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Abstract. We study the problem of constructing efficient proofs of
knowledge of preimages of general group homomorphisms. We simplify
and extend the recent negative results of Bangerter et al. (TCC 2010)
to constant round (from three-message) generic protocols over concrete
(instead of generic) groups, i.e., we prove lower bounds on both the
soundness error and the knowledge error of such protocols. We also give
a precise characterization of what can be extracted from the prover in the
direct (common) generalization of the Guillou-Quisquater and Schnorr
protocols to the setting of general group homomorphisms.

Then we consider some settings in which these bounds can be circum-
vented. For groups with no subgroups of small order we present: (1) a
three-move honest verifier zero-knowledge argument under some set-up
assumptions and the standard discrete logarithm assumption, and (2) a
Σ-proof of both the order of the group and the preimage. The former
may be viewed as an offline/online protocol, where all slow cut-and-
choose protocols can be moved to an offline phase.

1 Introduction

An honest-verifier zero-knowledge proof of knowledge is a two party protocol
where a prover demonstrates knowledge of a secret and the verifier does not
learn anything he can not compute himself. A protocol is complete if the honest
verifier accepts when interacting with the honest prover. The prover is honest-
verifier zero-knowledge if the view of the honest verifier interacting with the
prover can be simulated efficiently.

The probability that a malicious prover convinces the verifier of a false state-
ment is called the soundness error. The prover is said to know the secret when
there exists an efficient extractor which after interacting with the prover out-
puts the secret. On the other hand, a malicious prover who does not know the
secret still has some probability, called the knowledge error, of convincing the
verifier. Making the knowledge error as small as possible at low computational
and communication costs is an important goal in the construction of protocols.

Guillou’s and Quisquater’s [12] protocol for proving knowledge of an RSA
root and Schnorr’s well-known proof of knowledge of a discrete logarithm [14]
in a group of prime order q are particularly nice proofs of knowledge. Recall
that in Schnorr’s proof of knowledge of w such that y = gw, the prover first
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commits to randomness r ∈ Zq by sending α = gr to the verifier. The verifier
then sends a random challenge c ∈ Zq and the prover responds with d = cw +
r mod q. To extract the secret w, the extractor only needs to sample interactions
until it finds two accepting transcripts (α, c, d) and (α, c′, d′), where c′ �= c, and
compute w = (d − d′)(c − c′)−1 mod q. Similar protocols with exponentially
small knowledge errors can be constructed for statements involving several group
elements. The protocols exhibiting this form, with three messages, extraction
from two accepting transcripts sharing the first message, and a strong form of
honest-verifier simulation, are called Σ-proofs [7].

There is a simple and well-known generalization of Schnorr’s protocol that
can be executed over a group of unknown order, or even prove knowledge of a
preimage w ∈ G of an element y ∈ H under a group homomorphism φ : G →
H. Unfortunately, the resulting protocol has soundness and knowledge error
1/2. These errors can be reduced to 2−n by n repetitions, but this approach is
impractical because it increases both the computation and communication costs
considerably. Thus, a natural question is whether there exist protocols with small
knowledge error and a structure similar to the Guillou-Quisquater and Schnorr
proofs, but which works for any groups G and H and group homomorphism φ.

1.1 Previous Work

Proofs of knowledge over groups of unknown order have been studied before and
both positive and negative results are known. Shoup [15] gave a three-message
protocol for proving knowledge of w such that y = w2m

in an RSA group and
showed that a knowledge error of 1/2 is optimal.

Bangerter, Camenisch and Krenn [1] considered generic Σ-protocols, i.e.,
three-message protocols where the prover computes integer linear combinations
of the secret witness and random elements, and possibly applies the homomor-
phism. They proved a lower bound on the knowledge error of such protocols
in the generic group model. They also showed that the lower bounds hold for
some natural generalizations of Schnorr’s protocol in concrete groups. Specif-
ically, they generalized Shoup’s result on powers in RSA groups to arbitrary
exponents and proved a lower bound of the knowledge error of exponentiation
homomorphisms φ(w) = gw in groups of unknown order, under mild assumptions
on the extractor.

There is a vast literature on constructing protocols for specific groups and
homomorphisms, with and without computational assumptions, and we only
mention a few. Fujisaki and Okamoto [9] created an integer commitment scheme
(subsequently generalized and corrected by Damgård and Fujisaki [8]) along
with an argument of knowledge of the opening of the commitment under the
strong RSA assumption. The argument of knowledge is actually a Σ-protocol of
(w, r) ∈ Z

2 such that y = gwhr. Other protocols [3] have been proposed based
on the same principles.

