
An Adaptively Secure Mix-Net Without Erasures

Douglas Wikström1,� and Jens Groth2,��

1 ETH Zürich, Department of Computer Science
douglas@inf.ethz.ch

2 UCLA, Computer Science Department
jg@cs.ucla.edu

Abstract. We construct the first mix-net that is secure against adap-
tive adversaries corrupting any minority of the mix-servers and any set of
senders. The mix-net is based on the Paillier cryptosystem and analyzed
in the universal composability model without erasures under the deci-
sional composite residuosity assumption, the strong RSA-assumption,
and the discrete logarithm assumption. We assume the existence of ideal
functionalities for a bulletin board, key generation, and coin-flipping.

1 Introduction

Suppose a set of senders S1, . . . , SN each have an input mi, and want to compute
the sorted list (mπ(1), . . . , mπ(N)) of messages, but keep the identity of the sender
of any particular message mi secret. A trusted party can provide the service
required by the senders. First it collects all messages. Then it sorts the inputs
and outputs the result. A protocol, i.e., a list of machines M1, . . . , Mk, that
emulates the service of the trusted party as described above is called a mix-
net, and the parties M1, . . . , Mk are referred to as mix-servers. The notion of a
mix-net was introduced by Chaum [3].

Many mix-net constructions are proposed in the literature without security
proofs, and several of these constructions have in fact been broken. The first
rigorous definition of security of a mix-net was given by Abe and Imai [1], but
they did not provide any construction that satisfies their definition. Wikström
[16] gives the first definition of a universally composable (UC) mix-net, and also
the first construction with a complete security proof. He recently presented a
more efficient UC-secure scheme [17].

An important tool in the construction of a mix-net is a so called “proof of
a shuffle”. This allows a mix-server to prove that it behaved as expected with-
out leaking knowledge. The first efficient methods to achieve this were given
independently by Neff [12] and Furukawa and Sako [8]. Subsequently, other au-
thors improved and complemented these methods, e.g. [9, 7, 17]. Our results seem
largely independent of the method used, but for concreteness we use the method
presented in [17].
� Part of the work done while at Royal Institute of Technology (KTH), Stockholm,

Sweden.
�� Supported by NSF Cybertrust ITR grant No. 0456717. Part of the work done while

at Cryptomathic, Denmark and BRICS, Dept. of Computer Science, University of
Aarhus, Denmark.

M. Bugliesi et al. (Eds.): ICALP 2006, Part II, LNCS 4052, pp. 276–287, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

An Adaptively Secure Mix-Net Without Erasures 277

1.1 Our Contribution

All previous works consider a static adversary that decides which parties to
corrupt before the protocol is executed. We provide the first efficient mix-net
that is secure against an adaptive adversary. The problem of constructing such a
scheme has been an open problem since the notion of mix-nets was proposed by
Chaum [3] two decades ago. The model we consider is the non-erasure model,
i.e., every state transition of a party is stored on a special history tape that is
handed to the adversary upon corruption. It is well known that it is hard to prove
the security of protocols in this model, even more so for efficient protocols. Our
analysis is novel in that we show that a mix-net can be proved UC-secure even
if the zero-knowledge proofs of knowledge of correct re-encryption-permutations
computed by the mix-servers are not zero-knowledge against adaptive adversaries
and not even straight-line extractable as is often believed to be necessary in the
UC-setting. We prove our claims in the full version of this paper.

1.2 Notation

We use S1, . . . , SN and M1, . . . , Mk to denote the senders and the mix-servers.
All participants are modeled as interactive Turing machines with a history tape
where all state transitions are recorded. Upon corruption the entire execution
history is given to the adversary. We abuse notation and use Si and Mj to denote
both the machines themselves and their identity. We denote by k′ = �(k + 1)/2�
the number of mix-servers needed for majority. We denote the set of permu-
tations of N elements by ΣN . The main security parameter is κ. The zero-
knowledge proofs invoked as subprotocols use two additional security parame-
ters, κc and κr that determine the number of bits in challenges and the statistical
distance between a simulated proof and a real proof. We denote by Sort the al-
gorithm that given a list of strings as input outputs the same set of strings in
lexicographical order.

1.3 Cryptographic Model

We use the UC-framework [2], but our notation differs from [2] in that we intro-
duce an explicit “communication model” CI that acts as a router of messages
between the parties. We define M∗

l to be the set of adaptive adversaries that
corrupt less than l out of k parties of the mix-server type, and arbitrarily many
parties of the sender type. We assume an ideal authenticated bulletin board
functionality FBB. All parties can write to it, but no party can erase any mes-
sage from it. The adversary can prevent any party from reading or writing. We
also need an ideal coin-flipping functionality FCF at some points in the protocol.
It simply outputs random coins when asked to do so. We take the liberty of
interpreting random strings as elements in groups, e.g., in the subgroup QRN.

