Supplementary material for the paper Free Space of Rigid Objects: Caging, Path Non-Existence, and Narrow Passage Detection

Anastasiia Varava^, J. Frederico Carvalho^, Florian T. Pokorny, and Danica Kragic
KTH Royal Institute of Technology
\{varava,jfpbdc,fpokorny, dani\}@kth.se

In this document we provide the proofs of Propositions 1, 2, and 3, and discuss the computational complexity in detail.

1 Computational Complexity

Let us now discuss the total computational complexity of the algorithm. Let s be the number of slices, n and m be the number of balls in the object's and the obstacle's spherical representation, respectively. We have pre-computed the grids over $S O(3)$ corresponding to different dispersion values, and therefore we are only interested in the complexity of the connectivity graph construction. For each slice, we execute two computationally expensive procedures: we compute a weighted Voronoi diagram of the collision space, which allows us to extract the balls representation of the free space, and then for each slice we compute its intersections with adjacent slices. In practice, each orientation in \mathcal{Q} has around 20 adjacent orientation values, so each slice has around 20 neighbours ${ }^{1}$.

In CGAL representation, the regular triangulation contains the corresponding weighted Voronoi diagram. Note that a weighted Voronoi diagram can be constructed by other means using for example the algorithm from [1]. The complexity of this step is $O\left(n^{2} m^{2}\right)$. The computation of the connected components of each slice is linear on the number of balls in the dual diagram, which makes the overall complexity of this step $O\left(n^{2} m^{2}\right)$.

The complexity of finding the intersections between two connected components belonging to different slices $O\left(b \log ^{3}(b)+k\right)$ in the worst-case [3], where b is the number of balls in both connected components, and k the output complexity, i.e., the number of pairwise intersections of the balls.

The complexity of the final stage of the algorithm - computing connected components of the connectivity graph - is linear on the number of vertices, and can be expressed as $O(s c)$, where c is the average number of connected components per slice (a small number in practice).

[^0]
2 Proposition 1: distance-displacement correspondence

Proposition 1. Given two unit quaternions p, q, the following equation holds:

$$
\begin{equation*}
D(p \bar{q})=2 \sin (\rho(p, q)) \tag{1}
\end{equation*}
$$

Proof. We proceed by reducing both sides of the equation to the same formula, starting with the left-hand-side. To do this we once again point out that we can identify quaternions with vectors in \mathbb{R}^{4}, and that a unit quaternion $q=$ $\cos \left(\frac{\theta_{q}}{}\right)+\sin \left(\frac{\theta_{q}}{2}\right)\left(q_{x} i+q_{y} j+q_{z} k\right)$ is associated to a 3D rotation of an angle of θ_{q} around the axis $\left(q_{x}, q_{y}, q_{z}\right)$ which we will denote w_{q}.

$$
\begin{aligned}
& D\left(R_{p \bar{q}}\right)=2|\Im p \bar{q}| \\
& =2\left\|\cos \left(\frac{\theta_{q}}{2}\right) \sin \left(\frac{\theta_{p}}{2}\right) w_{p}-\cos \left(\frac{\theta_{p}}{2}\right) \sin \left(\frac{\theta_{q}}{2}\right) w_{q}-\sin \left(\frac{\theta_{p}}{2}\right) \sin \left(\frac{\theta_{q}}{2}\right) w_{p} \times w_{q}\right\| \\
& =2 \sqrt{\left\|\cos \left(\frac{\theta_{q}}{2}\right) \sin \left(\frac{\theta_{p}}{2}\right) w_{p}-\cos \left(\frac{\theta_{p}}{2}\right) \sin \left(\frac{\theta_{q}}{2}\right) w_{q}\right\|^{2}+\left\|\sin \left(\frac{\theta_{p}}{2}\right) \sin \left(\frac{\theta_{q}}{2}\right) w_{p} \times w_{q}\right\|^{2}}
\end{aligned}
$$

