
Department of Numerical Analysis and Computer Science

TRITA-NA-0439

On the l-Ary GCD-Algorithm and
Computing Residue Symbols

Douglas Wikström

Douglas Wikström
On the l-Ary GCD-Algorithm and
Computing Residue Symbols

Report number: TRITA-NA-0439
Publication date: November 15, 2004
E-mail of author: dog@nada.kth.se

Reports can be ordered from:

Numerical Analysis and Computer Science (NADA)
Royal Institute of Technology (KTH)
SE-100 44 Stockholm
SWEDEN

telefax: +46 8 790 09 30
http://www.nada.kth.se/

On the l-Ary GCD-Algorithm and
Computing Residue Symbols

Douglas Wikström

November 15, 2004

Abstract

We present an l-ary GCD algorithm for the ring Z[ζ], where ζ is a prim-
itive eighth root of unity ζ. A corresponding algorithm for computing the
octic residue symbol is also described. Both algorithms run in time O(n2)
in the bitsize n of the input using naive arithmetic in Z. As far as we know,
this is the first report of a non-Euclidean gcd algorithm for the ring of in-
teger for a non-quadratic number field, and the first octic residue symbol
algorithm which runs in time O(n2).

1 Introduction

Given a and b, the greatest common divisor is the largest integer d such that d | a
and d | b. The corresponding problem can be considered for two elements α and
β in any ring R with unique factorization. The problem of finding the greatest
common divisor of two integers is one of the oldest problems studied in number
theory. A precise understanding of the complexity of different gcd algorithms gives
a better understanding of the arithmetic in the domain under consideration. Thus,
our main motivation for studying this problem is its mathematical beauty.

The problem of quadratic residuosity can be described as follows. Given a
prime p and an integer a determine if there exists a solution to the equation
x2 = a (mod p), i.e. determine if a is a square in Z∗

p. The Legendre symbol (a
p
)

is defined to be equal to 0 if p | a, equal to 1 if there is a solution to the equation
and equal to −1 if there is no solution to the equation. For a non-prime b with
decomposition b = p1·. . .·ps into primes the Jacobi symbol (a

b
) is defined in terms of

the Legendre symbol by (a
b
) =

∏s
j=1(

a
pi

). In contrast to the Legendre symbol, the

Jacobi symbol may equal one without there being a solution to x2 = a (mod b).
More generally, for two elements α and β in a ring R containing the mth roots of

1

unity, one can define an mth power residue symbol
(

α
β

)
m

with similar properties

as the Jacobi symbol. A practical cryptographic application of a fast algorithm
for computing the lth power residue symbol is to check membership in a group
Gq ⊂ (Z/pZ)∗ for prime numbers p and q such that p = lq+1 with l < q. Suppose

that p factors into primes p =
∏k

j=1 πj in R. Then a ∈ (Z/pZ)∗ is contained in

Gq if and only if
(

a
π1

)
l
= 1. This was our original motivation for studying this

problem [12]. Although the algorithm we present has too large constant factors to
be of immediate practical value, we hope that it is a first step in the program of
finding an efficient practical algorithm.

Algorithmically, the problem of computing residue symbols is intimately con-
nected to the problem of computing the gcd of elements, and there exists efficient
algorithms for solving both problems in the integers and in some larger domains. It
is an intriguing research problem to find efficient algorithms for as general domains
as possible. The relation between the two problems make it natural to study them
together.

1.1 Previous Work

The Euclidean gcd algorithm is well known. Less known are the alternative algo-
rithms. Stein [8] introduced the binary gcd algorithm, which is particularly well
suited for implementation on computers. The binary algorithm is based on the
following facts

gcd(a, b) = 2 gcd(a/2, b/2) if a and b are even

gcd(a, b) = gcd(a, b/2) if a is odd and b is even

gcd(a, b) = gcd(a, (a− b)/2) if a and b are odd .

One may always apply one of the rules to reduce the size of elements, while pre-
serving the gcd. Thus, by simply shifting and subtracting integers the gcd of two
integers can be computed quickly.

Weilert [11] generalized this algorithm to the Gaussian integers. Damg̊ard and
Skjovbjerg Frandsen [2] independently also generalized the binary algorithm to the
Eisenstein integers and the Gaussian integers.

Interestingly, the binary gcd algorithm can be “translated” to compute the
Jacobi symbol. This was first described by Shallit and Sorenson [6]. Weilert [11]
generalized this algorithm to the Gaussian integers. Independently, both Damg̊ard
and Skjovbjerg Frandsen [2] and Wikström [12] generalized the binary algorithm
to the Eisenstein integers and the Gaussian integers in slightly different ways.

Kaltofen and Rolletschek [4] devised a gcd algorithm for the ring of integers in
any quadratic number field. Their approach is based on the idea of given elements

2

α and β to find an integer j such that the norm of jα mod β is smaller than the
norm of β. It turns out that this is always possible with |j| bounded essentially
by the square root of the discriminant.

Sorenson [7] introduced the l-ary algorithm, which generalizes the binary al-
gorithm. The l-ary algorithm is based on the result by Minkowski that given a
and b one can find c and d such that ca + db = 0 mod l for an integer l, where
|a|, |b| ≤

√
l. This is an analog to the binary algorithm, in that in each iteration

the size of the largest integer is reduced roughly by a factor 2
√
l/l. The details of

this algorithm is however more involved than the binary algorithm. Sorenson also
constructed a parallel version of his algorithm. Weilert [10] generalized also this
algorithm to the Gaussian integers.

Recently Agarwal and Skovbjerg Frandsen [1] gave an algorithm related to
both the binary and the l-ary algorithms for computing gcd in several complex
quadratic rings. Their result is intriguing in that they compute gcd in the ring
of integers D = Z[1

2
(−1 +

√
−19)] of Q(

√
−19) which is not norm-Euclidean, i.e.

although there exists a Euclidean algorithm in D the height function is not the
norm.

1.2 Contribution

We extend Sorenson’s [7] l-ary algorithm to compute the gcd of α and β in Z[ζ8],
where ζ = ζ8 is a primitive eighth root of unity. Our algorithm runs in time O(n2).
We also construct a corresponding algorithm for computing the octic residue sym-
bol of α modulo β, with the same running time.

As far as we know, we give the first non-Euclidean gcd algorithm in the ring
of integers of a non-quadratic field, and the first algorithm for computing the
octic residue symbol in time O(n2) using naive arithmetic for Z. This should be
compared to the straightforward computation of the residue symbol which takes
time O(n3) in the same model.

Thus, we present some results in the program to find non-Euclidean algorithms
for computing the gcd and power residue symbols in as general settings as possible.
The octic case is interesting, since it introduces some, but not all, difficulties found
in the general settings.

1.3 Outline of Paper

First we introduce some basic notation. Then we recall some well known facts
about the octic cyclotomic field Q(ζ) and its ring of integers D. We continue by
presenting the octic residue symbol and the reciprocity laws it satisfies. Our main
references for this part of the paper are Ireland and Rosen [3] and Chapter 9 in
Lemmermeyer [9].

3

We proceed by proving a number of results for Q(ζ) and D, on which our
algorithms and the analysis of the algorithms are based. This part of the paper is
divided into a number of subsections. First we prove basic facts about the primes
and primary elements in D. Then we define the notion of a balanced element and
establish some properties of such elements. We then prove a weak triangle law for
the ring of integers in any number field. In the three subsections that follow we
consider the problem of given α and β to find elements γ and δ such that γα+ δβ
is divisible by l and has relatively small norm. That is, we establish the results
that allow us to generalize Sorenson’s [7] l-ary algorithm.

Similarly to the Euclidean algorithm the lary algorithm must in each step find
the largest of its inputs, and if necessary swap them. Normally the “size” of an
element is measured by its norm, but the norm is to expensive to compute in each
iteration. Thus, we consider the problem of finding the “size” of elements without
computing their norm. We do this by first introducing the notion of a balanced
element, i.e. an element such that the complex absolute value of all its conjugates
are roughly equal. Then we give a function which upper bounds the norm, and
approximates the norm well for balanced elements (it does not approximate the
norm for general elements). Then we show that this measure can be efficiently
approximated. The idea of balancing elements appears implicitly in the work of
Kaltofen and Rolletschek [4].