We use the discrete logarithm (DL) assumption for safe primes p = 2q + 1,
which says that it is infeasible to compute a discrete logarithm of a random
element y ∈ Gq, where Gq is the group of squares modulo p. We use the decision
composite residuosity assumption (DCR), which says that given a product n

278 D. Wikström and J. Groth

of two random safe primes of the same size, it is infeasible to distinguish the
uniform distribution on elements in Z

∗
n2 from the uniform distribution on nth

residues in Z
∗
n2 . We use the strong RSA-assumption (SRSA) which says that

given a product N of two random safe primes, and g ∈ Z
∗
N, it is infeasible to

compute (b, η) such that bη = g mod N and η �= ±1.

1.4 Distributed Paillier

We use a combination of two threshold versions of the Paillier [13] cryptosystem
introduced by Lysyanskaya and Peikert [10] and Damg̊ard et al. [5], and also
modify the scheme slightly. On input 1κ the key generator KGpai chooses two
κ/2-bit safe primes p and q randomly and defines the public key n = pq. We
define g = n + 1 and f = (p − 1)(q − 1)/4. Then it chooses a private key d
under the restriction d = 0 mod f and d = 1 mod n and outputs (n, d). Note
that gm = 1 + mn mod n2. We define L(u) = (u − 1)/n and have L(gm) = m.
To encrypt a message m ∈ Zn a random r ∈ Z

∗
n is chosen and the ciphertext is

defined by u = En(m, r) = gmr2n mod n2. The decryption algorithm is defined
Dd(u) = L(ud mod n2). Let gf ∈ Z

∗
n2 be an element of order f. Then there

exists a 2nth root rf of gf modulo n, and an alternative encryption algorithm is
Egf ,n(m, s) = gmgs

f = gm(rs
f)

2n mod n2, where s is chosen randomly in [0, 2κ+κr−
1]. Here κr is an additional security parameter that is large enough to make 2−κr

negligible. It should always be clear from the context what is meant.
The cryptosystem is homomorphic, i.e., En(m1)En(m2) = En(m1 +m2). As a

consequence it is possible to re-encrypt a ciphertext u using randomness s ∈ Z
∗
n

by computing uEn(0, s) = En(m, rs), or alternatively using randomness s ∈
[0, 2κ+κr −1] as uEgf ,n(0, s) = En(m, rrs

f). Furthermore, given a ciphertext K1 =
En(1, R1) = gR2n

1 mod n2 of 1 an alternative way to encrypt a message m is to
compute EK1,n(m, r) = Km

1 r2n mod n2.
The scheme is turned into a distributed cryptosystem with k parties of which

a majority k′ are needed for decryption as follows. Let g and h be two random
generators of a subgroup Gq of prime order q of Z

∗
2q+1 for a random prime 2q+1

such that log2 q > 2κ + κr. Let v be a generator of the group of squares QRn2 .
Each party Mj is assigned a random element dj ∈ [0, 22κ+κr−1] under the restric-
tion that d =

∑k
j=1 dj mod nf, and define vj = vdj mod n2. We also compute a

Shamir-secret sharing [15] of each dj to allow reconstruction of this value. More
precisely we choose for each j a random (k′−1)-degree polynomial fj over Zq un-
der the restriction that fj(0) = dj , and define dj,l = fj(l) mod q. A Pedersen [14]
commitment Fj,l = gdj,lhtj,l of each dj,l is also computed, where tj,l ∈ Zq is ran-
domly chosen. The joint public key consists of (n, v, (vj)k

j=1, (Fj,l)j,l∈{1,...,k}).
The private key of Mj consists of (dj , (dl,j , tl,j)k

l=1).
To jointly decrypt a ciphertext u, the jth share-holder computes uj = udj mod

n2 and proves in zero-knowledge that logu uj = logv vj . If the proof fails, each
Ml publishes (dj,l, tj,l). Then each honest party finds a set of (dj,l, tj,l) such
that Fj,l = gdj,lhtj,l , recovers dj using Lagrange interpolation, and computes
uj = udj mod n2. Finally, the plaintext is given by L(

∏k
j=1 uj) = m.

An Adaptively Secure Mix-Net Without Erasures 279

2 The Ideal Relaxed Mix-Net

We use a slightly relaxed definition of the ideal mix-net in that corrupt senders
may input messages with κ bits whereas honest senders may only input messages
with κm = κ − κr − 2 bits. In the final output all messages are truncated to κm

bits. The additional security parameter κr must be chosen such that 2−κr is
negligible. It decides the statistical hiding properties of some subprotocols. It is
hard to imagine a situation where the relaxation is a real disadvantage, but if it
is, it may be possible to eliminate this beauty flaw by an erasure-free proof of
membership in the correct interval in the submission phase of the protocol.

Functionality 1 (Relaxed Mix-Net). The relaxed ideal mix-net, FRMN, run-
ning with mix-servers M1, . . . , Mk, senders S1, . . . , SN , and ideal adversary S
proceeds as follows

1. Initialize a list L = ∅, a database D, c = 0, and JS = ∅ and JM = ∅.
2. Repeatedly wait for new inputs and do

– Upon receipt of (Si, Send, mi) from CI do the following. If i �∈ JS and Si

is not corrupted and mi ∈ [−2κm + 1, 2κm − 1] or if Si is corrupted and
mi ∈ [−2κ + 1, 2κ − 1] then set c ← c + 1, store this tuple in D under
the index c, and hand (S, Si, Input, c) to CI . Ignore other inputs.