Where the last equality is due to the fact that $w_{p} \times w_{q}$ is perpendicular to both w_{p} and w_{q}, and is therefore a consequence of the Pythagorean theorem. Now recall that $\left\|w_{p} \times w_{q}\right\|=\sin \left(\omega_{p, q}\right)$ where $\omega_{p, q}$ is the angle between w_{p}, w_{q} and that $\left\langle w_{p}, w_{q}\right\rangle=\cos \left(\omega_{p, q}\right)$, since $\left\|w_{p}\right\|=\left\|w_{q}\right\|=1$. Recall also that $\sin ^{2}(\theta)=$ $1-\cos ^{2}(\theta)$, whence we obtain

$$
\begin{aligned}
& D\left(R_{p \bar{q}}\right)= \\
& 2 \sqrt{\left\|\cos \left(\frac{\theta_{q}}{2}\right) \sin \left(\frac{\theta_{p}}{2}\right) w_{p}-\cos \left(\frac{\theta_{p}}{2}\right) \sin \left(\frac{\theta_{q}}{2}\right) w_{q}\right\|^{2}+\sin ^{2}\left(\frac{\theta_{p}}{2}\right) \sin ^{2}\left(\frac{\theta_{q}}{2}\right)\left(1-\left\langle w_{p}, w_{q}\right\rangle^{2}\right)}
\end{aligned}
$$

Furthermore let $\tilde{w}_{p}=\frac{w_{q}-\left\langle w_{p}, w_{q}\right\rangle w_{p}}{\left\|w_{q}-\left\langle w_{p}, w_{q}\right\rangle w_{p}\right\|}$ be the component of w_{q} which is perpendicular to w_{p}, then we can rewrite $\cos \left(\frac{\theta_{p}}{2}\right) \sin \left(\frac{\theta_{q}}{2}\right) w_{q}$ as

$$
\cos \left(\frac{\theta_{p}}{2}\right) \sin \left(\frac{\theta_{q}}{2}\right) w_{q}=\cos \left(\frac{\theta_{p}}{2}\right) \sin \left(\frac{\theta_{q}}{2}\right)\left(\left\langle w_{p}, w_{q}\right\rangle w_{p}+\left\langle\tilde{w}_{p}, w_{q}\right\rangle \tilde{w}_{p}\right)
$$

Substituting this into the formula, and using the pythagorean theorem to separate he w_{p} and \tilde{w}_{p} components, we can proceed with

$$
\begin{aligned}
D\left(R_{p \bar{q}}\right)= & \frac{2 \sqrt{\left\|\left(\cos \left(\frac{\theta_{q}}{2}\right) \sin \left(\frac{\theta_{p}}{2}\right)-\cos \left(\frac{\theta_{p}}{2}\right) \sin \left(\frac{\theta_{q}}{2}\right)\left\langle w_{p}, w_{q}\right\rangle\right) w_{p}\right\|^{2}}}{}+\frac{\left\|\cos \left(\frac{\theta_{p}}{2}\right) \sin \left(\frac{\theta_{q}}{2}\right)\left\langle w_{q}, \tilde{w}_{p}\right\rangle \tilde{w}_{p}\right\|^{2}+\sin ^{2}\left(\frac{\theta_{p}}{2}\right) \sin ^{2}\left(\frac{\theta_{q}}{2}\right)\left(1-\left\langle w_{p}, w_{q}\right\rangle^{2}\right)}{}
\end{aligned}
$$

Note that $\left\|w_{q}\right\|,\left\|w_{p}\right\|,\left\|\tilde{w}_{p}\right\|=1$, and therefore $\left\|\left\langle w_{p}, w_{q}\right\rangle w_{p}+\left\langle w_{q}, \tilde{w}_{p}\right\rangle \tilde{w}_{p}\right\|^{2}=$ 1 which by the Pythagorean theorem gives $\left\langle w_{q}, \tilde{w}_{p}\right\rangle^{2}=1-\left\langle w_{p}, w_{q}\right\rangle^{2}$, which we can substitute once again.