Finally, we describe the algorithms in detail and then prove that they are
correct and that their running time is O(n2).

2 Notation

We write Z, Q, R, and C for the rational integers, the rational numbers, the real
numbers, and the complex numbers. The imaginary unit is denoted by i =

√
−1.

We denote the complex absolute value by | · | : C → R, where |a+ bi| =
√
a2 + b2.

3 Naive Bit Complexity

We follow Sorenson [7] and analyze our algorithms in the naive bit complexity
model. This means that we assign the following costs for integer arithmetic where
x and y are integers. Without loss we consider only positive integers.

• Copying the value of x takes time O(log x).

• Computing x+ y or x− y takes time O(log x+ log y).

• Computing xy, x/y, or x mod y takes time O(log x log y).

4

• Comparing x with y takes time O(log x+ log y)).

4 The Octic Cyclotomic Field and its Ring of

Integers

In this section we introduce some notation and recall results on the eighth cyclo-
tomic field and its ring of integers.

Write ζ = e2π/8 = 1
2
(
√

2 +
√

2i). Then ζ is a primitive eighth root of unity.
We consider the cyclotomic field K formed as K = Q(ζ), and write D for the
ring of integers in K. The field K is a biquadratic number field, i.e. it can be
formed by two extensions of degree 2, K = Q(i,

√
2). The lattice of subfields of K

is illustrated below.

K

uuu
uuu

uuu
u

KKKKKKKKKK

Q(i)

HHHHHHHHHH Q(
√

2) Q(i
√

2)

sssssssssss

Q

Furthermore, the integers D is a principal ideal domain, and thus have unique
factorization, since the class number of K is one (cf. Theorem 11.1 in [9]), and
D = Z[ζ] = Z + Zζ + Zζ2 + Zζ3.

The relative norm of an extension K/L of an element α in K is defined by the
product NK/Lα =

∏
σ∈Gal(K/L) α

σ, where σ : α 7→ ασ are the isomorphisms of the

Galois group Gal(K/L) of the extension K/L. We write N to denote the norm
NK/Q. For α ∈ D we have Nα ∈ Z. By abuse of notation we write Na = |D/a| to
denote the norm of an ideal a ∈ D, since D is a principal ideal domain.

We say that an element γ ∈ D is a unit if there exists an element ω such that
γω = 1, this is equivalent with Nγ = 1. Two elements α and β in D are said to
be associates if there exists a unit γ ∈ D such that α = γβ. The units of D are
generated as a multiplicative group by ζ and ε = 1 +

√
2, i.e. any unit γ can be

written γ = ζj′εj for j′ ∈ [0, 7] and j ∈ Z.
An element α ∈ D is said to divide β ∈ D if there exists a γ ∈ D such that

β = αγ, and this is written α | β. The greatest common divisor γ = gcd(α, β) of α
and β is only defined up to multiplication by a unit. The element γ is characterized
by γ | α and γ | β and that γ′ | α and γ′ | β implies that γ′ | γ.

An element α ∈ D is said to be prime if α | βγ, β, γ ∈ D implies that α | β or
α | γ. An element α ∈ D is called irreducible if it has the property that α = βγ

5

implies that either β ∈ D or γ ∈ D is a unit. For principal ideal domains like D
the two notions coincide. Two elements α and β in D are said to be relatively
prime if the ideal (α, β) = D, or equivalently gcd(α, β) is a unit.

5 The Octic Residue Symbol

In the previous section we recalled general facts about the field K and its ring
of integers D. In this section we review more specialized definitions and results
about the octic residue symbol.

Definition 1 (Primary). An element α ∈ D is primary if α = 1 mod (2 + 2ζ).

The notion of a primary element can be generalized to larger domains. However,
there seems to be no consensus on a general definition. Our definition is taken from
Chapter 9 of [5].

Definition 2 (Octic Residue Symbol). Let α and β in D and let β be a non-
unit with Nβ = 1 (mod 8).

1. If α and β are not relatively prime we define
(

α
β

)
= 0.

2. If α and β are relatively prime then

(a) if β is prime then define
(

α
β

)
to be the unique 8th root of unity such

that (
α

β

)
= α

Nβ−1
8 (mod β) .

(b) if β has prime factorization β =
∏s

j=1 β
rj

j , then define(
α

β

)
=

s∏
j=1

(
α

βj

)rj

.

Proposition 3. Let α and β in D be relatively prime to γ in D and let γ be
primary.

1. Then we have (
αβ

γ

)
=

(
α

γ

)(
β

γ

)
.

6

2. If furthermore α = β mod γ, then we also have(
α

γ

)
=

(
β

γ

)
.

Given an α ∈ D we can write it in different basis, α = a(α)+ b(α)i, α = c(α)+
d(α)

√
−2, and α = e(α) + f(α)

√
2. These expressions correspond to the different

towers of fields in the lattice of subfields of K, and are used in the statement of
the reciprocity laws below.

Theorem 4 (Octic Reciprocity Law). If α and β are relatively prime and
primary non-units, then(

α

β

)
= (−1)

Nα−1
8

Nβ−1
8 ζd(α)f(β)−d(β)f(α)

(
β

α

)
.

Theorem 5 (Supplementary Octic Reciprocity Laws). Let α ∈ D be a
primary non-unit. Then (

1− ζ

α

)
= ζ

5a−5+5b+18d+b2−2bd+d4/2
8(

1 + ζ

α

)
= ζ

a−1+b+6d+b2+2bd+d4/2
8(

ζ

α

)
= ζ

a−1+4b+2bd+2d2

4(
1 + ζ + ζ2

α

)
= ζ

a−1−2b+2d−2d2

4(ε
α

)
= ζ

d−3b−bd−2d2

2 .

6 Results On Rings of Integers in Number Fields

This section develops results that allow us to construct and analyze the gcd algo-
rithm and the octic residue symbol algorithm in D.

6.1 Primes and Primary Elements

Lemma 6. The prime factorization of 2 is given by

2 = (1 + ζ)(1 + ζ3)(1 + ζ5)(1 + ζ7) = −(1− ζ)2(1 + ζ)2 .

7

Proof. Equality follows by calculation. Let 1+ ζ = αβ and take the norm on both
sides. Since N(1+ζ) = NαNβ = 2, this implies that either α or β must be a unit,
so 1 + ζ is prime. The other factors on the right are prime for the same reason.
The second equality follows from the fact that 1 + ζ5 = ζ5(1 + ζ3), 1 + ζ3 = 1− ζ,
1 + ζ7 = ζ7(1 + ζ), and ζ5ζ7 = ζ4 = −1.

Lemma 7. If α ∈ D has even norm Nα, then (1+ζj) | α for some j ∈ {1, 3, 5, 7}.

Proof. Suppose that the prime factorization is given by α =
∏s

j=1 γ
rj

j for s ∈ N
and rj ∈ Z. Taking the norm on both sides and using the multiplicativity of the
norm implies that 2 | Nγj for some j, i.e. Nγj = (1 + ζ)(1 + ζ3)(1 + ζ5)(1 + ζ7)δ
for some δ. Since γj is prime, δ must be a unit. From Lemma 6 we have 2 =
(1 + ζ)(1 + ζ3)(1 + ζ5)(1 + ζ7), and the lemma follows.

Lemma 8. If α ∈ D have odd norm Nα, then there exists j, l ∈ {0, 1, 2, 3} such
that ζjεlα is primary.

Proof. Let α = a0 + a1ζ + a2ζ
2 + a3ζ

3. First we argue that there is a unit γ
such that γα = b mod (2 + 2ζ) for an odd b ∈ Z. Consider the norm Nα =
2a2

1a
2
3 +a4

2−4a0a
2
1a2 +a4

1 +4a0a
2
3a2 +a4

0 +a4
3 +4a1a

2
0a3−4a1a

2
2a3 +2a2

2a
2
0. We have

Nα = a4
0 + a4

1 + a4
2 + a4

3 mod 2. Since the norm is odd by assumption, this implies
that an odd number of the aj for j = 0, 1, 2, 3 are odd.