– Upon receipt of (Mj, Run) from CI , set c ← c + 1, store (Mj , Run) in D
under the index c, and hand (S, Mj , Input, c) to CI .

– Upon receipt of (S, AcceptInput, c) such that something is stored under
the index c in D do
(a) If (Si, Send, mi) is stored under c and i �∈ JS , then append mi to the

list L, set JS ← JS ∪ {i}, and hand (S, Si, Send) to CI .
(b) If (Mj , Run) is stored under c, then set JM ← JM ∪ {j}. If |JM | >

k/2, then truncate all strings in L to κm bits and sort the result
lexicographically to form a list L′. Sort the list L to form a list
L′′. Then hand ((S, Mj , Output, L

′′), {(Ml, Output, L
′)}k

l=1) to CI .
Otherwise, hand CI the list (S, Mj , Run).

3 The Adaptively Secure Mix-Net

In this section we first describe the basic structure of our mix-net. Then we ex-
plain how we modify this to accommodate adaptive adversaries. We also discuss
how and why our construction differs from previous constructions in the litera-
ture. This is followed by subsections introducing the subprotocols invoked in an
execution of the mix-net. Finally, we give a detailed description of the mix-net.

3.1 Key Generation

The mix-servers use a joint κ-bit Paillier public key n and a corresponding secret
shared secret key as described above. The public key n is the main public key
in the mix-net, but we do need additional keys. We denote by (n′, g′, d′) Paillier

280 D. Wikström and J. Groth

parameters generated as above but such that n′ > n. We also need an RSA
modulus N that is chosen exactly as the Paillier moduli n and n′. Finally, we
need two Paillier ciphertexts K0 = En(0, R0) and K1 = En(1, R1) of 0 and 1
respectively. Below we summarize key generation as an ideal functionality.

Functionality 2 (Key Generation). The ideal key generation functionality,
FPKG, running with mix-servers M1, . . . , Mk, senders S1, . . . , SN , and ideal ad-
versary S proceeds as follows. It generates keys as described above and hands
((S, PublicKeys, (N, g, h, n′, n, K0, K1, v, (vl)k

l=1, (Fl,l′)l,l′∈{1,...,k})),
{(Mj, Keys, (N, g, h, n′, n, K0, K1, v, (vl)k

l=1, (Fl,l′)l,l′∈{1,...,k}),
(dj , (dl,j , tl,j)k

l=1))}k
j=1) to CI .

3.2 The Overall Structure

Our mix-net is based on the re-encryption-permutation paradigm. Let L0 =
{u0,i}N

i=1 be the list of ciphertexts submitted by senders. For l = 1, . . . , k the lth
mix-server Ml re-encrypts each element in Ll−1 = {ul−1,i}N

i=1 as explained in
Section 1.4, sorts the resulting list and publishes the result as Ll. Then it proves,
in zero-knowledge, knowledge of a witness that Ll−1 and Ll are related in this
way. The mix-servers then jointly and verifiably re-encrypt the ciphertexts in
Lk. Note that no permutation takes place in this step. The result is denoted by
Lk+1. Finally, the mix-servers jointly and verifiably decrypt each ciphertext in
Lk+1 and sort the resulting list of plaintexts to form the output. Except for the
joint re-encryption step this is similar to several previous constructions.

3.3 Accommodating Adaptive Adversaries

To extract the inputs of corrupt senders, each sender forms two ciphertexts
u0,i and u′

0,i and proves that the same plaintext is hidden in both. Naor and
Yung’s [11] double-ciphertext trick then allows extraction. Submissions of honest
senders must be simulated without knowing which message they actually hand to
FRMN. A new problem in the adaptive setting is that the adversary may corrupt
a simulated honest sender Si that has already computed fake ciphertexts u0,i and
u′

0,i. The ideal adversary can of course corrupt the corresponding dummy party
S̃i and retrieve the true value mi it handed to FRMN. The problem is that it
must provide Si with a plausible history tape that convinces the adversary that
Si sent mi already from the beginning. To solve this problem we adapt an idea of
Damg̊ard and Nielsen [6]. We have two public keys K0 = En(0, R0) = R2n

0 mod n2

and K1 = En(1, R1) = gR2n
1 mod n2 and each sender is given a unique key

K ′
i = En′(ai) for a randomly chosen ai ∈ Zn′ . The sender of a message mi

chooses bi ∈ Zn, ri ∈ Z
∗
n and r′i ∈ Z

∗
n′ randomly, and computes its two ciphertexts

as follows ui = EK1,n(mi, ri) and u′
i = E(g′)bi K′

i,n
′(mi, r

′
i). Then it submits

(bi, ui, u
′
i) and proves in zero-knowledge that the same message mi is encrypted

in both ciphertexts. Note that Dd(ui) = mi and Dd′(u′
i) = (ai + bi)mi due to

the homomorphic property of the cryptosystem.

