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Abstract—We discuss our recent and ongoing work on
deformation-based grasp synthesis and transfer which formulates
a joint space of shapes and grasps – a Grasp Moduli Space
– within which both grasp configurations and object shapes
can be continuously deformed. In this context, we propose the
use of Gaussian Process-based implicit surface representations.
These shape representations complement our previous work
on using spherical harmonics as well as explicit cylindrical
coordinates to model the object shape component of a Grasp
Moduli Space. We provide a preliminary experiment with these
Gaussian Processes showing how shape representations can be
obtained using multimodal visual and haptic information and
discuss how these representations can be continuously deformed
for the purpose of transferring and generalizing known grasps.

I. INTRODUCTION AND MOTIVATION

Humans are able to grasp and manipulate objects seemingly
with little effort. Furthermore, we are able to easily generalize
grasps and manipulation sequences from a specific demon-
stration, and we can transfer grasps between similar shapes
such as bottles or tools. In robotics, on the other hand, the
predominant approach to grasp synthesis has been to solve
the grasping problem for each specific object instance by com-
pletely reinitializing the developed algorithms at hand. Popular
approaches to grasp synthesis such as the sampling-based
approach of GraspIT [7], various heuristics-based approaches
such as a reduction of the object model onto its medial axis
[11], and approaches decomposing the object into parts such
as boxes [6] have been developed and typically require a new
execution of the underlying grasp algorithm when a new object
is encountered.

When we think about the graspable objects surrounding
us, we observe that one can consider almost any type of
object as being part of family of similar objects which vary
continuously with respect to various parameters such as, most
trivially, height, width and depth, but also in certain latent style
parameters. Handles of tools such as screw drivers can vary
in their precise shape, for example, while it is reasonable to
assume that such shapes should be concentrated around a mean
shape resembling a cylinder. Humans are able to quickly adapt
to such variations - a capability which we aim to endow robots
with in this ongoing work. Our approach to grasp transfer is
based on a continuous deformation of a known grasp and shape
to novel objects with similar shape.

The key representation which we aim to develop further
for this purpose is the notion of a Grasp Moduli Space
[9] modeling shapes and grasps jointly. The term moduli

Fig. 1: A joint grasp/shape deformation and optimization in Gsph (see [10]).

space here is inspired by its use in deformation theory in
mathematics [1]. To represent shapes, we are investigating
Gaussian Process implicit surfaces [13, 4, 12] providing a
probabilistic shape estimate from point-cloud data.

II. GRASP MODULI SPACES

In order to model both a shape and a particular grasp on
a shape, we need to firstly define an appropriate shape space
modeling the admissible objects. Secondly, we need to make
precise what we mean by a grasp. Here, we consider a grasp g
as a tuple of m contact points ci ∈ R3 on an object’s surface,
unit normal vectors ni ∈ S2 at those contact points, and a
center of mass z ∈ R3: g = (c1, . . . , cm, n1, . . . , nm, z) ∈
R3m × (S2)m × R3. In order to determine whether a grasp
is force-closed or not [2], we consider the L1 grasp quality
function Q defined by [5]. Q, for m contact points, is then
a function on the R3m × (S2)m × R3, and this function
is in fact tame in the sense that it is Lipschitz continuous
with a particular, easily computable, Lipschitz constant under
variations in grasps, as shown in our recent work [8]. Grasps
with positive grasp quality under Q are then considered more
stable the larger Q is. We have recently begun to consider
an appropriate simple space of smooth surfaces which allows
for a deformation-based grasp synthesis [9]. There, we con-
sidered the moduli space of smooth surfaces with cylindrical
coordinates and with grasps with m contact positions – called
Gcyl – as well as the space of surfaces of revolution with
grasp configurations with m contact positions Grev ⊂ Gcyl.
Both Grev and Gcyl are infinite dimensional and the underlying
shape spaces of surfaces of revolution Mrev and of surfaces
with cylindrical coordinates Mcyl are convex allowing us to
construct shape space subsets from finitely many example
surfaces by means of convex combinations of those surfaces.



Similarly, we can jointly and continuously deform a grasp
configuration in cylindrical coordinates while the underlying
object shape is deformed. In [9], we combined such continuous
deformations in grasps and shapes, where an initial stable
grasp on a surface was continuously optimized using a gradient
ascent while the underlying surface was deformed towards
a novel shape. Recently [10], we have further extended this
framework to be applicable directly with point cloud-data by
means of a shape space defined using spherical harmonics.
There, we defined a shape space of surfaces with spherical
coordinates Msph and a resulting Grasp Moduli Space Gsph
of grasp configurations on such surfaces. Fig. 1 illustrates
an example grasp/surface deformation in Gsph with 3 contact
points. An interesting aspect of this approach is that it allows
us to quantify uncertainty in grasping both in terms of shape
uncertainty, for example due to partial or unreliable sensor
data, and contact point uncertainty, e.g. when we cannot
precisely position the robot hand.