$$
\begin{aligned}
& D\left(R_{p \bar{q}}\right) \\
& =\frac{2 \sqrt{\left(\cos \left(\frac{\theta_{q}}{2}\right) \sin \left(\frac{\theta_{p}}{2}\right)-\cos \left(\frac{\theta_{p}}{2}\right) \sin \left(\frac{\theta_{q}}{2}\right)\left\langle w_{p}, w_{q}\right\rangle\right)^{2}}}{\quad+\cos ^{2}\left(\frac{\theta_{p}}{2}\right) \sin ^{2}\left(\frac{\theta_{q}}{2}\right)\left(1-\left\langle w_{p}, w_{q}\right\rangle^{2}\right)+\sin ^{2}\left(\frac{\theta_{p}}{2}\right) \sin ^{2}\left(\frac{\theta_{q}}{2}\right)\left(1-\left\langle w_{p}, w_{q}\right\rangle^{2}\right)}
\end{aligned}
$$

Now we want to deal only with a combination of tangents, therefore we divide the term inside the square root by $\cos ^{2}\left(\frac{\theta_{p}}{2}\right) \cos ^{2}\left(\frac{\theta_{q}}{2}\right)$ yielding:

$$
\begin{aligned}
& D\left(R_{p \bar{q}}\right)=2\left|\cos \left(\frac{\theta_{p}}{2}\right) \cos \left(\frac{\theta_{q}}{2}\right)\right| \sqrt{\left(\tan \left(\frac{\theta_{p}}{2}\right)-\tan \left(\frac{\theta_{q}}{2}\right)\left\langle w_{p}, w_{q}\right\rangle\right)^{2}} \\
& +\tan ^{2}\left(\frac{\theta_{q}}{2}\right)\left(1-\left\langle w_{p}, w_{q}\right\rangle^{2}\right)+\tan ^{2}\left(\frac{\theta_{p}}{2}\right) \tan ^{2}\left(\frac{\theta_{q}}{2}\right)\left(1-\left\langle w_{p}, w_{q}\right\rangle^{2}\right)
\end{aligned}
$$

Now, expanding the sqares and multiplying into all the terms under the squareroot sign, as well as eliminating terms that cancel out, results in:

$$
\begin{aligned}
& D\left(R_{p \bar{q}}\right)=2\left|\cos \left(\frac{\theta_{p}}{2}\right) \cos \left(\frac{\theta_{q}}{2}\right)\right| \sqrt{\tan ^{2}\left(\frac{\theta_{p}}{2}\right)-2 \tan \left(\frac{\theta_{p}}{2}\right) \tan \left(\frac{\theta_{q}}{2}\right)\left\langle w_{p}, w_{q}\right\rangle} \\
& +\tan ^{2}\left(\frac{\theta_{q}}{2}\right)+\tan ^{2}\left(\frac{\theta_{p}}{2}\right) \tan ^{2}\left(\frac{\theta_{q}}{2}\right)-\tan ^{2}\left(\frac{\theta_{p}}{2}\right) \tan ^{2}\left(\frac{\theta_{q}}{2}\right)\left\langle w_{p}, w_{q}\right\rangle^{2}
\end{aligned}
$$

By introducing an extra $1-1$ into the square root, we can use these terms to complete products in order to simplify the equation.