Bangerter, Camenisch and Maurer [2] proposed two protocols for proving
knowledge of a preimage in a group with unknown order. The first protocol
assumed that the players are given an auxiliary pseudo-preimage (e′, u′) such
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that ye′
= φ(u′) where e′ is a prime larger than any challenge. Thus, if the

ordinary extractor has found a pseudo-preimage (e, u) such that ye = φ(u), one
knows that gcd(e, e′) = 1, which implies that there exist integers a, b such that
ae + be′ = 1. Hence y = φ(u)aφ(u′)b = φ(au + bu′). This method of finding
a proper preimage is sometimes called “Shamir’s trick”. Their second protocol
is based on running two Σ-protocols in parallel, one being a Damgård-Fujisaki
commitment. This protocol was later criticized by Kunz-Jacques et al. [13], since
a verifier can choose a bad RSA-modulus. The prefix protocol of Wikström [16]
used to establish a safe modulus suffers from the same flaw, though his main
protocol remains secure.

Groups of unknown order have been used in several identification schemes.
Brickell and McCurley [5] constructed an identification scheme that is secure
as long as either discrete logarithms or factoring is hard. In their scheme, the
prover knows the (prime) order of the generator g but the verifier does not. Their
protocol share some similarities with our Protocol 3 for proving knowledge of a
multiple of the order and subsequent proof of knowledge of the discrete logarithm
in Protocol 4. Girault et al. [10] suggested an identification scheme that uses
Schnorr’s protocol in a group of unknown order (cf. our Protocol 1) to prove
knowledge of a secret w for the public identity gw. However, the security model
in [10] only requires the extractor to output a witness if the attacker can forge
the proof for a randomly chosen public identity with non-negligible probability,
and they note that this protocol is not a proof of knowledge.

Cramer and Damgård [6] recently gave a method for amortizing the cost of
cut-and-choose protocols over several instances, which reduces both the com-
putational complexity and the size of the proof. This does not contradict our
lower bounds since we only consider a single instance of the problem of proving
knowledge of w such that y = φ(w).

1.2 Our Results

We begin by giving a precise characterization of the knowledge of the prover in
the well-known generalization of the Guillou-Quisquater and Schnorr-protocols
to the setting of group homomorphisms. We essentially prove that if a prover
convinces the honest verifier with probability p, then we can extract e ≈ 1/p
and u such that ye = φ(u) in time O(T (n)e) for some polynomial T (n).

Then we consider a generalization of Bangerter et al.’s [1] class of generic
Σ-protocols for proving knowledge of a preimage of a group homomorphism. We
extend their model from three-message protocols to protocols with any constant
number of rounds with challenges that could depend on previous messages and
we prove lower bounds on both the knowledge error and the soundness error of
protocols from this class.

– Under mild assumptions, we show that a malicious prover who knows a
pseudo-preimage u = 2w + σ of y = φ(w), where φ(σ) = 1, can convince the
verifier with some constant probability, where the constant depends on the
protocol. Thus, an efficient extractor for w can, in general, not be constructed
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unless w can be computed from (2, u). This generalizes the result for three-
message protocols given in [1] to constant-round protocols. Furthermore, our
analysis is simpler and does not rely on the generic group model.

– We show that if the group H has an element γ of small order and the verifier
uses a natural type of verification test, then the proof does not even need to
be sound. In particular, we construct a malicious prover who knows γ and
w such that y = γφ(w), yet manages to convince the verifier that y = φ(w′)
for some w′. The technique is similar to that of Kunz-Jacques et al. [13].

These results shed some new light on what is needed from a protocol for proving
knowledge of a preimage.

Finally, we investigate two ways of circumventing the negative results. We
present two honest-verifier zero-knowledge protocols that allow (a precisely char-
acterized) partial knowledge extractor in general, and a proper knowledge ex-
tractor under assumptions on the order of the underlying group.

– Our first protocol, Protocol 2, only works for the exponentiation homomor-
phism under the standard discrete logarithm assumption in a different group
of known prime order, and requires set-up assumptions. We show that if a
prover convinces the verifier with probability p, then we can extract e ≈ 1/p
and u such that ye = geu. In contrast to the basic protocol, Protocol 1, this
may, loosely, be viewed as an argument of knowledge of the preimage up to
small subgroups, and an argument of knowledge of w when the order of the
underlying group contains no small factors. The set-up assumptions require
cut-and-choose protocols, but these can be executed in an offline phase.

– Our second protocol, Protocol 4, works for any group homomorphism, but
requires that the prover knows the order of the underlying group (in fact
it proves knowledge of both a multiple of the order and the preimage). We
show that if a prover convinces the verifier with probability p, then we can
extract e ≈ 1/p and u such that ye = φ(u) and every factor of e divides the
order of y. Again, if the order of the group contains no small factors, this
gives a proof of knowledge.

