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Abstract

We investigate a number of problems related to the notion of a mix-
net. A mix-net is a cryptographic protocol that provides anonymity for a
set of senders. The primary application for mix-nets is to ensure privacy in
electronic elections.

The main contributions of the thesis are the following:

• We introduce a new technique for cryptographic protocols and propose
a mix-net that is more efficient than any mix-net in the literature for a
certain range of parameters. Currently we are unable to give security
proofs for our construction.

• We prove that the security of a single mix-center is equivalent to the
semantic security of the underlying cryptosystem.

• We give a number of attacks on a mix-net protocol proposed by Golle,
Zhong, Boneh, Jakobsson, and Juels (2002). Two of the attacks may be
applied to break the security of protocols by Jakobsson (1998), Mitomo
and Kurosawa (2000), and Jakobsson and Juels (2001).

• We extend the attack of Lim and Lee (1997) based on the malicious use
of illegal inputs to protocols, and illustrate why their proposed counter-
measure to such attacks is insufficient.

• The El Gamal cryptosystem is malleable. This means that cleartexts
may be transformed while encrypted. We characterize a class of trans-
formations that can not be computed under encryption.

• We generalize the algorithm of Shallit and Sorenson (1993) for comput-
ing the Jacobi symbol, and give an efficient algorithms for computing
the cubic residue character and the quartic residue character.
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Chapter 1

Introduction

1.1 Cryptographic Protocols

It was only 30 years ago that cryptography was considered a subject almost exclus-
ively of military interest. Since then not only the applications have changed, but
also the tools.

The original application of cryptography was to allow two parties to communic-
ate secretly over an insecure channel, i.e. no intermediary should be able to deduce
the cleartext despite having access to a cryptotext. Today there are complex pro-
tocols for key exchange, commerce, auctions, elections, contract signing etc, each
with its own set of security properties.

The ground breaking work of Diffie and Hellman [16], and Rivest, Shamir and
Adleman, revolutionized the subject of cryptography when they introduced the
notion of public key cryptography. Although the notion was discovered first by
Merkle [46], his idea was less practical and was not published until later. Further-
more, recent de-classified information claims that British governmental organiza-
tions discovered public key cryptography already in the beginning of the 70’s (see
[63]).

The new notion led to a practical way for two parties to establish a secret
channel without any prior agreement. Furthermore, identification schemes and
digital signatures were developed to serve as electronic replacements of conventional
methods for identification and signing. These techniques are used thousands of
times each day to secure and authenticate communication over the Internet.

The new tools were embraced by the scientific community. Then Yao [73] ini-
tiated the study of multiparty computation, i.e. the study of complex protocols
involving several parties. Some years later Goldreich, Micali and Wigderson [30],
and Ben-Or, Goldwasser, Wigderson [5] and Chaum, Crépeau and Damgård [9],
showed that any function can be securely computed in two different models. The
notion of zero-knowledge proofs was discovered by Goldwasser, Micali and Rackoff
[32]. These fundamental results were followed by similar results in various models,
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2 Introduction

and were more rigorously analyzed.
Although the above constructions are very general, they do not give practical

protocols. Thus alongside the development of general theory, researchers have been
investigating more practical solutions to specific problems. One such problem is
how to implement an electronic election scheme.

Electronic Elections

The conventional election procedure has been refined over many years to be robust
and to ensure correctness of the result. The cast votes are often recounted by
different authorities to verify the result, and even though it may be possible to
forge a single vote, it is very hard to forge a sufficient number of votes to change
the result notably. Furthermore, in many countries the privacy of the voter is
preserved by physical means. The intent is not only to guarantee the privacy of the
voter, but to protect the voter against coercing and to counter vote buying.

Many questions arise when we try to replace the conventional election procedure
with an electronic protocol. In particular if the goal is to let voters cast their ballot
from their home PC. How do we identify the voters? How do we prevent multiple
voting? Can the privacy of the voter be guaranteed, and for how long? Are there
ways to coerce voters, or to convince them to sell their vote? Who verifies that the
protocol was executed correctly?

Some of these problems seem impossible to solve completely in practice, e.g. it
can not be guaranteed that there is not a virus on the home PC. Other problems,
such as identifying voters, seem easy to solve as standalone problems using standard
cryptographic techniques. The challenge is to find practical protocols and give
convincing arguments of their security in reasonable models.

Although there are exceptions, most constructions for electronic voting in the
literature fall into one of two categories.

The first type of construction is based on the use of a homomorphic cryptosys-
tem. Such cryptosystems have the remarkable property that if several cryptotexts
are multiplied, the result is a cryptotext of the product of the cleartexts of the
original cryptotexts. This approach has been studied and refined by several au-
thors [10, 3, 4] leading up to the work of Cramer, Gennaro, and Schoenmakers
[11]. They give a well analyzed solution based on the El Gamal [19] cryptosystem.
Damgård and Jurik [13] and independently O. Baudron, P.-A. Fouque, D. Pointche-
val, G. Poupard and J. Stern [6], generalized this approach to use the Paillier [53]
cryptosystem. The main advantage of this approach is that counting the votes can
be done very efficiently. A drawback of this approach is that the set of candidates
must be fixed in advance, i.e. there can be no write-in votes. Furthermore, the
voters must give a relatively complex proof that their ballot contains a vote for a
candidate on the candidate list. The problem is particularly severe if the El Gamal
[19] cryptosystem is used, in which case only a small number of candidates can be
used. If instead the Paillier [53] cryptosystem is used, the number of candidates
can be large, but the candidates must still be fixed in advance.
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The second approach was invented by Chaum [8]. His idea is a straightforward
translation of the conventional voting procedure. Each voter encrypts its vote and
writes it on a bulletin board. Then a mix-net (or anonymous channel) is used to
mix and decrypt the cryptotexts in such a way that it is infeasible to find any
correspondence between the input cryptotexts and the output cleartexts. The mix-
net ensures the privacy of the voter. The main advantage of this approach is that
arbitrary write-in votes can be allowed. A fixed set of candidates can also be used.
On the other hand all known mix-net protocols are relatively inefficient. Another
principal drawback with write-in votes is that it is easy to coerce a voter to cast a
blank vote. The coercer simply chooses a random string and asks the voter to write
this on his ballot. Then the coercer verifies that the random string appears in the
output. Although this problem already exists for conventional voting procedures
the problem is worsened when the resulting cleartexts are stored electronically, since
it makes it easier for the coercer to verify that the random string appears in the
output. Interestingly, ideas from the second approach have been used by Hirt and
Sako [36] to counter vote selling in an election protocol of the first type.

In this thesis we consider the notion of a mix-net and related problems.

1.2 Further Applications and Previous Work on Mix-Nets

Although electronic elections is perhaps the most spectacular application of mix-
nets, Chaum proposes the notion as a general means for a group of senders to send
messages without revealing their identity.

Chaum’s original “anonymous channel” [8, 52] enables a sender to securely send
mail to a receiver anonymously, and also to securely receive mail from this recipient
without revealing the sender’s identity. When constructing election schemes [8, 24,
54, 59, 51] the mix-net is used to ensure that the vote of a given voter can not
be revealed. Also in the construction of electronic cash systems [39] mix-nets have
been used to ensure privacy. Thus a mix-net is a useful primitive in constructing
cryptographic protocols.

Abe gives an efficient construction of a general mix-net [1], and argues about
its properties. Jakobsson has written (partly with Juels) a number of more general
papers on the topic of mixing [38, 40, 41] also focusing on efficiency, of which the
first appeared at the same time as Abe’s construction.

Recently two groups have proposed efficient zero-knowledge proofs of a correct
shuffle in the random oracle model. Furukawa and Sako [25] and Neff [50] have
both found efficient ways to compute such proofs. Groth [33] has refined Neff’s
ideas and performed a more thorough analysis.

Golle et al. [34] presents a new idea for providing robustness.

Desmedt and Kurosawa [15] describe an attack on a protocol by Jakobsson [38].
Similarly Mitomo and Kurosawa [49] exhibit a weakness in another protocol by
Jakobsson [40]. Pfitzmann has given some general attacks on mix-nets [58, 57],
and Michels and Horster give additional attacks in [48]. Abe and Imai [2] presents
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attacks for the protocol of Golle et al. [34] and also for the protocol of Jakobsson
and Juels [42]. Their attacks for [34] are similar to two of the attacks of Chapter
4, but the attack they give for [42] is unrelated to the attack we give in Chapter 4
for this construction.

1.3 What is a Mix-Net?

Suppose a set of senders S1, . . . , SN each have an inputmi, and want to compute the
unordered set {m1, . . . ,mN}, but keep the identity of the sender of any particular
message mi secret.

A trusted party T can provide the service required by the senders. First it
collects all messages. Then it randomly re-orders the inputs and outputs the result.
This is illustrated in Figure 1.1.

S1

S2

...

SN

m1

m2

mN

T

m′

1

m′

2

...
m′

N

Figure 1.1: The trusted party T receives a message mi from each sender Si. Then
it orders m1, . . . ,mN randomly to form a list (m′

1, . . . ,m
′
N) that it outputs.

A protocol, i.e. a set of machines M1, . . . ,Mk, that emulates the service of the
trusted party as described above is called a mix-net, and the parties M1, . . . ,Mk

are referred to as mix-servers. Some authors use the terms: anonymous channel,
mix, or shuffle-network and mix-centers or mixers instead of mix-net and mix-server
respectively.

The usual assumption is that each sender Si trusts that a certain fraction of
these are honest. The sender may not want to decide upon any particular parties
Mj to trust, but only how many. This type of trust is common in the real world. For
example the board of a company consists of a group of individuals. The stockholder
need not trust each individual to trust the board as a whole.

Theoretical work shows that a secure mix-net can be constructed (cf. [29]).
However, in practice the mere existence of a mix-net is not enough. It must also
be efficient.
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The Basic Approach

The notion of a mix-net was first investigated by Chaum [8]. His approach can be
summarized as follows. Each mix-server Mj has a public key pkj and a private
key skj . We write c = Epk(m) for the probabilistic encryption of a message
m using the public key pk and Dsk(c) = m for the decryption of a cryptotext
c using the private key sk. To send a message mi the sender Si forms c0,i =
Epk1

(Epk2
(. . . Epkk

(mi) . . .)) and writes this on a bulletin board. This gives a list
L0 = (c0,1, . . . , c0,N) of cryptotexts. Then for j = 1, . . . , k the j:th mix-server Mj

decrypts each element cj−1,i of Lj−1 by computing Dskj
(cj−1,i) and then forms a

new list Lj = (cj,1, . . . , cj,N ) consisting of the decrypted elements, but in random
order. By construction the output ofMk is the list of cleartexts randomly permuted.
If at least one mix-server keeps its part of the permutation secret, essentially no
information of the full permutation is revealed and the anonymity of the senders is
ensured. Below we discuss how a bulletin board may be implemented electronically.

A drawback of the direct implementation of the above method is that the size
of the cryptotext c0,i computed by the sender grows linearly with the number of
mix-servers k. This may be avoided by use of a homomorphic cryptosystem.

Another, more important, problem is that there is no obvious way to verify that
the mix-servers behave honestly. Indeed any of the mix-servers could replace all of
the cryptotexts with other cryptotexts of its choice. It is important that the sender
can trust the result of a mix-net. A mix-net is said to be robust if it outputs the
correct result as long as a certain fraction, e.g the majority of the mix-servers, are
honest.

Chaum’s mix-net can be said to be decryption-based. Later constructions
use almost without exception the El Gamal cryptosystem and are re-encryption
based. Suppose we write c = Ey(m, r) for the encryption of a message m using
a public key y and randomness r. The homomorphic property of the El Gamal
cryptosystem implies that there is a random re-encryption function F such that
Fy(c, s) = Ey(m, r + s). In effect anybody with knowledge of the public key can
add randomness to a cryptotext. This property is used heavily in re-encryption
based mix-nets.

In a re-encryption mix-net there is a joint public key y such that the correspond-
ing private key is shared by the mix-servers. Thus a quorum of the mix-servers can
decrypt a cryptotext, but any individual mix-server gets no information on its own.
The sender Si simply encrypts his messagemi using the public key y, c0,i = Ey(mi),
and writes c0,i on the bulletin board. This gives a list (c0,i, . . . , c0,N ) of cryptotexts.
Then for j = 1, . . . , k the j:th mix-serverMj re-encrypts each element cj−1,i of Lj−1

by computing Fy(cj−1,1, rj,i) with fresh randomness rj,i and then forms a new list
Lj = (cj,1, . . . , cj,N ) consisting of the re-encrypted elements, but in random order.
Finally the mix-servers jointly decrypt all elements in Lk to find the result. Thus
the sequential decryptions are replaced by sequential re-encryptions. This approach
is illustrated in Figure 1.2.

El Gamal based mix-nets avoid the first drawback of Chaums approach, i.e.
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S1

S2

...

SN

Ey(m1)

Ey(m2)

Ey(mN )

c01

c02

...
c0N

M1

c11

c12

...
c1N

M2
. . . Mk

ck1

ck2

...
ckN

m′

1

m′

2

...
m′

N

Figure 1.2: The figure illustrates the re-encryption and permutation in a Mix-Net.
Each sender Si sends an encrypted message c0i. The list of messages (c01, . . . , c0N )
is repeatedly re-encrypted and permuted by the mix-servers M1, . . . ,Mk. Finally
the mix-servers jointly decrypt the list (ck,1, . . . , ck,N ).

that the cryptotext computed by a sender grows with the number of mix-servers.

There are mainly two different approaches for providing robustness for such a
mix-net. The first approach requires each mix-server to prove in zero-knowledge
that it performs its actions correctly. The second approach is more optimistic and
tries to find more efficient tests for the overall correctness of an execution. Only in
the event of detected cheating more careful tests are performed to identify cheaters.

1.4 Preliminaries

In this section we introduce general notation and conventions used throughout the
thesis. We also review a number of definitions and constructions of some primitives.

Notation

Throughout, the parties of any mix-net protocol are: senders denoted by Si, and
mix-servers denoted byMj . The protocols under discussion differ with the chapters.

We use PC to denote the set of polynomial size circuit families. The notation
1n is used to denote n in unary basis, i.e. a sequence of n ones.

We consistently use the expression “chosen randomly” instead of “chosen uni-
formly and independently at random”. Unless otherwise stated, all random variables
are independent of all other random variables.

Let X be a random variable with probability function pX : {0, 1}n → [0, 1], and
let M be a string describing a probabilistic circuit or Turing machine. We use the
notation M(X) for the induced random variable resulting when M is run on input
X .

Let ΣN be the group of permutations on N elements. If N(n) is a function, we
abuse notation and write ΣN for the family {ΣN(n)}.
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Throughout we denote by Gq = 〈g〉 a group of prime order q with generator
g. To make assumptions on the complexity of computational problems in Gq we
must consider families of such groups and consider specific representations of these
groups. When nothing else is explicitly stated, the reader may think of Gq as a large
subgroup of the multiplicative group modulo a prime p, Z∗

p. Let q1, q2, . . . be an in-
creasing sequence of prime numbers, where dlog2 qne = n, and let Gq1 , Gq2 , Gq3 , . . .
be a corresponding sequence of groups. As usual in the cryptographic literature we
abuse notation and write q = {qn}, Zq = {Zqn}, and Gq = {Gqn} to denote these
families. Thus whenever we refer to Gq as a group we are really referring to Gqn

for some particular security parameter n.
This convention greatly simplifies the exposition and is used consistently also for

other families of objects, e.g. if we should write “for each n, Xn is a random variable
distributed over Mn”, we instead write “X = {Xn} is uniformly distributed over
M”.

The Definition of a Cryptosystem and GM-Security

Let Mn = {0, 1}n, and M = {Mn}. The following definition of a cryptosystem is
given by Micali, Rackoff, and Sloan in [47].

Definition 1.1 (Public Key Cryptosystem, cf. [47]). A Public Key Cryptosys-
tem is a probabilistic Turing machine C running in expected polynomial time that
on input 1n outputs the description of two probabilistic circuits En and Dn of
polynomial size in n such that for a polynomial κ(n):

1. The encryption circuit En has n inputs and κ(n) outputs.

2. The decryption circuit Dn has κ(n) inputs and n outputs.

3. ∀m ∈ M, ∀c > 0, ∃n0 such that for n > n0:

Pr[D(E(m)) = m] > 1 − 1

nc
.

The definition of semantic security given in [47] is a slightly changed version of
a definition given by Goldwasser and Micali in [31]. Together these two papers give
a proof of equivalence of the definition of semantic security of a cryptosystem and
Definition 1.2 below.

Definition 1.2 (GM-security, cf. [47]). Let (E,D) = {(En, Dn)} = {C(1n)},
where C is a public key cryptosystem, and let b be uniformly and independently
distributed in {0, 1}. C is GM-secure if ∀m0,m1 ∈ M, ∀T ∈ PC and ∀c > 0, ∃n0

such that ∀n > n0:

∣

∣

∣

∣

Pr[T (E,m0,m1, E(mb)) = mb] −
1

2

∣

∣

∣

∣

<
1

nc
.
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The Decision Diffie-Hellman Assumption

We use the El Gamal cryptosystem described in Section 1.4 extensively. The se-
curity of this cryptosystem rests on the Decision Diffie-Hellman assumption (DDH-
assumption) described below.

Definition 1.3 (Decision Diffie-Hellman assumption). Let α, β, γ ∈ Zq be
randomly chosen. The (non-uniform) Decision Diffie-Hellman assumption for Gq
states that ∀A ∈ PC, ∀c > 0, ∃n0, such that for n > n0

|Pr[A(gα, gβ, gγ) = 1] − Pr[A(gα, gβ, gαβ) = 1]| < 1

nc
.

The DDH-assumption is a well founded conjecture, but unproven. It is believed
to hold whenever Gq is a subgroup of the multiplicative group of a field or a “cryp-
tographically secure” elliptic curve. For concreteness we often assume that Gq is
a subgroup of the multiplicative group modulo a prime p, i.e. Z∗

p, for some prime
p. For a more detailed introduction to this assumption we suggest the survey of
Boneh [7].

The El Gamal Cryptosystem

The El Gamal cryptosystem [19] is employed in a group Gq of the type discussed
above.

The private key x ∈ Zq is chosen randomly, and then the corresponding public
key (g, y) is defined by y = gx. Sometimes g is a system-wide parameter, in which
case we refer to y as the public key.

Encryption of a message m ∈ Gq using the public key y is given by

E(g,y)(m, r) = (gr, yrm) ,

where r ∈ Zq is chosen randomly, and decryption of a cryptotext on the form
(u, v) = (gr, yrm) using the private key x is given by

Dx(u, v) = u−xv = m .

Tsionis and Yung [65] shows that the El Gamal cryptosystem is GM-secure [31, 47]
under the DDH-assumption.

Note that messages are assumed to be in Gq . This means that to meet the
formal requirements of Definition 1.1, an additional assumption on Gq is needed.
There must be a way to encode an arbitrary string uniquely as an element in Gq .
In practice this is not a problem for a multiplicative group modulo a prime, or for
an elliptic curve group.

When we do not use the random input r explicitly, we write E(g,y)(m), and
when g is a system-wide parameter we write Ey(m, r) or Ey(m). Furthermore, if
m = (m1, . . . ,mN ) is a list of elements mi ∈ Gq, we extend our notation in the
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natural way and write Ey(m) to denote (Ey(m1), . . . , Ey(mN )). This convention is
used also for the decryption function and the re-encryption function defined below.

The El Gamal system is said to be homomorphic or have the re-encryptability
property. This means that if (u0, v0) = Ey(m0, r0) and (u1, v1) = Ey(m1, r1),
then (u0u1, v0v1) = Ey(m0m1, r0 + r1), i.e. the component-wise product of two
cryptotexts is a cryptotext of the product of the cleartexts. The homomorphic
property also allows random re-encryption defined as follows

F(g,y)(u, v, r) = (gru, yrv) .

If (u, v) is an encryption ofm, then F (u, v, r) is another randomly chosen encryption
of m. This is a very useful property in the construction of protocols.

The following two functions allow easy description of a distributed El Gamal
cryptosystem.

Px(u, v) = u−x, and DP (ux, (u, v)) = vux .

If (u, v) = E(g,y)(m, r) we have that DP (Px(u, v), (u, v)) = m. More interestingly,
if x = x1 + x2, and y = y1y2, where y1 = gx1 , and y2 = gx2 , we have that
Px1(u, v)Px2(u, v) = u−x1u−x2 = u−x. This gives the following useful identity
DP (Px1(u, v)Px2(u, v), (u, v)) = m.

Thus we may think of the function Px as computing partial decryption factors,
and the function DP to simply perform the decryption given the appropriate de-
cryption factor.

Bulletin Board

TODO: Diskutera antagande och implementationer? We assume the exist-
ence of a bulletin board. Each party may write on a special part of the bulletin
board, but no party can erase anything from the bulletin board. The bulletin board
is modeled as a trusted party.

We use the term “publish” to denote that a party writes something on the
bulletin board.

1.5 Our Results

This thesis is based on the following papers.

1. D. Wikström, An Efficient Mix-Net, Swedish Institute of Computer Science
(SICS) Technical Report T2002:21, ISSN 1100-3154, SICS-T-2002/21-SE, feb-
ruary 2002, http://www.sics.se.

The paper proposes a practical and efficient mix-net based on a combination
of the notion of “repetitition robustness” introduced by Jakobsson [40] and
“double encryption” introduced here.
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2. D. Wikström, The Security of a Mix-Center Based on a Semantically Secure
Cryptosystem, Indocrypt 2002, LNCS 2551, pp. 368-381, 2002.

The paper investigates relations between the semantic security of a cryptosys-
tem, and the security of a mix-center based on such a cryptosystem.

3. D. Wikström, Five Practical Attacks for “Optimistic Mixing for Exit-Polls”,
proceedings of the Tenth Annual Workshop on Selected Areas in Crypto-
graphy (SAC ’03), LNCS 3006, pp. 2004.TODO: fixa detta.

The paper gives five practical attacks for the mix-net construction proposed
by Golle, Zhong, Boneh, Jakobsson and Juels [34]. Two of our attacks break
two other mix-nets [40, 49] and [42] in the literature.

4. D. Wikström, Elements in Z∗
p\Gq are Dangerous, Swedish Institute of Com-

puter Science (SICS) Technical Report: T2003:05, ISSN: 1100-3154, ISRN:
SICS-T-2003/05-SE, february 2003, http://www.sics.se.

The paper investigates how certain corrupt inputs may be used maliciously
when secure subprotocols are applied without verifying the form of inputs
explicitly.

5. D. Wikström, A Note on the Malleability of the El Gamal Cryptosystem,
Indocrypt 2002, LNCS 2551, pp. 176-184, 2002.

The paper investigates in what ways the cleartext of an El Gamal cryptotext
may be transformed under encryption. It gives a class of hard functions.

6. D. Wikström, A. Holst, Algorithms for the Cubic and Quartic Residue Char-
acters, Manuscript, may 2003.

The paper describes how the binary algorithm for computing the Jacobi sym-
bol of Shallit and Sorenson [62], can be generalized to the cubic and quartic
case.

The author of this thesis constructed the generalized algorithms using the
standard norms in Z[ω] and Z[i], but the special norms that we present were
discovered during discussions with Anders Holst.



Chapter 2

An Efficient Mix-Net

In many applications it is expected that mix-servers hardly ever behave maliciously,
since the threat of bad publicity in the event of detection is too great. Thus it is
worthwhile to optimize the execution of a mix-net in the case that all mix-servers
behave honestly. We target such applications where the number of senders N is
very large, e.g. N = 105, and the number of mix-servers k is relatively large as
well, e.g. k = 300, but k2 < N .

We assume that there exists a slow backup mix-net. Then we propose a mix-
net that is very efficient if all mix-servers behave honestly. If on the other hand
cheating is detected, the mix-servers resort to the slower backup mix-net.

The efficiency of our construction is based on the combination of the notion
of repetitive robustness, introduced by Jakobsson [40], and the notion of double
encryption introduced here.

The combination of double encryption and repetitive robustness enables us to
avoid the large number of zero-knowledge proofs of knowledge required in most
mix-net constructions. Given that the mix-servers precompute exponentiations we
estimate the running time of our protocol to (10σ + 7)N exponentiations. The
factor σ is a small integer, e.g. σ = 3 for the values of N and k given above.

The running time of our construction should be contrasted with previous mix-
nets which require at least Ω(kN) exponentiations, where k is the number of mix-
servers. Thus whenN is very large and k is fairly large our construction is practical,
whereas other constructions are impractical.

Currently we are unable to prove the security of our construction. We only
argue informally and explain the underlying ideas on which the security is believed
to rest. It seems that new tools must be developed to prove the security of the
protocol. Since we do not have a proof of security even when the subprotocols are
modeled as trusted parties we do not consider the problem of realizing subprotocols
such that they compose well with our protocol. We only give some references for
how these subprotocols have been realized in the literature.

The exposition in this chapter differs from a previous version [70] of this work

11
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in that we assume the existence of trusted parties as a replacement of subprotocols.
This simplifies the exposition of the protocol and allows us to focus our main
contribution.

We note that Golle et al. [34] independently introduced the notion of “double
enveloping”.

2.1 Additional Notation

We introduce some additional notation used only in this chapter.
Let L = (u1, . . . , us) ∈ Gsq be a list of elements. If s = tN we may view L as

a list L = {(ui,1, . . . , ui,t)}Ni=1, of N t-tuples such that (ui,1, . . . , ui,t) ∈ Gtq , where
we set ui,j = u(i−1)t+j . Each notation we describe below has a parameter t, either
explicitly or implicitly, that indicates how we view the list L. This allows us to
treat the list L as a list of differently sized tuples depending on the context.

Let π ∈ ΣN be a permutation. We abuse notation, and write πL for the list
{(uπ−1(i),1, . . . , uπ−1(i),t)}Ni=1 where the tuples have been permuted. The size t of
the permuted tuples is implicitly determined by t = s/N , since π ∈ ΣN .