An Adaptively Secure Mix-Net Without Erasures 281

During simulation we instead define K0 = En(1, R0) = gR2n
0 mod n2 and

K1 = En(0, R1) = R2n
1 mod n2. This means that ui becomes an encryption

of 0 for all senders. Furthermore, simulated senders choose bi = −ai mod n′

which implies that also u′
i is an encryption of 0. The important property of

the simulation is that given mi and R1 we can define r̄i = ri/Rmi
1 such that

ui = EK1,n(mi, r̄i), i.e., we can open a simulated ciphertext as an encryption of
an arbitrary message mi. The ciphertext u′

i can also be opened as an encryption
of mi in a similar way when bi + ai = 0 mod n′. Finally, the proof of equality
we use can also be “opened” in a convincing way. This allows the simulator to
simulate honest senders and produce plausible history tapes as required. Corrupt
senders on the other hand have negligible probability of guessing ai, so the
simulator can extract the message submitted by corrupt senders using only the
private key d′ by computing mi = Dd′(u′

i)/(ai + bi) mod n′. Before the mix-
net simulated by the ideal adversary starts to process the input ciphertexts the
ideal mix-net FRMN has handed the ideal adversary the list of plaintexts that
should be output by the simulation. All plaintexts equal zero in the ciphertexts
of the input in the simulation and the correct messages are introduced in the
joint re-encryption phase. All mix-servers are simulated honestly during the re-
encryption-permutation phase and the decryption phase.

The joint re-encryption is defined as follows. Before the mixing each mix-server
is given a random ciphertext K̄ ′

j using the public key n′. Each mix-server Mj

chooses random elements mj,i ∈ Zn and commits to these by choosing b̄j ∈ Zn′

and s′j,i ∈ Z
∗
n′ randomly and computing w′

j,i = E(g′)b̄j K̄′
j ,n′(mj,i, s

′
j,i). When all

mix-servers have published their commitments, it chooses sj,i ∈ Z
∗
n randomly

and computes wj,i = EK0,n(mj,i, sj,i). It also proves in zero-knowledge that
the same random element mj,i is encrypted in both ciphertexts. The jointly

re-encrypted elements uk+1,i are then formed as uk+1,i = uk,i

∏
l∈I w

�
l′ �=l

l′
l′−l

l,i

where I is the first set of k′ indices j such that the proof of Mj is valid. In
the real execution this is an elaborate way to re-encrypt uk,i, since K0 is an
encryption of 0. In the simulation on the other hand the ideal adversary chooses
b̄j = −āj mod n′ and sets mj,i = 0 for simulated mix-servers and extracts the
mj,i values of corrupt mix-servers from their commitments. It then redefines the
mj,i values of simulated honest mix-servers such that fi(j) = mj,i for a (k′ − 1)-
degree polynomial fi over Zn such that fi(0) equals mπ(i) for some random
permutation π ∈ ΣN . Since b̄j + āj = 0 mod n′ it can compute s̄′j,i such that
w′

j,i = E(g′)b̄j K̄′
j ,n′(mj,i, s̄

′
j,i). In the simulation K0 is an encryption of 1 and each

uk,i is an encryption of zero, which implies that uk+1,i becomes an encryption
of mπ(i) as required. The adversary can not tell the difference since it can only
get its hands on a minority of the mj,i values directly, and the semantic security
of the cryptosystem prevents it from knowing these values otherwise.

3.4 Some Intuition Behind Our Analysis

Intuitively, the soundness of the subprotocols ensure that each sender knows
the message it submits and that the output of the mix-net is correct. The zero-

282 D. Wikström and J. Groth

knowledge properties and the knowledge extraction properties of the subproto-
cols are not used by the ideal adversary sketched above, but they are essential
to prove that the ideal adversary produces an indistinguishable simulation.

The private key d corresponding to the Paillier modulus n is needed both in
the ideal model and in the real protocol. Thus, even if the environment can dis-
tinguish the ideal model from the real model, we can not use it directly to reach
a contradiction to the semantic security of the Paillier cryptosystem. To solve
this problem we use the single-honest-player proof strategy to sample each of the
two distributions, but without using the secret key d. The knowledge extractor
of the proof of a shuffle is needed to be able to simulate the joint decryption,
since although the set of plaintexts is known their order in the list of ciphertexts
that are jointly decrypted is not. Due to the statistical zero-knowledge property
of the proof of a shuffle and the fact that in the ideal model all plaintexts are
zero from the start we can use the same type of simulation also when sampling
the ideal model without changing its distribution more than negligibly. A hybrid
argument allows us to assume that the simulated honest senders use the correct
plaintexts already from the start. If there is a gap between the resulting distri-
butions this can be used to distinguish a ciphertext of a zero from a ciphertext
of a one, i.e., we can break the semantic security of the Paillier cryptosystem.