Although neither protocol solves the problem of constructing an efficient proof
of knowledge of a preimage in general, our protocols suffice in certain situations.
The first protocol can, e.g., be used to prove knowledge of an integer w such that
y0 = gw

0 and y1 = gw
1 , where g0 and g1 are generators of two groups of distinct

large prime orders.

1.3 Notation

Throughout the paper, we use the standard definitions of zero-knowledge pro-
tocols [11] and proofs of knowledge [4]. Let n and nc to denote the security
parameter and bit-size of challenges. When executing proofs of knowledge of ex-
ponents, we denote by nw the bit-size of the exponent and nr the additional bits
in the randomizer. We let G and H denote abelian groups and let φ : G → H be a
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group homomorphism. Since φ will often be an exponentiation homomorphism,
we will write G additively and H multiplicatively.

We sometimes use overlining to indicate that something is a vector or a list,
e.g., z ∈ Gn is a list of n elements in G. We write φ(z) as a short-hand for the
list obtained by applying the homomorphism to each component of z. Similarly,
if w ∈ G and α ∈ Z

n, we use the convention that wα = (wα1 , . . . , wαn). For a
list or vector v, the number of components is denoted by dim(v). We adopt the
definition of a pseudo-preimage of Bangerter et al. [1].

Definition 1. Let φ : G → H be a group homomorphism and let y be an element
of H. A pseudo-preimage of y is a pair (e, u) ∈ Z × G such that ye = φ(u).

The following observation follows immediately from the definition.

Lemma 1. Let y = φ(w). Any pseudo-preimage (e, u) of y must have the form
u = ew + σ, where φ(σ) = 1, i.e., σ is an element in the kernel of φ.

2 Tight Analysis of the Basic Protocol

Below we recall the natural generalization of Schnorr’s protocol for proving
knowledge of a discrete logarithm to the setting where the prover instead needs
to show that it knows a preimage w ∈ G of y ∈ H under a homomorphism
φ : G → H.

Protocol 1 (Basic Protocol)
Common Input. An element y ∈ H and a homomorphism φ : G → H of abelian
groups G and H.
Private Input. An element w ∈ G such that y = φ(w).

1. P chooses r ∈ G randomly1 and hands α = φ(r) to V .
2. V chooses c ∈ [0, 2nc − 1] randomly and hands c to P .
3. P computes d = cw + r in G and hands d to V .
4. V verifies that ycα = φ(d)

We obtain Schnorr’s proof of knowledge of a discrete logarithm in a group 〈g〉
of prime order q by setting G = Zq, H = 〈g〉 and φ(w) = gw. When the order
of g is unknown, we treat φ(w) = gw as a homomorphism from G = Z to 〈g〉.
More precisely, we assume that w ∈ [0, 2nw −1] and choose r ∈ [0, 2nw+nc+nr −1]
which is statistically close to uniform modulo the order of g if nr is large enough.
As a slight generalization, we may let the verifier check that d ∈ [0, 2nw+nc+nr −
1]. This modification does not affect Theorem 1 and 2 below, except that the
protocol is overwhelmingly complete rather than perfectly complete. We use this
variant in Protocol 3.
1 It is sufficient that the distribution of r is statistically close to uniform in G or even

that the distribution of cw + r is statistically close to c′w′ + r′ for any c, c′, w, w′

allowed in the protocol.
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It is well-known that Protocol 1 is honest-verifier zero-knowledge, so we state
that theorem without proof. It is also well-known that the protocol, in general,
is not a proof of knowledge of w such that y = φ(w). On the other hand, it is
clear that the prover shows that it knows something related to w and as far as
we know there is no precise characterization in the literature of what can, and
can not, be extracted from a convincing prover. Such a characterization is useful
in the rest of the paper.

Theorem 1 (Zero-Knowledge). Protocol 1 is complete and honest-verifier
statistical (perfect) zero-knowledge if for each w and each c ∈ [0, 2nc − 1], the
distributions of cw + r and r are statistically close (identical).

Informally, the following theorem says that if a prover convinces the verifier with
probability p, then we can extract e ≈ 1/p and u such that ye = φ(u). In other
words, the more successful a prover is, the more it needs to know about the
preimage of y. The extractor depends on a parameter ε that controls how close
e is to 1/p. The reader may think of ε = 1

4 . The proof of Theorem 2 is given in
the full version.