We need a notation for a list of tuples sorted lexicographically. We let Sortt(L)
be the function that returns a pair (L′, π), where L′ is the list consisting of the
t-tuples of L sorted lexicographically, and π is the permutation such that L′ = πL.

We define Expandσ(L) to be the list where each element of L has been duplicated
σ times. We let Compactt,σ(L) be a function that returns (L′, A) defined as follows.
L′ is a list of unique t-tuples of L for which there exists exactly σ copies in L. A is
the set of indices of t-tuples in L of which there does not exist exactly σ copies.

Let R,R′ ∈ Zsq , where we let R = {ri}si=1 and R′ = {r′i}si=1. We denote by
R +R′ the component-wise sum R +R′ = {ri + r′i}si=1.

Commitment Scheme

We assume the existence of an ideal commitment scheme. This is modeled as a
trusted party, to which the commiter sends its value. When the commiter decides
to open its commitment it informs the trusted party, which reveals the commited
value to all other parties.TODO: Kolla stavning commitments!

Commitment schemes can be implemented under a variety of standard assump-
tions. TODO: referenser?

In the random oracle model the simplest commitment scheme is the follow-
ingTODO: Referens för detta commitment-scheme?. To commit to a string
s, the commiter chooses r ∈ Zq randomly and computes c = h(s, r). Then c is
handed to the receiver (or in our protocol written on the bulletin board). To open
the commitment the commiter hands s and r to the receiver (or bulletin board).
This allows the receiver to verify the relation c = h(s, r).

This scheme is very practical when the random oracle h is implemented by one
of the standard cryptographic hash functions, e.g. SHA [22, 23], and intuitively the
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potential problem of leakage of the commited bits is particularly small when the
string s is very long as it is in our application.

Key Generation

The protocol requires two distributed El Gamal systems, whose public keys are
related in a special way. We refer to these systems as the outer and inner system
respectively. We begin by describing the keys of the outer system.

For each j = 1, . . . , k, let xj,out ∈R Zq be the randomly chosen secret key of Mj

of the outer El Gamal system and let (g, yj,out) be the corresponding public key.
Then define

xout =

k
∑

j=1

xj,out , and yout =

k
∏

j=1

yj,out .

By construction xout and (g, yout) make a key pair of a joint El Gamal system.
Anybody may compute yout, but xout remains secret.

The inner El Gamal system is not based on the generator g, but uses yout as a
generator instead. The element yout is a generator since the order q of Gq is prime.
Thus for each j = 1, . . . , k, let xj,in ∈R Zq be the randomly chosen secret key of Mj

of the inner El Gamal system and define yj,in = y
xj,in

out . Then (yout, yj,in) is a public
key corresponding to the secret key xj,in. Then define

xin =

k
∑

j=1

xj,in , and yin =

k
∏

j=1

yj,in .

Similarly as for xout and (g, yout), we have that xin and (yout, yin) make a key pair
of a joint El Gamal system.

We assume a trusted party that generates and distributes the keys to the mix-
servers. If more than a majority of the mix-servers asks the trusted party to reveal
a certain part xj,out (or xj,out) of the key it does so. Thus the trusted party models
a distributed key generation in which any key can be reconstructed by a majority.

To replace the trusted party with a cryptographic protocol is non-trivial. A well
analyzed construction for this purpose is given by Gennaro et al [28].

Zero-Knowledge Proof of Knowledge

We assume the existence of two types of ideal zero-knowledge proofs of knowledge.
In the first type, a tuple [g, yin, yout, α] where we have α = Eyout(Eyin(m)) =

[(µ1, µ2), (ν1, ν2)] for some m ∈ Gq is given. The encryptor is required to prove
knowledge of r, s, t ∈ Zq such that µ1 = gr, µ2 = ysout, ν1 = gt, i.e. the encryptor
must prove knowledge of m.

In the second type a tuple (y, {(ui, vi), λi}li=1), where αi, λi ∈ Gq is given and
a party is required to prove knowledge of x such that y = gx and {λi}li=1 =
Px({(ui, vi)}li=1), i.e. that λi = u−xi .
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In both cases we model the proof of knowledge as a trusted party to which the
prover sends the tuple and his witness. A verifier may query the trusted party on
a certain prover and tuple. If the trusted party previously received a valid witness
from the prover in question it returns true, and otherwise false.

The above proofs of knowledge can be implemented using standard Schnorr-
signature similar methods as outlined below. To conclude that these protocols are
zero-knowledge proofs of knowledge in the random oracle model the results in e.g.
Schnorr [60] or Tsionis and Yung [65] need only be modified slightly.

Proof of Knowledge of Cleartext

1. The prover chooses γ1, γ2, γ3 ∈ Zq randomly and computes β1 = gγ1 , β2 =
yγ2out, and β3 = gγ3 . Then it computes c = h(g, yin, yout, α, β1, β2, β3) and
d1 = cr + γ1, d2 = cs+ γ2, and d3 = ct+ γ3. The proof consists of the tuple
(c, d1, d2, d3).

2. The verifier accepts the proof if c = h(g, yin, yout, α, g
d1µ−c

1 , yd2in µ
−c
2 , gd3ν−c1 ).

The verifier computes 6 exponentiations to verify a proof.

Proof of Correct Decryption

1. The prover chooses γ ∈ Zq randomly and computes β = gγ and βi = uγi
for i = 1, . . . , l. Then it computes c = h(g, y, {(ui, vi)}li=1, β, {βi}li=1) and
d = cx+ γ. The proof consists of the tuple (c, d).

2. The verifier accepts the proof if c = h(g, y, {(ui, vi)}li=1, g
dy−c, {udi λci}li=1).

The prover computes l + 1 exponentiations to construct a proof, and it only
needs log2 q random bits. The verifier computes 2(l + 1) exponentiations to verify
a proof.

Backup Mix-Net

We assume the existence of a backup mix-net that given a list L of El Gamal
cryptotexts outputs the cleartexts in random order. We model this as a trusted
party that cooperates with the key generator. The trusted party waits until it
receives identical lists L from a majority of the mix-servers. Then it asks the key
generator for the joint inner secret key xin and outputs Sort1(Dxin(L)).

It may seem odd that we assume the existence of a mix-net, but recall that our
goal is to construct an efficient mix-net in the case where there are many senders
and mix-servers and all mix-servers behave honestly.

There are numerous proposals for efficient mix-nets. One of the best analyzed
is the protocol of Groth [33]. Groth generalizes the construction of Neff [50] and
gives a more rigorous analysis.
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2.2 The Protocol

The protocol described in detail below may seem complicated, but it is based on
two simple ideas: a variant of repetition robustness introduced by Jakobsson [40],
and the use of “double encryption” introduced here.

Overview of the Protocol

Before we give any details we explain the key steps of the protocol.

At the start of the protocol each sender encrypts its message twice. First it en-
crypts its cleartext using the inner layer public key (yout, yin) and then it encrypts
the resulting cryptotext using the outer layer public key (g, yout). Finally it con-
structs a proof of knowledge of the randomness used in both layers of encryption
as described in Section 2.1.

Lunique

Lexpanded Lk L′
k L′′

0

Lcompact Lcleartext

Figure 2.1: The figure illustrates the key phases of the protocol.

At the start of the protocol each mix-server constructs the list Lunique of cor-
rectly formed cryptotexts written on the bulletin board by senders. A cryptotext
is considered correct if it is accompanied by a proof of knowledge of the random-
ness used during encryption. Any duplicate cryptotexts are also removed, and
considered incorrect.

Then an expanded list Lexpanded is formed consisting of σ identical copies of each
cryptotext from the original list Lunique. Recall that N is the number of senders.
The parameter σ is chosen such that 1/Nσ−1 is negligible.

The mix-servers jointly re-encrypt and permute the list Lexpanded to form Lk,
but only the outer layer is re-encrypted (recall that each sender double encrypted
its message). This is done sequentially; each mix-server re-encrypts and permutes
the output of the previous mix-server as illustrated in Figure 1.2.

This is followed by another round of re-encryption and permutation, where only
the outer layer is re-encrypted. The result is the list L′

k.
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Next the mix-servers jointly decrypt each cryptotext in the list L′
k to form the

list of inner cryptotexts L′′
0 . We stress that only the outer layer of each cryptotext

is decrypted. Thus L′′
0 consists of normal El Gamal cryptotexts.

The mix-servers then verify explicitly that all mix-servers followed their program
during the first re-encryption and permutation phase. They also verify that there
are exactly σ copies of each inner cryptotext, and form the list Lcompact where the
redundant σ − 1 copies of each cryptotext are removed.

If the verifications proceeds without complaints, each mix-server reveals its
private key to the inner cryptosystem. The validity of the revealed private keys
are verified against the corresponding public keys. This allows each mix-server to
form the list Lcleartext of cleartexts. If the verifications failed we give up and run a
slower back-up mix-net protocol.

The idea is that an adversary must alter all copies of each occurring inner
cryptotext in the same way. The assumption is that the adversary must guess the
position of all copies of any cryptotext that is to be altered, and this can only be
done with very low probability. To avoid that the adversary replaces all cryptotexts,
dummy cryptotexts are introduced.

We are now ready to describe the details of the protocol.

Sending a Message

To send a message mi, the sender Si first computes

(ui, vi) = E(yout,yin)(mi), and αi = (E(g,yout)(ui), E(g,yout)(vi)) .

Thus αi is on the form [(gr, yout
r+s), (gt, yout

t(yin
smi))]. Then the sender gives a

zero-knowledge proof of knowledge of r, r + s, and t as described in Section 2.1.
The relation between the keys to the outer and inner El Gamal systems simplifies
the construction of such a proof. Finally the sender writes αi to the bulletin board.

The Execution of the Mix-Servers

To improve the following exposition we have interlaced informal descriptions of
each step in italics. The informal descriptions do not give a complete description
by themselves and are only meant to simplify the exposition.

We assume that each mix-server explicitly verifies that its input in each step
is on the correct format. This includes verifying that all lists are of the expected
length and contain elements from the expected set of strings, e.g. Gq . If the output
of a mix-server is not on the correct format, it is labeled as a cheater and Step 15
is executed. The importance of this is illustrated in Section 4.2 of Chapter 4 and
in Chapter 5, where we also discuss ways of avoiding explicit verifications.
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Protocol 2.1 (An Efficient Mix-Net).

Preliminaries

1. Dummy Elements. For j = 1, . . . , k Mj chooses mj,D ∈ Gq randomly, and
simulates an honest sender on input mj,D. Let {αj}kj=1 be the list of these
tuples.

If the proof of knowledge corresponding to αl is invalid, then Ml is cheating.
Go to Step 15.

Each mix-server introduces a dummy message in the input to the mix-net.

2. Sending Messages. Each sender Si sends a message mi as outlined in
Section 2.2 above.

3. Verification of Proofs of Knowledge. Let {αi} be the list of tuples
written on the bulletin board by the senders.

Each Mj verifies for each αl that the corresponding proof of knowledge is
valid.

To simplify we denote by Lunique = {αi}N0

i=1 the list of all αi with a valid
corresponding proof, both the dummy tuples and tuples sent by senders,
where all duplicates are removed. Thus if all senders are honest we have
N0 = N + k.

Each mix-server filters the cryptotexts and removes all cryptotexts that do not
have a valid corresponding proof of knowledge. It also ensures that there are
no duplicates.

4. Expanding the List. Let Lexpanded = Expandσ(Lunique). To simplify nota-
tion we define N1 = σN0.

The mix-servers compute an expanded list Lexpanded where each cryptotext in
Lunique is duplicated σ times.

Re-encryption

5. First Re-Encryption. For j = 1, . . . , k, Mj chooses Rj = {rj,i}N1

i=1 ran-
domly, where rj,i ∈ Z2

q , computes

(Lj , πj) = Sort4(F(g,yout)(Lj−1, Rj)) ,

and publishes Lj .

Each mix-server re-encrypts the list it got from the previous mix and sorts the
resulting 4-tuples lexicographically. It stores the permutation corresponding to
the sorting.
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6. Second Re-Encryption. Let L′
0 = Lk. For j = 1, . . . , k, Mj chooses

R′
j = {r′j,i}N1

i=1 randomly, where r′j,i ∈ Z2
q , computes

(L′
j , π

′
j) = Sort4(F(g,yout)(L

′
j−1, R

′
j)) ,

and publishes L′
j .

Each mix-server re-encrypts the list it got from the previous mix and sorts the
resulting 4-tuples lexicographically. It stores the permutation corresponding to
the sorting.

Outer Decryption

7. Partial Decryption Factors. Each Mj computes

Λj = Pxj,out(L
′
k) ,

and commits to Λj as explained in Section 2.1. When all mix-server have
commited, each Mj opens its commitment.

Each mix-server computes the decryption factors corresponding to its share
of the joint key, and commits to its decryption factors. When all mix-servers
has commited, each mix-server opens its commitment.

8. Joint El Gamal Decryption. Each Mj computes the component-wise

product Λ =
∏k
j=1 Λj and the list L′′

0 = DP (Λ, L′
k).

Each mix-server computes the joint decryption factors and performs the outer
decryption.

Verifications of the Outer Decryption and Re-encryptions

9. Verification of First Re-Encryption. Each Mj publishes πj and Rj .
When all mix-servers have published these values, each Mj computes the
aggregate re-encryption factors

Ra = R1 + π−1
1 (R2 + π−1

2 (R3 + π−1
3 (R4 + . . .))) and

(Lak, π
a) = Sort4(F(g,yout)(L0, R

a)) ,

and verifies that Lak = Lk. If equivalence does not hold, somebody cheated
during the first re-encryption. Then go to Step 15.

Each mix-server reveals all secret re-encryption exponents and the permuta-
tions it used in the first re-encryption. This allows fast explicit verification of
the first re-encryption step.

10. Verification of Dummies in Second Re-encryption. Define the indices
γ0,i = (πa)−1(i) for i = 1, . . . , σk (i.e. the indices in L′

0 of all copies of dummy
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tuples). For j = 1, . . . , k, Mj computes the list {γj,i}σki=1 = {π′−1
j (γj−1,i)}σki=1,

and publishes {γj,i, r′j,γj−1,i
}σki=1. We write L′

j = {αj,i}N1

i=1.

Then each Mj verifies that for l = 1, . . . , k and i = 1, . . . , σk

F(g,yout)(α
′
l−1,γl−1,i

, r′l,γl−1,i
) = α′

l,γl,i
.

If equality does not hold, then Ml cheated. Go to Step 15.

The mix-servers trace the dummies through the second re-encryption and ex-
plicitly verify each re-encryption step.

11. Verification of Dummies in Outer Decryption. Let Λj = {λj,i}N1

i=1.
Each Mj gives a zero-knowledge proof that

yj = gxj , and {λk,γk,i
}σki=1 = Pxj ({α′

k,γk,i
}σki=1) ,

as outlined in Section 2.1. Then it verifies the proofs of all other mix-servers
Ml. If the proof of Ml is not valid it is cheating. Go to Step 15.

The mix-servers prove that they decrypted all dummy tuples correctly.

12. Verification of Tuples. Each Mj first removes the dummies at indices
γk,1, . . . , γk,σk from L′′

0 . Let L′′′
0 be the resulting list. Then L′′′

0 should contain
Nσ El Gamal pairs.

Then each mix-server computes (Lcompact, A) = Compact2,σ(L
′′′
0 ). If A 6= ∅,

somebody is cheating. Go to step 15.

Each mix-server verifies that there are exactly σ copies of each inner crypto-
text and removes all dummies and duplicates.

Inner Decryption

13. Inner Decryption. Each Mj publishes xj,in, and verifies that yl,in = gxl,in

for l = 1, . . . , k. If it does not hold for some l, then Ml cheated. The honest
mix-servers then ask the key generator for xl,in.

Finally each Mj computes xin =
∑k
l=1 xl,in, and Lcleartexts = Dxin(Lcompact).

If no cheating occurred, all mixes reveal their private keys of the inner crypto-
system and decrypt the inner cryptotexts.

14. End Of Protocol. When we reach this step, the execution ends and the
set of mixed cleartexts is contained in Lcleartexts.

Run Back-Up Mix-Net

15. Cheating Occurred. If we reach this step, at least one mix-server is ma-
licious. Each Mj publishes xj,out and {rj,i, r′j,i}Ni=1.
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Each Mj verifies that yl,out = gxl,out for all l 6= j. If this is not the case, the
honest mix-servers ask the key generator for the correct xj,out.

If the cheater is not already identified, this allows anybody to identify the
cheater. It also allows explicit reconstruction of xout.

Finally the dummies are removed from Lunique to form the list L′
unique. The

backup mix-net is then invoked on Dxout(L
′
unique) and the result is denoted

Lcleartexts.

Each mix-server reveals all its secret inputs. Then the outer layer is stripped
off from the set of valid inputs and the result is handed to the backup mix-net.

2.3 Security

Currently we are unable to prove the security of our protocol. We are only able to
argue informally that it is secure. To prove the security of our protocol it seems
that new tools must be developed.

Robustness

First we consider in which steps the adversary can possibly alter the output of
the mix-net without detection. The adversary can not alter the output in the first
re-encryption step, since this step is verified explicitly before the inner cryptotexts
are decrypted. Neither can it alter the output in any of the verification steps, since
these to do not influence the output. Finally, the inner decryption step is explicitly
verified by each mix-server individually, so the adversary can not alter the input in
this step.

We conclude that if the adversary is able to alter the output, it must do this
during the second re-encryption step or during the outer decryption step. Next we
argue informally why it is reasonable to expect that the adversary can not alter the
output in these steps without detection, and thus that the protocol is robust.

Note that we may now assume that the input to the second re-encryption step
is formed correctly, i.e. it is a randomly re-encrypted and permuted copy of the list
of cryptotexts with correct proofs of knowledge.

Consider an adversary that, contrary to our belief, is able to alter the output
during the execution of the protocol. To avoid detection during the verification of
tuples it must ensure that the output of the outer decryption step contains σ copies
of each inner cryptotexts. This is easy to accomplish by replacing all cryptotexts.
However, to avoid detection during the verification of dummies in the second re-
encryption step and the verification of dummies in the outer decryption step, it
must be able to reveal the correspondence between the dummy inner cryptotexts
in its input and the dummy inner cryptotexts in its output. This implies that the
adversary must not only leave the dummy inner cryptotexts unaltered, but must
re-encrypt and permute them honestly.
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Thus the adversary must somehow transform its input in such a way that no
dummy inner cryptotext is altered and such that if a non-dummy inner cryptotext
is altered then all copies of it are altered in the same way.

It seems that to do this the adversary must point out the position in its input
of the dummies and/or all copies of the cryptotexts it will alter. The results in
Chapter 3 implies that the probability of guessing the position of all copies of a
specific inner cryptotext correctly is approximately 1/Nσ. Since we have chosen σ
such that Nσ−1 is negligible, the probability of guessing the position of all copies
of any cryptotext is negligible.

On the other hand, it seems that a proof of this conjecture requires a formal
assumption on the malleability properties of the El Gamal cryptosystem, since there
may exist some other way to transform the cryptotexts. Section 3.4 describes an
example of a set of special cleartexts for which there is a transformation that may
be computed without finding the positions of individual cryptotexts. However, this
is a very special case and no attack along these lines is applicable to our protocol.

In Chapter 6 we take a first step in the program of characterizing the malleability
properties of the El Gamal cryptosystem.

Privacy

The privacy of the mix-net is ensured if the adversary can not find any corres-
pondence between any individual cryptotext in the input to the mix-net and any
individual cleartext in the output of the mix-net.

Since the randomness used in the first re-encryption step is revealed and the
inner cryptotexts are never re-encrypted, the privacy of the mix-net depends solely
on the second re-encryption step. Suppose that each mix-serverMj forms its output
Lj as some re-encryption and permutation of the output Lj−1 of the previous mix-
server Mj−1. Then the results in Chapter 3 and the fact that each sender proves
knowledge of its cleartext seem to imply the privacy of the mix-net.

The problem if we try to develop a security proof is to show that the adversary
can not form its input in some other way. In Section 4.2 we present an attack for a
mix-net in the literature, where the adversary forms its output in a malicious way,
but such that the cleartexts are not altered. Our protocol is not vulnerable to this
particular type of attack, since the adversary is forced to explicitly reveal how it
re-encrypted the dummies. On the other hand it is conceivable that there exists a
transformation that avoids this.

2.4 Complexity

Our protocol performs particularly well compared with other mix-nets on a certain
range of parameters. To emphasize this and to simplify our estimates we assume
that we run the protocol with such parameters. We assume that the number of
mix-servers k, the security parameter n, and the number senders N satisfy k < n
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and k <
√
N0. We also ignore the cost of additions and sorting, since they are

relatively inexpensive.
Each mix-server computes 2 · 4N1 + 2kN1 multiplications. We estimate the

cost of one exponentiation to at least the cost of n multiplications and count these
multiplications as 2N1 exponentiations.

The major part of the computations are performed during the re-encryption,
and the decryption phases, but most of this work need not be done in real time.
In Table 2.1 we summarize the complexity estimates of the protocol. These figures
follows by examination of the protocol.

Phase Precomputed Real time Random bits

Multiplications 2N1

Verification of POK:s 6N0

Re-encryptions 8N1 4N1 log2 q
Verify 1:st re-encryption 4N1

Decryptions 2N1 +N + k
Verify Dummies 4σk + 2σk2

Total: O(8σN) O((10σ + 7)N) 4N log2 q

Table 2.1: Complexity estimates of Protocol 2.1 in terms of exponentiations.

The total number of exponentiations is O((18σ+7)N) of which O(8σN) can be
computed in advance, andO((10σ+7)N) must be computed in real time. In practice
it is possible to compute a large part of the computations during the verification
of the proofs of knowledge of the senders as they appear on the bulletin board.
This reduces the number of exponentiations computed in real time by O(6N0).
The exponentiations performed in the verification of the first re-encryption are all
relative to a fixed base. This allows further speedups as explained in [45].

An important observation is that essentially all of the computations may be done
concurrently by the mix-servers. Thus the total execution time of the protocol given
that precomputed values are used, is O((10σ + 7)N) exponentiations.

This estimate does not take into account the communication costs, which may
be significant when the number of mix-servers is large and there is no ideal bulletin
board like a physical broadcast channel.

For all previous constructions the number of exponentiations computed by each
mix-server grows at least linearly with k. This is a consequence of the zero-
knowledge proof based paradigm; each mix-server must verify the proofs of the
other mix-servers.

Practical Parameters and Consequences

In practice σ should be chosen such that Nσ−1 is very small. For N = 105, σ = 3
should suffice. Suppose we let p = 2q + 1 and q be primes with log2 p ≈ 1000 and
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let Gq be the subgroup of Z∗
p of order q. Suppose further that the mix-servers are

communicating over a high speed wireless network, i.e. there is a physical broadcast
channel. Then our protocol accommodates a relatively large number of mix-servers,
e.g. k = 300, something that is highly impractical for other constructions.

2.5 Future Work

We have presented an efficient mix-net. We have introduced the notion of double
encryption and shown how it combined with the notion of repetitive robustness
can be used to make the number of exponentiations essentially independent of the
number of mix-servers.

Currently we are not able to prove the security of our construction. We believe
that the construction is secure and hope to prove that in the future. Such a proof
seems to require new results and/or assumptions on the malleability properties of
El Gamal, and perhaps new proof techniques.





Chapter 3

On the Security of Mix-Servers

We introduce a definition of a re-encryption mix-server, and a definition of security
for such a mix-server. Then we prove that any semantically secure public key
cryptosystem, which allows re-encryption, can be used to construct a secure mix-
server.

3.1 Previous Results on Mix-Servers

Jakobsson [40] presents an efficient mix-net protocol. He claims that the protocol
is secure and gives a proof sketch of this claim. The work in this section started
with an attempt at writing down a formal proof of Jakobssons Lemma 1a [40] given
in a slightly simplified form below.

Lemma 1a. (Jakobsson) If the adversary can, with a non-negligible advantage ε
over a guess uniformly at random, match any input of a mix-server to its corres-
ponding output, then this adversarial strategy can be used as a black box to break
the Decisional Diffie-Hellman assumption with a probability poly(ε).

One problem is that it assumes all message variables identically and independ-
ently distributed. This model does not mirror the real world, where it is common
that the adversary has some prior knowledge about the distribution of messages
sent by a given party, and not all sender’s should be approximated by the same
distribution. Similarly it is probable that some message variables are dependent.
Consider for example elections, where the votes of spouses mostly are dependent.
Some problems with arbitrarily distributed messages follow.

Firstly, it is no longer clear how to state the lemma formally, since it is not clear
what it should mean to “guess uniformly at random”. Since the adversary knows
the order of the input elements of the first mix-server he may be able to guess in
different ways giving vastly different success probabilities. This is described in full
detail when we argue about Definition 3.5.

25
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Secondly Jakobsson assumes that the outcomes of the different copies of the
message variables are all different. This allows him to say that the probability of
randomly guessing a matching pair is 1

N+2 . This is no longer true if the number
of possible messages is small. Additionally, taking this into consideration, it is not
possible to argue like Jakobsson does in the argument about the N + 2:th hybrid.
He claims that if we pick new elements from the “message distribution” the N+2:th
hybrid will have no advantage. Consider a uniformly distributed variable over a set
of only two messages. When the lists are very large it is likely that replacing all
sent messages by new outcomes of the message variable, does not change the lists
much, and one can not conclude that the hybrid has no advantage.

Thirdly, the proof sketch of the security of the complete mix-net of Jakobsson
breaks down if we do not assume uniformly and independently distributed message
variables, since he applies his lemma also to the first mix-server in the first re-
encryption phase. This follows since, in the proof he permutes the input to the
adversary A randomly, and this is not the case in the protocol, where the first
mix-server in the first re-encryption phase may have partial knowledge about the
distribution of the message variables.