III. GAUSSIAN PROCESSES AND SHAPE DEFORMATIONS

A natural framework within which noisy data can be
described is that of Gaussian Process Regression. We are
currently investigating two specific kernel choices to allow us
to represent shapes and their deformations in a continuous
manner. In the recent work [3], we have shown that the
thin plate kernel can provide useful shape representations
from a single view kinect point-cloud P if this point-cloud
is supplemented by a set P ′ of points obtained from haptic
data of a Schunk Dexterous Hand touching the object of
interest, and where an exploration strategy is guided towards
points of maximal variance under the GP regression model.
There, an object’s surface is represented as an implicit surface
S = f−1(0), and f : R3 → R is described using the thin-plate
kernel k(xi,xj) = 2|r|3 − 3Rr2 + R3, where r = |xi − xj |
and we set R =

√
3L, and L is the kinect data’s bounding

box side-length (see [3]). Yet another interesting GP kernel is
the Matérn kernel which reduces to the exponential kernel
for its parameter ν = 0.5 and to the Gaussian kernel as
ν → ∞. We are in particular considering the Matérn kernel
kν= 3

2
(r) = (1 +

√
3r
l ) exp (−

√
3r
l ) with length-scale l.

An advantage of representing a shape by a GP is that we can
obtain an estimate for the variance as well as the mean shape
determined by the sensor data. Observe that, since a shape
is represented by a mean function m. We can, for any two
shapes S1, S2 corresponding to GP means m1,m2 consider a
curve γ(t) = (1− t)m1 + tm2, t ∈ [0, 1] deforming S1 to S2.
Since Gaussian Processes can model a rich family of shapes,
we propose to study these in the context of the Grasp Moduli
Space framework. In Fig. 2, we provide an initial illustration
of an experiment where two GP-based shape representations
are being deformed into each other using the above convex
combination of their means. The initial and final shapes are
determined from multimodal sensor data from [3], with red
points corresponding to single view visual data from a Kinect
sensor, while blue points were obtained from haptic sensors
on a Schunk Dexterous Hand. Since these GPs represent a

Fig. 2: Box and spray bottle models with haptic (blue points) and sub-
sampled single view visual (kinect, red points) sensor data are displayed in
the first row. Shape deformations γ(t) between these shapes based on a Matérn
kernel GP (middle row) and a thin plate GP (bottom row) are displayed for
t equal to 0, 0.06, 0.12, 0.5, 1.0 from left to right. Data points are assigned
function value 0 and are supplemented by an interior point (value −1) and 15
exterior points (value 1). We transformed the point-cloud data to lie in a cube
centered at the origin and of side-length L = 3 and set R =

√
3L for the

thin-plate kernel and l = 1 for the Matérn kernel. In our Gaussian Process
regression, we also assume that our sensor data is corrupted by a Gaussian
noise term with σ2 = 0.1.

shape not as a parametrized surface as in [9, 10], but only
as a level set, the representation of grasp contact points in
this setting will have to be adapted. A natural Grasp Moduli
Space G consists of mean functions corresponding to smooth
embedded surfaces and grasp contact points on the surfaces
Sh parametrized by h. More generally, this could be extended
to include the full robot hand configuration during a grasp.
Many open problems, which we are looking forward to discuss
during this workshop, exist in this direction:

• Which optimization methods are most effective in opti-
mizing a grasp’s quality, and more generally a grasp’s
task specific utility, in a general Grasp Moduli Space
where shapes are parametrized using Gaussian Processes?

• How can the GP’s variance information be incorporated
in a deformation-based grasp synthesis framework?

• How can grasp configurations best be modeled proba-
bilistically in conjunction with the GP’s shape estimate?

• How can prototypical grasp/shape configurations in G be
determined automatically?

As a first step, we are currently experimenting with various
optimization methods which optimize the robot hand’s joint
configuration while we deform a known shape/grasp con-
figuration towards a novel shape. Methods beyond a simple
gradient ascent will likely be necessary here to ensure a rapid
convergence and the numerical stability of the optimization of
the hand’s joint configuration while maintaining contact during
a shape and grasp deformation.



REFERENCES

[1] D. D. Ben-Zvi. Moduli spaces. In Timothy Gowers, June
Barrow-Green, and Imre Leader, editors, The Princeton
companion to mathematics. Princeton Univ. Press, 2009.

[2] A. Bicchi and V. Kumar. Robotic grasping and contact:
A review. In IEEE ICRA, pages 348–353 vol.1, 2000.

[3] M. Björkman, Y. Bekiroglu, V. Högman, and D. Kragic.
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