Theorem 2 (Extraction and Soundness). There exists an extractor Eε, pa-
rameterized by ε < 1/2 with ε−1 ∈ Poly(n), using any PPT prover P∗ as an
oracle such that if P∗ convinces V with probability Δ > κ on common input
(y, φ), then Eε(y, φ) extracts an integer 0 < e ≤ 1

(1−ε)2Δ and u ∈ G such that
ye = φ(u). The extractor runs in expected time O

(
ε−2T (n)/(Δ − κ)

)
, where

T (n) is a polynomial (independent of ε) and the knowledge error κ is defined as
κ = 21−nc/ε.

The following theorem shows that we can not hope to find an extractor which
extracts significantly more. This theorem is very similar to a theorem in [1], but
differs in that their formulation concerns a restricted class of extractors.

Theorem 3. A malicious prover knowing only y, e and ew + σ such that ye =
φ(ew+σ), where φ(σ) = 1, can convince the verifier with probability 1/e−negl(n)
if the distributions of r + c

eσ and r are statistically close for each c ∈ [0, 2nc − 1]
such that e | c.

Proof. The prover chooses r and sends φ(r) as usual. After receiving the chal-
lenge c, the prover halts if e � c, and responds with

d′ =
c

e
(ew + σ) + r = cw + r +

c

e
σ

otherwise. We clearly have φ(d′) = φ(d), since d = cw + r. Furthermore, the
verifier notices that the prover is cheating with negligible probability, since d′ is
statistically close in distribution to a correctly formed response. 	

If c is not chosen uniformly from an interval as in Protocol 1, e.g., if e never
divides c, we are not able to apply the previous theorem directly. However, it
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is always possible to find c∗ such that e | (c − c∗) with probability 1/e. The
malicious prover can then answer with d′ = r + (c−c∗)

e (ew + σ) = r − c∗w +
(c−c∗)

e σ + cw whenever e divides c − c∗. This is indistinguishable from the real
response provided that the distributions of r−c∗w+ (c−c∗)

e σ and r are statistically
close, which happens for example if r is chosen from a sufficiently large interval.
We generalize this approach in the next section.

3 Lower Bound on the Knowledge Error

Suppose that we wish to prove knowledge of w such that y = φ(w) in a group of
unknown order. Bangerter et al. [1] defined generic Σ-protocols as the class of
protocols where the verifier only sends random challenges and the prover only
uses the homomorphism and linear combinations of group elements to generate
his responses. They proved a lower bound on the knowledge error in the generic
group model for such protocols and gave concrete examples of protocols where
the bounds hold in the plain model.

In this section we generalize their result to any constant round protocol of the
same type (Σ-protocols have three messages) and give the verifier more freedom
in how it chooses its challenges. We also provide a novel analysis that does not
rely on the generic group model.

Definition 2. Consider a protocol for proving knowledge of a preimage, executed
by a prover P and a verifier V with common input G, H, a group homomorphism
φ : G → H and y ∈ H, and private input w such that y = φ(w). We call it a
constant-round generic protocol if in the ith round:

1. V sends integer vectors α(i), β
(i)

chosen according to some distributions,
possibly depending on the messages in the earlier rounds, and

2. P responds with t
(i) = φ

(
A(i)r + α(i)w

)
and s(i) = B(i)r + β

(i)
w,

where A(i) and B(i) are public integer matrices and r denotes the random tape,
viewed as a vector of elements in G, given to the prover. The verifier may use
any polynomial time test to decide whether or not to accept the proof.

Remark 1. Readers familiar with the generic Σ-protocols in [1] may notice that
their definition is a special case of Definition 2, obtained by restricting the pro-
tocol to two rounds. In the first round, α(0) and β

(0)
are part of the protocol

specification. In the second round, α(1) and β
(1)

are defined (using the notation
of [1]) as

α
(1)
j = fj +

∑
gjici and β

(1)

j = dj +
∑

ejici ,

where fj , dj , gji and eji are public constants and c1, . . . , cp are the challenges
chosen by the verifier.
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In the following, we consider all of the rounds simultaneously. To simplify the
exposition, we define α and t as the column vectors formed by all elements of
α(i) and t

(i) respectively, and let A be the matrix formed by the rows of all A(i).
We define B, β and s analogously. This permits us to write all the equations
concisely as

t = φ(Ar + αw) and s = Br + βw .

Note that a malicious prover can generate t as ti = φ ((Ar)i)φ(w)αi . This shows
that the protocol could equivalently have been designed to just send φ ((Ar)i)
since the powers of φ(w) can be computed from the public information and
added or removed from whatever the prover sends. It is, however, not as easy
to generate s, since the prover does not know w. Intuitively, we want to avoid
this problem by constructing a prover that “almost” knows 2w and only answers
when the challenge has a given parity.