Another problem is that Jakobsson uses Lemma 1a in his proof sketch of his
Theorem 1. We discuss this issue in Section 3.4.

Contribution

We provide a definition of security for a single re-encryption mix-server and show in
Theorem 3.6 that any semantically secure re-encryption public key system can be
used to construct a secure mix-server. We have restricted ourselves to mix-servers
based on the random re-encryption paradigm.

We do not claim to give a definition of the privacy of a mix-net, since a definition
of security of a complete mix-net must involve several other aspects. We highlight
this in Section 3.4, where we explain two phenomena related to our theorem that
occur naturally in the construction of a mix-net. One of these phenomena illustrates
a misuse of Theorem 3.6 in the literature that to our knowledge was undetected
until now.

3.2 A Variant Definition of GM-Security

The following is a variant definition of GM-security that can be proven equivalent
to Definition 1.2 given in Section 1.4. This may be considered folklore, but we
provide a proof for completeness.

Definition 3.1 (GM-security∗). Let (E,D) = {(En, Dn)} = {C(1n)}, where C
is a public key cryptosystem, and let b be uniformly and independently distributed
in {0, 1}. C is GM-secure∗ if ∀m0,m1 ∈ M, ∀T ∈ PC and ∀c > 0, ∃n0 such that
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∀n > n0:
∣

∣

∣

∣

Pr[T (E,m0,m1, E(mb), E(m1−b)) = b] − 1

2

∣

∣

∣

∣

<
1

nc
.

The following lemma is “folklore” knowledge, but for completeness we give a
proof.

Lemma 3.2. Definition 3.1 is equivalent to Definition 1.2.

Proof. Suppose that a PKC C is not secure according to Definition 1.2, and let
T = {Tn} be the family of circuits that shows this. Then ∃m0,m1 ∈ M, and an
infinite index set N , such that for each n ∈ N we have

∣

∣

∣

∣

Pr[T (E,m0,m1, E(mb)) = mb] −
1

2

∣

∣

∣

∣

≥ 1

nc

Then the family of circuits T ′ = {T ′
n}, where T ′

n on input (E,m0,m1, c0, c1) gives
as output the output of Tn(E,m0,m1, c0) clearly contradicts Definition 3.1.

For the other direction, suppose that a PKC C is not secure according to Defin-
ition 3.1. Then ∃m0,m1 ∈ M, ∃T ′ ∈ PC, and an infinite index set N , such that
for each n ∈ N , if we define

pbd = Pr[T ′(E,m0,m1, E(mb), E(md)) = 1]

then

1

nc
≤ |p01 − p10| = |p01 − p11 + p11 − p10| ≤ 2|pt,1−t − p11|

for some t = {tn}, where tn ∈ {0, 1}. Set γt = α and γ1−t = E(m1). Then T
runs b = T ′(E,m0,m1, γ0, γ1) and returns mb. It follows that T breaks the security
according to Definition 1.2.

3.3 The Security of a Mix-Server

To be able to formally prove anything about a mix-server we first define the concept
of a mix-server and the right notion of security.

Definitions

The following definition captures that cryptotexts can be re-encrypted without
knowledge of the private key. This property is closely related to the homomorphic
property used in many papers (e.g. [36]). The by now classical El Gamal cryptosys-
tem [19], and the recently discovered Paillier cryptosystem [53] are examples of
systems that fit this definition.
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Definition 3.3 (Re-Encryption PKC). A Re-Encryption Public Key Cryptosys-
tem (RPKC) is a public key cryptosystem C that on input 1n in addition to de-
scriptions of En and Dn also outputs the description of a circuit Fn of polynomial
size in n such that:

1. Fn has κ(n) inputs and κ(n) outputs.

2. For all m ∈ M and all α, α′ ∈ E(m,R) we have:
Pr[α′ = F (α)] = Pr[α′ = E(m)] .

The function F above is called the “re-encryption function”. Without loss of
generality we can assume that En, Dn and Fn use an equal number of random bits,
i.e. we assume that all of the circuits use the same polynomial number of bits in n.

Formally Definition 1.2 and 3.1 are not applicable to an RPKC. The reason is
that A and T in Definition 1.2 and 3.1 respectively are given only E and not F as
input. To see that this is an important detail, consider an RPKC C such that if we
ignore F in the output it is GM-secure. Clearly C can encode the description of
D into the description of F , which makes C easy to break using the knowledge of
F . It is however trivial to extend the definitions to be applicable also to an RPKC
such that the equivalence of the definitions still holds. Thus we use the definitions
as if they were defined properly for the case at hand, i.e. A and T in Definition 1.2
and 3.1 respectively take as additional input F from the output (E,D, F ) of C.

Definition 3.4 (Re-Encryption Mix-Server). A Re-Encryption Mix-Server
(RMS) is a probabilistic Turing machine CH running in expected polynomial time
that on input (1n, N), N is a polynomial N(n) in n, outputs descriptions of prob-
abilistic circuits En, Dn, Fn, and Hn of polynomial size in n such that:

1. The probabilistic Turing machine KN (CH) that, given input 1n, simulates
CH on input (1n, N) and outputs descriptions of En, Dn, Fn is an RPKC.

2. Hn has κ(n) ×N inputs and κ(n) ×N outputs.

3. H(α) = ΠNF (α), where ΠN is uniformly distributed in ΣN .

We use the notation πNF (α, r) = H(α) when we want to make explicit H ’s
probabilistic input, i.e. πN and r.

Note that the above is a definition of a re-encryption mix-server. In Chaum’s
[8] original construction each mix-server performed a partial decryption, and not a
re-encryption. In Chaum’s construction the number of input bits is not equal to
the number of output bits. Also one could imagine that a mix-server received input
encrypted with one cryptosystem, and produced output using another cryptosys-
tem.

A Definition of a Secure RMS

We now introduce a notion of security for an RMS. Define a predicate ρ with regard
to a given RMS taking as input a pair of lists and a pair of indices. Let l = E(m, r)
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and l′ = πNF (l, r′), where m = (m1, . . . ,mN ) ∈ MN , r, r′ ∈ RN , and πN ∈ ΣN .
Let (i, j) be a pair of indices 1 ≤ i, j ≤ N . We let ρ(l, l′, i, j) = T if and only if it
holds that mi = mπ−1

N (j). The predicate is true if the encryption at index i in l and

the encryption at index j in l′ both encrypt the same message. It is clearly possible
that there exist several pairs (i, j1), (i, j2), ..., (i, jk) for which ρ(l, l′, i, jt) = T .

The following definition says that given a secure RMS it is impossible to find
a pair of indices (i, j) such that ρ(l, l′, i, j) holds with respect to the input l and
output l′ of the RMS notably better than guessing cleverly.

Definition 3.5 (Security of an RMS). Let CH be an RMS, define the family
(E,D, F,H) = {(En, Dn, Fn, Hn)} = {CH(1n)}, and let A ∈ PC.

Let M be arbitrarily but independently distributed over MN , and let J = {Jn},
where Jn is uniformly and independently distributed over {1, . . . , N(n)}. Define the
random variables:

L = E(M), L′ = H(L), and (IA, JA) = A(E,F, L, L′) .

CH is secure if for all M and A as above ∀c > 0, ∃n0 such that ∀n > n0:

|Pr[ρ(L,L′, IA, JA) = T ]− Pr[ρ(L,L′, IA, J) = T ]| < 1

nc
.

We argue that this is the right definition of a secure RMS as follows. Suppose
that the underlying cryptosystem KN (CH) is in some magical way perfect. That
is, a cryptotext gives no information in an information theoretical sense about the
encrypted message. Then an adversary clearly can not pick the second component
of its output better then picking a uniformly chosen index, since the permutation
ΠN , unknown to the adversary, is uniformly and independently distributed.

On the other hand the first component can still be chosen cleverly to bias the
success probability. Consider for example the case where all Mi are constant, and
all but one equals mi. Then the success probability depends heavily on how the
first component is chosen.

The definition states that given an adversary A that has a certain success prob-
ability, we get almost the identical success probability by using the first component
of A’s output and picking the second component randomly. Since we pick the
second index randomly this amounts to clever guessing.

Results on the Security for an RMS

Let KN (CH) denote the probabilistic Turing machine that given input 1n simulates
CH on input (1n, N) to get (En, Dn, Fn, Hn) and outputs (En, Dn, Fn). We are able
to prove the following theorem of which Jakobssons Lemma 1a [40] could be said
to be a special case.

Theorem 3.6. CH is a secure RMS if and only if for all polynomials N(n) in n,
KN(CH ) is a semantically secure RPKC.
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The theorem implies that if there exists a semantically secure RPKC, then the
construction given in Definition 3.4 gives a secure mix-server according to Definition
3.5. We implicitly use the generalization of Definition 1.2 and 3.1 to re-encryption
public key cryptosystems, as discussed in Section 3.3.

Note that the presence of the quantification over the variable N in Theorem
3.6 is necessary. Without it there could exist some N for which KN (CH) outputs
trivial (E,D, F ). We also need that N is polynomial in n since we otherwise would
be unable to perform a hybrid argument in the proof.

Before we prove Theorem 3.6 we prove some lemmas. Denote by π(0) the iden-
tity permutation and π(1) = π for any permutation π. Consider the following
generalization of the GM-security∗, i.e. Definition 3.1. Throughout this section we
assume that (E,D) = {(En, Dn)} = {C(1n)}, when we write E or D.

Definition 3.7 (Generalized GM-security∗ (gGM)). Let C be a public key
cryptosystem, let (E,D) = {(En, Dn)} = {C(1n)}, and let b be uniformly dis-
tributed in {0, 1}. C is gGM-secure if for all polynomials N in n, ∀πN ∈ ΣN ,
∀m ∈ MN , ∀T ∈ PC, ∀c > 0, ∃n0 such that ∀n > n0:

∣

∣

∣

∣

Pr[T (E,m, πbNE(m)) = b] − 1

2

∣

∣

∣

∣

<
1

nc
.

Lemma 3.8. A public key cryptosystem C is GM-secure iff it is gGM-secure.

Proof. We see that gGM-security immediately implies GM-security∗, since we may
take the polynomial N(n) = 2 in the definition of gGM-security.

To prove the opposite direction of the lemma, we assume it is false. Then there
exists a GM-secure cryptosystem C, and a polynomial N , ∃m ∈ M, ∃T ∈ PC,
∃πN ∈ ΣN , ∃c > 0, and an infinite set N such that for n ∈ N :

∣

∣

∣

∣

Pr[Tn(En,mn, π
b
N,nEn(mn)) = b] − 1

2

∣

∣

∣

∣

≥ 1

nc
.

We now define an A = {An} ∈ PC that breaks the GM-security∗ of C. Consider
a fixed n ∈ N . Note that for any permutation, in particular for πN,n, there exists
a chain of permutations id = π(1), π(2), . . . , π(N) = πN,n, such that π(i+1) and π(i)

differ only by a transposition. We get the following hybrid argument:

τi = Pr[Tn(En,mn, (π
(i))bEn(mn)) = b],

1

nc
≤ |τN − τ1| ≤

N−1
∑

i=1

|τi+1 − τi| .

where τ1 = 1
2 since (π(1))b = id. This implies |τt+1 − τt| ≥ 1

Nnc for some 1 ≤ t < N .

Let k0 and k1 be the two indices such that π(t)(k0) = π(t+1)(k1) and π(t+1)(k0) =
π(t)(k1). Let (En,mn,k0 ,mn,k1 , α0, α1) be the input to An, where b is randomly
chosen, and (α0, α1) = (En(mn,kb

), En(mn,k1−b
)). The circuit An:

1. Computes α = π(t)En(mn).
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2. Replaces the elements of α at positions π(t)(k0) and π(t)(k1) by the elements
α0 and α1 respectively. Let the resulting vector be α′.

3. Runs b = Tn(En,mn, α
′), and returns b.

It follows that the GM-security∗ of C is broken.

Corollary 3.9. If C is gGM-secure then, ∀j = {jn}, where jn ∈ {1, . . . , N(n)},
∀πN , ψN ∈ ΣN , ∀m ∈ MN , ∀T ∈ PC, ∀c > 0, ∃n0 such that ∀n > n0:

|Pr[T (E,m, πNE(m)) = j] − Pr[T (E,m,ψNE(m)) = j]| < 1

nc
.

Proof. Assume the contrary. Then there exists j, πN , ψN , and c > 0 such that
for n ∈ N the inequality above does not hold. Consider a fixed n ∈ N . If we set
τπN = Pr[Tn(En,mn, πN,nEn(mn)) = jn], we have |τπN − τψN | ≥ 1

nc . Without loss
we assume that τπN < τψN

We now construct a B = {Bn} ∈ PC that breaks the gGM-security of C. Bn
takes input (En,mn, α), where α = (π−1

N,nψN,n)
bEn(mn), and b ∈ {0, 1} is randomly

chosen.

The circuit Bn does the following. It computes α′ = πN,nFn(α), and runs
Tn(En,mn, α

′). If it returns jn then Bn outputs 1. Otherwise it outputs a random
bit. If we set An(b) = Bn(En,mn, (π

−1
N,nψN,n)

bEn(mn)) then we have
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Pr[An(b) = b] − 1
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=
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− τψN −

∑

l6=jn
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2
|τπN − τψN | ≥ 2

nc
,

which is a contradiction.

Lemma 3.10. For mn ∈ MN
n , denote by ∆i(mn) the set {j|mn,j = mn,i}, and

let ΠN be uniformly distributed in ΣN . If C is GM-secure then ∀i = {in}, where
in ∈ {1, . . . , N(n)}, ∀m ∈ MN , ∀T ∈ PC, ∀c > 0, ∃n0 such that ∀n > n0:
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∣

Pr[T (E,m,ΠNE(m)) ∈ ΠN (∆i(m))] − |∆i(m)|
N
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∣

∣

<
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.

Proof. Intuitively the following proof is clear. Formally we proceed as follows.
Let επN ,j = Pr[JT = j|ΠN = πN ] − Pr[JT = j|ΠN = id], where we let JT =
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T (E,m,ΠNE(m)). We write ∆i for ∆i(m), and have:

Pr[JT ∈ ΠN (∆i)] =
∑

πN∈ΣN

1

N !
Pr[JT ∈ ΠN (∆i)|ΠN = πN ]

=

N
∑

j=1

∑

πN∈ΣN

1

N !
Pr[JT = j|ΠN = πN ] Pr[JT ∈ ΠN (∆i)|ΠN = πN , JT = j]

=

N
∑

j=1

Pr[JT = j|ΠN = id]
∑

πN∈ΣN

1

N !
Pr[JT ∈ ΠN (∆i)|ΠN = πN , JT = j]

+

N
∑

j=1

∑

πN∈ΣN

1

N !
επN ,j Pr[JT ∈ ΠN (∆i)|ΠN = πN , JT = j]

=
|∆i|
N

+

N
∑

j=1

∑

πN∈ΣN

1

N !
επN ,j Pr[JT ∈ ΠN (∆i)|ΠN = πN , JT = j]

since
∑

πN∈ΣN

1
N ! Pr[JT ∈ ΠN (∆i)|ΠN = πN , JT = j] = |∆i|

N . Thus we have:

∣

∣

∣

∣

Pr[JT ∈ ΠN (∆i)] −
|∆i|
N
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∣
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≤
N
∑

j=1

∑

πN∈ΣN

1

N !
|επN ,j | ≤ N max

πN ,j
{|επN ,j |}

which is negligible since N(n) is polynomial and maxπN ,j{|επN ,j |} by Corollary 3.9
is negligible.

We are now ready to give the proof of Theorem 3.6.

Proof of Theorem 3.6. First the easy direction of the proof. Suppose that CH is a
secure RMS, but C = KN (CH) is not a GM-secure RPKC for some polynomial N .
Then ∃m0,m1 ∈ M, ∃T ∈ PC, ∃c > 0 and an infinite index set N such that for
n ∈ N :
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Pr[T (E,m0,m1, E(mb), E(m1−b)) = b] − 1
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The family A = {An}, where An given input (En, Fn, En(mn,0,mn,1), (α0, α1))
returns the pair (0, Tn(En,mn,0,mn,1, α0, α1)) shows that CH is not secure.

To prove the other direction, we assume that KN (CH) is semantically secure
for all polynomials N , but CH is not secure. Then, using the notation of Definition
3.5, there exists an A ∈ PC, an infinite index set N , and a c > 0 such that for
n ∈ N :

|Pr[ρ(Ln, L
′
n, IAn , JAn) = T ] − Pr[ρ(Ln, L

′
n, IAn , Jn) = T ]| ≥ 1

nc
.

We abuse notation and write ρ(I, J) instead of the correct ρ(Ln, L
′
n, I, J). A prob-

abilistic argument gives that there exists a fixed m ∈ MN such that for n ∈ N :
|Pr[ρ(IAn , JAn) = T |Mn = mn] − Pr[ρ(IAn , Jn) = T |Mn = mn]| ≥ 1

nc .
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We define: τA,i = Pr[ρ(IAn , JAn) = T |Mn = mn, IAn = i] and similarly τi =
Pr[ρ(IAn , Jn) = T |Mn = mn, IAn = i] to simplify notation in the following.

For some 1 ≤ t ≤ N(n) we have:

1

nc
≤ |Pr[ρ(IAn , JAn) = T |Mn = mn] − Pr[ρ(IAn , Jn) = T |Mn = mn]|

=

∣

∣

∣

∣

∣

∣

N(n)
∑

i=1

pIAn
(i)(τA,i − τi)

∣

∣

∣

∣

∣

∣

≤ N(n)pIAn
(t)|τA,t − τt| .

We construct a T ∈ PC that contradicts Lemma 3.10. The circuit Tn gets
input (En, Fn,mn, l

′
n), where l′n is an outcome of L′

n, computes ln = E(mn), runs
(i, j) = An(E,F, ln, l

′
n), and if i = t it returns j, and otherwise it returns the

outcome of a random variable Jn, which is uniformly and independently distributed
over {1, . . . , N(n)}.

Using the notation of Lemma 3.10 we have τt = |∆t|
N which gives:

Pr[JTn ∈ ΠN(n)(∆t)] =
∑

i6=t
pIAn

(i)
|∆t|
N

+ pIAn
(t)τA,t

=
|∆t|
N

+ pIAn
(t)(τA,t − τt) .

Thus |Pr[JTn ∈ ΠN(n)(∆t)]− |∆t|
N | = pIAn

(t)|τA,t− τt| ≥ 1
N(n)nc , which contradicts

Lemma 3.10.

In the proof above we implicitly use an extended version of Definition 3.7 that
is applicable to an RPKC, and use that Lemma 3.8, Corollary 3.9, and Lemma 3.10
hold correspondingly (see Section 3.3).

3.4 The Definition is Not Sufficient for a Mix-Net

Our results give strong evidence for the security of many constructions of mix-nets
in the literature. However they do not imply that the mix-nets proposed in the
literature are secure, since there is not even a formal definition of security of a
mix-net. Neither is Definition 3.5 intended to serve as a definition of security of a
mix-net.

To emphasize this fact we give a generalization of an attack on mix-nets of which
special cases has been described by Pfitzmann [57], and Jakobsson [38]. Jakobsson
also gives a solution on how to prevent this attack. We also give an example of a
situation, where our results seem to be applicable but are not.

Using Malleability to Break Anonymity.

The notion of non-malleability was introduced by Dolev, Dwork and Naor [18].
Informally a cryptosystem is non-malleable if, given a cryptotext αi = E(mi) of a
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Mix-Net
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...

...

...

f(mπ−1(1))
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f2(m1)
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Figure 3.1: The figure illustrates the generic relation attack. The adversary forms
an encryption E(f(m1)) of a cleartext f(m1) related to the cleartext m1 of the
first sender. Then it instructs a corrupted sender to send this cryptotext. Finally
it identifies the cleartext m1 by finding a pair of identical cleartexts in the output
and the output transformed with the function f .

messagemi, it is impossible to construct α′
i = E(m′

i), wherem′
i has some non-trivial

relation to mi.

Suppose that we have a mix-net that viewed as a single mix-server is secure by
Definition 3.5, and that the cryptotexts given as input to the mix-net are encrypted
using a malleable cryptosystem. Let α1 = E(m1) be the cryptotext of a message
m1 sent to the mix-net by Alice. The adversary, wishes to break the privacy of
Alice. To do this it constructs α′

i = E(f(mi)), for some function f , by using the
malleability of the cryptosystem. Then it sends αj = α′

i to the mix-net.

Thus the input to the mix-net can be written as α1, . . . , αN , where α1 is the
cryptotext of Alice and αj = α′

i is the contrived cryptotext. The output of the
mix-net has the form (m′

1, . . . ,m
′
N ) = (mπ−1(1), . . . ,m1, . . . , f(m1), . . . ,mπ−1(N)).

If we apply the transformation f on each of these elements we get a list on the form
(m′′

1 , . . . ,m
′′
N) = (f(mπ−1(1)), . . . , f(m1), . . . , f

2(m1), . . . , f(mπ−1(N))). Note that
that there is an i and an l such that m′′

l = m′
i. If f is chosen from an appropriate

family it is likely that the pair (i, l) is unique. This allows the adversary to identify
ml as the message of Alice. The attack is illustrated in Figure 3.1.

Depending on the transformation f the probability of getting an ambiguous
answer is higher or lower, and several attackers using “independent” relations may
increase the probability of a correct guess.

Jakobssons [38] transformation is the identity, and Pfitzmann [57] assumes an
El Gamal cryptosystem where she uses the transformation f(m) = mxf for some
random xf . The attack clearly fails if we use a non-malleable cryptosystem and
check for identical cryptotexts, and this is what Jakobsson proposes.

The conclusion is that Definition 3.5 is inappropriate to define the privacy of
a complete mix-net. A definition of privacy of mix-nets must allow active attacks
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like the above, and must be defined in a multi-party setting.

Using Malleability to Break Robustness.

One method for producing an efficient and robust mix-net protocols is repetition.
We apply this method for our mix-net construction in Chapter 2. Below we discuss
why this method must be applied carefully.

Consider the following thought experiment, where we let the underlying crypto-
system be the El Gamal system.

Let m = (m1, . . . ,mN) be an array of cleartexts, let α = E(m) be the corres-
ponding array of cryptotexts, and let H be the output of a secure RMS. Let α′ be
the concatenation of σ copies of the list α, and set α′′ = H(α′).

Note that α′′ contains a multiple of σ different cryptotexts of each mi. Suppose
we are given α′′ and the goal is to replace all cryptotexts of any single arbitrarily
chosen message mi, with encryptions of some other message m′

i, but let the remain-
ing set of encrypted messages be fixed. That is we must, given α′′ construct an
α′′′ such that it contains a multiple of σ cryptotexts of each mi except one mj for
which we have replaced all its cryptotexts by encryptions of some m′

j 6= mj . Is this
problem feasible to solve?

At first it seems that if all mi are different, then since the RMS is secure the
probability should be something like the probability of guessing the position of all σ
copies of cryptotexts of mi. Indeed an argument similar to this is used by Jakobsson
[40] in the proof sketch of his Theorem 1.

Unfortunately this is not true in general, not even for uniformly (dependently)
distributed messages, as the following example shows. Suppose that the cryptosys-
tem in use is the El Gamal system [19] over a group Gq as described in Section
1.4. Let m1 be uniformly and independently distributed in Gq, let k1 ∈ Gq , and

k2 ∈ Zq be fixed and set mi = k1m
k2
i−1 for all i 6= 1. Given an El Gamal cryptotext

αi = E(mi) of mi it is easy to compute f(αi) = E(k1m
k2
i ) without knowledge of the

private key or the cleartext messages. Thus to succeed in the thought experiment
we need only compute the list f(α), where we let f be defined element-wise. This
maps cryptotexts of mi−1 onto cryptotexts of mi except for mN , which is mapped
to an element m′

1 6= mi for all i. Thus we have in effect replaced cryptotexts of m1

with cryptotexts of m′
1 without identifying what cryptotexts to change.

However, the distribution of the cleartexts is very special. Indeed if all messages
are independently distributed it seems infeasible to solve the thought experiment
better than guessing. The protocol of Chapter 2 is based on a problem related to
the thought experiment above. One important difference is that inner cryptotexts
play the role of the messages that must be replaced. All honest senders have unique
and independently chosen inner cryptotexts. Furthermore we force the adversary to
behave honestly on at least the dummies, i.e. it does not suffice for the adversarial
transformation to keep the dummies in the set of cleartexts. It must re-encrypt
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them honestly. In Chapter 6 we investigate another related problem in what ways
a single El Gamal cryptotext may be transformed.



Chapter 4

Some Practical attacks for Mix-Nets

Golle, Zhong, Boneh, Jakobsson, and Juels [34] propose an efficient mix-net, which
they claim to be both robust and secure. We present five practical attacks for their
mix-net, and break both its privacy and robustness.

The first attack breaks the privacy of any given sender without corrupting any
mix-server. The second attack requires that the first mix-server is corrupted. Both
attacks are adaptations of the “relation attack” introduced by Pfitzmann [58, 57].

The third attack is similar to the attack of Desmedt and Kurosawa [15] and
breaks the privacy of all senders. It requires that all senders are honest and that
the last mix-server is corrupted.

The fourth attack may be viewed as a novel combination of the ideas of Lim
and Lee [44] and Pfitzmann [58, 57]. Johan Håstad helped me find this attack. The
attack breaks the privacy of any given sender, and requires that the first and last
mix-servers are corrupted. This attack breaks also Jakobsson [40], including the
fixed version of Mitomo and Kurosawa [49].

The fifth attack breaks the robustness in a novel way. It requires corruption of
some senders and the first mix-server. This attack breaks also the hybrid mix-net
of Jakobsson and Juels [42].

Abe and Imai [2] independently discovered attacks similar to the first two of our
attacks. They also give an attack for the protocol of Jakobsson and Juels [42] that
is unrelated to our attack for that construction.