3.5 Differences with Previous Constructions

Most previous schemes are based on the ElGamal cryptosystem. We need the
Paillier cryptosystem to allow adaptive corruption of the senders in the way
explained above. The joint re-encryption step which no previous construction
has is needed to insert the correct messages in the simulation and still be able
to construct plausible history tapes of any adaptively corrupted mix-server.

In [16, 17] the mix-net is given in a hybrid model with access to ideal zero-
knowledge proof of knowledge functionalities. These functionalities are then se-
curely realized, and the composition theorem of the UC-framework invoked.
The modular approach simplifies the analysis, but the strong demands on sub-
protocols make them hard to securely realize efficiently. We avoid this problem
by showing that a zero-knowledge proof of knowledge of correct re-encryption-
permutation in the classical sense is sufficient, i.e., the protocol can not be sim-
ulated to an adaptive adversary and extraction is not straight-line.

3.6 Subprotocols Invoked by the Main Protocol

Some of our subprotocols satisfy a weaker notion of proof of knowledge called
“computationally convincing proof (of knowledge)” introduced by Damg̊ard and
Fujisaki [4]. Informally, this means that extraction is possible with overwhelming
probability over the randomness of a special input that is given to both parties.

Proof of Knowledge of Re-encryption-Permutation. Denote by πprp =
(Pprp, Vprp) the 5-move protocol for proving knowledge of a witness of a re-
encryption and permutation of a list of Paillier ciphertexts given by Wikström

An Adaptively Secure Mix-Net Without Erasures 283

[17]. The parties accept as special parameters an RSA-modulus N and random
g,h ∈ QRN, and random g1, . . . , gN ∈ Gq. The re-encryption-permutation rela-
tion Rn,gf

RP and the security properties of πprp are stated below.

Definition 1 (Knowledge of Correct Re-encryption-Permutation).
Define for each N , n and gf a relation Rn,gf

RP ⊂ (QRN
n2 × QRN

n2) × [−2κ+κr +
1, 2κ+κr − 1]N , by (({ui}N

i=1, {u′
i}N

i=1), (a, (xi)N
i=1)) ∈ Rn,gf

RP precisely when a <√
n/4 equals one or is prime and (u′

i)
a = g

xπ(i)

f ua
π(i) mod n2 for i = 1, . . . , N and

some permutation π ∈ ΣN such that the list {u′
i}N

i=1 is sorted lexicographically.

Proposition 1 ([17]). The protocol πprp is an honest verifier statistical zero-
knowledge computationally convincing proof of knowledge for the relation Rn,gf

RP
with respect to the distribution of (N,g,h) and (g1, . . . , gN), and it has over-
whelming completeness.

Proof of Equality of Plaintexts. When a sender submits its ciphertexts ui

and u′
i it must prove that they are encryptions of the same (κ − 2)-bit integer

under two distinct public keys. The protocol πeq = (Peq, Veq) used to do this
is given below. The security parameters κc and κr decide the soundness and
statistical zero-knowledge property of the protocol.

Protocol 1 (Proof of Equal Plaintexts Using Distinct Moduli)
Common Input: n ∈ Z, K, u ∈ Z

∗
n2 , n′ ∈ Z, K ′, u′ ∈ Z

∗
(n′)2 , N ∈ N, generators

g and h of QRN.
Private Input: m ∈ [−2κm + 1, 2κm − 1], r ∈ Z

∗
n, and r′ ∈ Z

∗
n′ such that

u = EK,n(m, r) and u′ = EK′,n′(m, r′).

1. The prover chooses r′′ ∈ [0, 2κ+κr − 1], s0 ∈ Z
∗
n2 and s1 ∈ Z

∗
(n′)2 , and

t ∈ [0, 2κm+κc+κr − 1] and s2, ∈ [0, 22κ+κc+2κr − 1] randomly. Then it com-
putes C = gmhr′′

mod N and (α0, α1, α2) = (Kts2n
0 mod n2, (K ′)ts2n′

1 mod
(n′)2,gths2 mod N), and hands (C, α0, α1, α2) to the verifier.

2. The verifier chooses c ∈ [2κc−1, 2κc − 1] and hands c to the prover.
3. The prover computes (e0, e1) = (rcs0 mod n, (r′)cs1 mod n′), (e2, e3) =

(cr′′ + s2 mod 2κ+κc+2κr , cm + t mod 2κm+κc+κr) and hands (e0, e1, e2, e3)
to the verifier.

4. The verifier checks (ucα0, (u′)cα1) = (Ke3e2n
0 mod n, (K ′)e3e2n′

1 mod n′) and
Ccα2 = ge3he2 mod N.

The protocol is statistical zero-knowledge, but this is not enough since we
must construct plausible history tapes for simulated senders.

Proposition 2 (“Zero-Knowledge”). Let K = R2n mod n2 and K ′ = R′2n′

mod (n′)2 for some R ∈ Z
∗
n and R′ ∈ Z

∗
n′ . Let h be a generator of QRN and

g = hx. Let r, r′, and (r′′, s0, s1, t, s2) be randomly distributed in the domains
described in the protocol, and denote by I(m) = (n, K, u, n′, K ′, u′,N,g,h) the
common input corresponding to the private input (m, r, r′). Denote by c the ran-
dom challenge from the verifier and let T (m) = (α, c, e) be the proof transcript
induced by (m, r, r′), c, and (r′′, s0, s1, t, s2).