If aj is odd but no other, we have that ζ4−jα = b0 + b1ζ + b2ζ
2 + b3ζ

3, where b0
is odd and bl for l = 1, 2, 3 are even. Thus, ζ4−jα = b0− b1 + b2− b3 mod (2 + 2ζ),
where we have used that 2ζ = −2 mod (2+2ζ). Thus, ζ4−jα = b mod (2+2ζ) for
an odd b ∈ Z.

If aj is even but no other, we have that ζ2−jα = b0+b1ζ+b2ζ
2+b3ζ

3, where b2 is
even. Thus, we have ζ2−jα = b′0+b1ζ+b3ζ

3 mod (2+2ζ), where b′0 = b0+b2 is odd.
Furthermore, we have εζ2−jα = (b′0+b1−b3)+(b′0+b1)ζ+(b1+b3)ζ

2+(b3−b′0)ζ3 =
(b′0 + b1 − b3)− (b′0 + b1) + (b1 + b3)− (b3 − b′0) = b1 − b′0 − b3 mod (2 + 2ζ), where
b1 − b′0 − b3 is odd.

Thus, we may define β = εbζj, where b ∈ {0, 1} and j ∈ {0, 1, 2, 3} are chosen
such that β = b mod (2 + 2ζ) for an odd b ∈ Z. If b = 1 mod 4, we are done since
by Lemma 6, (2 + 2ζ) = 2(1 + ζ) | 4. Assume that b = 3 mod 4. It suffices to note
that ε2 = 3 + 2ζ − 2ζ3 = 3 mod (2 + 2ζ), since then ε2β = 9 = 1 mod (2 + 2ζ).

Lemma 9. If α ∈ D is primary then Nα = 1 (mod 8).

Proof. Set α = 1 + 2(1 + ζ)β, where β = b0 + b1ζ + b2ζ
2 + b3ζ

3. Then Nα =
1+8b0−8b3+128b20b1b3+32b43+32b1b

2
2+32b23b2+32b1b2+32b20b2−64b3b1b2−32b23b1−

32b21b0−32b20b1−32b21b3−64b0b3b2+64b2b0b1+8b22−32b21b2+32b32+32b40+64b3b1b0−
32b33− 128b22b3b1 + 128b2b

2
3b0− 128b21b2b0 + 32b0b

2
2 + 24b20− 32b0b3 + 24b23 + 64b23b

2
1 +

16b0b2+32b42+32b30+32b41+16b1b3+64b22b
2
0−32b20b3+32b0b

2
3−32b31+32b3b

2
2+8b21 = 1

(mod 8). The reader may wish to verify this using a computer algebra system.

8

6.2 Balancing the Complex Absolute Value of Algebraic
Conjugates

Consider the algebraic norm Nα =
∏

σ∈Gal(K/Q) α
σ of an element α ∈ D. Note that

the complex absolute value of ζ equals that of ζ7, and the complex absolute value
of ζ3 equals that of ζ5. Thus, Nα = ααα3α3 = |α|2 · |α3|2, where α3 = ασ3 . This
suggests that the complex absolute value of an element may give little information
about its norm.

Recall that the group of units inD is generated by ζ and ε = 1+
√

2 = 1+ζ−ζ3.
Set ε3 = εσ3 = 1−

√
2, then Nε = Nε3 = (εε3)

2 = (−1)2 = 1 as expected. However,
we have ε−1 = −ε3, |ε|2 = 3 + 2

√
2 > 1 and |ε−1|2 = 3− 2

√
2 < 1. Thus, although

N(εj) = 1j = 1, |εj| may be arbitrarily large for increasing j. This establishes
what we suspected, that the complex absolute value says little about the norm.

Consider now an arbitrary element α ∈ D. We have that |α| = |ασ7| and
|α3| = |ασ5|, i.e. we may organize the conjugates of α into pairs having the same
complex absolute value. Suppose that |α| is much smaller than |ασ3 |. Then we can
multiply α by ε and get Nα = N(αε) = |αε|2|ασ3ε−1|. This implies that |α| < |αε|
and |ασ3 | > |ασ3εσ3|. We can repeat this procedure until no longer possible, at
which point we know that |α| and |ασ3| are of roughly equal size. If |α| is greater
than |ασ3| we instead multiply α by ε−1.

Informally, we could say that we can balance the complex absolute values of
the algebraic conjugates of α. We introduce the following definition for a general
number field K.

Definition 10 (∆-Balanced Element). We say that a non-zero α in K is ∆-
balanced if

|ασ|
|ασ′|

≤ ∆

for σ, σ′ ∈ Gal(K/Q).

Note that α is ∆-balanced precisely when all of its conjugates are ∆-balanced,
and that the requirement in the definition is equivalent to 1

∆
≤ |ασ |

|ασ′ | .

For our favorite ring D we have the following lemma.

Lemma 11 (Balancing Lemma in D). Let α ∈ D be non-zero. Then εjα ∈ D
is ε2-balanced, where j is the integer closest to logε2

|ασ3 |
|α| .

Proof. Suppose that a non-zero α ∈ D is not ε2-balanced. Then there are σ, σ′ ∈
{σ1, σ3, σ5, σ7} such that |ασ |

|ασ′ | > ε2. We can not have σ, σ′ ∈ {σ1, σ7} or σ, σ′ ∈
{σ3, σ5}, since then |ασ |

|ασ′ | = 1. Recall also that |α1| = |α7| and |α3| = |α5|, so it

suffices to consider the fractions |α3|
|α| and |α3|

|α| .

9

We have

|αεj|
|ασ3ε−j|

= (ε2)
j |α|
|ασ3|

.

From the definition of j as the integer closest to logε2
|ασ3 |
|α| we have

1

ε2
≤ |αεj|
|ασ3ε−j|

≤ ε2

from which the lemma follows.

The lemma makes it natural to refer to ε2-balanced elements simply as balanced
elements.

Lemma 12. The number of ∆-balanced units in D is bounded by 4 logε ∆.

Proof. Recall from Section 4 that every unit α is on the form ζj′εj for j′ ∈ [0, 7]
and j ∈ Z. Similarly to the proof above we need only consider the σ3-conjugate.
We have α3 = ασ3 = (ζj′εj)σ3 = ζ3j′ε−j(−1)j. Thus,

|α|
|α3|

= ε2j .

This implies that |j| is bounded by logε ∆
2

. For each value of j there are at most 8
units and the claim follows.

6.3 A Weak Triangle Inequality

It would be nice if given α, β ∈ D, we had N(α + β) ≤ cmax{Nα,Nβ} for
a constant c, i.e. some type of “triangle inequality”. Unfortunately, no such
inequality exists in D. To see this it suffices to consider the example N(εj + ε−j) =
|(εj + ε−j)|4 ≥ ε4j, which gets arbitrarily large for increasing j.

Thus, there is no hope of finding a general triangle inequality. Instead we
establish a triangle inequality for ∆-balanced elements.

Theorem 13 (Triangle Inequality for ∆-balanced Elements). Let α, β ∈ D
be ∆-balanced elements. Then we have

N(α+ β) ≤ 22(1 + ∆)2 max{Nα,Nβ} .

Moreover, if α and β are balanced we have N(α+ β) ≤ 187 max{Nα,Nβ}.

10

Proof. Write α3 = ασ3 and β3 = βσ3 . Note that

|αβ3|+ |αβ3| = |α| · |β3|+ |α3| · |β| ≤ 2 max{|α|, |α3|, |β|, |β3|}2

≤ 2∆ max{|αα3|, |ββ3|} ,

where we use that α and β are ∆-balanced, i.e. 1
∆
≤ |α|

|α3| ≤ ∆. Then using the
triangle inequality and multiplicativity of the complex absolute value, we have

N(α+ β) = |(α+ β)(α3 + β3)|2 = |αα3 + ββ3 + αβ3 + α3β|2

≤ (|αα3|+ |ββ3|+ |αβ3|+ |α3β|)2

≤ (2(1 + ∆) max{|αα3|, |ββ3|})2

≤ 4(1 + ∆)2 max{Nα,Nβ} .