4.1 Review of “Optimistic Mixing for Exit-Polls”

We present a short review of the relevant parts of the protocol of Golle et al. [34].
The description given here is as close as possible to the original, but we avoid details
irrelevant to our attacks and change some notation to simplify the exposition of the
attacks. For details we refer the reader to [34].

37
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Parties and Setup

The protocol assumes the existence of a bulletin board as outlined in Section 1.4.
The parties of the protocol are N senders, and a relatively small number of

mix-servers, M1, . . . ,Mk. Each sender encrypts its message, and writes it on the
bulletin board. The mix-servers then execute the mix-net protocol.

The protocol employs an El Gamal [19] cryptosystem in a subgroup Gq of prime
order q of the multiplicative group modulo a prime p, i.e. Z∗

p. The El Gamal
cryptosystem is described in Section 1.4.

In the setup stage each mix-server Mj is somehow given a random xj ∈ Zq ,
and yl = gxl for l 6= j. The value xj is also shared with the other mix-servers
using a threshold verifiable secret sharing scheme. Golle et al. [34] discuss different
variants for sharing keys, but we choose to present a simple variant, since it has
no impact on our attacks. If any mix-server Mj is deemed to be cheating the
other mix-servers can verifiably reconstruct its private key xj . The mix-servers

can also compute y =
∏k
j=1 yj , which gives a joint public key (g, y), with secret

corresponding private key x =
∑k

j=1 xj .
A practical advantage of the mix-net is that it can be used to execute several

mix-sessions using the same set of keys, i.e. the El Gamal keys are not changed
between mix-sessions. To be able to do this the proofs of knowledge below are
bound to a mix-session identifier id that is unique to the current mix-session.

Sending a Message to the Mix-Net

A typical honest sender, Alice, computes the following to send a message m to the
mix-net:

(u, v) = E(g,y)(m), w = h(u, v), and

α = [E(g,y)(u), E(g,y)(v), E(g,y)(w)] = [(µ1, µ2), (ν1, ν2), (ω1, ω2)] ,

where h : {0, 1}∗ → Gq is a hash function modeled by a random oracle. Note that
this is similar to our protocol described in Chapter 2, but Golle et al. introduce a
hash value and use identical keys for the inner and outer cryptosystems.

Then Alice computes a zero-knowledge proof of knowledge πid(u, v, w), in the
random oracle model of u, v and w, which depends on the current mix-session
identifier id as outlined in Section 2.1. Finally Alice writes (α, πid(u, v, w)) on the
bulletin board. We reserve the notation above for the tuple of Alice and use it in
the attacks below.

Execution of the Mix-Net

First the mix-servers remove any duplicate inputs to the mix-net, and discard input
tuples that contain components not in the subgroup Gq . The mix-servers then
discard all input tuples where the proof of knowledge is not valid for the current
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mix-session. Let L0 = {[(a0,i, b0,i), (c0,i, d0,i), (e0,i, f0,i)]}Ni=1 be the resulting list of
triples of El Gamal pairs. The mixing then proceeds in the following stages.

First Stage: Re-Randomization and Mixing

This step proceeds as in all re-randomization mix-nets based on El Gamal. One by
one, the mix-servers M1, . . . ,Mk randomize all the inputs and their order. (Note
that the components of triples are not separated from each other during the re-
randomization.) In addition, each mix-net must give a proof that the product of
the plaintexts of all its inputs equals the product of the plaintexts of all its outputs.
The protocol proceeds as follows.

1. Each mix-server Mj reads from the bulletin board the list Lj−1 output by the
previous mix-server.

2. The mix-server then chooses rji, sji, tji ∈ Zq , for i = 1, . . . , N , randomly and
computes the re-randomized list

{[(grjiaj−1,i, y
rjibj−1,i), (g

sjicj−1,i, y
sjidj−1,i), (g

tjiej−1,i, y
tjifj−1,i)]}Ni=1

of triples. The above list of triples is then randomly permuted, and the
resulting list: Lj = {[(aj,i, bj,i), (cj,i, dj,i), (ej,i, fj,i)]}Ni=1 is written on the
bulletin board.

3. Define aj =
∏N
i=1 aj,i, and define bj , cj , dj , ej , and fj correspondingly.

The mix-server proves in zero-knowledge that logg aj/aj−1 = logy bj/bj−1,
logg cj/cj−1 = logy dj/dj−1, and logg ej/ej−1 = logy fj/fj−1. This implies
that Dx(aj , bj) = Dx(aj−1, bj−1), and similarly for the pairs (cj , dj) and
(ej , fj), i.e. the component-wise product of the inner triples remains un-
changed by the mix-server.

Remark 4.1. Since logy bj/bj−1 = logg aj/aj−1 =
∑N

i=1 rji, and Mj knows the
latter sum, the proof in Step 3) can be implemented by a zero-knowledge proof of
knowledge in the random oracle model as outlined in Section 2.1, and similarly for
the pairs (cj , dj), and (ej , fj).

Second Stage: Decryption of the Inputs

1. A quorum of mix-servers jointly decrypt each triple of cryptotexts in Lk to
produce a list L on the form L = {(ui, vi, wi)}Ni=1. Since the method used to
do this is irrelevant to our attacks, we do not present it here.

2. All triples for which wi = h(ui, vi) are called valid.

3. Invalid triples are investigated according to the procedure described below.
If the investigation proves that all invalid triples are benign (only senders
cheated), we proceed to Step 4. Otherwise, the decryption is aborted, and we
continue with the back-up mixing.
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4. A quorum of mix-servers jointly decrypt the cryptotexts (ui, vi) for all valid
triples. This successfully concludes the mixing. The final output is defined
as the set of plaintexts corresponding to valid triples.

Special Step: Investigation of Invalid Triples

The mix-servers must reveal the path of each invalid triple through the various
permutations. For each invalid triple, starting from the last server, each server
reveals which of its inputs corresponds to this triple, and how it re-randomized this
triple. One of two things may happen:

- Benign case (only senders cheated): if the mix-servers successfully produce
all such paths, the invalid triples are known to have been submitted by users.
The decryption resumes after the invalid triples have been discarded.

- Serious case (one or more servers cheated): if one or more servers fail to
recreate the paths of invalid triples, these mix-servers are accused of cheating
and replaced, and the mix-net terminates producing no output. In this case,
the inputs are handed over to the back-up mixing procedure below.

Back-Up Mixing

The outer-layer encryption of the inputs posted to the mix-net is decrypted by a
quorum of mix-servers. The resulting list of inner-layer cryptotexts becomes the
input to a standard re-encryption mix-net based on El Gamal (using, for example
Neff’s scheme described in [50]). Then the output of the standard mix-net is given
as output by the mix-net.

Remark 4.2. It is infeasible to find two lists {(ui, vi)}Ni=1 6= {(u′i, v′i)}Ni=1 such that
∏N
i=1 h(ui, vi) =

∏N
i=1 h(u

′
i, v

′
i), if the product is interpreted in a group where the

discrete logarithm problem is hard. This is stated as a theorem by Wagner [66],
who credits Wei Dai with this observation, and appears as a lemma in Golle et al.
[34].

During the re-encryption and mixing stage each mix-server proves in zero-
knowledge that it leaves the component-wise product (

∏

ui,
∏

vi,
∏

wi), of the
inner triples (ui, vi, wi) unchanged, but individual triples may still be corrupted.
Then invalid triples are traced back. This leaves only valid inner triples in the
output and the proofs of knowledge of each server are used to conclude that the
component-wise product of these valid inner triples was left unchanged by the mix-
net. Golle et al. [34] then refer to the lemma and conclude that the set of valid
triples in the output is identical to the set of valid triples hidden in the double
encrypted input to the mix-net.

Unfortunately, this intuitively appealing construction is flawed as we explain in
Section 4.2. Furthermore, our third attack in Section 4.2 shows that it is possible
to behave maliciously without changing the set of inner triples.
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4.2 The Attacks

The goal of the adversary is to break the privacy of our typical honest sender Alice
and to alter the output without detection. Each of our attacks illustrates a separate
weakness of the protocol. The first two attacks are adaptations of the “relation
attack”, introduced by Pfitzmann [58, 57], to the setting with double enveloping.
The idea of the “relation attack” is that to break the privacy of Alice, the adversary
computes a cryptotext of a message related to Alice’s message. Then the mix-net
is run as usual. The output of the mix-net contains two messages related in a way
chosen by the adversary. Some relations enable the adversary to determine the
message sent by Alice. We illustrate a slightly generalized variant of Pfitzmann’s
attack in Figure 3.1 in Section 3.4. The third attack is similar to the attack of
Desmedt and Kurosawa [15] in that it exploits intermediate results of the protocol
and fools a “product test”. The fourth attack may be viewed as a novel combination
of the ideas of Lim and Lee [44] and Pfitzmann [58, 57]. The fifth attack seems
unrelated to any previous attacks.

First Attack: Honest Mix-Servers

We show that the adversary can break the privacy of the typical sender Alice.
All that is required is that it can send two messages to the mix-net, which is a
natural assumption in most scenarios. In the following we use the notation for the
cryptotext of Alice introduced in Section 4.1. The attack is illustrated in Figure
4.1, and the details are as follows. Recall that [(µ1, µ2), (ν1, ν2), (ω1, ω2)] is the
tuple sent by Alice. The adversary does the following:

1. It chooses δ and γ randomly in Zq , and computes:

wδ = h(µδ1, µ
δ
2), αδ = (E(g,y)(µ

δ
1), E(g,y)(µ

δ
2), E(g,y)(wδ)) , and

wγ = h(µγ1 , µ
γ
2), αγ = (E(g,y)(µ

γ
1 ), E(g,y)(µ

γ
2 ), E(g,y)(wγ)) .

Then it computes the corresponding proofs of knowledge πid(µδ1, µ
δ
2, wδ) and

πid(µγ1 , µ
γ
2 , wγ). This gives the adversary two perfectly valid input tuples

(αδ , πid(µδ1, µ
δ
2, wδ)), (αγ , πid(µ

γ
1 , µ

γ
2 , wγ)), that it sends to the bulletin board

(possibly by corrupting two senders).

2. It waits until the mix-net has successfully completed its execution. During the
execution of the mix-net the mix-servers first jointly decrypt the “outer layer”
of the double encrypted messages. After benign tuples have been removed
the result is a list of valid triples

((u1, v1, w1), . . . , (uN , vN , wN )) . (4.1)

The final output of the mix-net is the result of decrypting each inner El Gamal
pair (ui, vi) and results in a list of cleartext messages (m1, . . . ,mN).
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3. It computes the list

(m′
1, . . . ,m

′
N ) = (m

δ/γ
1 , . . . ,m

δ/γ
N ) ,

and then finds a pair (i, j) such that mi = m′
j . From this it concludes that

with very high probability mj = uγ . Then it computes z = m
1/γ
j , and finds

a triple (ul, vl, wl) in the list (4.1) such that z = ul. Finally it concludes that
with very high probability ml was the message sent by Alice to the mix-net.

L0

...

...

...

...

...

(µ11,µ12),E(v1),E(w1)

E(µδ
11),E(µδ

12),E(wδ)
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11),E(µγ
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Figure 4.1: The figure illustrates the first attack. The leftmost column L0 is the
list of tuples with valid proofs of knowledge of the inner triple, the middle column
L is the output of the outer decryption stage, and the rightmost columns, are the
cleartext and the exponentiated cleartexts respectively. The adversary follows the
arrows to identify the cleartext m1 belonging to Alice.

Remark 4.3. At additional computational cost it suffices for the adversary to send 2
messages to break the privacy of t senders. Suppose for example that the adversary
wants to break the privacy also of Bob and Camilla.

We assume that Bob sent m′ encrypted as

(u′, v′) = E(g,y)(m
′), w′ = h(u′, v′), and

α′ = [E(g,y)(u
′), E(g,y)(v

′), E(g,y)(w
′)] = [(µ′

1, µ
′
2), (ν

′
1, ν

′
2), (ω

′
1, ω

′
2)] ,

and that Camilla sent m′′ encrypted as

(u′′, v′′) = E(g,y)(m
′′), w′′ = h(u′′, v′′), and

α′′ = [E(g,y)(u
′′), E(g,y)(v

′′), E(g,y)(w
′′)] = [(µ′′

1 , µ
′′
2), (ν′′1 , ν

′′
2 ), (ω′′

1 , ω
′′
2 )] ,
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The first step of the attack is unchanged except that the adversary replaces (µ1, µ2)
by (µη1(µ′

1)
η′µ′′

1 , µ
η
2(µ′

2)
η′µ′′

2 ), where η, η′ ∈ Zq are randomly chosen. The adversary
proceeds with the attack as before until it has computed z.

At this point in the original attack the adversary identifies an inner triple
(ul, vl, wl) such that z = ul and concludes that ml was the message sent by Alice.

In the generalized attack the adversary instead identifies three triples (ul, vl, wl),

(ul′ , vl′ , wl′) and (ul′′ , vl′′ , wl′′ ) such that z = uηl u
η′

l′ ul′′ . Then it concludes that ml

was the message sent by Alice, ml′ the message sent by Bob, and ml′′ the message
sent by Camilla.

The approach is generalized to higher dimensions in the natural way to break
the privacy of t senders.

Why the Attack is Possible

The attack exploits two different flaws of the protocol. The first is that the sender
of a message, e.g. Alice, proves only knowledge of the inner El Gamal pair (u, v)
and the hash value w = h(u, v), and not knowledge of the message m. The second
flaw is that identical El Gamal keys are used for both the inner and outer El Gamal
system.

Anybody can compute a single encrypted message (µδ1, µ
δ
2) = (grδ, yrδuδ) =

E(g,y)(u
δ, rδ) of a power uδ of the first component u of the inner El Gamal pair

(u, v) of the triple α sent by Alice. Anybody can also compute a proof of knowledge
of (µδ1, µ

δ
2) and wδ = h(µδ1, µ

δ
2) (and similarly for (µγ1 , µ

γ
2) and ωγ).

The first flaw allows the adversary to input triples of El Gamal pairs with such
proofs of knowledge to the mix-net. The second flaw allows the adversary to use
the mix-net to decrypt (µδ1, µ

δ
2), and thus get its hands on uδ (and similarly for

uγ). The adversary can then identify (u, v) as the inner El Gamal pair of Alice and
break her privacy.

Second Attack: Different Keys and Corrupt Mix-Server

Suppose we change the protocol slightly by requiring that the mix-servers generate
separate keys for the outer and inner El Gamal systems, to avoid the first attack
of Section 4.2. We assume that there are two different key pairs ((g, yin), xin)
and ((g, yout), xout), for the inner and outer El Gamal layers respectively. We also
assume that these keys have been shared similarly as the original key pair ((g, y), x).
This is the type of double enveloping proposed in Chapter 2. For the second attack
to succeed we need some additional assumptions.

Unclear Details and Additional Assumptions

We start by quoting Section 5, under “Setup.” point 4 of Golle et al. [34], which
presents the proof of knowledge πid(u, v, w) of the sender Alice:
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4. This proof of knowledge should be bound to a unique mix-session
identifier to achieve security over multiple invocations of the mix. Any
user who fails to give the proof is disqualified, and the corresponding
input is discarded.

If different keys are used for each mix-session, then the above makes no sense, since
the proof of knowledge of u, v and w already depends on the public key of the outer
El Gamal system. There is clearly practical value in not changing keys between
mix-sessions. We assume that the keys are not changed between mix-sessions even
if a mix-server is found to be cheating. If a mix-server is found to be cheating, its
shared keys are instead reconstructed by the remaining mix-servers using the secret
sharing scheme, and in later mix-sessions the actions of the cheating mix-server are
performed in the open (the details of this does not matter to our attack). Under
these assumptions we can give an attack on the protocol.

The original paper of Golle et al. [34] does not explicitly say if the discovery of
the corrupted mix-server results in a new execution of the key generation protocol.
Apparently the intention of the authors is to let the remaining mix-servers generate
a new set of keys if any cheating is discovered [35].

The attack is interesting even though this interpretation is not the one intended
by the authors, since it shows the importance of explicitly defining all details of
protocols and highlights some issues with running several concurrent mix-sessions
using the same set of keys.

The Attack

Apart from the above assumptions, the attack only requires that the first mix-server
in the mix-chain is corrupted. The attack is employed during two mix-sessions using
the same keys and the corrupted mix-server is identified as a cheater in the first
mix-session. In the following we describe the actions of the adversary during the
first and second mix-sessions, respectively.

The First Mix-Session. We assume that Alice and some other arbitrary sender
Bob have sent inputs to the mix-net (and use the notation of Remark 4.3 for the
input of Bob). The adversary corrupts M1. It then replaces α and α′ with:

[Eyout(u), Eyout(v), Eyout (w
′)], and [Eyout (u

′), Eyout(v
′), Eyout(w)]

respectively, in its input list, i.e. the third components of the two triples are shifted.
Then it forces M1 to simulate a completely honest mix-server on the resulting
altered list

L′
0 = {[(a′0,i, b′0,i), (c′0,i, d′0,i), (e′0,i, f ′

0,i)]}Ni=1 .

Note that
∏N
i=1 a

′
0,i = a0, and similarly for b0, c0, d0, e0, and f0. Thus the simulated

honest mix-server outputs perfectly valid zero-knowledge proofs that the product
of the inner triples are unchanged.
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At the end of the mixing the mix-servers verify the tuples and discover the
invalid tuples (u, v, w′) and (u′, v′, w). These tuples are traced back all the way to
the first mix-server, which is revealed as a cheater. In this process the adversary
is able to link Alice to (u, v) (and Bob to (u′, v′)). Finally the honest mix-servers
finish the protocol by using the general constructions based on the work by Neff
[50] as suggested in Golle et al. [34].

The Second Mix-Session. To allow the mix-net to execute a second mix-session
using the same set of keys, the cheaters key is reconstructed and revealed by a
quorum of the mix-servers.

To determine the contents of the El Gamal pair (u, v), the adversary waits for
the second mix-session using the same set of keys. Then it uses a “relation attack”
[58, 57, 38] in the second mix-session to decrypt (u, v), i.e. it does the following:

1. It chooses δ and γ randomly in Zq , and computes:

wδ = h(uδ, vδ), αδ = (Eyout (u
δ), Eyout(v

δ), Eyout (wδ)), and

wγ = h(uγ , vγ), αγ = (Eyout(u
γ), Eyout(v

γ), Eyout (wγ)) .

Then it computes the corresponding proofs of knowledge πid(uδ, vδ, wδ) and
πid(uγ , vγ , wγ). This gives two perfectly valid pairs (αδ , πid(uδ, vδ, wδ)) and
(αγ , πid(uγ , vγ , wγ)), which it sends to the bulletin board (possibly by cor-
rupting two senders).

2. It waits until the mix-net has successfully completed its execution. The final
output of the mix-net is a list of cleartext messages (m1, . . . ,mN ).

3. Note that mi = mδ and mj = mγ for some i and j. The adversary computes
δγ−1 mod q, computes the list

(m′
1, . . . ,m

′
N ) = (m

δ/γ
1 , . . . ,m

δ/γ
N ) ,

and finally finds a pair (i, j) such that mi = m′
j . Then it concludes that with

high probability m
1/γ
j is the message sent by Alice to the mix-net in the first

mix-session.

Remark 4.4. The attack is easily generalized to break the privacy of several senders
by using a circular shift of the third components during the first mix-session. It is
also easy to see that Remark 4.3 can be applied to reduce the number of messages
sent by the adversary during the second mix-session.

Why the Attack is Possible

The attack exploits that the sender of a message only proves knowledge of the
inner triple (u, v, w). At the cost of detected cheating the adversary finds a (u, v)
corresponding to Alice, and then uses the second mix-session as a decryption oracle
to get its hands on m.
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A Note on Concurrent Mix-Sessions

Ignoring the other attacks, a simple counter-measure to the second attack above, is
to stipulate that if a cheating mix-server is identified new keys must be generated
for the next mix-session.

A disadvantage of this counter-measure is that the mix-net can not be allowed
to execute several concurrent mix-sessions using the same keys. If one mix-session
is still receiving messages while another mix-session discovers a cheating mix-server
the second attack of Section 4.2 can still be applied. The problem is not solved by
running the back-up mix-net of Neff [50] on all mix-sessions using the same keys at
this point.

This problem of concurrency may seem academic, since in most election scen-
arios it is not very cumbersome to have different keys for each mix-session, but
in future applications of mix-nets it may be useful to run several concurrent mix-
sessions using the same keys.

Third Attack: Honest Senders and One Corrupt Mix-Server

In this section we assume that all senders and all mix-servers, except the last mix-
server Mk, are honest. The last mix-server Mk is corrupted by the adversary and
performs the attack. The attack breaks both the robustness and the privacy.

To simplify our notation we write L0 = {αi}Ni=1 for the input list, where we
define αi = [(a0,i, b0,i), (c0,i, d0,i), (e0,i, f0,i)] to be the tuple sent by sender Si.
Instead of following the protocol, Mk proceeds as follows in the first stage.

1. It computes the following tuples

(a′, b′, . . . , f ′) = (ak−1/a0, bk−1/b0, . . . , fk−1/f0), and

α′
1 = [(a′a0,1, b

′b0,1), (c
′c0,1, d

′d0,1), (e
′e0,1, f

′f0,1)] .

2. Then it forms the list

L′
k−1 = {α′

1, α2, . . . , αN} ,

i.e. a copy of L0 with the first tuple α1 replaced by α′
1.

3. When Mk is supposed to re-randomize and permute the output Lk−1 of Mk−1

it instead simulates the actions of an honest mix-server on the corrupted input
L′
k−1. The output list written to the bulletin board by the simulated mix-

server is denoted Lk.

4. It waits until the inner layer has been decrypted and uses its knowledge of
the permutation that relates Lk to L0 to break the privacy of all senders.

We show that the attack goes undetected, i.e. the mix-servers decrypt the inner
layer. This implies that the attack succeeds.
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Firstly, consider the proof of knowledge that mix-server Mk produces during
the re-encryption and mixing stage. Define

a′k−1 = (a′a0,1)
N
∏

i=2

a0,i ,

and similarly for for b′k−1, c
′
k−1, d

′
k−1, e

′
k−1, and f ′

k−1. In Step 3 above, the simu-
lated honest mix-server outputs proofs of knowledge of the following equalities of
logarithms

logg ak/a
′
k−1 = logy bk/b

′
k−1 ,

logg ck/c
′
k−1 = logy dk/d

′
k−1 , and

logg ek/e
′
k−1 = logy fk/f

′
k−1 .

By construction we have that

a′k−1 = (a′a0,1)

N
∏

i=2

a0,i = a′
N
∏

i=1

a0,i =
ak−1

a0
a0 = ak−1 ,

and similarly for bk−1, ck−1, dk−1, ek−1, and fk−1. This implies that the proof of
knowledge produced by Mk is deemed valid by the other mix-servers.

Secondly, consider the investigation of invalid inner triples. Tracing back invalid
triples is difficult to Mk, since it does not know the re-encryption exponents and
the permutation relating Lk−1 and Lk. We show that there are no invalid inner
triples. Suppose we define the sums

r =

k−1
∑

j=1

N
∑

i=1

rji, s =

k−1
∑

j=1

N
∑

i=1

sji, and t =

k−1
∑

j=1

N
∑

i=1

tji .

i.e. we form the sum of all re-encryption exponents used by all mix-servers except
the last, for the first second and third El Gamal pairs respectively. Since all mix-
servers except Mk are honest, we have

(a′, b′, c′, d′, e′, f ′) = (gr, yr, gs, ys, gt, yt) ,

which implies that α′
1 is a valid re-encryption of α1. Thus Mk does not corrupt

any inner triple by simulating an honest mix-server on the input L′
k−1. Since all

senders are honest and the set of inner triples hidden in L0 and L′
k−1 are identical,

there are no invalid inner triples. Thus cheating is not detected and robustness is
broken.

We conclude that the mix-servers decrypt the inner triples, i.e. the privacy of
all senders is broken.
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Why the Attack is Possible

The third attack above exploits that the last mix-server Mk is not forced to take
the output Lk−1 of the next to last mix-server as input. This allows Mk to use a
slightly modified version of L0 instead, which breaks the privacy of all senders.

Fourth Attack: Two Corrupt Mix-Servers

In this section we assume that the first and last mix-servers, M1 and Mk, are
corrupted. We give an attack that breaks the privacy of any given sender Alice.
Let L0 = {αi}Ni=1, where αi = [(a0,i, b0,i), (c0,i, d0,i), (e0,i, f0,i)]. Without loss we
let α1 and α2 be the tuples sent by Alice and Bob respectively. Let Z∗

p = Gq ×Gκ
and let 1 6= ζ ∈ Gκ. Thus ζ is an element outside of the group Gq . The adversary
corrupts M1 and Mk, and they proceed as follows.

1. M1 computes two modified elements

α′
1 = [(ζa0,1, b0,1), (c0,1, d0,1), (e0,1, f0,1)] , and

α′
2 = [(ζ−1a0,2, b0,2), (c0,2, d0,2), (e0,2, f0,2)] .

Then it forms the modified list L′
0 = {α′

1, α
′
2, α3, . . . , αN} and instructs M1

to simulate an honest mix-server on input L′
0. Note that the first component

of α′
1 and α′

2 respectively is no longer contained in Gq .

2. Mk simulates an honest mix-server on input Lk−1, but it does not write the
output Lk of this simulation on the bulletin board. Let Lk = {βi}Ni=1, where
βi = [(ak,i, bk,i), (ck,i, dk,i), (ek,i, fk,i)]. Mk finds l, l′ ∈ {1, . . . , N} such that

aqk,l = ζq , and aqk,l′ = ζ−q .