284 D. Wikström and J. Groth

There is a deterministic polynomial-time algorithm His such that for every
m ∈ {0, 1}κm with (r̄, r̄′, r̄′′, s̄0, s̄1, t̄, s̄2) = His(R, R′,x, m, r, r′, r′′, s0, s1, t, s2, c)
the distributions of [I(m), T (m), (m, r, r′), (r′′, s0, s1, t, s2)] and
[I(0), T (0), (m, r̄, r̄′), (r̄′′, s̄0, s̄1, t̄, s̄2))] are statistically close.

The proposition in itself does not imply statistical zero-knowledge, since it only
applies to inputs where K and K ′ are both encryptions of zero.

Proposition 3. The protocol is a computationally convincing proof with respect
to the distribution of (N,g,h), and has overwhelming completeness.

Multiple instances of the protocol can be run in parallel using the same RSA-
parameters and same challenge. Thus, we use the protocol also for common
inputs on the form (n, K, {ui}N

i=1, n
′, K ′, {u′

i}N
i=1,N,g,h) and with correspond-

ing private input ({mi}N
i=1, {ri}N

i=1, {r′i}N
i=1). We extend the notation in the next

subsection similarly.

Proof of Equality of Exponents. During joint decryption of a ciphertext u
each mix-server computes udj mod n2 using its part dj of the private key, and
proves correctness relative vj = vdj mod n2, i.e., that it uses the same exponent
dj for both elements. We denote by πexp = (Pexp, Vexp) the 3-move protocol
proposed in [5]. It has the following properties.

Proposition 4. The protocol πexp is an honest verifier statistical zero-
knowledge proof with overwhelming completeness.

3.7 The Mix-Net

We are now ready to give a detailed description of the mix-net. Recall that
k′ = �(k + 1)/2� denotes the number of mix-servers needed for majority. Each
entry on the bulletin board is given a sequence number denoted by T below
(with different subscripts). To ensure that the ciphertexts in the common inputs
to the proofs of a shuffle belong to QRn2 the mix-servers square the ciphertexts
between each mix-server. The effect of the squaring is eliminated at the end.

Protocol 2 (Mix-Net). The mix-net πRMN = (S1, . . . , SN , M1, . . . , Mk) con-
sists of senders Si, and mix-servers Mj .

Sender Si. Each sender Si proceeds as follows.
1. Wait until (Ml, n, K1, n′, {K ′

i}N
i=1,N,g,h) appears on FBB for k′ distinct

indices l.
2. Wait for an input (Send, mi), such that mi ∈ [−2κm +1, 2κm −1]. Choose ri ∈

Z
∗
n , bi ∈ Zn′ and r′i ∈ Z

∗
n′ randomly and compute ui = EK1,n(mi, ri), u′

i =
E(g′)bi K′

i,n
′(mi, r

′
i), and (αi, statei) = Peq((n, K1, ui, n′, (g′)biK ′

i, u
′
i,N,g,h),

(mi, ri, r
′
i)). Then hand (Write, Submit, (bi, ui, u

′
i), Commit, αi) to FBB.

3. Wait until (Mj , Challenge, Si, ci) appears on FBB for k′ distinct j with
identical ci. Then compute ei = Peq(statei, ci) and hand (Write, Reply, ei)
to FBB.

An Adaptively Secure Mix-Net Without Erasures 285

Mix-Server Mj. Each mix-server Mj proceeds as follows.

Preliminaries
1. Wait for a message on the form (Keys, (N, g, h, n′, n, K0, K1, v, (vl)k

l=1,
(Fl,l′)l,l′∈{1,...,k}), (dj , (dl,j , tl,j)k

l=1)) from FPKG.
2. Hand (GenerateCoins, (N +k)(κ+κr)+(κ+κr)+2(κ+κr)+N(κ+κr)) to

FCF and wait until it returns (Coins, {K ′
i}N

i=1, {K̄ ′
j}k

j=1, gf ,g,h, g1, . . . , gN).
Then hand (Write, n, K1, n′, {K ′

i}N
i=1,N,g,h) to FBB.

Reception of Inputs
3. Initialize L0 = ∅, JS = ∅ and JM = ∅.
4. Repeat

(a) When given input (Run) hand (Write, Run) to FBB.
(b) When a new entry (T, Ml, Run) appears on FBB set JM ← JM ∪ {l} and

if |JM | ≥ k′ set Trun = T and go to Step 5.
(c) When a new entry (Si, Submit, (bi, ui, u

′
i), Commit, αi) appears on FBB

such that i �∈ JS , set JS ← JS ∪ {i} and hand (GenerateCoins, κc) to
FCF and wait until it returns (Coins, ci). Hand (Write, Challenge, Si, ci)
to FBB.