Theorem 4. Let (P ,V) be a constant-round generic protocol as in Definition 2.
There exists a prover P∗ that takes as input the groups G, H, a homomorphism
φ : G → H, an integer vector v∗, a group element y ∈ H, and a pseudo-preimage
(2, u) such that u = 2w + σ where y = φ(w) and φ(σ) = 1.

Define S = {β : ∃v such that β = Bv} as the set of challenges β in the
protocol that have preimages under B. For each β ∈ S, let vβ denote a preimage2

of β under B, i.e., β = Bvβ. Let T ⊂ {vβ : β ∈ S} be a subset of the preimages
vβ such that for every v, v′ ∈ T for which v = v′ mod 2, the statistical distance
between the distributions of r and r∗ = r + v′w − v−v′

2 σ is at most ε.
If the integer vector v∗ ∈ T is chosen such that Pr[vβ = v∗ mod 2] ≥ 2− dim(v),

when the probability is taken over the choice of β conditioned on β ∈ S and
vβ ∈ T , then P∗ convinces V with probability at least

Pr[β ∈ S] · Pr[vβ ∈ T | β ∈ S] · 2− dim(v) − ε ,

where dim(v) is the (constant) number of components in v.

About the Assumptions. To ensure that βw is completely hidden in Br+βw, we
expect that every integer vector β has a preimage under B, or in other words
that the lattice spanned by B contains all points with integer coordinates. If this
is the case, then Pr[β ∈ S] = 1 and moreover, the preimages vβ can be chosen

such that vβ = vβ
′ mod 2 whenever β = β

′
mod 2. Hence we can choose v∗ such

that Pr[vβ = v∗ mod 2] ≥ 2− dim(β) rather that Pr[vβ = v∗ mod 2] ≥ 2− dim(v).
The set T encodes a subset of preimages vβ for which the distributions r and

r∗ are statistically close. If the components of r are chosen from a sufficiently
large subset of G, then T contains all preimages, so Pr[vβ ∈ T | β ∈ S] = 1. This

2 There may be several integer vectors v such that β = Bv. Let vβ be some choice
among those preimages.
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happens for example if r is chosen uniformly from a finite group, or if G = Z

and r is chosen from a large interval. We remark that this assumption was also
made implicitly for G = Z by Bangerter et al. [1]. Using these two stronger
assumptions gives us the following corollary.

Corollary 1. Let (P ,V) be a constant-round generic protocol as in Theorem 4
and suppose that every integer vector has a preimage under B and that the
randomness r is chosen from a sufficiently large subset of G so that T = {vβ :
β ∈ S}. Then the malicious prover P∗, who knows v∗, y = φ(w), and a pseudo-
preimage (2, u), convinces V with probability at least 2− dim(β) − ε.

Interpretation of Theorem 4. Recall that Protocol 1 and Theorem 2 showed that
we can extract a pseudo-preimage in any group. This is sufficient if a preim-
age can be computed from the pseudo-preimage, which is the case in groups of
known prime order, for example. On the other hand, computing w from 2w + σ
in Z

∗
N where N is a safe RSA modulus, would imply computing a multiple of

the group order φ(N). This is believed to be infeasible, even for machines run-
ning in expected polynomial time. Theorem 4 shows that (under some plausible
assumptions) we can not extract more than the pseudo-preimage, since that is
all the malicious prover is given. In particular, it gives a lower bound on the
knowledge error assuming that it is infeasible to compute a preimage from the
pseudo-preimage. (To see this, suppose that there is an extractor which after in-
teracting with any prover outputs a true preimage in expected time T (n)/(Δ−κ)
where Δ is the prover’s success probability and κ is the knowledge error. Run-
ning this extractor with e.g. the malicious prover of Corollary 1 gives an algo-
rithm which takes a pseudo-preimage and outputs a preimage in expected time
T (n)/(2−dim(β) − ε− κ). Since it was assumed hard to compute a preimage, the
distance between κ and 2− dim(β) must be negligible.) We note, however, that it
may be possible to construct an efficient protocol by violating the hypothesis of
the theorem. Thus, like many other negative results in cryptography, the result
should be viewed as a guide for future research, and not as the final answer.

Proof (of Theorem 4). We consider only the case where β ∈ S and vβ ∈ T ,
which explains the factor

Pr[β ∈ S] Pr[vβ ∈ T | β ∈ S]

in the success probability of our adversary. There exists a v∗ ∈ T such that

Pr[vβ = v∗ mod 2 | β ∈ S ∧ vβ ∈ T ] ≥ 2−dim(v) ,

where the probability is taken over the choice of β. This follows, since there are
at most 2dim(v) possibilities for the parities. If each had probability less than
2− dim(v), the probabilities would not sum to 1.