Unfortunately, the inequality is not strong enough to generalize the previous
binary-like algorithms [10, 2, 12] naively. If we could keep the elements balanced in
each step we could use the triangle inequality. However, in each step the difference
of two primary elements is only divisible by 2(1+i) andN(2(1+i)) = 25 = 32 which
is much less than 187. Thus, even for balanced elements the triangle inequality is
simply not strong enough. Even worse, to use the idea that the difference of two
primary elements is divisible by 2(1+ i), both elements must also be primary. This
may force us to multiply the elements by ε, which would unbalance the elements.

Instead we extend the l-ary algorithm of Sorensen [7], which decreases the size
in each iteration by a factor that we may choose to be large enough in relation to
the constant of the triangle inequality.

6.4 A Certain Set of Elements

In this section we exhibit a relatively large set of elements with relatively small
norm. These are not used directly as co-factors in the l-ary approach, but play
an important role in the construction of such factors. Note that there obviously
exists infinitely many distinct elements with small norm in D (and in most general
settings) since N(εj) = 1 for all j ∈ Z, but we need the elements in our sets to
have special properties.

Consider the set of elements

Sl,t = {a0 + a1ζ + a2ζ
2 + a3ζ

3 | 0 ≤ ai < lt/4}\{0} .

We prove that the complex absolute value of any difference of two elements
from Sl,t is small and that the set Sl,t contains relatively many elements. More
precisely we have the following lemma.

11

Lemma 14. Let γ, γ′ ∈ Sl,t, where l ≥ 6 and t > 2, and let γ3 = γσ3 and γ′3 = γ′σ3.
Then

1. |γ − γ′|, |γ3 − γ′3| ≤ 2
√
ε · lt/4, and

2. |Sl,t| ≥ lt

2
.

Proof. The square of the complex complex absolute value of an element α ∈ D,
where α = a0 + a1ζ + a2ζ

2 + a3ζ
3, is given by

|α|2 =
3∑

j=0

a2
j +

√
2(a0a1 − a0a3 + a2a3 + a1a2) .

Let γ = c0 + c1ζ + c2ζ
2 + c3ζ

3 and let γ′ = c′0 + c′1ζ + c′2ζ
2 + c′3ζ

3. Then set
α = γ − γ′ = a0 + a1ζ + a2ζ

2 + a3ζ
3, where aj = cj − c′j. Since both cj and c′j are

positive, we have |aj| < lt/4. Taking the absolute value on both sides of Equation
1 and using the triangle inequality for the absolute value gives

|α|2 ≤ 4(1 +
√

2) max{|a2
0|, |a2

1|, |a2
2|, |a2

3|, |a0a1|, |a0a3|, |a2a3|, |a1a2|}
≤ 4εlt/2 .

Mutatis mutandi the argument shows the same thing for γ3 − γ′3.
There are at least (lt/4− 1)4− 1 elements in Sl,t, since each coefficient can take

at least lt/4− 1 values and we subtract 1 for the 0. This expression is greater than
lt

2
for l > l0 for some l0. Numerical checking shows that l0 ≤ 6 for t ≥ 2.

6.5 Linear Combinations

In this section we construct the co-factors of the l-ary approach. Denote by Tl,t

the set of pairwise differences Tl,t = {γ−γ′ | γ, γ′ ∈ Sl,t}. We show that for any ∆-
balanced elements α, β ∈ D, we can find elements γ, δ ∈ Tl,t such that l | (γα+δβ)
and still keep N(γα + δβ) relatively small. More precisely we have the following
lemma.

Lemma 15. Let α, β ∈ D be ∆-balanced and let l ≥ 6 and t = 2 + 2
log2 l

. Then

there exists γ, δ ∈ D such that

1. l | (γα + δβ), and

2. N(γα + δβ) ≤ 64ε2(1 + ∆)2lt max{Nα,Nβ}.

12

Proof. Consider the map fα,β : D2 → D/(l), fα,β : (γ, δ) 7→ γα + δβ + (l) for

α, β ∈ D. We have |D/(l)| = N((l)) ≥ N(l) = l4, and |S2
l,t| ≥ l2t

4
> l4, i.e. the

restriction of fα,β to S2
l,t is not injective.

Thus, there exists γ′, δ′, γ′′, δ′′ ∈ Sl,t such that γ′α + δ′β = γ′′α + δ′′β. We set
γ = γ′ − γ′′ and δ = δ′ − δ′′. Then from linearity of fα,β, (γ, δ) is in its kernel and
l | γα + δβ. This proves the first claim.

A weaker version of the second claim follows directly from the triangle inequal-
ity for ∆-balanced elements, but since this inequality greatly influences the running
time of the algorithms we prove the tighter bound above directly.

Using the multiplicativity of the complex absolute value and Lemma 14 the
second claim follows since

N(γα + δβ) = |(γα + δβ)(γ3α3 + δ3β3)|2

= |γγ3αα3 + δδ3ββ3 + γδ3αβ3 + γ3δα3β|2

≤ (|γγ3αα3|+ |δδ3ββ3|+ |γδ3αβ3|+ |γ3δα3β|)2

≤ (2 max{|γγ3αα3|, |δδ3ββ3|}
+2 max{|γδ3|, |γ3δ|}max{|α|, |α3|, |β|, |β3|})2

≤ 4(4εlt/2 max{|αα3|, |ββ3|}
+4εlt/2∆ max{|αα3|, |ββ3|})2

= 64ε2lt(1 + ∆)2 max{Nα,Nβ} .

Remark 1. The definition of t may seem overly complicated, i.e. one could use
any constant 2 < t < 4. But it minimizes the constant factor of our algorithms,
and since these are relatively large we think that the more complicated definition
is justified.

6.6 Spurious Factors

In each iteration of the algorithms, one of the inputs α and β is replaced by
α, γα+βγ for γ, δ ∈ Tl,t. Sorenson [7] notes that gcd(α, β) = gcd(γα+βγ, β) may
not hold. Fortunately, the following lemma explains this completely.

Lemma 16. Let α, β, γ, δ ∈ D. Then

gcd(α, β) | gcd(γα + δβ, β) , and
gcd(γα + δβ, β)

gcd(α, β)

∣∣∣∣ γ .

Proof. This follows from gcd(γα + δβ, β) = gcd(γα, β).

13

6.7 Approximating the Norm of a ∆-Balanced Element

The norm of an element gives in some sense the “size” of the element. Unfortu-
nately, the way the norm is defined requires computing a multiplication, which
takes time O(n2) in the naive arithmetic model. This is far too expensive to be
done in each step of our algorithms, since we are looking for an algorithm that has
a total running time of O(n2). It is natural to try to approximate the norm, but
since elements can have small norm but large representation, i.e. be unbalanced,
there may be much cancellation during the computation of the norm. As far as
we know there is no general method for handling cancellation.

We consider a weaker measure, which we call N+ : K → R, and prove some
results about this function. This function can not be computed efficiently, but in
contrast to the norm it can be approximated within a constant factor.

6.7.1 The Positive Measure

Let α = a0 + a1ζ + a2ζ
2 + a3ζ

3 be an element in D. Since ζ = 1
2

√
2(1 + i) we can

by substitution write

α =
1

2
(A0,0

√
2 + A0,1) +

1

2
(A1,0

√
2 + A1,1)i

where A0,0, A0,1, A1,0, A1,1 ∈ Z. This can be done in linear time since only a
constant number of additions and subtractions are needed if we keep

√
2 as a

formal symbol in the obvious way.

Definition 17. Let α ∈ D be expressed as described above. We define the positive
measure N+ : K → Q by

N+α =
1

16
((|A0,0|

√
2 + |A0,1|)2 + (|A1,0|

√
2 + |A1,1|)2)2 .

Remark 2. The positive measure is in fact unnecessarily complicated, since the
outermost squaring and the 1

4
-factors do not carry any essential information. We

use the more complicated definition, to allow easy comparison with the norm N .

It is not hard to see that N+ is not a norm and in fact approximates the norm
N arbitrarily badly. For example, N+(εj) gets arbitrarily large for increasing j,
whereas N(εj) = 1 since εj is a unit. Our interest in the function N+ is explained
by the following results.

The first lemma says that if an element is ∆-balanced, then N+ is a good
approximation of the norm N .

Lemma 18. Let α in D be ∆-balanced with ∆ ≥ 2. Then

Nα ≤ N+α ≤ ∆2Nα .