5. Request the contents on FBB with index less than Trun. Find for each i the
first occurrences of entries on the forms (Ti, Submit, (bi, ui, u

′
i), Commit, αi),

(T ′
j,i, Mj , Challenge, Si, ci), and (T ′′

i , Si, Reply, ei). Then form a list L0 of
all ciphertexts u2

i mod n2 such that Ti < T ′
j,i < T ′′

i < Trun for at least k′

distinct indices j and Veq(n, K1, ui, n′, (g′)biK ′
i, u

′
i,N,g,h, αi, ci, ei) = 1.

Re-encryption and Permutation
6. Write L0 = {u0,i}N ′

i=1 for some N ′. Then for l = 1, . . . , k do
(a) If l = j, then do

i. Choose rj,i ∈ [0, 2κ+κr − 1] randomly, compute

Lj = {uj,i}N ′

i=1 = Sort({grj,i

f u2
j−1,i mod n2}N ′

i=1) , and

(αj , statej) = Pprp(n, gf , L
4
l−1, L

2
l ,N,g,h, g, g1, . . . , gN ′ , {2rj,i}N ′

i=1) ,

and hand (Write, List, Lj , Commit1, αj) to FBB. The exponentia-
tions L4

l−1 and L2
l should be interpreted term-wise.

ii. Hand (GenerateCoins, κ) to FCF and wait until it returns
(Coins, cj). Then compute (α′

j , state′j) = Pprp(statej , cj) and hand
(Write, Commit2, α′

j) to FBB.
iii. Hand (GenerateCoins, κc) to FCF and wait until it returns

(Coins, c′j). Then compute ej = Pprp(state′j , c
′
j) and hand

(Write, Reply, ej) to FBB.
(b) If l �= j, then do

i. Wait until an entry (Ml, List, Ll, Commit1, αl) appears on FBB.
ii. Hand (GenerateCoins, κ) to FCF and wait until it returns

(Coins, cl).

286 D. Wikström and J. Groth

iii. Wait for a new entry (Ml, Commit2, α′
l) on FBB. Hand

(GenerateCoins, κc) to FCF and wait until it returns (Coins, c′l).
iv. Wait for a new entry (Ml, Reply, el) on FBB and compute bl =

Vprp(n, gf , L
4
l−1, L

2
l ,N,g,h, g, g1, . . . , gN ′ , αl, cl, α

′
l, c

′
l, el).

v. If bl = 0, then set Ll = L2
l−1.

Joint Re-encryption
7. Choose b̄j ∈ Zn′ , mj,i ∈ Zn′ and s′j,i ∈ Z

∗
n′ randomly and compute W ′

j =
{w′

j,i}N ′

i=1 ={Eg′b̄j K̄′
j ,n′(mj,i, s

′
j,i)}N ′

i=1. Hand (Write, RandExp, b̄j, W
′
j) to FBB.

8. Wait until (RandExp, b̄l, W
′
l) appears on FBB for l = 1, . . . , k. Then choose

sj,i ∈ Z
∗
n randomly, compute Wj = {wj,i}N ′

i=1 = {EK0,n(mj,i, sj,i)}N ′

i=1, and

(αj , statej) = Peq((n, K0, Wj , n′, K ′, W ′
j ,N,g,h),

({mj,i}N ′

i=1, {sj,i}N ′

i=1, {s′j,i}N ′

i=1)) ,

and hand (Write, RandExp, Wj , Commit, αj) to FBB.
9. Wait until (RandExp, Wl, Commit, αl) appears on FBB for l = 1, . . . , k. Hand

(GenerateCoins, κc) to FCF and wait until it returns (Coins, c). Compute
ej = Peq(statej , c) and hand (Write, Reply, ej) to FBB.

10. Wait until (Reply, el) appears on FBB for l = 1, . . . , k. Let I be the first set
of k′ indices with Veq(n, K0, Wl, n′, K ′, W ′

l ,N,g,h, αl, c, el) = 1.

11. Compute Lk+1 = {uk+1,i}N ′

i=1 =
{

uk,i

∏
l∈I w

�
l′ �=l

l′
l′−l

l,i

}N ′

i=1
.

Joint Decryption
12. Compute Γj = {vj,i}N ′

i=1 = {u
2dj

k+1,i}N
i=1 using dj and a proof (αj , statej) =

Pexp((n, v, vj , L
2
k+1, Γj), dj). Then hand (Write, Decrypt, Γj , Commit, αj) to

FBB, where exponentiation is interpreted element-wise.
13. Wait until (Ml, Decrypt, Γl, Commit, αl) appears on FBB for l = 1, . . . , k.

Then hand (GenerateCoins, κc) to FCF and wait until it returns (Coins, c).
14. Compute ej = Pexp(statej , c) and hand (Write, Reply, ej) to FBB.
15. Wait until (Reply, el) appears on FBB for l = 1, . . . , k. For l = 1, . . . , k do

the following. If Vexp(n, v, vl, L
2
k+1, Γl, αl, c, el) = 0 do

(a) Hand (Write, Recover, Ml, dl,j , tl,j) to FBB.
(b) Wait until (Ml′ , Recover, Ml, dl,l′ , tl,l′) appears on FBB for l′ = 1, . . . , k.