Define v as v = vβ. The malicious prover P∗ samples r′ with the distribution
of r in the protocol and then generates s′ and t

′ as follows

t
′ = φ(Ar′)yα−Av∗

and s′ = Br′ +
β − β

∗

2
u ,



470 B. Terelius and D. Wikström

where β
∗

= Bv∗. Consider now an s formed in an execution with the honest
prover, conditioned on β ∈ S, v ∈ T , and v = v∗ mod 2. It can be expressed as

s = Br + βw = B(r + v∗w) +
β − β

∗

2
2w

= B

(
r + v∗w − v − v∗

2
σ

)
+

β − β
∗

2
u

= Br∗ +
β − β

∗

2
u ,

where r∗ = r + v∗w − v−v∗
2 σ. We may similarly express t as

t = φ(Ar + αw) = φ

(
Ar∗ − Av∗w + A

v − v∗

2
σ + αw

)

= φ(Ar∗)φ(w)α−Av∗
.

To conclude the proof, we note that the statistical distance between (s′, t′) and
(s, t) is at most ε since the statistical distance between the distributions of r∗

and r is at most ε. 	


4 Lower Bound on the Soundness Error

Next, we show that if the group has a subgroup of small order and the verifier
uses a constant round generic protocol with a natural type of acceptance test,
then the proof does not even need to be sound. In particular, we show that a
malicious prover knowing an element γ of small order and w such that ỹ = γφ(w)
can convince the verifier that ỹ = φ(w′) for some w′. Note that γ does not have
to be in the image of φ.

Recall that Cauchy’s theorem states that if H is a finite group and q is a
prime dividing the order of H, then there is an element of order q in H. Thus,
when the order of H is unknown, we can not exclude the possibility of elements
of small order.

Theorem 5. Let H be an abelian group, let φ : Z → H be a group homomor-
phism, and let γ ∈ H be an element of prime order q. Define s, t, α, and β
as in Definition 2 except that we only allow α and β to depend on s, not on t.
Let fi(·, ·, ·) and gij(·, ·, ·) be polynomials and let hi(·, ·, ·) be a polynomial time
computable function. If the verifier’s acceptance test is of the form

yfi(s,α,β)
∏

j
t
gij(s,α,β)
j = φ(hi(s, α, β)) ∀i ∈ I ,

where the product is taken over all components of t, then there exists a PPT
prover P∗, a PPT algorithm Mσ, and a PPT algorithm MV∗ such that at least
one of the following holds for each γ, w and y = φ(w), where
Δ = q−(dim s+dim β+dim α)/3:
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1. On input γ and w, P∗ convinces the honest verifier on common input ỹ =
γφ(w) with probability at least Δ over the random tapes of the prover and
verifier.

2. On input w, Mσ outputs a non-zero element in the kernel of φ with probability
at least Δ over the random tape of Mσ.

3. On input q and a transcript of an execution between an honest prover and
an honest verifier on private input w and common input y = φ(w), MV∗

outputs either w mod q or ⊥, where w mod q is output with probability at
least Δ over the random tapes of the prover and verifier.

The intuition is that the malicious prover P∗ can guess the residue modulo q of
fi(s, α, β) and gij(s, α, β) and be correct with probability 3Δ. P∗ then generates
(s, t) as if producing a correct proof for y = φ(w), but modifies t to cancel any
factors γ that appear in the verifier’s acceptance test when run with ỹ = γy.
This modification can be done as long as a certain linear system is solvable. Case
2 and 3 in the theorem give the possibilities when this system is not solvable.
The full proof of Theorem 5 is given in the full version of this paper.

To see why it may be hard to compute an element in the kernel, note that
for, e.g., the exponentiation homomorphism, finding an element in the kernel
corresponds to finding a multiple of the order of the underlying group.

We require that α and β do not depend on t in order to be able to take
a valid transcript and modify t without changing anything else. On the other
hand, the requirement that fi and gij are polynomials is only used to express
the probability that we correctly guess the residue modulo q in terms of the
number of messages. This requirement can be relaxed to allow any polynomial
time computable functions if there are not too many functions fi and gij .

5 On Circumventing the Limitations

The previous work mentioned in the introduction, and the results in previous
sections, give considerable evidence that an efficient zero-knowledge proof (of
knowledge) of a preimage of a group homomorphism can not be constructed.
In this section we consider two settings where we nevertheless are able to con-
struct efficient protocols for proving knowledge of something more than a pseudo-
preimage.

5.1 When We Know That a Committed Integer Is Small

In this section we restrict our attention to the exponentiation homomorphism
φ(w) = gw, where g ∈ H. Our protocol can be used to prove knowledge of e and
u such that ye = geu and e = Poly(n). The small remaining exponent e is needed
to circumvent Theorem 5.