14

Proof. The left inequality is obvious. For the right inequality there are two cases.
Write α3 = 1

2
(A′

0,0

√
2 + A′

0,1) + 1
2
(A′

1,0

√
2 + A′

1,1)i. Recall that
√

2 = ζ − ζ3 and

note that it is kept fixed by σ1 and σ7, but
√

2
σ3

=
√

2
σ5

= −
√

2.
Suppose that sign(A0,0) = sign(A1,0) and sign(A0,1) = sign(A1,1). Then it

follows from the action of σ3 on
√

2 that sign(A′
0,0) = sign(A′

1,0) and sign(A′
0,1) =

sign(A′
1,1), and that sign(A0,0) 6= sign(A′

1,0). Thus, we have

N+α = max{|α|4, |α3|4} ≤ ∆2Nα ,

since α is ∆-balanced, and the claim follows.
Suppose that sign(A0,0) 6= sign(A1,0). Then the corresponding inequality holds

also for α3, and we have

(N+α)1/2 ≤ 1

2
max{(|A0,0|

√
2 + |A0,1|)2, (|A1,0|

√
2 + |A1,1|)2}

≤ 2|α|2, 2|α3|2 .

Thus, N+α ≤ 4Nα, and the claim follows.

For the above lemma to be useful there must be a way to balance an element α
without computing its norm Nα. The next lemma says that εjα is almost balanced
when N+(εjα) is almost minimized over j ∈ Z.

Lemma 19. Let 0 < Γ < 1 and let α ∈ D. Choose jα ∈ Z such that N+(εjα) ≥

ΓN+(εjαα) for j 6= jα. Then εjαα is
(

ε4−1
ε2Γ1/4−1

)1/2

-balanced.

Lemma 19. First note that jα is well defined since Nα = N(εjα) ≥ N+(εjα) for
all j ∈ Z. Write α′ = εjαα = 1

2
(A0,0

√
2 + A0,1) + 1

2
(A1,0

√
2 + A1,1)i.

Without loss we can assume that A0,1, A1,1 ≥ 0. Recall that
√

2 = ζ − ζ3, so
σ3(

√
2) = −

√
2. Thus, we have

α′3 = (εjαα)σ3 =
1

2
(−A0,0

√
2 + A0,1) +

1

2
(−A1,0

√
2 + A1,1)i .

There are two cases that we treat separately.
If sign(A0,0) = sign(A1,0), then either |α′|4 = N+α

′ or |α′3|4 = N+α
′. Without

loss we assume the former. We have N+(α′/εj) = N+(α′)/εj for all j ∈ Z, since ε
is a real number. This implies that

|α′/εjΓ|4 < ΓN+α
′ when jΓ > 1

4
logε(1/Γ). This implies that we must have

|α′3|4ε4jΓ = N+(εα′) and by construction of α′ we also have N+(εα′) ≥ ΓN+α
′. We

conclude that

|α′|/ε4jΓ < ΓN+α
′ ≤ ε4jΓ|α′3|4

15

which implies that that |α′|
|α′3|

≤ ε2jΓ < 1
Γ1/2 as claimed.

If sign(A0,0) 6= sign(A1,0), then we assume without loss that |A0,0|
√

2+ |A0,1| ≤
|A1,0|

√
2 + |A1,1| and consider

4(N+(εα))1/4 = ε2(|A0,0|
√

2 + |A0,1|)2 +
1

ε2
(|A1,0|

√
2 + |A1,1|)2

≥ Γ1/4
(
(|A0,0|

√
2 + |A0,1|)2 + (|A1,0|

√
2 + |A1,1|)2

)
,

which holds from the construction of α′. This inequality implies that

(|A1,0|
√

2 + |A1,1|)2 ≤ ε2 − Γ1/4

Γ1/4 − ε−2
(|A0,0|

√
2 + |A0,1|)2 .

Suppose that A1,0 ≤ 0. Then

4|α′|2 ≤ 4(N+α
′)1/2 ≤

(
1 +

ε2 − Γ1/4

Γ1/4 − ε−2

)
(|A0,0|

√
2 + |A0,1|)2

≤ 4

(
1 +

ε2 − Γ1/4

Γ1/4 − ε−2

)
|α′3|2 = 4

ε4 − 1

ε2Γ1/4 − 1
|α′3|2 .

The case for A0,0 ≤ 0 is similar.

Loosely speaking these results guarantee that if we can compute N+ efficiently
and are given an element that is already fairly balanced, we can balance the el-
ement and efficiently compute an approximation of Nα within a constant factor(

ε4−1
ε2Γ1/4−1

)1/2

efficiently.

Unfortunately, we can not compute N+ quickly. But in contrast to the norm
N , it is not hard to approximate N+ within a constant factor.

6.7.2 Approximating the Positive Measure

In this section we explain how to approximate N+ within a constant factor in time
O(log n). We have the following lemma.

Lemma 20. Let 0 < Γ < 1 be constant. Given α ∈ D, an approximation NΓ
+α of

N+α can be computed in time O(log n), such that

ΓN+α ≤ NΓ
+α ≤ N+α .

The idea is simple. Since computing N+α only involves multiplications and
additions of positive numbers, we can compute with constant precision of only w
bits, say w = 16, and get a result within a constant factor of the true value of
N+α. By using higher precision we can make the constant factor arbitrarily small.
We give the details of this in Appendix A.

16

7 The Algorithms

We are now ready to give the algorithms. The general idea is to extend the l-ary
gcd algorithm for integers to the ring D. We first describe two subroutines used by
both algorithms. Then we describe the main algorithms, but without all details.
Our objective is to emphasize the similarity with the l-ary algorithm of Sorenson
[7], and to improve readability. Finally, we give full details on how each step in
the algorithm is computed.

In the text above we have stated several results with parameters. Computing
with w-bit precision when we approximate N+ gives an approximation NΓ

+, where
Γ(w) = (1 + 21−w)−30. This follows from Appendix A. Given Γ we define

∆(Γ) =

(
ε4 − 1

ε2Γ1/4 − 1

)1/2

t(l) = 2 +
2

log2 l
.

For the algorithm to work, we require that Γ and l are chosen such that

64ε2∆(Γ)2(1 + ∆(Γ))2lt(l) < l4 .

Using 16-bit precision in the computation of NΓ
+, we need l ≥ 365. The necessary

value of l does not decrease notably with greater Γ when Γ is already close to 1.
Here we see that it is useful to have as small t(l) as possible (cf. Remark 1).

7.1 Common Subroutines

In this section we describe subroutines invoked by the main algorithms. We state
the main algorithms in terms of subroutine calls to improve readability and simplify
analysis.

Algorithm 1 (Balance Element).
BALANCE(α)
INPUT: α ∈ D.
OUTPUT: (α′, jα), where α′ = εjαα is ∆-balanced.

1. Set α0 = α, and j = 0.

2. If NΓ
+αj ≤ NΓ

+(εαj) and NΓ
+αj ≤ NΓ

+(ε−1αj), return (αj, j).

3. If the first inequality is not satisfied, set αj = ε−1αj−1 and j = j − 1. If the
second inequality is not satisfied, set αj = εαj−1 and j = j + 1. Then go to
Step 2.

17

Lemma 21. The output of the BALANCE-algorithm is ∆-balanced, and the algo-
rithm runs in time O(n| log |α|

|α3| |).

Proof. From Lemma 20 we know that the algorithm finds an jα such that the
inequality N+(εjα) ≥ ΓN+(εjαα) for j 6= jα. Lemma 19 then implies that εjαα is
∆-balanced.

Consider the set of non-unit elements that divide some δ ∈ Tl,t. This set is
clearly infinite, since each element in D has an infinite number of associates. This
makes it natural to consider the following set instead

Fl,t = {ω ∈ D : ω | δ, δ ∈ Tl,t, ω is non-unit, primary, prime and balanced}
∪{l, 1 + ζ, 1− ζ} .

Note that we include l, which has Nl = l4, in Fl,t. We also include 1 + ζ and 1− ζ
which are prime but with even norm. This is notationally convenient. The set Fl,t

is bounded and we denote its elements by Fl,t = {ω1, . . . , ωsF
}. We write Fl,t - α

to denote the fact that ω - α for all ω ∈ Fl,t.