Then it computes the tuples

β′
l = [(ζ−1ak,l, bk,l), (ck,l, dk,l), (ek,l, fk,l)] , and

β′
l′ = [(ζak,l′ , bk,l′), (ck,l′ , dk,l′), (ek,l′ , fk,l′)] ,

form the list

L′
k = {β1, . . . , βl−1, β

′
l, βl+1, . . . , βl′−1, β

′
l′ , βl′+1, . . . , βN} ,

and writes L′
k on the bulletin board.

3. The mix-net outputs (m1, . . . ,mN ) and the adversary concludes that Alice
sent ml.

Since all mix-servers except M1 and Mk are honest there exists l, l′ ∈ {1, . . . , N}
and r, r′ ∈ Zq such that

ak,l = grζa0,1, and ak,l′ = gr
′

ζ−1a0,2 .



The Attacks 49

This implies that

aqk,l = ζq(gra0,1)
q = ζq , and a−qk,l′ = ζ−q .

since βq = 1 for any β ∈ Gq . We have ζq 6= 1 6= ζ−q , since the order of ζ does
not divide q. On the other hand we have aqk,i = 1 for i 6= l, l′, since ak,i ∈ Gq for
i 6= l, l′. Thus the adversary successfully identifies Alice’s cryptotext if the cheating
of M1 and Mk is not detected.

Clearly, the values of b1, c1, d1, e1, and f1 are not changed by replacing L0 with
L′

0 in Step 1. Neither is a1, since

(ζa0,1)(ζ
−1a0,2)

N
∏

i=3

a0,i =
N
∏

i=1

a0,i = a1 .

Similarly, bk, ck, dk, ek, and fk are not changed by replacing Lk with L′
k in Step

2. Neither is ak, since (ζ−1ak,l)(ζak,l′ )
∏N
i6=l,l′ ak,i =

∏N
i=1 ak,i. Similarly as in the

second attack of Section 4.2, we conclude that the proofs of knowledge produced
by M1 and Mk are deemed valid by the other mix-servers. If we assume that Alice
and Bob are honest, their inner triples are never traced back and cheating is not
detected.

If ζ = ζ−1 the adversary can only conclude that Alice sent a message from the
set {ml,ml′}. This breaks the privacy of Alice, but the adversary can also identify
Alice’s message uniquely by choosing Bob to be a corrupted sender.

Remark 4.5. Our attack may be viewed as a novel combination of the ideas in Lim
and Lee [44] and Pfitzmann [58, 57] in that we use elements in Z∗

p\Gq to execute
a “relation attack”. In Section 5.2 we discuss the work of Lim and Lee [44] further,
and explain why the counter-measure they propose is insufficient.

Why the Attack is Possible

The attack exploits that a mix-server Mj does not verify that all elements in its
input Lj−1 are in Gq . M1 uses this to “tag” elements in L0, which lets them be
identified by the last mix-server Mk.

Fifth Attack: One Corrupt Mix-Server

In Proposition 3 of Golle et al. [34] the authors claim that their protocol satisfies
the following strong definition of public verifiability if there is a group Gq in which
the discrete logarithm problem is hard.

Definition 1. (Public Verifiability (cf. [34])) A mix net is public verifiable if there
exists a polynomially bounded verifier that takes as input the transcript of the mixing
posted on the bulletin board, outputs “valid” if the set of valid outputs is a permuted
decryption of all valid inputs, and otherwise outputs “invalid” with overwhelming
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probability. Note that to prove public verifiability, we consider an adversary that
can control all mix-servers and all users.

Unfortunately, Proposition 3 in [34] is false. The following is a counter-example.
Suppose that there are 4 senders, and that the adversary corrupts two of the

senders and the first mix-server M1. Let

(ui, vi, wi) = (gri , yrimi, h(ui, vi)), and

αi = ((a0,i, b0,i), (c0,i, d0,i), (e0,i, f0,i)) = (Ey(ui), Ey(vi), Ey(wi))

for i = 1, 2, 3, 4. Then define

α′
3 = ((a0,3, b0,3), (c0,3, ad0,3), (e0,3, f0,3)), and

α′
4 = ((a0,4, b0,4), (c0,4, a

−1d0,4), (e0,4, f0,4))

for some 1 6= a ∈ Gq . Suppose that α1 and α2 are sent to the mix-net by honest
senders, and α′

3 and α′
4 are sent to the mix-net by the corrupted senders, with

corresponding proofs of knowledge.
M1 replaces α′

3, and α′
4 with α3 and α4. This does not change the value of the

component-wise product d1 = v1v2v
′
3v

′
4 since v′3v

′
4 = v3v4, and the cheating is not

detected, since α3 and α4 corresponds to valid inner triples, and thus not traced
back. On the other hand the tuples α′

3 and α′
4 correspond to invalid inner triples

(u3, v3, aw3), and (u4, v4, a
−1w4) .

We conclude that the sets of valid inner triples in the input and output respectively
differ, public verifiability is broken, and Proposition 3 of [34] is false.

Some may argue that this is not important since the adversary may only choose
to correct invalid messages which it has previously prepared for this particular
purpose. However, note that the adversary may choose whether to correct α′

3 and
α′

4. If it chooses not to correct invalid triples they are simply traced back and
considered benign.

The following application shows the importance of this subtlety. We use the
mix-net construction to run two independent elections (using different keys). First
all votes for both elections are collected, and after some time both elections are
closed. Then the mix-net is executed for the first election. Finally the mix-net is
executed for the second election. In this scenario the adversary can insert specially
prepared invalid triples (i.e. votes) in the second election, and then decide whether
to correct these triples based on the outcome of the first election. This should clearly
not be allowed, but may be acceptable in certain non-voting scenarios.

Why the Attack is Possible

The attack exploits the fact that the first mix-server can choose whether to correct
specially prepared invalid inner triples or not without detection.
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4.3 Further Applications

All the attacks described above work also if Z∗
p ⊃ Gq are replaced by any other

similarly related groups, e.g. elliptic curves.

The attacks of sections 4.2, 4.2, and 4.2 all exploit the particular structure of
the protocol of Golle et al. [34]. We have found no other protocol vulnerable to
these attacks. In particular the protocol by Jakobsson [40] with similar structure
is not vulnerable to the attack of Section 4.2.

In Section 4.3 below we sketch how the attack of Section 4.2 can be applied to
break the privacy of “Flash Mix” by Jakobsson [40], including the fixed protocol
proposed by Mitomo and Kurosawa [49]. We note that the latter proposal is given
without security claims.

In Section 4.3 below we sketch how the attack of Section 4.2 breaks the robust-
ness of Jakobsson and Juels [42].

In Chapter 5 we investigate a more complicated variant of the attack of Section
4.2 and more generally the malicious use of elements in Z∗

p\Gq .

Attack for “Flash Mix”

In this section we assume that the reader is familiar with the protocol by Jakobsson
[40] and sketch how this protocol can be broken by a natural adaptation of the novel
attack of Section 4.2.

The attack is employed during the “second re-encryption”. The adversary cor-
rupts the first and the last mix-servers, M1 and Mk, in the mix-chain. During
the “second re-encryption”, M1 “tags” two arbitrary El Gamal pairs in its input
by multiplying their first components with ζ and ζ−1 respectively (similarly as in
Section 4.2). Then the honest mix-servers perform their re-encryption and mix-
ing. When the last mix-server Mk is about to re-encrypt and mix the output of
the previous mix-server Mk−1, it identifies the “tagged” El Gamal pairs, removes
the “tags” by multiplying the first components by ζ−1 and ζ respectively, and then
finally re-encrypts and mix the resulting list honestly.

After the verification of the “first re-encryption”, this breaks the privacy of some
randomly chosen sender, if the cheating goes undetected. Although the attack is
weak, it does break privacy.

Cheating is detected if one of two things happen; the adversary by chance
chooses a “dummy element” that is later traced back through the mix-chain, or if
M1 or Mk fails to play its part in the computation of the “relative permutations”
correctly. The first event is very unlikely since by construction there are very few
“dummy elements”. Since the “tags” are removed by Mk, and both M1 and Mk

follow the protocol except for the use of the tags, it follows that the cheating is not
detected. It is easy to see that the changes introduced by Mitomo and Kurosawa
[49] do not prevent the above attack.
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Attack for “An optimally robust hybrid mix network”

Jakobsson and Juels [42] presents a hybrid mix-net. We assume familiarity with
their protocol and sketch how it is broken using the attack of Section 4.2.

Suppose that there are four senders, and that the i:th sender forms a cryptotext

(c
(i)
0 , µ

(i)
0 , y

(i)
0 ) of a message mi. The adversary corrupts the last two senders and

modifies their cryptotexts as follows before they hand them to the mix-net. It

replaces y
(3)
0 by y

(3)
0 = ay

(3)
0 by and y

(4)
0 by y

(4)
0 = a−1y

(4)
0 for some a 6= 1.

The adversary corrupts M1. M1 then replaces y
(3)
0 by y

(3)
0 and y

(4)
0 by y

(4)
0

and simulates an honest M1 on the modified input. Similarly as in the original

attack this does not change the component-wise product P0 = y
(1)
0 y

(2)
0 y

(3)
0 y

(4)
0 =

y
(1)
0 y

(2)
0 y

(3)
0 y

(4)
0 . The VerifyComplaint procedure is never invoked, since all crypto-

texts are valid. Thus the cheating is not detected.
We conclude that the set of cleartext messages corresponding to the set of valid

cryptotexts in the input differs from the set of cleartext messages in the output of
the mix-net. This breaks the robustness, i.e. Definition 4(b) of [42].

4.4 Future Work

Further mix-nets may be vulnerable to the attacks. The attack of Section 4.2
is of special interest since it seems unrelated to other attacks in the literature. In
particular it should be verified for other hybrid mix-nets that they are not vulnerable
to variants of this attack.



Chapter 5

Elements in Z∗
p\Gq are Dangerous

The groupGq , of prime order q, for which the discrete logarithm problem is assumed
hard is often a subgroup of a larger group, e.g. Z∗

p for some prime p = κq + 1.
In this section we investigate how elements from Z∗

p\Gq may be used to attack
cryptographic protocols that fail to verify their inputs properly.

Our work extends the work by Lim and Lee [44]. They give a key recovery
attack based on similar observations, and propose an ad hoc counter-measure. We
give an example of a protocol where their counter-measure is not sufficient. We
also discuss some special cases of groups Gq for which the problem can be solved
easily, and outline a generic recipe, for all groups Gq , for how to efficiently counter
any malicious use of elements from Z∗

p\Gq .
The presentation given here differs from the original presentation given in [71].

Section 5.3 on special groups in which the problem is trivially solved has been
changed to take into account the results of Chapter 7. A discussion on related
results by Lim and Lee [44], and how they differ from ours has been added. Since
the original version we have realized that the protocol of Furukawa and Sako [25]
is not zero-knowledge as claimed. Thus we have eliminated those of our results
that depend on this result, but we still use their construction as an example of a
protocol for which the counter-measure of Lim and Lee does not suffice.

We thank Andy Neff for correcting an error and for helpful discussions that
improved this chapter. We also thank Jun Furukawa for helping us understand
their protocol.

5.1 Notation

In this chapter we let p = κq + 1, and q be prime numbers, such that κ is small,
e.g. bounded by a constant. We write p1, . . . , ps for the prime factors of κ, and
let Gq and Gκ be the unique subgroups of Z∗

p, of order q and κ respectively, i.e.
Z∗
p = Gq × Gκ. We also identify the elements of the field Zq with the elements of

the set [q] = {0, . . . , q − 1}, i.e. we use a fixed representative a ∈ [q] for each coset

53
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a + (q) of the ideal (q) in Z. This is mostly the case in practice. Throughout this
chapter h denotes a hash function modeled as a random oracle, but the range of h
differs depending on the section.

Each protocol we consider may be viewed as a public coin zero-knowledge proof
of knowledge for which the Fiat-Shamir heuristic is applied, and the standard form-
alization of this heuristic is the random oracle model. Neither the attacks we con-
sider, nor the counter-measures we suggest depend in principle on the random oracle
model, but the attacks we present are stronger in the random oracle model setting
due to the limited interaction between the prover and the verifier.

5.2 Two Observations

Although the observations below are fairly obvious, it seems that some important
consequences of these observations have been overlooked in the literature.

1. When Gq is used for cryptographic purposes the arithmetic of this group is
usually not implemented directly. Instead a library for arithmetics in the
group Z∗

p and a library for arithmetic in the field Zq are used. Together these
libraries provide efficient arithmetic in Gq . A side effect of this design is that
implementations normally are able to perform arithmetic for all of Z∗

p, at
least with regard to certain operations.

2. In some protocols in the literature based on arithmetic in Gq the parties do
not verify their input properly. Even if elements in the input are expected to
belong to Gq , it is only verified that they belong to Z∗

p. The reason is probably
that it is easy to verify membership in Z∗

p, but costly to verify membership
in Gq .

The two observations indicate that the adversary may be able to hand the parties
corrupt inputs from Z∗

p\Gq without detection. Depending on the particular protocol
under attack, the implications of the additional power of the adversary are more
or less severe. The adversary may use the additional power in several ways, e.g.
it may introduce elements from Z∗

p to corrupt the output of an execution, but it
may also try to extract information by using corrupt input in the interaction with
honest parties. The particular protocol under attack decides what is appropriate.

Related Work

Lim and Lee [44] present a key recovery attack based on the above observations.
The idea of the attack of Lim and Lee may be summarized as follows.

An honest party is in possession of a secret key x. Suppose that the adversary
is able to make the honest party compute and output ax for some a ∈ Z∗

p\Gq . We
have a = a′ζ, where a′ ∈ Gq and ζ ∈ Gκ. Thus the adversary may compute β =
(ax)q = ζqx. Since κ is small it is feasible to compute the discrete logarithm logζ β,
i.e. qx mod κ. This implies that the adversary is able to deduce approximately
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log2 κ bits of the secret key x. Thus the attack is dangerous in practice when κ is
relatively large, since this notably decreases the search space for the secret key.

Lim and Lee give examples of protocols vulnerable to the above attack. They
also propose that to avoid costly verifications, p may be chosen such that (p− 1)/2
only has large prime factors. The idea is that at most a single bit of the secret key
is leaked since solving discrete logarithms in any subgroup of other order than 2 is
infeasible.

Our work may be viewed as an extension of their work in several directions.
Lim and Lee give a particular key recovery attack. We instead point out that there
is a broad class of attacks based on the malicious use of elements in Z∗

p\Gq. We
also illustrate the more general problem by giving particular attacks that are not
prevented by the counter-measure proposed by Lim and Lee. Finally we discuss
efficient counter-measures that prevent any malicious use of elements of Z∗

p\Gq,
whereas they only consider how to prevent their particular key recovery attack.

5.3 Explicit Verifications and How to Avoid Them

The naïve method for removing the additional power of the adversary is that each
subprotocol independently verifies that its inputs belong to Gq . First we identify
three special types of groups for which this is a natural alternative. Then we de-
scribe a generic recipe for how to modify protocols such that no explicit verifications
are necessary.

We note that it is easy to verify that a string of bits s represents an element
a ∈ Z∗

p. In the most common representation this amounts to checking that if s is
interpreted as an integer a in base two, we have 0 < a < p. Similarly it is easy to
verify membership in Zq . The corresponding verification for a general finite field is
also easy. The verification for an elliptic curve group is slightly more complicated,
but not a problem.

Throughout this chapter we assume that all parties explicitly verify that their
inputs belong to Z∗

p or Zq as appropriate.

Special Groups

Consider Z∗
p, for p = κq+1. When κ = 2 the Legendre symbol ( ap ) equals aq mod p

(if properly interpreted). Shallit and Sorenson [62] present an efficient algorithm
to compute the Jacobi symbol. Previous versions of the work in this section erro-
neously claimed that fast checking of membership in Gq requires an exponentiation.
Andy Neff pointed out to us that this is false if κ = 2. In Section 7.6 we discuss
how membership in Gq can be determined efficiently also for κ ∈ {4, 6, 12}. For
other values of κ it is not clear how membership in Gq may be determined more
efficiently than computing a full exponentiation modulo p.

Now consider how the test for membership in Gq can be removed by forcing
Gq to equal the larger group G for which arithmetic is implemented, i.e. Gq is



56 Elements in Z∗

p
\Gq are Dangerous

no longer a proper subgroup. This is clearly not possible if G = F∗
pk for odd p

(including Z∗
p), since the order pk − 1 of F∗

pk is always an even number in this case.
It is possible for G = F∗

2p , when q = 2p − 1 is a Mersenne prime. It is not known
if there are infinitely many Mersenne primes, and there exist for practical security
parameters only two or three useful values of p, but for practical purposes this may
be an alternative.

Another alternative is to use an elliptic curve group of prime order. This al-
ternative requires that it is verified that an element is contained on the appropriate
curve.

Remark 5.1. In some implementations of arithmetic for elliptic curves the imple-
mentation does not depend on all parameters of the curve. Thus even if the curve
itself is of prime order, i.e. the group Gq is the curve itself, the implementation
may operate perfectly well on inputs from other curves. It is reasonable to expect
that this allows attacks similar to the ones presented here. We do not investigate
this further here.

The General Case

The ideas in the remainder of this chapter are not restricted to any particular type
of group, but for concreteness we continue to use Z∗

p as a generic example. To verify
that a ∈ Gq given that a ∈ Z∗

p is costly in general. The best way we are aware of
is to verify that aq = 1 by computing a full exponentiation in Z∗

p.

If a ∈ Z∗
p, we may write a = a′ζ for some a′ ∈ Gq and ζ ∈ Gκ. The following

simple observations are useful.

1. We have aκ = (a′)κζκ, and since the order of ζ divides κ by definition, we
have ζκ = 1, and aκ = (a′)κ ∈ Gq . It is also very easy to compute aκ,
since this corresponds to at most 3

2 log2 κ multiplications in Gq . We call such
exponentiations κ-exponentiations. Similarly, multiplication by κ in Zq is not
a full multiplication, and we call this a κ-multiplication.

2. Let θ ∈ Zq have the property that gcd(θ, κ) = 1 (when θ and κ are viewed as
integers). We have aθ = (a′)θζθ. Clearly (a′)θ ∈ Gq , but ζθ 6∈ Gq , since the
order of ζ divides κ and gcd(θ, κ) = 1. Thus if gcd(θ, κ) = 1, then a ∈ Z∗

p\Gq
implies that aθ ∈ Z∗

p\Gq .

The first observation gives an efficient map Z∗
p → Gq . The second observation

shows that for any a ∈ Z∗
p and r ∈ Zq there is a unique efficiently computable

θ(r) ∈ Zq such that if a 6∈ Gq then aθ(r) 6∈ Gq .

These observations may be used to modify protocols slightly such that very few
explicit verifications of membership in Gq are needed. It seems impossible to give
a single detailed description of exactly how to proceed for each individual protocol,
but it is possible to give a generic recipe.
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Recipe: Consider the elements of a protocol that are required to belong
to Gq . Find a small subset of these such that if membership in Gq is
explicitly verified for these, the protocol may be modified using the
observations above to ensure that the rest of the elements also belong
to Gq .

Depending on the protocol, different methods may be required, but the basic idea
is the same. Below we give some concrete examples of how this is done.

5.4 Application to Proofs of Knowledge of Logarithms

In this section we apply the above observations to proofs of knowledge of discrete
logarithms. For concreteness we consider a specific proof of knowledge, but the
ideas are easily adapted to the wide variety of similar proofs of knowledge in the
literature. In this section we let h : {0, 1}∗ → Zq .

A Proof of Knowledge

Let a,A, b, B ∈ Gq , where A = aγ , and B = bγ for some γ ∈ Zq known by the
prover. We review the standard non-interactive zero-knowledge proof of knowledge
in the random oracle model of a γ ∈ Zq such that logaA = logbB = γ.

1. The prover chooses δ ∈ Zq randomly and computes α = aδ, β = bδ,
θ = h(α, β,A,B, a, b), and d = γθ+δ. The proof consists of the tuple (α, β, d).

2. The verifier computes θ = h(α, β,A,B, a, b) and verifies that Aθα = ad, and
Bθβ = bd.

An equivalent variant of this that gives a shorter proof is to let (θ, d) be the proof
and let the verifier check that θ = h(ad/Aθ, bd/Bθ, A,B, a, b), but for increased
readability we use the variant described above. A proof of the following proposition
can be found in the literature, e.g. [11, 60].

Proposition 5.2. Let a, b, A,B ∈ Gq. Then the above is a zero-knowledge proof of
knowledge in the random oracle model of a γ ∈ Zq such that logaA = logbB = γ.

An Adversarial Strategy

Remember that Z∗
p = Gq ×Gκ, and let 1 6= ζ ∈ Gκ have order ξ. We consider two

scenarios:

1. A is replaced by ζA, and

2. a is replaced by ζa.
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The prover is malicious and claims that it knows a γ ∈ Zq such that logaA =
logbB = γ. The adversarial strategy is very simple. Repeatedly, i.e. at most a
polynomial number of times in log2 p, simulate the honest prover on the corrupted
joint input a, b, A,B, until it outputs a proof that is deemed valid by the verifier.
It is clear that if the prover succeeds, the verifier is convinced.

What the adversary hopes for in the scenarios is that ζθ = 1 and ζδ = ζd re-
spectively. If this happens it is easy to see that the proof produced by the simulated
prover is deemed valid.

Lemma 5.3. Each iteration succeeds with probability at least 1
ξ +O(1/q), and the

adversarial strategy fails with negligible probability.

Proof. Consider Scenario 1, where A = ζaγ . The proof (α, β, d) is deemed valid if
Aθα = ζθaγθaδ = ad. This happens if ζθ = 1, i.e. with probability 1

ξ + O(1/q).

Similarly, for Scenario 2, the proof is deemed valid if ζδ = ζd. This also happens
with probability 1

ξ +O(1/q), since δ and d are independently distributed.

From independence of the iterations follows that the strategy fails with negligible
probability.

The reader may note that if we instead consider the public coin zero-knowledge
proof of knowledge corresponding to the above protocol, the probability of success
for the adversary equals the probability of success in a single iteration in the random
oracle model setting.

We stress that we do not claim that Proposition 5.2 is false. So how is it possible
that the prover can fool the verifier with non-negligible probability? The answer is
simple. Proposition 5.2 requires that a, b, A,B ∈ Gq , and when this is not the case
the proposition is no longer guaranteed to hold.

To verify that a, b, A,B,∈ Gq before each invocation of the protocol of Section
5.4 would be costly, and many applications do ensure, or can be modified to ensure,
that a, b ∈ Gq prior to the invocation of the protocol. Thus an efficient proof of
knowledge under the weaker assumption that a, b ∈ Gq and A,B ∈ Z∗

p is useful. In
the next section we describe such a protocol.

How to Avoid Some Explicit Verifications

In this section we assume that the verifier is somehow convinced that a, b ∈ Gq ,
i.e. the calling context ensures this. We apply the generic method of Section 5.3 to
modify the proof of knowledge of Section 5.4, such that it stays a proof of knowledge
under the weaker assumption that a, b ∈ Gq and A,B ∈ Z∗

p.

Since we identified [q] = {0, . . . , q − 1} and Zq , we may interpret θ ∈ Zq as an
integer, denote by θ∗ the unique integer such that θ = θ∗

∏s
i=1 pi, where pi - θ∗ for

i = 1, . . . , s, and then view θ∗ as an element in Zq (recall that κ =
∏s
i=1 pi). The

modified proof of knowledge is defined as follows:
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1. The prover chooses δ ∈ Zq randomly and computes α = aδ, β = bδ,
θ = h(α, β,A,B, a, b), and d = γθ∗ + κδ. The proof consists of the tuple
(α, β, d).

2. The verifier first computes θ = h(α, β,A,B, a, b). Then it verifies that the
equalities Aθ

∗

ακ = ad, and Bθ
∗

βκ = bd hold.

Recall that κ is bounded by a constant. This implies that the prover and the verifier
may compute θ∗ from θ by repeated trial division with the prime factors p1, . . . , ps
of κ. It also implies that the exponentiations ακ and βκ can be performed quickly.

Proposition 5.4. Let a, b ∈ Gq, and A,B ∈ Z∗
p. Then the above is a zero-

knowledge proof of knowledge in the random oracle model of a γ ∈ Zq such that
logaA = logbB = γ.

Proof. First we prove that a proof is not valid if either A or B is in Z∗
p\Gq . We

may by the structure of Z∗
p write A = A′ζ for some A′ ∈ Gq and 1 6= ζ ∈ Gκ.

This implies that Aθ
∗

= (A′)θ
∗

ζθ
∗

. We have (A′)θ
∗ ∈ Gq , and since gcd(θ∗, κ) = 1

by construction we have 1 6= ζθ
∗ ∈ Gκ. Thus if A ∈ Z∗

p\Gq then Aθ
∗ ∈ Z∗

p\Gq.
Similarly, since α ∈ Z∗

p we may write α = α′ζ for some α′ ∈ Gq and ζ ∈ Gκ. This
implies that ακ = (α′)κζκ = (α′)κ ∈ Gq . Intuitively we may view this as if the
prover and verifier jointly generated a uniformly distributed element ακ ∈ Gq . It is
clear that ad ∈ Gq . Thus if A ∈ Z∗

p\Gq we have that Aθ
∗

ακ ∈ Z∗
p\Gq , which clearly

can not equal ad ∈ Gq in Z∗
p. The proof for B is similar.

The extractor of the above protocol is almost identical to the extractor of the
original protocol. The only difference is that when α, β ∈ Gq and θ0, θ1 ∈ Zq are
found such that the prover outputs valid proofs (α, β, d0) and (α, β, d1) given θ0
or θ1 as answer to the question (α, β,A,B, a, b) the extractor solves the equation
system {db = γθ∗b + κδ}b∈{0,1} in the unknowns γ and δ.

The simulator is almost identical to the simulator of the original protocol. Since
κ is a generator of the additive group Zq , and δ is uniformly distributed in Zq = [q],
d is uniformly distributed in Zq . Thus the simulator chooses d, θ ∈ Zq uniformly
at random and defines α = (ad/Aθ

∗

)1/κ, and β = (bd/Bθ
∗

)1/κ. It follows that the
transcript (α, β, d) is correctly distributed.