Note that if the order of (y, g), considered as an element in H×H, contains
no factors of polynomial size, then this shows that the prover knows u such that
y = gu. An example of an application where this is the case is a prover that
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needs to show knowledge of an integer w of bounded size, such that y0 = gw
0 and

y1 = gw
1 , where gi generates a group of prime order qi and q0 �= q1.

Our protocol takes a commitment C(w, s) of the witness w as additional input
and the prover is given the randomness s used to form the commitment. Before
the protocol is executed, the verifier must be convinced that the committed value
is an integer with bounded absolute value. We postpone the discussion of how
this can be enforced to Section 5.1 below.

We use a statistically hiding homomorphic commitment scheme with an effi-
cient Σ-proof of the committed value, e.g., Pedersen’s commitment scheme, and
write Cck (w, s) for a commitment of w ∈ Zm using randomness s ∈ R, where Zm

and R are the message space and randomizer spaces of the commitment scheme.
We stress that the message space Zm of the commitment scheme can depend on
the commitment parameter ck and that there are no restrictions on m except
that 2nw+nc+nr < m/2. In particular, we do not need an integer commitment
scheme and we can rely on the standard discrete logarithm assumption.

Similarly to standard Σ-proofs over groups of prime order, our protocol can
easily be generalized to prove various more complicated statements involving
multiple exponents.

Protocol 2 (Proof of Knowledge of Logarithm)
Common Input. Elements y and g of an abelian group H, a joint commitment
parameter ck , and a commitment W .
Private Input. An exponent w ∈ [0, 2nw − 1] such that y = gw, and s ∈ R
such that W = Cck(w, s).

1. P chooses r ∈ [0, 2nw+nc+nr − 1] and t ∈ R randomly, computes α = gr and
R = C(r, t), and hands (α, R) to V .

2. P proves knowledge of u, s, r, and t such that W = C(u, s) and R = C(r, t).
This is done in parallel with the remaining three rounds (the honest prover
sets u = w).

3. V hands a randomly chosen challenge c ∈ [0, 2nc − 1] to P .
4. P computes d0 = cw + r over Z and d1 = cs + t over R, and hands (d0, d1)

to V .
5. V verifies that d0 ∈ [0, 2nw+nc+nr − 1], W cR = C(d0, d1), and ycα = gd0 .

Theorem 6 (Zero-Knowledge). Protocol 2 is overwhelmingly complete and
honest-verifier statistical zero-knowledge.

The proof of Theorem 6 is given in the full version.
Informally, if a prover convinces the verifier with probability p, then we can

extract integers e and u such that ye = geu and e ≈ 1/p. Formally, we need
to take care of the commitment parameter ck and commitment W given as
additional inputs. In our theorem, the adversary may in a first phase choose the
instance (y, g, W ) based on the commitment parameter. This is formalized as a
PPT instance chooser I. In an application the instance chooser represents the
events occurring before the protocol is executed.
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Theorem 7 (Soundness and Knowledge Extraction). Let ck be a random
commitment parameter. Given a PPT instance chooser I, we define (y, g, u, s, z) =
I(ck ) and W = C(u, s), where u is an integer satisfying |u| ∈ [0, 2nw − 1].

There exists an extractor Eε, parametrized by ε < 1/2, with ε−1 ∈ Poly(n),
using any prover P∗(z) as an oracle such that if P∗(z) convinces V(y, g, ck , W )
with non-negligible probability Δ, then the extractor Eε(y, g, ck , W ) outputs (e, u)
such that 0 < e ≤ 1

(1−ε)2Δ and ye = geu with overwhelming probability under
the assumption that the commitment scheme is binding. The extractor runs in
expected time O

(
ε−2T (n)/(Δ − κ)

)
for some polynomial T (n) and negligible κ.

The proof of Theorem 7 is given in the full version.

Enforcing Small Exponents. We could of course construct a cut-and-choose
protocol for proving that a committed value is small when viewed as an integer,
but then we could just as well prove knowledge of the exponent directly using
this approach. Similarly, it makes little sense to let a trusted party certify a
commitment of the secret exponent w, when it can just as well certify (y, g)
directly. For Protocol 2 to be of interest we need to decouple the size-guarantee
of the committed value from the choice of a particular exponent w.