Algorithm 2 (Extracting Small Factors).
SMALL(α)
INPUT: α ∈ D.
OUTPUT: (α′, (j1, . . . , jsF

)), where α = α′
∏sF

j=1 ωj and Fl,t - α′.

The algorithm is the trivial one. Find α′, and jk by trial division.

Lemma 22. Let α ∈ D and suppose (α′, (j1, . . . , jsF
)) = SMALL(α). Then the

running time of the SMALL-algorithm on input α is O((
∑sF

k=1 jk)n).

Proof. Trial division by an integer is done by trial division with all coefficients ai

of an element α = a0 +a1ζ+a2ζ
2 +a3ζ

3. This can obviously be done in time O(n).
Note that γ | α if and only if Nγ | Nγ

γ
α. Thus, trial division by an element in

D is reduced to trial division by an integer in time O(n).
It now suffices to note that |Fl,t| is constant and each trial division can be

carried out in time O(n).

7.2 Greatest Common Divisor

The main algorithm first calls the SMALL-algorithm to find all common factors
from the set Fl,t. Then it invokes a subroutine IGCD, which assumes inputs
without such factors. In each call to the subroutine IGCD it strips its first input
from all factors in Fl,t. Then it finds a linear combination with small factors that
is divisible by l and calls itself recursively.

18

Algorithm 3 (Greatest Common Divisor).
GCD(α, β)
INPUT: α, β ∈ D
OUTPUT: The greatest common divisor of α and β.

1. Compute (α0, (j1, . . . , jsF
)) = SMALL(α) and

(β0, (j
′
1, . . . , j

′
sF

)) = SMALL(β).

2. Compute (α1, ·) = BALANCE(α0) and (β1, ·) = BALANCE(β0).

3. Compute (λ, ·) = SMALL(IGCD(α1, β1)).

4. Return λ
∏sF

k=1 ω
min{jk,j′k}
k .

Algorithm 4.
IGCD(α, β)
INPUT: α, β ∈ D where Fl,t - β.

OUTPUT: gcd(α, β)
∏sF

k=1 ω
j′′k
k for some j′′k .

1. If α = 0 return β.

2. Compute (α0, ·) = BALANCE(α).

3. If NΓ
+α0 > NΓ

+β then set (α1, β1) = (β, α0) and otherwise (α1, β1) = (α0, β).

4. Compute γ, δ ∈ Tl,t such that l | (γα1 + δβ1).

5. Return IGCD((γα1 + δβ1)/l, β1).

7.3 Octic Residue Symbol

The algorithm for the octic residue symbol is similar to the GCD-algorithm, but in
each step we keep track of the octic symbol of the factors that are factored out from
α. This becomes quite complex, but it is essentially just repeated application of
the reciprocity laws, Theorem 4 and Theorem 5. Readers interested in the precise
details of the calculations are referred to Section 7.4 and the proof of Proposition
24 below.

Algorithm 5 (Octic Residue Symbol).
OCTIC(α, β)
INPUT: α, β ∈ D, where β is a primary non-unit with Nβ = 1 (mod 8).

OUTPUT: The octic residue symbol
(

α
β

)
of α modulo β.

1. Compute (α0, (j1, . . . , jsF
)) = SMALL(α) and

(β0, (j
′
1, . . . , j

′
sF

)) = SMALL(β).

19

2. If jk > 0 and j′k > 0 for any k, return 0.

3. Compute (α1, jα) = BALANCE(α0), and set

s0 =

(
ε

β

)−jα sF∏
k=1

(
ωk

β

)jk

.

4. If α1 is a unit, return s0

(
α1

β

)
.

5. Compute jε, jζ ∈ {0, 1, 2, 3} such that α2 = εjεζjζα1 is primary and set

s1 =

((
ε

β

)jε
(
ζ

β

)jζ

)−1

.

6. Compute s2 such that
(

α2

β

)
= s2

(
β
α2

)
.

7. Compute (β1, jβ) = BALANCE(β0), and set

s3 =

(
ε

α2

)−jβ sF∏
k=1

(
ωk

α2

)jk

.

8. Return s0s1s2s3IOCTIC(β1, α2).

Algorithm 6.
IOCTIC(α, β)
INPUT: α, β ∈ D, where β is primary and Fl,t - β.

OUTPUT: The octic residue symbol
(

α
β

)
of α modulo β.

1. If α = 0 return 0.

2. Compute (α0, (j1, . . . , jsF
)) = SMALL(α) and set

s0 =

sF∏
k=1

(
ωk

β

)jk

.

3. Compute (α1, jα) = BALANCE(α0), and set

s1 =

(
ε

β

)−jα

.

20

4. If α1 is a unit, return s0s1

(
α1

β

)
.

5. Compute jε, jζ ∈ {0, 1, 2, 3} such that α2 = εjεζjζα1 is primary and set

s2 =

((
ε

β

)jε
(
ζ

β

)jζ

)−1

.

6. If NΓ
+α1 < NΓ

+β then set (α3, β3) = (β, α2) and otherwise (α3, β3) = (α2, β).
Then compute s3 such that(

α2

β

)
= s3

(
α3

β3

)
.

7. Compute γ, δ ∈ Tl,t such that l | (γα3 + δβ3) and set

s4 =

(
γ

β3

)−1

8. Return s0s1s2s3s4IOCTIC(γα3 + δβ3, β3).

Remark 3. In the octic residue algorithm it seems necessary to include a call to
SMALL in every call made by IOCTIC. The problem is that if intermediate α and
β are not relatively prime, then we can not safely apply the reciprocity law.

7.4 Details of the Algorithms

The description of the GCD-algorithm is fairly easy to understand, but it may not
be clear to all readers how each step of the OCTIC-algorithm is computed.

Consider the evaluation of expressions on the form
(

ωk

β

)
. There are several

cases. If ωk equals 1 + ζ or 1− ζ. Then we apply Proposition 5 to compute
(

ωk

β

)
.

If ωk = l we write l = (1 + ζ)l1(1 − ζ)l2l′ where 1 + ζ, 1 − ζ - l′. Then we apply

Proposition 3 and conclude
(

l
β

)
=
(

1+ζ
β

)l1 (
1+ζ
β

)l1 (
l′

β

)
. Theorem 4 then gives an

s such that
(

l′

β

)
= s

(
β
l′

)
. The last residue equals

(
β mod l′

l′

)
, and there are at most

a constant number of such residues, so this can be computed in constant time.

Otherwise, Nωk is primary. Thus,
(

ωk

β

)
= s

(
β
ωk

)
=
(

β mod Nωk

ωk

)
for some

s computed in constant time using Theorem 4. There are a constant number
of residues of the last type since Nωk is an integer. Thus, this residue can be
computed in constant time.

21

Consider next expressions on the forms
(

ε
β

)
and

(
ζ
β

)
. Such expressions can

be evaluated using Theorem 5. Again we need only compute modulo 8, so this can
be done in constant time.

In Step 4 of IOCTIC we must check if an element α1 is a unit. Since α1 is
∆-balanced we may invoke Lemma 12 and conclude that we need only check if α1

is one of the constant number of possible ∆-balanced units. If it is not, we know
that it is a non-unit.

Next we consider how to perform Step 6. From Lemma 20 we know that we
can compute NΓ

+α1 and NΓ
+β in time O(log n). The value of s3 can be computed

in constant time using Theorem 4, since we need only compute modulo 8.
To find suitable γ and δ in Step 7 we only need to compute modulo l. Reducing

α and β modulo l can be done in time O(n). Then finding γ and δ is done in
constant time.

The residue symbol
(

γ
β3

)
is computed by factoring γ =

∏sγ

k=1 ω
jk

k , applying

Proposition 3, i.e.
(

γ
β3

)
=
∏sγ

k=1

(
ωk

β3

)jk

, and computing each of these symbols as

outlined above.
This completes the description of the algorithms.

8 Analysis

In this section we analyze the algorithms. First we prove correctness of each
algorithm provided they halt at all. Then we bound the running time of the
algorithms.

Proposition 23. If the GCD-algorithm halts, it outputs the greatest common di-
visor of its inputs α and β.