Then find a subset I of k′ indices l′ such that Fl,l′ = gdl,l′ htl,l′ and
Lagrange interpolate dl =

∑
l′∈I dl,l′

∏
l′′ �=l′

l′′

l′′−l′ mod q.
(c) Compute Γl = {vl,i}N ′

i=1 = {u2dl

k,i }N
i=1.

16. Interpret each element in {L(
∏k

l=1 vl,i)/2k+2}N ′

i=1 as an integer in [−2κm+κr +
1, 2κm+κr − 1] (this can be done uniquely, since κm + κr < κ − 1), truncate
to κm bits, and let Lout be the result. Output (Output, Sort(Lout)).

Theorem 1. The protocol πRMN above securely realizes FRMN in the
(FBB, FPKG, FCF)-hybrid model for M∗

k/2-adversaries under the DCR- assump-
tion, the strong RSA-assumption, and the DL-assumption.

An Adaptively Secure Mix-Net Without Erasures 287

References

1. M. Abe and H. Imai. Flaws in some robust optimistic mix-nets. In Australasian
Conference on Information Security and Privacy – ACISP 2003, volume 2727 of
LNCS, pages 39–50. Springer Verlag, 2003.

2. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd IEEE Symposium on Foundations of Computer Science (FOCS),
pages 136–145. IEEE Computer Society Press, 2001. (Full version at Cryptology
ePrint Archive, Report 2000/067, http://eprint.iacr.org, October, 2001.).

3. D. Chaum. Untraceable electronic mail, return addresses and digital pseudo-nyms.
Communications of the ACM, 24(2):84–88, 1981.

4. I. Damg̊ard and E. Fujisaki. A statistically-hiding integer commitment scheme
based on groups with hidden order. In Advances in Cryptology – Asiacrypt 2002,
volume 2501 of LNCS, pages 125–142. Springer Verlag, 2002.

5. I. Damg̊ard and M. Jurik. A generalisation, a simplification and some applications
of paillier’s probabilistic public-key system. In Public Key Cryptography – PKC
2001, volume 1992 of LNCS, pages 119–136. Springer Verlag, 2001.

6. I. Damg̊ard and J. B. Nielsen. Universally composable efficient multiparty com-
putation from threshold homomorphic encryption. In Advances in Cryptology –
Crypto 2003, volume 2729 of LNCS, pages 247–267. Springer Verlag, 2003.

7. J. Furukawa. Efficient and verifiable shuffling and shuffle-decryption. IEICE Trans-
actions, 88-A(1):172–188, 2005.

8. J. Furukawa and K. Sako. An efficient scheme for proving a shuffle. In Advances in
Cryptology – Crypto 2001, volume 2139 of LNCS, pages 368–387. Springer Verlag,
2001.

9. J. Groth. A verifiable secret shuffle of homomorphic encryptions. In Public Key
Cryptography – PKC 2003, volume 2567 of LNCS, pages 145–160. Springer Ver-
lag, 2003. Full version at Cryptology ePrint Archive, Report 2005/246, 2005,
http://eprint.iacr.org/.

10. A. Lysyanskaya and C. Peikert. Adaptive security in the threshold setting: From
cryptosystems to signature schemes. In Advances in Cryptology – Asiacrypt 2001,
volume 2248 of LNCS, pages 331–350. Springer Verlag, 2001.

11. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen
ciphertext attack. In 22th ACM Symposium on the Theory of Computing (STOC),
pages 427–437. ACM Press, 1990.

12. A. Neff. A verifiable secret shuffle and its application to e-voting. In 8th ACM
Conference on Computer and Communications Security (CCS), pages 116–125.
ACM Press, 2001.

13. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In Advances in Cryptology – Eurocrypt ’99, volume 1592 of LNCS, pages 223–238.
Springer Verlag, 1999.

14. T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret
sharing. In Advances in Cryptology – Crypto ’91, volume 576 of LNCS, pages
129–140. Springer Verlag, 1992.

15. A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

16. D. Wikström. A universally composable mix-net. In 1st Theory of Cryptography
Conference (TCC), volume 2951 of LNCS, pages 315–335. Springer Verlag, 2004.

17. D. Wikström. A sender verifiable mix-net and a new proof of a shuffle. In Advances
in Cryptology – Asiacrypt 2005, volume 3788 of LNCS, pages 273–292. Springer
Verlag, 2005.

http://eprint.iacr.org
http://eprint.iacr.org/

	Introduction
	Our Contribution
	Notation
	Cryptographic Model
	Distributed Paillier

	The Ideal Relaxed Mix-Net
	The Adaptively Secure Mix-Net
	Key Generation
	The Overall Structure
	Accommodating Adaptive Adversaries
	Some Intuition Behind Our Analysis
	Differences with Previous Constructions
	Subprotocols Invoked by the Main Protocol
	The Mix-Net

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