There are obvious variations of the above for proofs of knowledge involving more
complex relations between logarithms.

5.5 Application to El Gamal Based Mix-Nets

In this section we describe how our ideas can be applied to break the formal ro-
bustness of many El Gamal based mix-nets.
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The Generic Structure of El Gamal Based Mix-Nets

It is assumed that the mix-servers M1, . . . ,Mk have set up a distributed El Gamal
cryptosystem, where Mj is somehow given a random xj ∈ Zq , and yl = gxl is made

public for l = 1, . . . , k. We define a joint public key y =
∏k
j=1 yj , with corresponding

private key x =
∑k
j=1 xj . It is also assumed that xj is shared verifiably, secretly

and robustly to all Ml for l 6= j. How this is done is of no importance to us here,
but it allows the robust elimination of any mix-server identified as a cheater.

The following is a generic description of an El Gamal based mix-net (recall that
F(g,y) denotes El Gamal re-encryption).

Protocol 5.5 (Generic Mix-Net).

1. Each sender Si computes (ui, vi) = Ey(mi), and a proof of knowledge φi of
mi, and writes the pair ((ui, vi), φi) on the bulletin board. Tsionis and Yung
[65] show that ((ui, vi), φi) is a non-malleable [18] cryptotext in the random
oracle model.

2. Let L0 be the list of cryptotexts (ui, vi) for which φi is valid, and assume that
the length of L0 is N . For j = 1, . . . , k, Mj does the following:

a) It chooses Rj ∈ ZNq and πj ∈ ΣN randomly, computes the list Lj =
F(g,y)(πjLj−1, Rj), and writes Lj on the bulletin board.

b) It gives a zero-knowledge proof of knowledge of πj and Rj such that
Lj = F(g,y)(πjLj−1, Rj).

3. Each mix-server Mj computes Λj = Pxj (Lk), writes Λj on the bulletin board,
and gives a zero-knowledge proof of knowledge of xj such that yj = gxj and
Λj = Pxj (Lk).

4. Each mix-server Mj computes the component-wise product Λ =
∏k
j=1 Λj and

the list of permuted cleartexts DP (Λ, Lk).

If some mix-server Mj produces a corrupt proof of knowledge, its private key xj is
reconstructed using the secret sharing scheme and its computations are performed
openly.

An Attack for El Gamal Based Mix-Nets

Most mix-nets, not only those that fit the generic description above, end with a
joint decryption step similar to Step 3 above. In several mix-nets in the literature
the mix-servers neglect to verify that all components of Λj belong to Gq.

Let Lk = {(uk,i, vk,i)}Ni=1. Then the above implies that the strategy of Section
5.4 can be used by a corrupted mix-server to publish a list Λj = {λj,i}Ni=1 such that

λj,i = ζu
−xj

k,i , where 1 6= ζ ∈ Gκ, instead of λj,i = u
−xj

i and produce a proof of
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knowledge deemed valid by all other mix-servers. This means that mi is replaced
by ζmi in the output without detection and the robustness of the mix-net is broken.

This attack is applicable to many El Gamal based mix-nets in the literature, e.g.
[34, 40, 49, 38, 59, 52, 1, 50], but there are also mix-nets that are not vulnerable to
this attack, e.g. [15]. Although some authors may be aware of this attack, we think
that verifications should be an integral part of a protocol or it should be clearly
stated that explicit verifications must take place at every call to a subprotocol.

5.6 Application to “An Efficient Scheme for Proving a

Shuffle”

Consider the generic structure of an El Gamal based mix-net as presented in Section
5.5. The second step of the re-encryption and permutation stage states that the
active mix-server Mj should prove in zero-knowledge that it performed the re-
encryption correctly.

Furukawa and Sako [25] claim to provide exactly this. Unfortunately, their
protocol is not zero-knowledge. Apparently the authors are aware that the proof
of the zero-knowledge property is flawed [25]. In previous versions of the work of
this section we were not aware of this. Still it is an example of a more complicated
protocol that allows an adversarial strategy similar to the one in Section 5.4.

Given Lj−1 and Lj the protocol is meant to prove knowledge of Rj and πj such
that F(g,y)(πjLj−1, Rj). We have a closer look at their proof. Write

Lj−1 = {(ui, vi)}, Lj = {(u′i, v′i)}, and π = πj .

We also denote the prover Mj by P and any verifier, e.g. Ml for l 6= j, by V . In
this section we denote by h a random oracle h : {0, 1}∗ → ZNq . Following [25] we
define the permutation matrix A = (Aij) by:

Aij =

{

1 if π(i) = j
0 otherwise

,

and let g̃, g̃1, . . . , g̃N ∈ Gq be a set of system-wide uniformly and independently gen-
erated random elements, i.e. no party knows any non-trivial relation among these
elements. The g̃, g̃i elements are an integral part of the Furukawa-Sako protocol.

The protocol is very complicated. Readers that are not familiar with the pro-
tocol can safely ignore the details of how the protocol works and consider the overall
structure. On the other hand we choose to follow the notation of Furukawa and Sako
to allow readers that are familiar with the construction to recognize the details.

The Furukawa-Sako Construction

The list g, y, g̃, {g̃i}, {(ui, vi)}, {(u′i, v′i)} is the joint input to the prover P and the
verifier V , and {ri}, π is the additional input to P . π ∈ ΣN .
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Protocol 5.6 (Furukawa-Sako).

1. P chooses σ, ρ, τ, ϑ, ϑi, λ, λi ∈ Zq uniformly and independently at random.

2. P computes:

t = gτ , ν = gρ, ω = gσ, µ = gλ, µi = gλi

g̃′i = g̃ri

N
∏

j=1

g̃
Aji

j , g̃′ = g̃ϑ
N
∏

j=1

g̃
ϑj

j , u′ = gϑ
N
∏

j=1

u
ϑj

j , v′ = yϑ
N
∏

j=1

v
ϑj

j

ν̇i = g
PN

j=1 3ϑ2
jAji+ρri , ν̇ = g

PN
j=1 3ϑ3

j+τλ+ρϑ,

ω̇i = g
PN

j=1 2ϑjAji+σri , ω̇ = g
PN

j=1 ϑ
2
j+σϑ, ti = g

PN
j=1 3ϑjAji+τλi

3. P computes a challenge:

(c1, . . . , cN ) = h
(

t, ν, ω, µ, {µi}, {g̃′i}, g̃′, u′, v′, {ti}, {ν̇i}, ν̇, {ω̇i}, ω̇,
g, y, g̃, {g̃i}, {(ui, vi)}, {(u′i, v′i)}

)

.

4. P computes s = ϑ+
∑N

j=1 rjcj , si = ϑi+
∑N

j=1 Aijcj , and λ′ = λ+
∑N

j=1 λjc
2
j .

The proof consists of the following tuple:

(t, ν, ω, µ, {µi}, {g̃′i}, g̃′, u′, v′, {ti}, {ν̇i}, ν̇, {ω̇i}, ω̇, s, {si}, λ′) .

5. V computes

(c1, . . . , cN ) = h
(

t, ν, ω, µ, {µi}, {g̃′i}, g̃′, u′, v′, {ti}, {ν̇i}, ν̇, {ω̇i}, ω̇,
g, y, g̃, {g̃i}, {(ui, vi)}, {(u′i, v′i)}

)

,

and verifies that:

gs
N
∏

j=1

u
sj

j = u′
N
∏

j=1

u
′cj

j , ys
N
∏

j=1

v
sj

j = v′
N
∏

j=1

v
′cj

j , (5.1)

g̃s
N
∏

j=1

g̃
sj

j = g̃′
N
∏

j=1

g̃
′cj

j , gλ
′

= µ

N
∏

j=1

µ
c2j
j ,

ωsg
PN

j=1(s2j−c2j ) = ω̇

N
∏

j=1

ω̇
cj

j , and tλ
′

vsg
PN

j=1(s3j−c3j ) = ν̇

N
∏

j=1

ν̇
cj

j t
c2j
j .

Furukawa and Sako [25], present an interactive protocol corresponding to the
above, but their intention [27] is that the protocol is made non-interactive using
the Fiat-Shamir heuristic.
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An Adversarial Strategy

In this section we describe an adversarial strategy for Protocol 5.6 above. We stress
that we do not break the protocol, i.e. our adversarial strategy does not exploit the
fact that the protocol is not zero-knowledge. Similarly as in Section 5.4 we instead
exploit how this proof of knowledge may be applied.

Let ζ be an element in Gκ of order ξ, and let {(ui, vi)}, and {(u′i, v′i)} be as
defined in the previous section. We consider three scenarios, where l ∈ [N ]

1. v′π−1(l) is replaced by ζιv′π−1(l) for some ι,

2. vl is replaced by ζvl, and

3. a combination of 1 and 2.

In each scenario the strategy convinces an honest verifier that the prover knows
ri ∈ Zq and a permutation π such that {(u′i, v′i)} = {(griuπ−1(i), g

rivπ−1(i))}, despite
that this is not even possible in Scenario 1 and 2.

The strategy is very simple. Repeatedly, i.e. at most a polynomial number of
times in log2 p, run the first 4 steps of the Furukawa-Sako protocol of Section 5.6
on the corrupted input g, y, {g̃i}, {(ui, vi)}, {(u′i, v′i)}, {ri}, π until it gives a proof
that is deemed valid by the verifier. Then output the proof. It may seem that the
strategy always succeeds in Scenario 3, but for similar reasons as in Section 5.4 this
is not true.

Lemma 5.7. Let a and b be uniformly distributed in [q], and write c = a+ b and
c = c′ +mcq, where mc ∈ {0, 1} and 0 ≤ c′ < q. Then we have
Pr[c′ = c (mod q)] = 1

2 + 1
2q .

Proof. If c < q we have c′ = c = a+b, and there are q2+q
2 such pairs (a, b). Otherwise

we have c = c′ + q 6= c′ (mod ξ), since q 6= 0 (mod ξ). Thus, the probability is
1
2 + 1

2q .

Lemma 5.8. Each iteration in Scenario 1 and Scenario 2 succeeds with probability
at least 1

ξ + O(1/q). Each iteration in Scenario 3 succeeds with probability at least
1
2 . In all scenarios the adversarial strategy fails with negligible probability.

Proof. Consider Scenario 1. The only equation involving vπ−1(l) in the verifica-
tion procedure is Equation (5.1). Thus it suffices to consider this equation. By
construction we may rewrite Equation (5.1) as

ys
N
∏

j=1

v
sj

j = ζcπ−1(l)v′
N
∏

j=1

v
′cj

j .

Thus, if ζcπ−1(l) = 1, Equation (5.1) holds, and this happens at least with probab-
ility 1

ξ +O(1/q). The analysis for Scenario 2 is similar.
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For Scenario 3 we note that by construction we may rewrite Equation (5.1) as

ζslys
N
∏

j=1

v
sj

j = ζcπ−1(l)ζϑlv′
N
∏

j=1

v
′cj

j .

Thus, if ζsl = ζcπ−1(l)ζϑl , Equation (5.1) holds. This event occurs exactly when sl =
cπ−1(l) +ϑl mod ξ, and by definition there is an m such that sl+mq = cπ−1(l) +ϑl.

We apply lemma 5.7 to conclude that the probability of this event is at least 1
2 .

From independence follows that the adversarial strategy fails with negligible
probability.

Numerous variants of the the above three scenarios may be considered, e.g.
several elements may be multiplied by ζ, or different ζi ∈ Gκ may be used for
different elements.

An Attack for the Generic Mix-Net Using Furukawa-Sako Proofs

In this section we describe an attack for the mix-net defined in Section 5.5, where the
the Furukawa-Sako construction is used to prove the correctness of a re-encryption.
The attack is similar to the attack in Section 4.2 of Chapter 4.

The goal of the adversary is to break the privacy of any particular sender Sz.
Let 1 6= ζ ∈ Gκ. The adversary corrupts the first and last mix-servers M1 and

Mk, and as many other arbitrarily chosen mix-servers as possible. The execution
then proceeds as follows.

1. M1 simulates the first step of an honest mix-server, but it does not write L1

on the bulletin board. Instead it forms the list:

L′
1 = {(u1,1, v1,1), . . . , (u1,π1(z), ζv1,π1(z)), . . . , (u1,N , v1,N )}

and writes L′
1 on the bulletin board, i.e. it multiplies the second component

of the El Gamal pair of Sz by ζ. Then it uses the adversarial strategy of
Section 5.6 on the corrupt input g, y, {g̃i}, L0, L

′
1, {r1,i}, π1 to construct a

proof deemed valid.

2. Each honest mix-server executes its re-encryption and permutation step hon-
estly.

3. Each corrupt mix-server except M1 and Mk first simulates the first step of
an honest mix-server. Then it uses the adversarial strategy of Section 5.6 to
construct a proof that is deemed valid.

4. Mk simulates the first step of an honest mix-server, but it does not write Lk
on the bulletin board. Instead it finds an l such that vqk,l 6= 1. Finally it forms
the corrupted list

L′
k = {(uk,1, vk,1), . . . , (uk,l, ζ−1vk,l), . . . , (uk,N , vk,N )}
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and writes L′
k on the bulletin board. Then it uses the adversarial strategy of

Section 5.6 on the corrupt input g, y, {g̃i}, Lk−1, L
′
k, {rk,i}, πk to construct a

proof deemed valid by any verifier.

5. All mix-servers, including M1 and Mk, jointly decrypt the El Gamal pairs
of the list L′

k, and publish the result {m′
1, . . . ,m

′
N}, i.e. a permutation of

{m1, . . . ,mN}.

6. The adversary concludes that Sz was the sender of m′
l.

Proposition 5.9. Let k′ be the number of honest mix-servers. Then the attack
succeeds with probability at least 2−k′ .

Proof. We must show that the attack is not detected, and that m′
l indeed is the

message sent by Sz with high probability.
From Lemma 5.8 follows that the proofs of knowledge produced by the corrupt

mix-servers, including M1 and Mk, are deemed valid by any verifier with over-
whelming probability. Honest mix-servers on the other hand essentially computes
a single iteration of the adversarial strategy in Scenario 3 defined in Section 5.6.
From Lemma 5.8 follows that the proof produced by an honest mix-server is valid
with probability at least 1

2 . From independence follows that the attack is detected

with probability at most 2−k
′

.
Since all mix-servers except M1 and Mk behave honestly in the first step, there

is a unique lj ∈ {1, . . . , N} for each j = 1, . . . , k such that vj,lj 6∈ Gq , and by

construction we have l = π−1
1 (z). Thus the adversary identifies the message m′

l

sent by Sz correctly.

The proposition says that we can break the privacy of Sz with probability 2−k
′

.
In many applications k, and thereby k′, is relatively small. Thus the attack is quite
practical in terms of success probability. On the other hand, if the adversarial
strategy fails some honest mix-server produces a corrupt proof, and is accused of
cheating. It is likely that the honest mix-server accused of cheating performs an
investigation to find out how it was “framed”, and discovers the fact that its inputs
are not in Gq . If this is done the corrupted mix-servers are eventually identified.

Furukawa et al. do perform verifications of inputs in later work [26], and the
protocol described there is not vulnerable to the above attack.

In earlier versions of this work we showed that our recipe of Section 5.3 can be
used to modify Protocol 5.6 such that it need not verify its input, but since this pro-
tocol is not zero-knowledge as claimed we omit this here. Instead we show how the
generic mix-net, Protocol 5.5, can be modified to avoid most explicit verifications.

5.7 A Generic Mix-Net that Avoids Verifications

The attack of Section 5.6 exploits that the mix-servers do not verify that all com-
ponents of their input are members of Gq in Protocol 5.5 and Protocol 5.6. Since
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it is costly to verify all inputs explicitly in every step we would like to avoid it. We
assume that each mix-server explicitly verifies that g, y ∈ Gq .

Given a list Lj of elements from Gq we denote by Lκj the element-wise expo-
nentiation with κ. Similarly, if Rj is a list of elements from Zq we denote by κRj
the element-wise product with κ. A modified generic mix-net that avoids explicit
verifications follows below.

Protocol 5.10 (Generic Mix-Net).

1. Each sender Si computes (ui, vi) = Ey(mi), and a proof of knowledge φi of
mi, and writes the pair ((ui, vi), φi) on the bulletin board.

2. Let L0 be the list of cryptotexts (ui, vi) for which φi is valid, and assume that
the length of L0 is N . For j = 1, . . . , k, Mj does the following:

a) It chooses Rj ∈ ZNq and πj ∈ ΣN randomly, computes the list Lj =
F(g,y)(πjL

κ
j−1, Rj), and writes Lj on the bulletin board.

b) It gives a zero-knowledge proof of knowledge of πj and κRj such that

Lκj = F(g,y)(πjL
κ2

j−1, κRj).

3. Each mix-server Mj computes Λj = Pxj (L
κ
k), and writes Λj on the bulletin

board, and gives a zero-knowledge proof of knowledge of xj such that yj = gxj

and Λj = Pxj (L
κ
k).

4. Each mix-server Mj computes the component-wise product Λ =
∏k
j=1 Λj and

the list of permuted cleartexts DP (Λκ, Lκ
2

k )1/κ
k+2

.

If some mix-server Mj produces a corrupt proof of knowledge, its private key xj is
reconstructed using the secret sharing scheme and its computations are performed
openly.

Each mix-server computes some additional κ-exponentiations to ensure that its
inputs belongs to Gq , but since κ is small this can be done efficiently. Thus the
main additional cost is the N full exponentiations required in the final step. This

cost can be moved to the sender by requiring that a sender encrypts m
1/κk+2

i to
send the message mi.

5.8 Further Applications

We expect that natural adaptations of the adversarial strategy for the proofs of
knowledge of logarithms can be used to break other protocols. In particular it seems
possible to give a purely theoretical attack for the mix-net of Neff [50] similar in
spirit to the attack of Section 5.6.

On the other hand we also expect that the methods we outline in Section 5.3
can be used to counter such attacks efficiently.



Chapter 6

On the Malleability of the El Gamal

Cryptosystem

The homomorphic property of the El Gamal cryptosystem is useful in the construc-
tion of efficient protocols. It is believed that only a small class of transformations of
cryptotexts are feasible to compute. In the program of showing that these are the
only computable transformations we rule out a large set of natural transformations.

Several efficient cryptographic protocols are based on the El Gamal cryptosys-
tem. The reasons for this are mainly the algebraic simplicity of the idea, and the
homomorphic property it possesses. The latter property makes the El Gamal sys-
tem malleable, i.e. given c = E(m) it is feasible to compute c′ = E(f(m)), for some
non-trivial function f .

It is commonly conjectured that the El Gamal cryptosystem is malleable only for
a small class of simple functions, and this is sometimes used implicitly in arguments
about the security of protocols. Thus it is an important problem to characterize the
malleability of the El Gamal cryptosystem. We take a first step in this direction.

We formalize the problem, and discuss why restrictions of the problem are neces-
sary. Then we show that the only transformations that can be computed perfectly
are those of a well known particularly simple type. Furthermore we give two ex-
amples that show that possible future results are not as strong as we may think.
Finally we rule out a large set of natural transformations from being computable.

6.1 The Problem

For any messagem ∈ Gq there exists a unique element me ∈ Zq such that m = gme .
Thus any El Gamal encryption (gr, yrm) can be written (gr, yrgme). The latter
notation, is sometimes more natural and we use both conventions.

There is a small and well know class of transformations of cryptotexts, used in
many protocols, that we summarize in an observation.
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Observation 6.1. Set φ(r) = b1r + b0 and ψ(me) = b1me + h0. Then the map:

(gr, yrgme) 7→ (gφ(r), yφ(r)gψ(me))

is feasible to compute.

Some authors use the term homomorphic cryptosystem, since these transform-
ations can be formulated as group homomorphisms.

It is natural to ask what other transformations can or can not be computed
“under encryption”. For simplicity we use the non-uniform computational model,
i.e. feasible transformations are transformations that can be computed by a de-
terministic non-uniform polynomial size circuit family.

Given y = gx, each pair (u, v) ∈ Gq×Gq can be uniquely represented on the form
(u, v) = (gr, yrgme). This implies that for each function f : Gq × Gq → Gq ×Gq ,
and y ∈ Gq , there are unique functions φy , ψy : Zq × Zq → Zq , such that:

f(u, v) = f(gr, yrgme) = (gφy(r,me), yφy(r,me)gψy(r,me)) .

Most general functions f are not what we intuitively would consider “transforma-
tions computed under encryption”, and it seems difficult to prove anything useful
if we consider any function f a transformation of cryptotexts.

Our approach is therefore to require that a transformation is given by a fixed
pair (φ, ψ) of deterministic functions φ, ψ : Zq × Zq → Zq and parameterized by y,
i.e. we define a map (y, φ, ψ) : Gq ×Gq → Gq ×Gq for each y by the following:

(y, φ, ψ) : (gr, yrgme) 7→ (gφ(r,me), yφ(r,me)gψ(r,me)) .

Such transformations act uniformly for all y, i.e. given (ui, vi) = (gr, yri g
me) for

i = 1, 2 we have (yi, φ, ψ)(ui, vi) = (gφ(r,me), y
φ(r,me)
i gψ(r,me)).

Our method can not be applied to general uniform transformations, and we are
forced to further restrict the problem. We require that φ depends only on r, and
that ψ depends only on me. Thus we study the special problem posed as follows:

Problem 6.2. Given φ, ψ : Zq → Zq , let (y, φ, ψ)(gr, yrgme) = (gφ(r), yφ(r)gψ(me)).
For which φ and ψ is the transformation (y, φ, ψ) feasible to compute?

6.2 Our Results

We exhibit two propositions. The first shows that only transformations of the type
described in Observation 6.1 can be computed perfectly. Then we give two examples
that show that strong results can not be hoped for. Finally we give a proposition,
which may have some practical significance. It identifies a set of functions ψ such
that the map (y, φ, ψ) is hard to compute for every φ.
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Some Preparation

The hypothesis of the propositions differ only slightly depending on which case is
considered. To avoid duplication of the hypothesis, and for increased clarity we
give it here. Let Gq = {Gqn} be a family of groups such that |Gqn | = qn, where qn
is a prime number such that dlog2 qne = n, and assume that DDH holds in Gq . Let
g = {gn} be a generator of Gq .

Definition 6.3.

1. Let X = {Xn} be a family of random variables, where Xn is u.i.d. in Zqn ,
and let Y = {Yn}, where Yn = gXn .

2. Let R = {Rn} be a family of random variables, where Rn is u.i.d. in Zqn .

3. Let M = {Mn} be a family of random variables on Gqn , and define the
induced family (U, V ) = {(Un, Vn)} of random variables by setting (Un, Vn) =
EYn(Mn, Rn).

4. Let φ = {φn} and ψ = {ψn} be families of functions over Zq , i.e. φn, ψn :
Zqn → Zqn . Define for each family y = {yn} ∈ Gq a family of maps (y, φ, ψ) =
{(yn, φn, ψn)}, where:

(yn, φn, ψn) : Gqn ×Gqn → Gqn ×Gqn

(yn, φn, ψn) : (grn, y
r
ng

me
n ) 7→ (gφn(r)

n , yφn(r)
n gψn(me)

n ) .

Definitions of M , φ, and ψ are given separately in each proposition. The fol-
lowing definition, first given by Goldwasser and Micali [31] define what should be
considered randomly guessing the output of a knowledge function.

Definition 6.4. Let M = {Mn} be a family of random variables, where the out-
comes of Mn are in Gqn , and let f = {fn} be a family of functions fn : Gqn → Gqn .
We define:

pn(f,M) = max
v∈Gqn

Pr[Mn ∈ f−1
n (v)] .

The probability pn(f,M) is the maximum probability of any algorithm to guess
fn(Mn) using no information on the outcome of Mn except its distribution.

Since El Gamal is semantically secure [31, 65] we have that under the DDH-
assumption with arbitrary f = {fn}, that ∀A ∈ PC, ∀c, ∃n0 such that for n > n0

it holds that:

Pr[A(Y, (U, V )) = f(M)] < pn(f,M) +
1

nc
.
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The Perfect Case

The following proposition says that if we require a circuit family to succeed with
probability 1 in computing the map (y, φ, ψ) the only possible maps are those where
ψ is linear.

Proposition 6.5. Let Gq, X, Y , M , (U, V ), φ and ψ be as in Definition 6.3, let M
be arbitrarily distributed in Gq, and assume that ψn(x) is non-linear for infinitely
many n.

Then ∀A ∈ PC, ∃n0 such that ∀n > n0:

Pr[A(Y, (U, V )) = (Y, φ, ψ)(U, V )] < 1 .

Proof. The proof is by contradiction. Assume that A, φ, and ψ as above show the
proposition false for indices n in some infinite index set N . Then ψ1(x) = ψ(1+x)−
ψ(x) is not constant. Let gm0 and gm1 be two messages such that ψ1(m0) 6= ψ1(m1).
Let A′ be the circuit family that given a public key y and an encryption (u, v) of
the message gmb computes (u0, v0) = A(y, (u, v)) and (u0, v1) = A(y, (u, vg)), and
returns b when v1/v0 = gψ1(mb).

Clearly A′ breaks the polynomial indistinguishability, and thus the semantic
security of the El Gamal cryptosystem.

Two Examples of Possible Approximations

A reasonable goal is to bound the probability for any adversary to compute (y, φ, ψ)
for any choice of φ.

We now present two examples that show that we should not hope for general
strong results. Both examples assume that Gq , X , Y , M , (U, V ), φ and ψ are as
in Definition 6.3, and that M is u.i.d. .

Example 6.6. Let ψ be arbitrary but fixed and let w maximize Pr[M ∈ ψ−1(w)].
Let A be the circuit family that computes r′ = h(u), where h : Gq → Zq , and then

outputs (gr
′

, yr
′

gw).