A trusted party certifies several commitments Z1, . . . , Zk with Zi = Cck(zi, ti),
where both zi ∈ [0, 2nw+nr − 1] and ti ∈ R are randomly chosen and handed
to the prover. Then it is easy to prove that another commitment W = C(w, s)
contains an integer with absolute value less than 2nw+nr by simply revealing
(z, t) = (w + zi, s + ti) such that ZiW = Cck (z, t). The receiver verifies the
certificate of Zi and that 0 < z < 2nw+nr . Note that using this method, we
must effectively reduce the maximum size of w by nr bits, i.e., the security
parameters in Protocol 2 must be modified slightly. The trusted party can go
offline after publishing the commitments, but z = w + zi reveals w, so the
trusted party learns w. The latter can be avoided by instead letting the prover
register its commitments with the trusted party (or directly with the receiver)
and prove that they are correctly formed using a (slow) cut-and-choose protocol
in a preliminary phase.

5.2 When the Prover Knows the Order of the Group

We consider the problem of constructing a protocol for proving knowledge of a
preimage of a homomorphism, when the prover knows (a multiple of) the order
of y. From here on, we use σ to denote the group order rather than any element
in the kernel.

Recall that in the protocol for proving knowledge of a discrete logarithm in
groups of unknown order, Bangerter et al. [2] assume that the prover has been
given a pseudo-preimage (e, u) such that ye = gu and e > 2nc is a large prime
such that e � u. The reason that the prime is large is to ensure that when a pair
of accepting transcripts are extracted in the basic protocol, we have a relation
yc−c′ = φ(u − u′) and gcd(c − c′, e) is already one, effectively terminating the
extraction procedure of Theorem 2 in a single step.
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We observe that if the prover knows such a pseudo-preimage and a proper
witness w such that y = gw as well, then it can actually compute a multiple
ew − u �= 0 of the order of g. Thus, it seems that the prover essentially knows
the order of g in their setting.

The idea of the main protocol of this section is that the prover first proves
knowledge of the group order and then proves knowledge of a preimage using the
basic protocol (Protocol 1). Combining knowledge of a pseudo-preimage (e, u)
with small e with knowledge of the order σ of the group allows the extractor to
simplify both quantities.

Proof of Knowledge of a Multiple of the Order of an Element. We do
not know how to construct an efficient proof of knowledge of the order of a group
element, but it turns out that a proof of knowledge of a multiple of the order
suffices for our purposes. The proofs of the following theorems appear in the
full version of this paper.

Protocol 3 (Knowledge of Multiple of the Order of an Element)
Common Input. An element g of an abelian group H and an upper bound 2nw

of |〈g〉|.
Private Input. The order |〈g〉| of g.

1. P and V compute u = 2nw+2nc+nr+2 and y = gu.
2. P computes w = u mod |〈g〉|.
3. Using Protocol 1, P proves knowledge of integers e and u′ (e.g., 1 and w)

such that |e| < 2nc+1, |u′| < 2nw+nc+nr+1, and ye = gu′
.

Theorem 8. Protocol 3 is complete and an honest-verifier statistical zero-
knowledge proof of knowledge of a multiple of the order of g.

Proof of Knowledge of a Preimage. Using the above protocol for proving
knowledge of a multiple of the order of a group element, we now construct a
proof of knowledge of a preimage for provers that know the order of y.

Protocol 4 (Proof of Knowledge of a Preimage)
Common Input. An element y ∈ H and a homomorphism φ : G → H of abelian
groups G and H.
Private Input. A preimage w ∈ G such that y = φ(w) and the order σ of y.

1. P and V execute Protocol 3 on common input y and an upper bound 2nw

of the order σ = |〈y〉|, and private input σ, i.e., P proves knowledge of a
multiple of σ.

2. P and V execute Protocol 1 on common input y and private input w, i.e., P
proves knowledge of a pseudo-preimage of y under φ.

Theorem 9. Protocol 4 is complete and honest-verifier statistical zero-knowledge.
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The only difference between the results below and Theorem 2 is that here we
can not only bound the size of e, we can also reduce it further until all its factors
appear in σ, the order of y. When σ has no small factors, the result is a proper
proof of knowledge.

Theorem 10 (Extraction and Soundness). There exists an extractor Eε,
parameterized by ε < 1/2 with ε−1 ∈ Poly(n), such that for every (y, φ), and
every PPT prover P∗ which convinces V(y, φ) with probability Δ > κ, Eε(y, φ),
using P∗ as an oracle, extracts an integer 0 < e ≤ 1

(1−ε)2Δ and u ∈ G such
that ye = φ(u) and each factor of e divides σ. The extractor runs in expected
time O

(
ε−2T (n)/(Δ − κ)

)
, where T (n) is a polynomial and κ is defined as κ =

21−nc/ε.

Corollary 2. If every factor of σ is greater than 2nc , then Protocol 4 is a proof
of knowledge with negligible soundness/knowledge error of a preimage w such
that y = φ(w).
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