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Abstract—Postural synergies have in recent years been success-
fully used as a low-dimensional representation for the control
of robotic hands and in particular for the synthesis of force-
closed grasps. This work proposes to study caging grasps using
synergies and reports on an initial analysis of postural synergies
for such grasps. Caging grasps, which have originally only been
analyzed for simple planar objects, have recently been shown to
be useful for certain manipulation tasks and are now starting to
be investigated also for complicated object geometries. In this
workshop contribution, we investigate a synthetic data-set of
caging grasps of four robotic hands on several every-day objects
and report on an analysis of synergies for this data-set.

I. INTRODUCTION

Robots that can grasp unknown objects in the presence of
noise are still not the state of the art. However, to enable
future service, household or companionship robots to operate
in unstructured environments and to perform useful tasks,
such robots need to interact with and manipulate previously
unknown objects reliably. While a large amount of effort in
the robot grasping community has focused on the automatic
synthesis and evaluation of grasps that establish contact with
an object [1], the benefits of caging grasps have recently
been rediscovered and exploited for manipulation planning
[2]. Caging grasps constrain the object’s freedom of motion
by preventing it from escaping arbitrarily far [3]. However,
they do not necessarily establish contacts. In fact, the related
concept of maximal caging [4, 5] has been proposed to
maximize the freedom of motion for the object while keeping
it trapped in a bounded set. The particular advantage of caging
grasps in applications of manipulation planning is that rigidity
constraints between an object and the robot can be neglected
in planning when the object is caged. The relative pose of
the robot hand and object is not fixed and therefore allows
for more flexibility. Humans often employ caging rather than
force-closed grasps e.g. when holding on to hand-rails, when
opening doors etc.

The problem of dexterous grasp planning is high-
dimensional and has been approached by randomized search
in a low-dimensional hand posture subspace under the notion
of eigengrasps [6, 7]. A low-dimensional topology-based
object representation and a matching posture evaluation for the
generation of caging grasps on objects with holes is proposed
in our current work at this conference [8]. There we represent
fundamental loops in an object using approximated shortest
homology generators and devise a method for generating
caging grasps on such objects.
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Fig. 1: Objects and hands from the data-set. From left to right:
Objects Chair, Purse, Bag, Lawn Mower, Travel Bag and robot
hands Armar III (right hand), DLR 1, Schunk SDH, iCub (right
hand).

To explore the prospect of applying the eigengrasp approach
to caging grasps, we will here consider a data-set of secure
caging grasps which we generated on a collection of objects
with holes. Example postures of four hands on five every-day
objects are investigated for the existence of postural synergies,
and the relation of a ‘grasp target volume’ and these synergies
is studied in this work.

Our evaluation shows that postural synergies exist in such
kind of caging grasps, and that postures highly depend on
the local shape and extent of the caged object part, and in
particular namely on the local volume.

II. RELATED WORK

Postural hand synergies and eigengraps can both be justified
based on the well-known results of [9], where principal
component analysis (PCA) of grasp joint space data is used
to show that the two first principal components (PCs) account
for more than 80% of the total variance. There, grasp data is
acquired from human subjects shaping their hand as if they
grasped a displayed object. The frequently drawn conclusion
of these results is that the digits of a human hand are not
controlled on an individual level, but rather are commonly
actuated by a control that involves few postural synergies for
forming general postures. Since the found synergies do not
necessarily coincide with a standard grasp taxonomy, it is
believed that the hand’s shape is controlled independently from
the applied forces. So called force synergies are subsequently
studied by [10] for lifting, holding and re-placing using a
gripper apparatus grasped by human subjects. The findings
include that the normal forces of all digits covary linearly
and that fluctuations in force are highly synchronized during
holding. The temporal aspects of the entire act of grasping
is investigated from the perspective of synergies in [11]. Five
subjects perform reach-to-grasp experiments with three classes
of shapes that are systematically varied in size. Two common
patterns in the temporal sequence of marker positions are