Proof. Suppose that gcd(α, β) = λ∗, and consider the GCD algorithm. By Lemma
21 and the definition of the BALANCE-algorithm we have α = α1γ

∏sF

k=1 ω
jk

k and

β = β1δ
∏sF

k=1 ω
j′k
k for some units γ, δ, where Fl,t - α1 and Fl,t - β1.

Thus, if λ = gcd(α1, β1), then λ∗ = λα
∏sF

k=1 ω
min{jk,j′k}
k . By Lemma 21 this

holds if IGCD(α1, β1) is on the form gcd(α1, β1)
∏sF

k=1 ω
j′′k
k for some j′′k . We conclude

that GCD is correct if IGCD is correct.
If α = 0 the gcd is β and if α is a unit the gcd is a unit, so in this case

IGCD is correct. Since α0 = αψ for some unit ψ we have gcd(α0, β) = gcd(α, β).
Changing the order of α0 and β does not change the gcd. Finally, by Lemma 16,

we know that gcd((γα1 + δβ1)/l, β1) = gcd(α1, β1)
∏sF

k=1 ω
j′′k
k for some j′′k , so the

IOCTIC-algorithm is correct if it halts.
This implies that the OCTIC-algorithm is correct if it halts.

22

Proposition 24. If the OCTIC-algorithm halts, it outputs the octic residue symbol
of α modulo β.

Proof. If α and β has a common factor in Fl,t this is discovered in Step 2 of the
OCTIC-algorithm, and the output is 0, which is correct.

In general, when we turn a residue symbol on its head, we always ensure that
both operands are primary. By Lemma 9 this implies that their norms equal 1
modulo 8, i.e. both residue symbols are well defined.

Suppose that IOCTIC(β1, α2) =
(

β1

α2

)
. Then we have

s0s1s2s3IOCTIC(β1, α2) = s0s1s2

(
ε

α2

)−jβ sF∏
k=1

(
ωk

α2

)jk
(
β1

α2

)
= s0s1s2

(
β

α2

)
= s0s1

(
α2

β

)
= s0

((
ε

β

)jε
(
ζ

β

)jζ

)−1(
α2

β

)
= s0

(
α1

β

)
=

(
ε

β

)−jα sF∏
k=1

(
ωk

β

)jk
(
α1

β

)
=

(
α

β

)
.

Here we use Theorem 4 and Proposition 3 repeatedly. We conclude that OCTIC
is correct if IOCTIC is correct.

We prove this similarly to the above. If α = 0 the output is 0 which is correct.
Otherwise we note that

s0s1

(
α1

β

)
= s0

(
ε

β

)−jα
(
α1

β

)
=

sF∏
k=1

(
ωk

β

)jk
(
α0

β

)
=

(
α

β

)
.

Thus, if α1 is a unit, the result is correct, and otherwise we need only show that

s2s3s4IOCTIC(γα3 + δβ3, β3) =
(

α1

β

)
.

This can be seen as follows.

s2s3s4

(
γα3 + δβ3

β3

)
= s2s3

(
γ

β3

)−1(
γα3

β3

)
= s2s3

(
α3

β3

)
= s2

(
α2

β

)
=

((
ε

β

)jε
(
ζ

β

)jζ

)−1(
α2

β

)
=

(
α1

β

)
.

Thus, the algorithm is correct if IOCTIC(γα3 + δβ3, β3) =
(

α1

β

)
=
(

γα3+δβ3

β3

)
, and

we are done.

23

At this point we have established that the algorithms are correct if they halt at
all. All that remains is to analyze their complexity. We only analyze the OCTIC-
algorithm. It is easy to see that the running time of this algorithm strictly bounds
the running time of the GCD-algorithm.

Lemma 25. Consider α and α0 6= 0 in an invocation of IOCTIC. The run-
ning time of the invocation excluding the running time of the recursive call is
O(n log Nα

Nα0
).

Proof. First note that in Section 7.4 above we show that if we ignore the running
time of the two subroutine calls, an invocation runs in time O(n). Next we consider
the two subroutine calls.

Recall that α = α0

∏sF

k=1 ω
jk

k . Taking the norm on both sides and dividing by
Nα0 gives

Nα

Nα0

=

sF∏
k=1

N(ωk)
jk .

We know that Nω ≥ 2 for all ω ∈ Fl,t, since ω is prime in D which implies that
Nω is prime in Z. Thus,

log2

Nα

Nα0

=

sF∑
k=1

jk log2N(ωk) ≥
sF∑

k=1

jk .

Lemma 21 now implies that the claim is true if we ignore the cost of the invocation
of the BALANCE-algorithm. Thus, it now suffices to prove that this invocation
runs in time O(n log Nα

Nα0
) as well.

We have Nα = |α|2|ασ3|2. Without loss we assume |α| ≥ |ασ3| and |α0| ≥ |ασ3
0 |,

since this is one of the two symmetric difficult cases. We have |α0| ≤ |α| since
dividing by primes can only decrease the complex absolute value. We now have

|α0|4

|ασ3
0 |4

≤ |α|4

|ασ3
0 |4

≤ ∆2Nα

|ασ3
0 |4

=
∆2Nα · |α0|4

|α0|4 · |ασ3
0 |4

≤ (∆2Nα)2

(Nα0)2
.

The claim now follows from Lemma 21, since the BALANCE-algorithm runs in
time O(n log |α0|

|ασ3
0 |) and ∆ is constant.

Write α(j) to denote the value of α in the jth recursive call to IOCTIC, and
similarly for the other variables.

Lemma 26. For j > 1 we have

Nα(j) ≤ (64ε2∆2(1 + ∆)2lt)Nα
(j−2)
0 , and

Nα
(j)
0 ≤

(
64ε2∆2(1 + ∆)2lt

l4

)
Nα

(j−2)
0 .

24

Proof. From Lemma 21 we know that α
(j)
1 is ∆-balanced. By construction, Nα

(j)
1 =

Nα
(j)
0 . It follows from Lemma 15 and the fact that l | α(j) (except for the the very

first call) that

Nα(j) ≤ (64ε2(1 + ∆)2lt) max{Nα(j−1)
0 , Nβ(j−1)}, and

Nα
(j)
0 ≤ 64ε2(1 + ∆)2lt

l4
max{Nα(j−1)

0 , Nβ(j−1)} , (1)

By construction and Lemma 18 we also have

Nβ(j−1) ≤ ∆2Nα
(j−2)
1 = ∆2Nα

(j−2)
0 .

Thus, it remains to show that Nα
(j−1)
0 ≤ ∆2Nα

(j−2)
0 when Nα

(j−1)
0 ≥ Nβ(j−1).

By translating Equation 1 above we have

Nβ(j−1) ≤ Nα
(j−1)
0 ≤ 64ε2(1 + ∆)2lt

l4
max{Nα(j−2)

0 , Nβ(j−2)} ,

but when Nα
(j−1)
0 ≥ Nβ(j−1) we must have Nβ(j−2) ≤ ∆2Nβ(j−1) and l was

chosen such that 64ε2∆2(1+∆)2lt

l4
< 1. Thus, we must have max{Nα(j−2)

0 , Nβ(j−2)} =

Nα
(j−2)
0 which concludes the proof.

Proposition 27. The GCD-algorithm and the OCTIC-algorithm run in time
O(n2).

Proof. As explained above it suffices to show that the running time of the OCTIC-
algorithm is O(n2).

It is easy to see that the computations done in OCTIC is done in time O(n2)
if we ignore the call to IOCTIC. The interesting part is what happens in each call
to IOCTIC.

Set C = 64ε2∆2(1 + ∆)2lt. The second inequality of Lemma 26 implies that
every other recursive call max{Nα,Nβ} has been reduced at least by a factor
C/l4 < 1. Thus, the IOCTIC-algorithm makes at most m = O(n) recursive calls.

We ignore the cost of the very last call if α
(m)
0 = 0, since no computations are done

in this case. This allows us to assume that Nα
(j)
0 ≥ 1 for all j.

We can now bound the running time T (n) of the algorithm by

T (n) =
m∑

j=1

O

(
n log

Nα(j)

Nα
(j)
0

)
= O

(
n log

(
m∏

j=1

Nα(j)

Nα
(j)
0

))
.

