stack) of a PDA can be viewed as a parse tree generated by the corresponding
grammar, the non-terminals of the tree being equipped with control states; the
run can then be extracted from the tree through a leftmost-outermost traversal.
In addition, we label the leaves with the target control states, and call such trees
PDA parse trees.

We define the type of a PDA parse tree as a triple (q, A, q′) where A is the
non-terminal at the root of the tree, q is its associated control state, and q′ is
the control state labelling the rightmost leaf. Intuitively, the type of a parse tree
denotes that if the PDA is in control state q and the stack consists of A, then
upon emptying the stack the PDA is in control state q′. The notion of type can
be lifted to a tree node through the sub-tree rooted at this node. Notice that
sub-trees of the same type can be substituted for each other in a PDA parse tree
in a context-free fashion, i.e. without violating the PDA parse tree formation
rules.

For every sufficiently long accepting run of a given PDA, the corresponding
parse tree must repeat some node type along some path from the root to some
leaf. Substituting for each other the induced sub-trees gives rise to the same kind
of pumping behaviour as in the standard view explained above. In terms of the
accepting run itself, the result follows. ut

34

Note that the above proposition can be generalised to arbitrary sub-runs z of M
by relaxing state q0 and non-terminal S to be arbitrary, and by appending any
non-terminal string Z ∈ Γ ∗ at the end of all stacks of the original run.

35