found: opening and closing of the hand in general, as well
as thumb and long finger flexing. The synergies in grasp-to-
reach are shown to be different from the postural synergies as
the first PC accounts for 99.5% of the total variance and is ir-
respective of object shape, grasp or subject. Another approach
towards grasp synthesis using synergies is given in [6, 7].
Transferring the results for the human hand in [9], eigengrasps
for artificial hands are defined. As a result, a stochastic search
can be conducted in the highly reduced dimensionality of the
eigengrasp space – instead of the full joint space – to generate
enveloping pre-grasps. In [7], synergies are used in an on-line
interactive manner. A soft synergy model of hands is proposed
in [12] to investigate the conjecture that humans learn a series
of inner hand representations of increasing complexity. In that
approach, the synergetic hand displacement does not directly
determine joint angles but instead yields reference points.
Mechanical compliance is described as a dynamic equilibrium
between attraction towards the synergy-driven reference points
of the pose and repulsive contact forces, joint stiffness and
body deformation.

In contrast to force-closed grasps, caging grasps, only bound
an object’s mobility to prevent it from escaping arbitrarily
far from the manipulator. A caging grasp provides a way
to control an object without immobilizing it completely so
that the object will follow the manipulator. Early research
on caging has focused on analysis and efficient algorithms
for simple hand mechanisms with few degrees of freedoms
[13, 14], and considered only simple objects in a plane.
Concavity of objects has been exploited for caging to find
finger position far away from the object [4]. Later, the study
of three-dimensional caging by multi-fingered hands led to
the definition of sufficient conditions and resulted in a cage
planning system [15]. The notion of stretching and squeezing
cages has been introduced for the analysis of caging mobile
rigid bodies in a Euclidean space of arbitrary dimension
[16, 3]. Caging configurations have been considered as a
waypoint towards a full contact establishing grasp [3] and as a
method to deal with uncertainty in grasping [17]. Applications
in manipulation planning have also recently been found [2],
making caging grasps a highly interesting set of postures to
investigate.

III. METHODOLOGY AND DATA-SET

To investigate postural synergies in caging grasps we per-
form principal component analysis of joint space data. Here,
we work with a synthetic data-set containing 9142 distinct
caging grasps of four robot hands. Five real-sized every-day
objects are each caged by the hands. We shall not elaborate
here on the generation procedure for these caging grasps,
which is based on our work in [8] and which uses topological
features of the objects which are extracted from point-cloud
data. The grasps in our data-set have been confirmed as caging
grasps by a rigid body simulation where a series of random
translations and rotations was applied and was not able to pull
the hand away from the object.

A subset of of our caging grasp data-set is displayed in
Fig. 2. A brake-down of the numbers of grasps per hand
and object is given in Fig. 3. We used four simulated robotic
hands, namely the DLR, iCup, ARMAR III and Schunk hand.
The DLR Hand [18] (12 DOF) is a four-fingered articulated
robotic hand, about 50% larger that an average human hand.
The iCub child-sized humanoid robot hand [19] has nine
DOF. The five-fingered IAI-HAND-12 (10 DOF) for the
ARMAR III platform [20] is a symmetric three-fingered hand.
The Schunk SDH [21] (9 DOF) is a 3-fingered fully actuated
industrial robot gripper. The object geometry data was taken
from [22, 23]. All robot hands and objects are depicted in
Fig. 1.

IV. RESULTS

A principal component analysis (PCA) of the joint space
data was conducted separately for each robot hand. The first
principal component PC1 on average captures about 72%
of the overall variance and the 2nd PC never accounts for
more than 10%. Lower-order principal components account
for increasingly less variance. While, for the Armar III, iCub
and Schunk hand, the captured variance of PC1 is about 70%,
it is 76% for the DLR 1 hand. The distribution of variance is
given in Fig. 4. This quantitative results suggest the existence
of postural synergies in the caging grasps of each hand.