Note that we needed to show that the algorithms halts for the above expression
to have meaning.

25

Then we apply the first inequality of Lemma 26 and get

m∏
j=1

Nα(j)

Nα
(j)
0

≤ Nα
(1)
0 Nα

(2)
0

m∏
j=3

CNα
(j−2)
0

Nα
(j)
0

≤ Cm−2 Nα
(1)
0 Nα

(2)
0

Nα
(m−1)
0 Nα

(m)
0

≤ Cm−2 max{Nα(1), Nβ(1)}2 .

This implies that

T (n) = O
(
n log

(
Cm+2 max{Nα(1), Nβ(1)}

)2)
= O(n(m+ 2 + n)) = O(n2) ,

which concludes the proof.

9 Further Applications

No essential changes are needed to give gcd algorithms similar to our gcd algorithm
for the ring of integers Od = Z+Zw in any quadratic number field Q(

√
d). In fact,

our algorithm can be used directly when d = −1, 2,−2, since Q(i), Q(
√

2), and
Q(
√
−2) are subfields of Q(ζ). For other d our claim follows since there is at most

one fundamental unit εd in Od, and we may define N+(a0 +a1w) = (|a0|+ |a1||w|)2,
which is easily approximated. This gives a result similar to that of Kaltofen and
Rolletschek [4] but using the l-ary approach.

Furthermore, we see no reason why our approach would not work in the ring of
integers of any biquadratic extension of Q which has only one fundamental unit.
In particular it is possible to compute the gcd in Z[ζ5], where ζ5 is a primitive fifth
root of unity. It is also be possible to compute the quintic residue symbol.

10 Future Work

An interesting open problem is to what extent the l-ary algorithm can be general-
ized further. There are two main problems. One must be able to balance elements
quickly when there are several fundamental units, and there must be a function
with similar properties as N+, which can be approximated quickly.

Another interesting problem is to determine if l, which is constant in our algo-
rithm, can be made an increasing function of the input size as in Sorenson [7]. It
seems difficult to do this when computing the residue symbol, since we can not al-
low the two elements to have any common factors if we want to use the reciprocity
law to a symbol on its head, but for the gcd algorithm it is probably possible.

26

11 Acknowledgments

I am most grateful to my supervisor Johan H̊astad for many fruitful suggestions
and remarks. I am also grateful to Torsten Ekedahl who essentially played the role
of an extra advisor during this work.

References

[1] S. Agarwal, G. Skjovbjerg Frandsen, Binary GCD Like Algorithms for Some
Complex Quadratic Rings, ANTS 2004, LNCS 3076, pp. 57-71, 2004.

[2] I. Damg̊ard, G. Skjovbjerg Frandsen, Efficient Algorithms for gcd and Cubic
Residuosity in the Ring of Eisenstein Integers, BRICS Technical Report, ISSN
0909-0878, BRICS RS 03-8, 2003.

[3] K. Ireland, M. Rosen, A Classical Introduction to Modern Number Theory,
2nd edition 5:th printing, Springer-Verlag 1998, ISBN 0-387-97329-5.

[4] E. Kaltofen, H. Rolletschek, Computing greatest common divisors and
factorizations in quadratic number fields, Mathematics of Computation,
53(188):697-720, 1989.

[5] F. Lemmermeyer, Reciprocity Laws, ISBN 3-540-66957-4, Springer-Verlag,
2000.

[6] J. Shallit, J. Sorenson, A binary algorithm for the Jacobi symbol, ACM
SIGSAM Bulletin, 27 (1), pp. 4-11, 1993.

[7] J. Sorenson, Two Fast GCD Algorithms, Journal of Algorithms, 16(1):110-
144, 1994.

[8] J. Stein, Computational problems associated with Racah algebra, Journal of
Computational Physics No. 1, pp. 397-405, 1969.

[9] L. Washington, Introduction to Cyclotomic Fields, ISBN 0-387-90622-3,
Springer-Verlag New York, 1982.

[10] A. Weilert, Asymptotically fast GCD computation in Z[i], In Algorithmic num-
ber theory (Leiden, 2000), LNCS 1838, pp. 595-613, 2000.

[11] A. Weilert, (1 + i)-ary GCD computation in Z[i] as an analogue to the binary
GCD algorithm, Journal of Symbolic Computation, 30(5):605-617, 2000.

27

[12] D. Wikström, On the Security of Mix-Nets and Related Problems, Licentiate
thesis, Department of Numerical Analysis and Computer Science, Royal Insti-
tute of Technology, TRITA NA 04-06, ISSN: 0348-2952, ISRN KTH/NA/R--
04/06--SE, ISBN 91-7283-717-9, May, 2004.

A Details of the Approximation of the Positive

Measure

Given a positive number H =
∑h

j=−∞ hj2
j in binary basis, i.e. hj ∈ {0, 1}, we

denote by H̃ the number
∑h

j=h−w hj2
j. Thus, H̃ is simply H, but truncated to

w-bit precision. Similarly
√̃

2 is
√

2 truncated to w-bit precision.

We define addition and multiplication on such numbers by H̃ ⊕ H̃ =
˜̃
H + H̃

and H̃ � H̃ =
˜̃
HH̃, i.e. we simply compute with precision w. We also define

exponentiation with precision w in the natural way by H̃�(s) =
∏s

j=1 H̃.
We have the following lemma.

Lemma 28. Let H,H ′ ≥ 2w be positive integers, and define Θ = Θ(w) = 1+21−w.
Then

1

Θ
H ≤ H̃ ≤ H ,

1

Θ2
(H +H ′) ≤ H̃ ⊕ H̃ ′ ≤ H +H ′ , and

1

Θ3
HH ′ ≤ H̃ � H̃ ′ ≤ HH ′ .

Proof. The right inequalities are obvious. For the first left inequality we have
H =

∑h
j=h−w+1 hj2

j +
∑h−w

j=−∞ hj2
j ≤ H̃ + 2h−w+1 ≤ (1 + 21−w)H̃ = ΘH̃. The

other inequalities follows by repeated application of the first. We have H +H ′ ≤
Θ(H̃ + H̃ ′) ≤ Θ2(H̃ ⊕ H̃ ′) and HH ′ ≤ Θ2H̃H̃ ′ ≤ Θ3(H̃ � H̃ ′).

We are finally ready to define the measure N
Θ(w)
+ of the size of elements that

we use in the algorithm.

Definition 29. Given α ∈ D we define the approximation N
Θ(w)
+ α of N+α by

N
Θ(w)
+ α =

1

16

((
|̃A0,0| �

√̃
2⊕ |̃A0,1|

)�(2)

⊕
(
|̃A1,0| �

√̃
2⊕ |̃A1,1|

)�(2)
)�(2)

,

where we assume that w ≥ 4.

28

Lemma 30. When w is constant, NΘ
+α can be computed in time O(log n), where

n is the bitsize of α ∈ D.

Proof. The lemma is true, since to compute NΘ
+ we need only keep track of the

number of trailing zeros in each number and perform constant w-precision arith-
metic.

Lemma 31. Let α ∈ D and w > 3. Then

1

Θ6
N+α ≤ NΘ

+α ≤ N+α

Proof. The right inequality is obvious. The left inequality follows by repeated
application of Lemma 28.

N+α =
1

16
((|A0,0|

√
2 + |A0,1|)2 + (|A1,0|

√
2 + |A1,1|)2)2

≤ 1

16
(Θ6(|̃A0,0| �

√̃
2 + |̃A0,1|)2 + Θ6(|̃A1,0| �

√̃
2 + |̃A1,1|)2)2

≤ 1

16
(Θ13(|̃A0,0| �

√̃
2⊕ |̃A0,1|)�(2) + Θ13(|̃A1,0| �

√̃
2⊕ |̃A1,1|)�(2))2

≤ Θ30NΘ
+α

Recall that Θ = 1 + 21−w. Thus we can make Θ30 arbitrarily close to 1 by
choosing a sufficiently large w. This concludes the proof of Lemma 20, and explains
our abuse of notation when writing NΓ

+ to denote the approximation within a
factor 0 < Γ < 1. A value of w = 16 gives a sufficiently good approximation for
all practical purposes.

29