Clearly Pr[A(Y, (U, V )) = (Y, φ, ψ)(U, V )] = pn(ψ,M), where φ(r) = h(gr).
The example shows that for every ψ there is a non-trivial φ such that the map
(y, φ, ψ) can be computed with probability at least pn(ψ,M).

Thus the best general result under Definition 6.3 we could hope for at this point
is to show that ∀A ∈ PC, ∀c > 0, ∃n0 > 0, such that for n > n0:

Pr[A(Y, (U, V )) = (Y, φ, ψ)(U, V )] < pn(ψ,M) +
1

nc
,

but no such result exists as the next example shows.

Example 6.7. Let c > 0 be fixed and define Bn = {x ∈ Zqn : 0 ≤ x ≤ qn

nc },
B = {Bn}. Define ψn(x) = x + 1 if x ∈ Bn, and ψn(x) = x2 otherwise, and set
φ = id. Let A be the circuit family that assumes that the input (u, v) = (gr, yrgme)
satisfies me ∈ B, and simply outputs (u, vg).
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We have |ψ−1(x)| ≤ 3 for all x ∈ Zq , which implies pn(ψ,M) ≤ 3
qn

, but still

A computes (y, φ, ψ) with probability 1/nc for a fixed c. Thus the example shows
that we can sometimes compute a transformation with much greater probability
than pn(ψ,M), i.e. the probability of guessing ψ(me).

Intuitively the problem seems to be that our ability to compute transformations
from the class described in Observation 6.1 changes what should be considered
guessing.

A Class of Hard Transformations

We now exhibit a class of ψ that are hard in the sense that the map (y, φ, ψ) is
hard to compute for all φ.

The idea of Proposition 6.11 below is that given input (y, (u, v)) and an oracle A
for computing a transformation (y, φ, ψ) we can ask A several different but related
questions. If A answers our questions correctly we are able to compute some derived
knowledge function f of the cleartext.

Let ψ = {ψn} be a family of functions, ψn : Zqn → Zqn , and let s ∈ Zq . Denote
by ψs the function given by ψs(x) = ψ(x + s) − ψ(x). We prove below that a ψ
that satisfies the following definition has the desired property.

Definition 6.8. Let ψ = {ψn} be a family of functions, ψn : Zqn → Zqn , let
M = gMe , where Me is a random variable in Zq , and let S be u.i.d. in Zq .

If ∀c > 0, ∃n0 > 0 such that ∀n > n0 we have:

Pr[pn(ψS ,M) <
1

nc
] > 1 − 1

nc
,

then we say that ψ is strongly non-linear with respect to M .

The following definition may seem more natural to some readers.

Definition 6.9. Let ψ = {ψn} be a family of functions, ψn : Zqn → Zqn , let Me

and S be random variables in Zq , where S is u.i.d. .
If ∀a ∈ Zq , ∀c > 0, ∃n0 such that ∀n > n0 we have:

Pr[ψ(Me + S) − ψ(Me) = ψ(S) + a] <
1

nc
,

then we say that ψ is strongly non-linear (variant) with respect to Me.

Unfortunately it may capture a larger class than Definition 6.8 as Lemma 6.10
below shows, and we can not prove Proposition 6.11 for all ψ satisfying this defini-
tion.

The essential difference between the two definitions is that in the second a is
fixed, and does not depend on s, whereas in the first pn(ψs,M) is maximized for
each s independently. Note that if we fix S = s in the second definition there is
always an a such that the resulting conditioned probability equals pn(ψs,M), but
in general a depends on s.
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Lemma 6.10. Strongly non-linear implies strongly non-linear (variant).

Proof. Set J(S) = pn(ψS ,M). Then ∀c > 0, ∃n0 such that ∀n > n0:

Pr[ψ(Me + S) − ψ(Me) = ψ(S) + a]

=
∑

s∈Zq

Pr[S = s] Pr[ψ(Me + s) − ψ(Me) = ψ(s) + a]

≤
∑

s∈Zq

Pr[S = s]J(s) = E[J(S)]

= Pr[J(S) <
1

nc
]E[J(S)|J(S) <

1

nc
] + Pr[J(S) ≥ 1

nc
]E[J(S)|J(S) ≥ 1

nc
]

< 1 · 1

nc
+

1

nc
· 1 =

2

nc
.

The Proposition

Informally the proposition below says that if ψ is strongly non-linear, then (y, φ, ψ)
is hard to compute for all φ.

Proposition 6.11. Let Gq, X, Y , M , (U, V ), φ and ψ be as in Definition 6.3, let
M be u.i.d. in Gq, and assume that ψ is strongly non-linear with respect to M .

Then ∀A ∈ PC, ∀c > 0, ∃n0 > 0, such that for n > n0:

Pr[A(Y, (U, V )) = (Y, φ, ψ)(U, V )] <
1

nc
.

Proof. The proof is by contradiction. Assume A, c > 0, φ, and ψ, as above shows
the proposition false for indices n in some infinite index set N . Define a function
fs for each s ∈ Zq by fs(g

me) = gψs(me).
We describe a probabilistic circuit family A′ that uses A to compute the know-

ledge function fs with notable probability. This breaks the semantic security of the
El Gamal cryptosystem, if pn(fs,M) is negligible. Given input (y, (u, v)), where
(u, v) = (gr, yrm) ∈ Gq ×Gq , A

′ does the following:

1. It randomly chooses s ∈ Zq .

2. It uses A to compute (u0, v0) = A(y, (u, v)) and (u1, v1) = A(y, (u, vgs))

3. It returns v1
v0

.

Let S = {Sn} be a u.i.d. random variable over Zq , and let H0 denote the event
that A(Y, (U, V )) = (Y, φ, ψ)(U, V ), and H1 denote the event that A(Y, (U, V gS)) =
(Y, φ, ψ)(U, V gS).

If the events H0 and H1 take place we have v1
v0

= fS(M) by definition of the
algorithm.
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We see that ((U, V )|R = r) and ((U, V gS)|R = r) are independent variables.
Since R is u.i.d. we have:

Pr[H0 ∧H1] =
∑

r∈Zq

Pr[R = r] Pr[H0 ∧H1|R = r]

=
∑

r∈Zq

Pr[R = r] Pr[H0|R = r]2

≥





∑

r∈Zq

Pr[R = r] Pr[H0|R = r]





2

= Pr[H0]
2 ≥ 1

n2c

where the inequality is implied by the convexity of the function h(x) = x2 and
Jensen’s Inequality.

We are only interested in outcomes s of S such that pn(ψs,M) = pn(fs,M) is
negligible (in particular s 6= 0). Let W denote the event that S has this property.
By assumption the probability of W is negligible and we have:

Pr[W ∧ A′(Y, (U, V )) = fS(M)] ≥ 1

2n2c
.

The inequality implies that there exists for each n ∈ N an outcome sn of Sn such
that the inequality still holds. Let A′′ = {A′′

n} be the circuit family that is identical
to A′ except that A′′

n uses this fixed sn instead of choosing it randomly. We set
s = {sn} and fs = {fsn}, and conclude that A′′ has the property:

Pr[A′′(Y, (U, V )) = fs(M)] ≥ 1

2n2c
,

for n ∈ N . Semantic security of the El Gamal cryptosystem implies that ∀c′ > 0,
∃n0 such that for n > n0 holds:

Pr[A′′(Y, (U, V )) = fs(M)] < pn(fs,M) +
1

nc′
.

Since fs was constructed such that pn(fs,M) is negligible we have reached a con-
tradiction.

The proposition can be slightly generalized by considering distributions of the
messages that are only almost uniform on its support when the support is sufficiently
large. To keep this note simple we omit this analysis.

We proceed by defining a special subclass of the strongly non-linear functions
that is particularly simple, and may be important in applications.
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Definition 6.12. Let ψ = {ψn} be a family of functions, ψn : Zqn → Zqn . We say
that ψ has low degree if ∀c > 0, ∃n0 such that for n > n0 it holds that:

degψn
qn

<
1

nc
.

A simple example of a family ψ = {ψn} that satisfies the above definition is
where ψn(x) = p(x) for some fixed polynomial p(x) for all n.

We have the following corollary almost immediately from the proposition.

Corollary 6.13. Let Gq, X, Y , M , (U, V ), φ and ψ be as in Definition 6.3, let
M be u.i.d. in Gq, and assume that ψ has low degree and that degψn ≤ 1 for at
most finitely many n.

Then ∀A ∈ PC, ∀c > 0, ∃n0 > 0, such that for n > n0:

Pr[A(Y, (U, V )) = (Y, φ, ψ)(U, V )] <
1

nc
.

Proof. It suffices to show that if ψ has low degree and degψn ≤ 1 for finitely
many n then ψ is strongly non-linear. For s 6= 0 and large enough n we have
degψs > 0 and degψs = degψ − 1. This implies that when s 6= 0 we have

pn(ψs,M) =
max |ψ−1

s (v)|
qn

≤ max |ψ−1(v)|
qn

≤ degψ
qn

, which is negligible since ψ has low
degree.

6.3 Future Work

It seems impossible to prove anything useful about general malleability of the El
Gamal cryptosystem as discussed in Section 6.1. Instead we have formalized what
we consider a reasonably restricted problem.

Under these restrictions we have exhibited a class of transformations that are
not feasible to compute, when the message distribution is uniform. We have also
given examples that indicate that the best possible results are not as strong as one
may think.

It is an open problem to characterize further classes of transformations. A
natural generalization is to consider lists of cryptotexts and consider the difficulty
of computing transformations on such lists.

Another interesting line of research is to investigate the malleability properties
of El Gamal in concrete groups, e.g. the multiplicative group of integers modulo a
prime, or an elliptic curve group.



Chapter 7

Algorithms for the Cubic and

Quartic Residue Characters

The problem of quadratic residuosity can be described as follows. Given a prime
p and an integer a determine if there exists a solution to the equation x2 = a
(mod p), i.e. determine if a is a square in Z∗

p. The Legendre symbol (ap ) is defined

to be equal to 0 if p | a, equal to 1 if there is a solution to the equation, and equal
to -1 if there is no solution to the equation. For a non-prime n with decomposition
n = p1 · . . . ·ps into primes the Jacobi symbol ( an ) is defined in terms of the Legendre
symbol by ( an ) =

∏s
j=1(

a
pi

). In contrast to the Legendre symbol, the Jacobi symbol

may equal one without there being a solution to x2 = a (mod n).

Shallit and Sorenson [62] has devised an efficient algorithm for computing the
Jacobi symbol. Their algorithm runs in quadratic time in the bit size of the inputs,
and is based on the same idea as the binary algorithm for the greatest common
divisor introduced by Stein [64].

In this chapter we consider the problem of computing the cubic and quartic
residue characters in the ring Z[ω], for a primitive third root of unity ω, and in the
ring Z[i] respectively. These problems are natural generalizations of the problem of
computing the Jacobi symbol. We show that Shallit and Sorenson’s algorithm can
be generalized to handle this case.

Our motivation to investigate this problem stems from the results of Chapter 5,
where we illustrate why an efficient test for membership in a subgroup Gq of prime
order q of Z∗

p for some prime p = κq + 1 is useful. Andy Neff pointed us to the
efficient algorithm for computing the Jacobi symbol.

Damgård and Skjovbjerg Frandsen [14] have independently of us described al-
gorithms similar to the algorithms in this chapter. However, their approach to the
key problem is different from ours. Although both our algorithm and the algorithm
of Damgård and Skjovbjerg Frandsen run in quadratic time in the input length, the
constant factor of their algorithm seems smaller. Below we compare their approach
to ours and show how both ideas may be combined.
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This chapter is joint work with Anders Holst. The author of this thesis con-
structed the algorithms using the standard norm, but the special norms presented
within were discovered during discussions with Anders Holst.

7.1 Definitions and Useful Results

We need a number of results on the rings Z[ω] and Z[i]. Most of these results are
at least a hundred years old and can be found in several textbooks. We follow
Chapters 1 and 9 of the classical text of Ireland and Rosen [37], and take the
liberty to generalize the notion of “primary” and some of the results as outlined in
the exercises of Chapter 9 of [37]. The only result we need that is not proven here
or given as an exercise in [37] is Theorem 7.20, “Supplement to the Biquadratic
Reciprocity Law”. One possible source is an old paper in facsimile, Dintzl [17],
online at ERAM [20].

It can be shown that both Z[ω] and Z[i] are Euclidean domains, and that every
Euclidean domain is a Principal Ideal Domain (PID). In PID:s the notions of ir-
reducible and prime elements coincide. Thus the definitions below of prime (or
irreducible) elements makes sense.

Definitions and Results on Z[ω]

Define the ring D = Z[ω], where ω = − 1
2 +

√
−3
2 . The norm N is defined by

Nα = αα = a2 − ab+ b2, for an element α = a+ bω in D.

Proposition 7.1. α ∈ D is a unit iff Nα = 1, and the units in D are 1, −1, ω,
ω2, −ω, and −ω2.

Definition 7.2. A non-unit α ∈ D is prime (or irreducible) if α 6= 0 and α | βγ
implies that α | β or α | γ.

Proposition 7.3. 1 − ω is prime and 3 = −ω2(1 − ω)2.

Definition 7.4 (Primary). α ∈ D is primary if α = 2 (mod 3).

Lemma 7.5. Let α = a + bω ∈ D. Then we have that ωα = −b + (a − b)ω,
ω2α = (b−a)−aω, −α = −a− bω, −ωα = b+(b−a)ω, and −ω2α = (a− b)+aω.

Proof. Follows from the elementary properties of complex numbers.

Proposition 7.6. Let α ∈ D be a non-unit, where (1 − ω) - α. Then there exists
a unit γ such that γα is primary.

Proof. Suppose that the proposition is false and that α = a + bω (mod 3) is a
counter-example. We must have α 6= 0 (mod 3) since (1 − ω) | 3 and (1 − ω) - α.

Furthermore, since 2 + ω = (1 − ω)(1 + ω) and 1 + 2ω = −1(2 + ω) (mod 3)
we have (1 − ω) | (2 + ω) and (1 − ω) | (1 + 2ω) which implies that we must have
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α 6= 1 + 2ω (mod 3) and α 6= 2 + ω (mod 3). We must have b 6= 0 (mod 3) since
otherwise a ∈ {1, 2} (mod 3), i.e. either α or −α would be primary. Similarly we
must have a 6= 0 since otherwise ω2α ∈ {1, 2} (mod 3), i.e either ω2α or −ω2α
would be primary. Finally we must have a 6= b (mod 3) since otherwise ωα =
aω − b(1 + ω) = −b ∈ {1, 2} (mod 3), i.e. either ωα or −ωα would be primary.

Definition 7.7 (Cubic Residue Character). Let π ∈ D be prime. If Nπ 6= 3
the cubic residue character of α modulo π is defined by

1. χπ(α) = 0 if π | α.

2. χπ(α) = α(Nπ−1)/3 (mod π), with χπ(α) equal to 1, ω, or ω2.

For a non-prime β the cubic residue character is defined χβ(α) =
∏t
l=1 χπl

(α),

where β = ±∏t
l=1 πt is the prime decomposition of β.

Note that χπ(α) is not the residue class modulo π to which α(Nπ−1)/3 belongs.
It is the unique representative of this residue class from the set of complex numbers
{1, ω, ω2}.

Proposition 7.8. Let π be primary and α ∈ D.

1. χπ(α) = 1 iff x3 = α (mod π) is solvable.

2. χπ(αβ) = χπ(α)χπ(β).

3. If α = β (mod π) then χπ(α) = χπ(β).

Theorem 7.9 (The Law of Cubic Reciprocity). Let α, β ∈ D be primary and
relatively prime. Then χα(β) = χβ(α).

Theorem 7.10 (Supplement to the Cubic Reciprocity Law). Let α = (3m−
1) + 3nω be primary. Then χα(ω) = ωm+n and χα(1 − ω) = ω2n.

Definitions and Results on Z[i]

Define the ring E = Z[i], where i =
√
−1. The norm N is defined by Nα = αα =

a2 + b2, for an element α = a+ bi in E.

Proposition 7.11. α is a unit iff Nα = 1, and the units in E are 1, −1, i, and
−i.

Definition 7.12. A non-unit α ∈ E is prime (or irreducible) if α 6= 0 and α | βγ
implies that α | β or α | γ.

Lemma 7.13. 1 + i is irreducible and 2 = −i(1 + i)2.

Definition 7.14 (Primary). α ∈ E is primary if α = 1 (mod (1 + i)3).
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Lemma 7.15. Let α = a+bi ∈ E. Then we have that iα = −b+ai, −α = −a−bi,
−iα = b− ai.

Proof. Follows from the elementary properties of complex numbers.

Lemma 7.16. Let α ∈ E be a non-unit, (1 + i) - α. then there is a unique unit γ
such that γα is primary.

To distinguish between the cubic residue character and the quartic residue char-
acter we denote the latter by ψ instead of the usual generic notation χ.

Definition 7.17 (Quartic Residue Character). Let π ∈ E be prime. If
Nπ 6= 3 the quartic residue character of α modulo π is defined by

1. ψπ(α) = 0 if π | α.

2. ψπ(α) = α(Nπ−1)/4 (mod π), with ψπ(α) equal to −1, 1, i, or −i.
For a non-prime β the quartic residue character is defined ψβ(α) =

∏t
l=1 ψπl

(α),

where β =
∏t
l=1 πt is the prime decomposition of β.

Note that ψπ(α) is not the residue class modulo π to which α(Nπ−1)/4 belongs.
It is the unique representative of this residue class from the set of complex numbers
{±1,±i}.
Proposition 7.18. Let π be primary and α ∈ E.

1. ψπ(α) = 1 iff x4 = α (mod π) is solvable.

2. ψπ(αβ) = ψπ(α)ψπ(β).

3. If α = β (mod π) then ψπ(α) = ψπ(β).

Theorem 7.19 (The Law of Biquadratic Reciprocity). Let α = a0 + a1i and
β = b0 + b1i be primary and relatively prime elements in E. Then
ψα(β) = ψβ(α)(−1)(a0−1)(b0−1)/4.

Theorem 7.20 (Supplement to the Biquadratic Reciprocity Law). Let
α = a+ bi be primary. Then ψα(i) = i(a

2+b2−1)/4 and ψα(1 + i) = i(a−b
2−b−1)/4.

7.2 The Algorithms

Shallit and Sorenson [62] presents a binary algorithm for computing quadratic
residuosity based on the same idea as the binary gcd algorithm given by Stein
[64]. A detailed description and analysis of the latter algorithm can be found in
Knuth [43]. The algorithms we propose can be seen as a step by step translation
of Shallit and Sorenson’s algorithm to the cubic and quartic setting. Our goal is to
find an algorithm with quadratic running time in the length of the inputs like the
original.
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The key observation used in the original algorithm translates in a natural way
to the new setting. Originally, if a and b are positive odd integers we know that
2 | (a − b). In the new setting, if α and β are primary elements in D (or E) then
3 | (α − β) (or (1 + i)3 | (α − β)).

On the other hand there are also some differences listed below.

• In Z, if we subtract a positive odd integer from a positive odd integer with
larger norm (absolute value) and remove all factors of two, we end up with
another positive odd number. This allows direct application of the quadratic
reciprocity theorem.

In D (or E), if we subtract a primary element from a primary element with
larger norm and divide away all (1 − ω):s (or (1 + i):s), we may not end up
with a primary number. The problem with non-primary elements is that the
cubic (or biquadratic) reciprocity theorem is only valid for primary elements.
This problem is solved by application of Proposition 7.6 (or Proposition 7.16),
which guarantees that we can find a primary associate to any element that is
not divisible by (1 − ω) (or (1 + i)).

• In Z, if we subtract a positive integer b from a larger positive integer a, we
have that |a− b| < max{|a|, |b|}, i.e. all recursive calls are made with smaller
parameters than was given as input.

In D (or E) this is not the case, i.e. if α and β are primary elements such that
Nα > Nβ, then it is only guaranteed that N(α−β) ≤ 4 max{Nα,Nβ}. The
problem with this is that the norm of the parameters to recursive calls may
grow, i.e. it is no longer obvious that the algorithm halts. This is solved by
use of the key observation described above. It turns out that the divisibility
property ensures that the new algorithms halt.

• The original algorithm uses the standard norm in Z, i.e. the absolute value.
This is very fast.

In the new setting the standard norm for D and E can be used, but it results
in relatively slow algorithms. The problem is that the standard norm is too
computationally expensive, since it requires performing multiplications in Z.
Instead we introduce other measures of the size of elements that behave almost
like the standard norm, but that can be computed in linear time.

• The original algorithm is devised for inputs in binary radix. This is good
since division by 2 may be replaced by a left-shift.

Binary radix works fine also for inputs fromE, i.e. given an element a+bi ∈ E,
we assume that a and b are given in binary radix. On the other hand, for an
element a+ bω ∈ D it is more natural to represent a and b in ternary radix.
If input is given in another radix we first convert it to ternary radix.
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Descriptions of the Algorithms

In this section we give descriptions of the two algorithms using the standard norm.
In Section 7.4 we replace the standard norm with a measure of the size of elements
for which the computational cost is lower. We use a description format similar
to the description of the algorithm for computing the Jacobi symbol given in [45].
The algorithm for the quartic character is slightly more complicated, since the
biquadratic reciprocity law is more complicated than the cubic reciprocity law.

Algorithm 7.21 (Cubic Character).
CUBIC(α, β)
INPUT: α, β ∈ D, where β is primary and Nβ 6= 3.
OUTPUT: The cubic character χβ(α) of α modulo β.

1. If α = 0 return 0.

2. Write α = 3eα′, where 3 - α′, and set s1 = χβ(3
e).

3. Write α′ = (1 − ω)dα′′, where d ∈ {0, 1}, and set s2 = χβ(1 − ω)d.

4. If α′′ is a unit, return s1 · s2 · χβ(α′′).

5. Find a unit γ such that γα′′ is primary, and set s3 = χβ(γ
−1).

6. If Nα′′ > Nβ, then set α′′′ = γα′′ and β′ = β, and otherwise set α′′′ = β and
β′ = γα′′.

7. Return s1 · s2 · s3 · CUBIC(α′′′ − β′, β′).

Algorithm 7.22 (Quartic Character).
QUARTIC(α, β)
INPUT: α, β ∈ E, where β is primary and Nβ 6= 2.
OUTPUT: The quartic character ψβ(α) of α modulo β.

1. If α = 0 return 0.

2. Write α = 2eα′, where 2 - α′, and set s1 = ψβ(2
e).

3. Write α′ = (1 + i)dα′′, where d ∈ {0, 1}, and set s2 = ψβ(1 + i)d.

4. If α′′ is a unit, return s1 · s2 · ψβ(α′′).

5. Find a unit γ such that γα′′ is primary, and set s3 = ψβ(γ
−1).

6. If Nα′′ > Nβ, then set α′′′ = γα′′, β′ = β and s4 = 1. Otherwise set α′′′ = β,
β′ = γα′′, and s4 = (−1)(a0−1)(b0−1)/4, where α′′′ = a0+a1i and β′ = b0+b1i.

7. Return s1 · s2 · s3 · s4 · QUARTIC(α′′′ − β′, β′).

As described above the algorithms are not really complete, since we have not
described how to compute the si’s or how to find γ such that γα′′ is primary. In
the proof of Proposition 7.32 below this is described in detail.
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7.3 Correctness

Next we prove that if the algorithms halt they output the correct results. That this
is the case is intuitively clear from Section 7.1 and Section 7.1. The reader may
worry about the apparent illegal use of Theorem 7.9 (or Theorem 7.19) in Step 6
when the inputs are not relatively prime, but as is shown below this will not pose
a problem.

Lemma 7.23. If the algorithm CUBIC halts on input α and β in D it outputs
χβ(α), the cubic character of α modulo β.

Proof. The algorithm clearly outputs the correct result if α = 0. Suppose now that
α 6= 0. After Step 3 the algorithm has defined α′′ such that α = 3e(1 − ω)dα′′,
where e ∈ N and d ∈ {0, 1}.

From Proposition 7.8 we have χβ(α) = χβ(3)eχβ(1 − ω)dχβ(α
′′), and from the

definition of the algorithm we have s1s2χβ(α
′′) = χβ(3)eχβ(1 − ω)dχβ(α

′′). The
element α′′ can not be a unit if α and β are not relatively prime. Thus the output
is at least correct if α′′ is a unit.

Now assume that α′′ is not a unit. Since there by Theorem 7.6 exists a unit
γ such that γα′′ is primary and 1 = χβ(γ)χβ(γ

−1) the output is correct if s3 ·
CUBIC(α′′′ − β′, β′) = χβ(α

′′).
There are two cases:

1. If Nα′′ > Nβ we have CUBIC(α′′′ − β′, β′) = CUBIC(γα′′ − β, β). We also
have χβ(γα

′′) = χβ(γα
′′ − β) by Proposition 7.8. Thus the output is correct

if CUBIC(γα′′ − β, β) = χβ(γα
′′ − β).

2. If Nα′′ ≤ Nβ then we have CUBIC(α′′′ − β′, β′) = CUBIC(β − γα′′, γα′′).
There are two sub-cases:

a) If γα′′ and β are relatively prime then the application of Theorem 7.9 in
Step 6 is valid, i.e. χβ(γα

′′) = χγα′′(β). From Proposition 7.8 we also
have χγα′′(β) = χγα′′(β−γα′′). Thus the output is correct if the output
of CUBIC(β − γα′′, γα′′) is correct, i.e. equal to χγα′′(β).

b) If γα′′ and β are not relatively prime then the output is correct if
CUBIC(β − γα′′, γα′′) = 0.

In this case it may seem that the application of Theorem 7.9 is not valid.
Fortunately β − γα′′ and γα′′ are not relatively prime, since γα′′ and
β are not relatively prime. This implies that the output is correct if
the output of CUBIC(β − γα′′, γα′′) is correct, i.e. equal to 0. Thus
it does not matter that we apply the reciprocity theorem for relatively
non-prime elements!