The plots for each robot hand in Fig. 5 show for each
caging grasps the first two coordinates in principal component
space (red) as well as the first two coordinates of the principal
components themselves. For the Armar III and DLR 1 hands
the points form one dominant cluster with comparably little
scatter. For the Schunk SDH the points are concentrated on an
arc at the top side of a scattered field. The iCub hand produces
multiple clusters. To investigate the described clustering in
the plots, we color and scale the data points for each posture
according to a convex volume approximation of the caged local
object part. The resulting plots, displayed in Fig. 6, indicate
that the clusters are based on the grasp target volume. For
the Armar III and iCub hands, the volume clearly separates
two individual clusters. In case of the DLR 1 hand the large
volume postures are surrounded by lower volume postures.
The lower volume postures themselves are clearly split into
two distinct segments. A similar structure can be seen for the
Schunk hand, where the large volume postures do, in contrast
to the other hands, not form a concentrated blob, but rather a
wedge-like connected shape.

Finally, we are interested in the distribution of the principal
components on the object shapes. For easy analysis, we color
the grasp target positions using a synergy-based RGB color
scheme. The 1st coordinate fades from blue to red while
the 2nd coordinate determines the amount of green. In this
way, we can inspect the distribution of the first two PC’s
influence on the postures. Fig. 7 shows the resulting maps.
Different types of postures are apparently used for vertical and
horizontal parts of the chair by the iCub and the Armar III
hand. The DLR 1 hand uses a different posture for the middle
backrest since the long fingers are obstructed from closing due
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1) Armar III (right hand) 2) DLR 1 3) Schunk SDH 4) iCub (right hand)

Fig. 2: Randomly selected examples of grasps from the caging data-set. The different sizes of the robot hands can clearly be
seen in relation to the objects. While some areas cannot be reached by the large hands because of obstruction, some smaller
hands cannot reach around large volumes.



Endeffector Armar III (2586) DLR 1 (1971) Schunk SDH (2249) iCub (2336)

Purse 102 66 75 102
Bag 335 194 221 344
Chair 1402 961 1188 1216
Lawn Mower 598 613 623 532
Travel Bag 149 137 142 142

Fig. 3: The data-set contains 9142 caging grasps of four robot hands on five objects. The table above shows how the grasps
are distributed over hands and objects. To explore the synergies all postures of a single robot hand are considered at once,
separately of each hand.

Hand PC1 PC2 PC3 PC4 PC5 PC6

Armar III 70.2 8.6 4.8 3.8 3.4 3.2
DLR 1 76.7 8.1 4.1 2.9 2.2 1.5
Schunk SDH 68.8 9.9 7.1 6.3 4.7 2.9
iCub 71.2 6.2 3.7 3.1 2.5 2.1
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Fig. 4: Synergies can be found by consider the share of total
variance that the first n principal components (PC) of the joint
space data explain. For each robot we show the first six PC.
The first two PC explain 78, 74, 67, 72 percent and the first
three explain 85, 86, 80, 80 percent of the total variance.

to the object’s geometry. On the lawn mower the DLR 1 and
the Schunk hand have elongated gripper-like postures around
the power switch box because that part is too wide to be
properly enveloped. Such a posture can be seen for the Schunk
hand at the 9 o’clock position in Fig. 8.

The interpretation of the fist two principal components can
be investigated in Fig. 8. For the Armar III hand the first
component mainly describes flexing of the short finger joints
while the 2nd component governs the longer fingers. The
thumb of the DLR 1 hand is controlled by the first component
and the 2nd component describes bending of the long fingers.
For the Schunk SDH the first component decides the distal
joint bending. The 2nd component controls whether the fingers
towards the left are more bent than the fingers towards the
right. The opening of the longer fingers of the iCub hand
relates to the first component while the 2nd component is
concerned with the shorter fingers.

V. CONCLUSIONS

Research on caging has so far mainly focused on industrial
applications and on simple hand representations while robot
grasping research was largely concerned with stable contact-
based grasps. We have explored synergies of a caging grasp

data-set on objects with holes and with complex geometry.
We found that the first two synergies account for a large
percentage of the variance in our data-set. The first two
postural synergies were found to describe the general shape
of the hands indicating that they might be well-suited to be
used in the planning of caging grasps on complex objects.
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Fig. 7: Coloring of intended grasp center points by the first two principal components of the joint space data. The RGB color
scheme maps the 1st PC from blue (min) to red (max) and decides the amount of green by the 2nd PC.
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Fig. 8: Example postures from the secure caging data-set together with their first two principal component coordinates.
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