Finally note that in each recursive call the second parameter β ′ is a primary element
and hence a valid parameter.

To summarize, the output is correct if the recursive call CUBIC(α′′′ − β′, β′)
gives correct output. Thus if the algorithm halts it outputs the correct result.
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Lemma 7.24. If the algorithm QUARTIC halts on input α and β in E it outputs
ψβ(α), the quartic character of α modulo β.

Proof. The proof is very similar to the proof of Lemma 7.23. For clarity we give a
full proof.

The algorithm clearly outputs the correct result if α = 0. Suppose now that
α 6= 0. After Step 3 the algorithm has defined α′′ such that α = 2e(1+ i)dα′′, where
e ∈ N and d ∈ {0, 1}.

From Proposition 7.18 we have ψβ(α) = ψβ(2)eψβ(1 + i)dψβ(α
′′), and from the

definition of the algorithm we have s1s2ψβ(α
′′) = ψβ(2)eψβ(1 + i)dψβ(α

′′). The
element α′′ can not be a unit if α and β are not relatively prime. Thus the output
is at least correct if α′′ is a unit.

Now assume that α′′ is not a unit. Since there by Theorem 7.16 exists a unit
γ such that γα′′ is primary and 1 = ψβ(γ)ψβ(γ

−1) the output is correct if s3 ·
QUARTIC(α′′′ − β′, β′) = ψβ(α

′′).
There are two cases:

1. If Nα′′ > Nβ we have QUARTIC(α′′′−β′, β′) = QUARTIC(γα′′−β, β). We
also have ψβ(γα

′′) = ψβ(γα
′′ − β) by Proposition 7.18. Thus the output is

correct if QUARTIC(γα′′ − β, β) = ψβ(γα
′′ − β).

2. If Nα′′ ≤ Nβ then we have QUARTIC(α′′′ − β′, β′) = QUARTIC(β −
γα′′, γα′′). There are two sub-cases:

a) If γα′′ and β are relatively prime then the application of Theorem 7.19
in Step 6 is valid, i.e. ψβ(γα

′′) = (−1)(a0−1)(b0−1)/4ψγα′′(β), where
β = a0 + a1i and γα′′ = b0 + b1i. From Proposition 7.18 we also have
ψγα′′(β) = ψγα′′(β − γα′′). Since s4 = (−1)(a0−1)(b0−1)/4 the output is
correct if the output of QUARTIC(β − γα′′, γα′′) is correct, i.e. equal
to ψγα′(β).

b) If γα′′ and β are not relatively prime then the output is correct if
QUARTIC(β − γα′′, γα′′) = 0.

In this case it may seem that the application of Theorem 7.19 is not
valid. Fortunately β − γα′′ and γα′′ are not relatively prime, since γα′′

and β are not relatively prime. This implies that the output is correct
if the output of QUARTIC(β − γα′′, γα′′) is correct, i.e. equal to 0.

Finally note that in each recursive call the second parameter β ′ is a primary element
and hence a valid parameter.

To summarize, the output is correct if the recursive call QUARTIC(α′′′−β′, β′)
gives correct output. Thus if the algorithm halts it outputs the correct result.

We have proved that if the algorithms halt the output result is correct, but
we have not yet proved that the algorithms halt. The difference of two primary
elements may be larger than its terms. This is illustrated in the next lemma. We
must show that the size of the elements decreases despite this.
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Lemma 7.25. Let α, β ∈ D (or E) then N(α− β) ≤ 4 max{Nα,Nβ}.
Proof. The norms inD and E are really identical, but given in different coordinates,
i.e. if α = a+ bω, then we may change coordinates and write α = A+Bi, in which
case Nα = A2 +B2.

Note that Nα = |α|2, where |α| =
√
a2 + b2 is the standard complex modulus

for α = a + bi. The triangle inequality implies that |α − β| ≤ 2 max{|α|, |β|}.
Squaring both sides gives the lemma.

Fortunately we know that the difference between two primary elements in D (or
E) is divisible by 3 (or by (1 + i)3). The next lemma uses this fact and guarantees
that the size of elements decreases despite the phenomenon described above.

Each call to CUBIC makes at most one recursive call. Given any pair of inputs
α0 and β0, we may denote the parameters to the (only) recursive call made in
CUBIC(α0, β0) by α1 and β1. Similarly we denote the parameters in the recursive
call made in CUBIC(α1, β1) by α2 and β2, and so on. Thus any two parameters α0

and β0 gives rise to a sequence SCUBIC(α0, β0) = ((α0, β0), (α1, β1), (α2, β2), . . .).
We use the corresponding notation in the quartic case. We also use the notational
convention introduced in the description of the algorithms to denote the variables
in the i:th invocation of one of the algorithms, e.g. α′′

i , γi etc.
We show that this sequence is never infinite, i.e. that the algorithms halt.

Lemma 7.26. Given any valid inputs α0 and β0 to CUBIC and any (αi, βi) and
(αi+2, βi+2) in SCUBIC(α0, β0) we have

max{N(γi+2α
′′
i+2), Nβi+2} ≤ 4

9
max{N(γiα

′′
i ), Nβi} .

Given any valid inputs α0 and β0 to QUARTIC and any (αi, βi) and (αi+2, βi+2)
in SQUARTIC(α0, β0) we have

max{N(γi+2α
′′
i+2), Nβi+2} ≤ 1

2
max{N(γiα

′′
i ), Nβi} .

Proof. From Lemma 7.25 we have that Nαi+1 ≤ 4 max{N(γiα
′′
i ), Nβi}. Further-

more we know that βi is primary, and by construction γiα
′′
i is also primary.

In the cubic case this implies that 3 | αi+1 = α′′′
i − β′

i and in the quartic case it
implies that (1 + i)3 | αi+1 = α′′′

i − β′
i.

We treat the cubic and quartic case jointly. In the cubic case we set d = 9 since
N(3) = 9 and in the quartic case we set d = 8 since N(1 + i)3 = 8.

The observations above imply that N(γi+1α
′′
i+1) ≤ 1

dNαi+1. This gives us
N(γi+1α

′′
i+1) ≤ 4

d max{N(γiα
′′
i ), Nβi} for all i. By construction we have Nβi+1 =

min{N(γiα
′′
i ), Nβi} for all i. Thus we have

N(γi+2α
′′
i+2) ≤ 4

d
max{N(γi+1α

′′
i+1), Nβi+1} ≤ 4

d
max{N(γiα

′′
i ), Nβi}, and

Nβi+2 = min{N(γi+1α
′′
i+1), Nβi+1} ≤ N(γi+1α

′′
i+1)

≤ 4

d
max{N(γiα

′′
i ), Nβi} ,
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which concludes the proof.

In both algorithms the norm of the maximal parameter may decrease more, but
the above is what is guaranteed in two successive recursive calls.

Proposition 7.27. The algorithms CUBIC and QUARTIC are correct.

Proof. From Lemma 7.23 and Lemma 7.24 we know that the algorithms give correct
output if they halt.

Suppose that one of the algorithms does not halt on input α0 and β0. Then
Lemma 7.26 implies that for large enough i, we can make max{Nαi, Nβi} arbit-
rarily close to zero. On the other hand the norm of any element in D or E is a
non-negative integer. Thus there must be an index such that max{Nαi, Nβi} = 0.
Nαi = 0 implies that αi = 0 and the definitions of the algorithms, i.e. Step 1,
imply that they halt on inputs αi and βi when αi = 0.

At this point we have described algorithms and proved their correctness, but
unfortunately they are relatively slow, i.e. they do not run in quadratic time in
the size of the inputs like the Shallit-Sorenson algorithm for the Jacobi symbol.
The problem is that it is too expensive to compute the norm in each step of the
algorithm, since it requires computing multiplications in Z, and it is not known
how to multiply in linear time.

7.4 Alternative Measures of the Size of Elements

In this section we replace the computationally expensive norm N with a measure M
of the “size” of numbers that is very easy to compute. The key idea is to realize that
we do not need a norm over D (or E), but only something that behaves sufficiently
close to a norm to serve the purposes of the algorithms. Note that the norm N , is
in fact a Q(i)-norm. When we think of the field Q(i) as a two dimensional vector
space over Q we write Q2. It turns out that the measure M we are looking for, in
both cases can be defined as a special Q2-norm.

The difference between a Q(i) norm and a Q2-norm is not that great. In fact the
algorithms do not exploit all of the properties special to the Q(i)-norm N . Careful
examination shows that the following special properties are used.

1. N is invariant under multiplication by units. This ensures that α′′ does not
grow when multiplied with a unit γ in Step 5 of the respective algorithm.

2. We haveN(α−β) ≤ 4 max{Nα,Nβ} for both the cubic and quartic case, and
N(α/3) ≤ 1

9Nα in the cubic case and N(α/(1 + i)3) ≤ 1
8Nα in the quartic

case. In the cubic case this ensures that the elements get smaller in each
recursive call.

3. For any α ∈ D we have Nα ≤ N((1 − ω)α), and for any α ∈ E we have
Nα < N((1 + i)α). This ensures that the norm of an element can not grow
in Step 3.
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This means that any Q2-norm that satisfies the above additional special proper-
ties can replace the standard Q(i)-norm N in the algorithms. Next we define such
Q2-norms for the rings D and E, and show how these satisfies properties similar to
the above.

ω

1

1

MD(α)=1

i

1

1

ME(α)=1

Figure 7.1: The left curve is the equidistance curve MD(α) = 1 in the coordinates
1 and ω. The right curve is the equidistance curve ME(α) = 1 in the coordinates
1 and i.

The Size of Elements in D.

The Q2-norm MD we use to measure the size of elements in D instead of N is
defined as follows for α = a+ bω.

Definition 7.28 (Simple D-Measure). MDα = max{|a− b|, |a|, |b|}.
It is easy to see that the function MD satisfies the inequalities MD(α − β) ≤

2 max{MDα,MDβ} and MD(α/3) ≤ 1
3MD(α). We also have have from Lemma 7.5

that MD is invariant under multiplication by units. If α′ = (1 − ω)α, where α =
a+bω, we have α′ = (a+b)+(2b−a)ω. It follows that MDα = max{|a−b|, |a|, |b|},
and MDα

′ = max{|a+ b|, |2a− b|, |2b− a|}. If a and b have opposite signs we have
MDα = |a − b| ≤ |2a − b| ≤ MDα

′. Otherwise we have MDα = max{|a|, |b|} ≤
|a + b| ≤ MDα

′. We have MD(α) ≤ MDα
′, which means that an element never

grows in Step 3. Thus MD satisfies all the required properties.
A more illuminating derivation of the property of invariance under multiplica-

tion by units follows. We may change coordinates and write A+Bi = (a− 1
2b)+

√
3

2 i.
The norm N expressed in the new coordinates is A2 + B2. Thus if A′ + B′i is an
associate to α, then (A′, B′) satisfies the equation x2 +y2 = A2 +B2. Furthermore,
multiplication by a unit in D corresponds either to mirroring over the y-axis, or
rotation by a multiple of 120 degrees. Thus if we pick as equidistance curves the
regular hexagon we get a Q2-norm that is invariant under multiplication by units.
If we start with a regular hexagon in the new coordinates and change coordinates
back to the original coordinates the hexagon is mapped to an equidistance curve
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of the Q2-norm MD (see Figure 7.1 for an illustration of an equidistance curve of
MD).

We write CUBIC∗ for the algorithm CUBIC where each use of the norm N is
replaced by MD.

The Size of Elements in E.

The Q2-norm ME we use to measure the size of elements in E instead of N is
defined as follows for α = a+ bi.

Definition 7.29 (Simple E-Measure). MEα = max{5|a− b|, 5|a+ b|, 7|a|, 7|b|}.

It is easy to see that the function ME satisfies the inequality ME(α − β) ≤
2 max{MEα,MEβ} and from Lemma 7.15 we see that ME is invariant under mul-
tiplication by units.

Since multiplication by the units {±1,±i} corresponds to rotation by 90 degrees
or mirroring diagonally it may appear that we could have definedME to be the max-
norm M ′

Eα = max{|a|, |b|}. Indeed this norm is invariant under multiplication by
units in E, but it does not give us the inequality we need for the elements to shrink.
Note that M ′

E((1 + i)3α) = 2 max{|a+ b|, |a− b|}, which if b = 0 equals 2|a|. The
problem is that in the proof of Lemma 7.26 we need that MEα <

1
2ME((1 + i)3α).

Since ME(α/2) = 1
2ME(α) and (1 + i)3 = 2i(1 + i) it suffices to show that

MEα < ME((1 + i)α).
We have that MEα = max{5|a − b|, 5|a + b|, 7|a|, 7|b|}, and ME((1 + i)α) =

max{10|a|, 10|b|, 7|a−b|, 7|a+b|}, from which it follows that MEα ≤ 5
7MEα

′. Thus
ME satisfies all the required properties (see Figure 7.1 for an illustration of an
equidistance curve of ME).

We write QUARTIC∗ for the algorithm QUARTIC where each use of the norm
N is replaced by ME .

Consequences

The following corollary follows from the proof of Lemma 7.26 and the fact that
both MD and ME satisfies the three special properties listed above.

Corollary 7.30. Given any valid inputs α0 and β0 to CUBIC∗ and any (αi, βi)
and (αi+2, βi+2) in SCUBIC∗(α0, β0) we have

max{MD(γi+2α
′′
i+2),MDβi+2} ≤ 2

3
max{MD(γiα

′′
i ),MDβi} .

Given any valid inputs α0 and β0 to QUARTIC∗ and any (αi, βi) and (αi+2, βi+2)
in SQUARTIC∗(α0, β0) we have

max{ME(γi+2α
′′
i+2),MEβi+2} ≤ 5

7
max{ME(γiα

′′
i ),MEβi} .
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Note that the proof of Proposition 7.27 only assumes that the elements decrease
by a constant factor in size. Thus we immediately have the following.

Corollary 7.31. The algorithms CUBIC∗ and QUARTIC∗ are correct.

Complexity

We now analyze the complexity of the algorithms CUBIC∗ and QUARTIC∗. For
simplicity we assume that the cost of adding, subtracting, shifting and comparing
two integers of size s is given by log2 s.

Proposition 7.32. The complexity of CUBIC∗ is O(35 log2 max{MDα,MDβ})
and the complexity of QUARTIC∗ is O(88 log2 max{MEα,MEβ}). Both algorithms
run in quadratic time in the bit-size of the input.

Proof. First we consider the amount of work performed by the algorithms in a
recursive call with inputs α and β such that m = max{MDα,MDβ} (or m =
max{MEα,MEβ}).

In general all explicit computations of characters, i.e. s1, s2, s3 and s4, and also
χβ(α

′′) is done using Theorem 7.10 (or Theorem 7.20). Thus these computations
are performed in constant time.

Step 1 can clearly be done in constant time.
Step 2 is done by left shifting a and b for α = a+ bω (or α = a+ bi).
Step 3 is done as follows. In the cubic case, if (1 − ω) | α′ we have 3 | −ω2(1 −

ω)α′, and −ω2(1 − ω)α′ = (2a − b) + (a + b)ω for α′ = a + bω. Thus checking if
Step 3 should be performed can be done in constant time by checking if 2a− b =
a + b = 0 (mod 3). The actual division is carried out by performing 2 additions
and a subtraction. In the quartic case, if (1 + i) | α′ we have 2 | −i(1 + i)α′, and
−i(1 + i)α′ = (a+ b) + (b− a)i. Thus checking if Step 3 should be performed can
be done in constant time by checking if a + b = b − a = 0 (mod 2). The actual
division is carried out by performing one addition and a subtraction. Heuristically
one would expect that the additional division is carried out half of the invocations.

Step 4 can be done in constant time by explicit checking.
Step 5 is done as follows. In the cubic case Lemma 7.5 is applied to conclude

that this step can be done by performing a single subtraction. Checking if this step
should be carried out can be done in constant time similarly as Step 3. Heuristically
one would expect that a subtraction is necessary half of the invocations. In the
quartic case it follows from Lemma 7.15 that it can be performed in constant time.

Step 6 is done as follows. In the cubic case MD can be computed using at most
one subtraction and one comparison, since |a− b| ≥ max{|a|, |b|} precisely when a
and b have opposite signs. Thus at most two subtractions and three comparisons is
necessary to determine if MDα

′′ > MDβ. Using similar tricks in the quartic case,
and the facts that 5 = 22 + 1 and 7 = 23 − 1, ME can be computed using at most
6 subtractions or additions and 3 comparisons. Thus at most 12 subtractions or
additions and 7 comparisons are necessary to determine if MDα

′′ > MDβ.
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Step 7 requires computing a single subtraction before executing the recursive
call.

To summarize, CUBIC∗ performs at most 2 shifts, 7 additions and 3 comparisons
of m-size integers, and QUARTIC∗ performs at most 2 shifts, 15 additions and 7
comparisons of m-size integers.

Next we determine the total complexity of the algorithms. We set c = 12 (or
c = 24) and d = 3/2 (or d = 7/5), to consider both the cubic and quartic case
simultaneously.

From Corollary 7.30 we conclude that there can be at most 2t recursive calls,
where we define t = logdm = log2m/ log2 d. In every other recursive call the max-
imal norm of the inputs decreases by a factor of 1/d. We sum the work performed
in between every other recursive call and conclude that the total complexity is
bounded by:

t−1
∑

l=0

O(2c log2

(

(1/d)lm)
)

= O

(

2c
t−1
∑

l=0

(log2m− l log2 d)

)

= O(c (2/ log2 d− log2 d) log2
2m) .

7.5 How to Combine the Ideas

Damgård and Skjovbjerg Frandsen [14] solves the norm problem differently than
we do here. They show that the standard norm N may be approximated, within
a factor 8/9. Their approximation can be computed using a single subtraction, i.e.
it can be computed in linear time.

As shown above our special measures of the size of elements are also computed
in linear time, but we need several additions and subtractions. On the other hand
our decreasing factor is slightly lower than theirs, but it does not cancel the effect
of having more additions and subtractions. Thus their algorithms are faster than
ours. We think that the simplicity of our solution still has some merit, particularly
in the cubic case.

Interestingly, we can also apply their idea to our specialized measures of the
size of elements. This gives approximations of our specialized measures that can
be computed in constant time.

The following is a variant of Lemma 2 in [14].

Lemma 7.33. Given α ∈ D (or α ∈ E) an approximation M̃Dα to MDα (or M̃Eα
to MEα) such that

(1 − 1

3δ
)MDα < M̃Dα ≤MDα

(

or (1 − 1

2δ
)MEα < M̃Eα ≤MEα

)

can be computed in time O(δ) (i.e. constant time in the input size).
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Proof. In the cubic case we set α = a+ bω. For an integer a =
∑ka

j=0 aj3
j we define

tδ(a) =
∑k
j=ka−δ aj3

j , i.e. tδ(a) is a but with precision truncated to δ + 1 trits.

If a and b have opposite signs, we define M̃Dα = |tδ(a) − tδ(b)|, and otherwise we
set M̃Dα = max{|tδ(a)|, |tδ(b)|}. In the first case we have that MDα − M̃Dα =

|∑ka−δ−1
j=0 aj3

j | + |∑kb−δ−1
j=0 bj3

j | < 3max{ka,kb}−δ ≤ 3−δMDα. In the second case

we have MDα − M̃Dα = |∑ka−δ−1
j=0 aj3

j | < 3ka−δ ≤ 3−δMDα (or similarly with a
replaced by b).

In the quartic case we set α = a+ bi. For an integer a =
∑ka

j=0 aj2
j we define

tδ(a) =
∑k

j=ka−δ aj2
j , i.e. tδ(a) is a but with precision truncated to δ+ 1 bits. We

define M̃Eα = max{5(|tδ+1(a)| + |tδ+1(b)|), 7|tδ+1(a)|, 7|tδ+1(b)|}. Without loss we
assume that |a| > |b|. If 5|a + b| ≥ max{7|a|, 7|b|} then we have MEα − M̃Eα <
5·2max{ka,kb}−δ ≤ 2−δMEα. Otherwise we haveMEα−M̃Eα < 7·2ka−δ ≤ 2−δMEα.

The approximations are always lower bounds and the claims follow.

Denote by CUBIC∗∗ and QUARTIC∗∗ the algorithms that uses M̃D and M̃E

instead of MD and ME respectively. For concreteness we set δ = 7, but this value
should be optimized experimentally in an actual implementation. Although our
specialized norms MD and ME are computed in linear time the comparison in Step
6 is still the most expensive step in each invocation. The lemma above allows us to
decrease this cost. The comparison can now be done in constant time, but we may
have execute more recursive calls.

Proposition 7.34. The algorithms CUBIC∗∗ and QUARTIC∗∗ are correct. The
complexity of CUBIC∗∗ is O(18 log2 max{MDα,MDβ}) and the complexity of
QUARTIC∗∗ is O(19 log2 max{MEα,MEβ}).
Proof. The only change to Corollary 7.30 is that the guaranteed value of d in two
successive calls is multiplied by a factor (1 − 1

3δ ) (or (1 − 1
2δ )). This implies that

the algorithms halt, which by Lemma 7.23 and Lemma 7.24 implies that they are
correct.

The analysis of the complexity is only changed in that Step 6 is done in constant
time and the shrinkage factor is changed. Thus the claim follows.

The combined algorithms are faster by a constant factor than the original al-
gorithms by Damgård and Skjovbjerg Frandsen [14], since their computation of the
norm requires a subtraction whereas we compute the approximated special meas-
ures in constant time. However, this comparison is somewhat unfair since they do
not optimize their algorithms aggressively, and it probably possible to compute a
variant of their approximative norm in constant time.

7.6 On the Problem of Verifying Membership in Gq

Let Gq be the unique subgroup of prime order q of Z∗
p, where p = κq+1 is prime for

some relatively small integer κ. The problems of computing the κ-power character
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modulo p of an element and verifying membership in Gq are intimately connected.
In the quadratic case the two problems are even equivalent. However, in the general
case it does not suffice to determine the κ-power character modulo p to check for
membership in Gq . It is not clear how the κ-power character for arbitrary κ can
be exploited to determine membership in Gq quickly, but for κ = 3, 4 the relation
is as follows [37].

Suppose that κ = 3. The ring Z[ω] is a unique factorization domain, and p
factors as ππ for some irreducible π ∈ Z[ω]. Then χπ(a) = 1 if and only if a ∈ Gq .

Suppose that κ = 4. The ring Z[i] is a unique factorization domain, and p
factors as ππ for some irreducible π ∈ Z[i]. Then ψπ(a) = 1 if and only if a ∈ Gq .

Thus to determine if a ∈ Gq for κ ∈ {2, 3, 4} we need only factor p and run either
the Shallit-Sorensen algorithm or our algorithms above. Furthermore, if κ = 6 or
12 the Chinese remainder theorem implies that a ∈ Gq if and only if (ap ) = 1 and

χπ(a) = 1, or χπ(a) = 1 and ψπ(a) = 1 respectively.
For a discussion on how these elementary facts can be combined with precom-

putations to check membership in Gq for κ ∈ {2, 4, 6, 12} efficiently we refer the
reader to Damgård and Skjovbjerg Frandsen [14].

7.7 Future Work

Our algorithms are natural generalizations of Shallit and Sorenson’s algorithm [62],
which is based on the binary gcd algorithm given by Stein [64]. An interesting
research problem is to characterize the values of l for which Shallit and Sorenson’s
algorithm can be generalized to compute l-power residue characters efficiently in
the ring of integers Dl of the cyclotomic field Q(ζl) for a primitive l:th root of unity
ζl.

It is not trivial to generalize Shallit and Sorensons’s idea to compute the l:th
power character inDl. One problem is that, in general, the key observation, i.e. that
the difference between two primary elements is divisible by 3 (or (1+ i)3), does not
generalize naturally. This follows from the general definition of primary. A non-unit
element α ∈ Dl is primary if α is relatively prime to l, and α = n mod (1 − ζl)

2

for some n ∈ Z. There is also the problem of finding explicit reciprocity and
supplemental laws that can be used efficiently.



Chapter 8

Conclusions

We present an efficient mix-net in Chapter 2, however, no proofs of the security of
the construction are given. The protocol is based on the combination of the notion
of “repetition robustness”, introduced by Jakobsson [38], and “double encryption”,
introduced here. An important future research question is to prove the security of
this protocol. To do this it seems necessary to develop non-malleability assumptions
and investigate their soundness.

In Chapter 3 we prove that the security of a mix-server is equivalent to the
security of the underlying cryptosystem. The correctness of this result is intuitively
clear, but no proof has formerly been given in the literature. An important future
question is to formulate a useful definition of security for a mix-net as a whole. We
are currently working on this.

The attacks we present in Section 4 illustrate the importance of details in the
construction of cryptographic protocols. Some of our attacks extend attacks of
Pfitzmann [58, 57], Desmedt and Kurosawa [15], and Lim and Lee [44], but we also
provide an attack that seems unrelated to any previous attacks. It is important
that existing and future mix-net constructions, in particular hybrid mix-nets are
verified to be resistant to our attacks.

In Chapter 5 we consider the malicious use of invalid inputs to protocols. Lim
and Lee [44] give a key recovery attack based on the malicious use of invalid in-
puts and propose a counter-measure. We extend their attack and show that their
proposed counter-measure does not suffice for all protocols. We also describe how
costly verifications of inputs can be avoided.

The results of Chapter 6 give a class of transformations that can not be com-
puted under El Gamal encryption. Hence we take a first step in the program of
investigating the malleability properties of El Gamal. An interesting research ques-
tion is to investigate how the malleability properties of the El Gamal cryptosystem
changes depending on the underlying group.

The algorithms presented in Chapter 7 generalize the binary Jacobi symbol
algorithm of Shallit and Sorenson [62]. An interesting future research question is

91
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if there are generalizations of these algorithms to compute higher power residue
characters.
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