$$
\begin{aligned}
D\left(R_{p \bar{q}}\right)= & \frac{\cos \left(\frac{\theta_{p}}{2}\right) \cos \left(\frac{\theta_{q}}{2}\right) \left\lvert\, \sqrt{1+\tan ^{2}\left(\frac{\theta_{p}}{2}\right)+\tan ^{2}\left(\frac{\theta_{q}}{2}\right)+\tan ^{2}\left(\frac{\theta_{p}}{2}\right) \tan ^{2}\left(\frac{\theta_{q}}{2}\right)}\right.}{} \begin{aligned}
-\left(1+\tan \left(\frac{\theta_{p}}{2}\right) \tan \left(\frac{\theta_{q}}{2}\right)\left\langle w_{p}, w_{q}\right\rangle\right)^{2}
\end{aligned} \\
= & \frac{\cos \left(\frac{\theta_{p}}{2}\right) \cos \left(\frac{\theta_{q}}{2}\right) \left\lvert\, \sqrt{\left(1+\tan ^{2}\left(\frac{\theta_{p}}{2}\right)\right)\left(1+\tan ^{2}\left(\frac{\theta_{q}}{2}\right)\right)}\right.}{-\left(1+\tan \left(\frac{\theta_{p}}{2}\right) \tan \left(\frac{\theta_{q}}{2}\right)\left\langle w_{p}, w_{q}\right\rangle\right)^{2}}
\end{aligned}
$$

Finally, recall that $1+\tan ^{2}(\theta)=\frac{1}{\cos ^{2}(\theta)}$, which gives us

$$
D\left(R_{p \bar{q}}\right)=2 \sqrt{1-\cos ^{2}\left(\frac{\theta_{p}}{2}\right) \cos ^{2}\left(\frac{\theta_{q}}{2}\right)\left(1+\tan \left(\frac{\theta_{p}}{2}\right) \tan \left(\frac{\theta_{q}}{2}\right)\left\langle w_{p}, w_{q}\right\rangle\right)^{2}}
$$

Now we begin to explore the right-hand side of the equation, by noting that when $\sin (\theta)>0$ then $\sin (\theta)=|\sin (\theta)|=\sqrt{\sin ^{2}(\theta)}=\sqrt{1-\cos ^{2}(\theta)}$. Furthermore we note that $\cos ^{-1}$ maps $[-1,1]$ to $[0, \pi]$ and particularly it maps $[0,1]$ to $[0, \pi / 2]$ where the sine function is positive, therefore, we get

$$
\begin{aligned}
2 \sin (\rho(p, q)) & =2 \sin \left(\cos ^{-1}(|\langle p, q\rangle|)\right) \\
& =2 \sqrt{1-\cos ^{2}\left(\cos ^{-1}(|\langle p, q\rangle|)\right)} \\
& =2 \sqrt{1-\langle p, q\rangle^{2}} \\
& =2 \sqrt{1-\left(\cos \left(\frac{\theta_{p}}{2}\right) \cos \left(\frac{\theta_{q}}{2}\right)+\sin \left(\frac{\theta_{p}}{2}\right) \sin \left(\frac{\theta_{q}}{2}\right)\left\langle w_{p}, w_{q}\right\rangle\right)^{2}}
\end{aligned}
$$

And finally, we get the same formula as before:

$$
2 \sin (\rho(p, q))=2 \sqrt{1-\cos ^{2}\left(\frac{\theta_{p}}{2}\right) \cos ^{2}\left(\frac{\theta_{q}}{2}\right)\left(1+\tan \left(\frac{\theta_{p}}{2}\right) \tan \left(\frac{\theta_{q}}{2}\right)\left\langle w_{p}, w_{q}\right\rangle\right)^{2}}
$$

Hence concluding the proof of Proposition 1.

3 Proposition 2: correctness

Proposition 2 (correctness). Consider an object \mathcal{O} and a set of obstacles \mathcal{S}. Let c_{1}, c_{2} be two collision-free configurations of the object. If c_{1} and c_{2} are not path-connected in $\mathcal{G}\left(a \mathcal{C}_{\varepsilon}^{\text {free }}(\mathcal{O})\right)$, then they are not path-connected in $\mathcal{C}^{\text {free }}(\mathcal{O})$.

Proof. Recall that the approximation of the free space is constructed as follows:

$$
a \mathcal{C}_{\varepsilon}^{\text {free }}(\mathcal{O})=\bigcup_{i=1}^{s} a S l_{U\left(\phi_{i}, \varepsilon\right)}^{\text {free }}
$$

where

$$
\begin{equation*}
a S l_{U\left(\phi_{i}, \varepsilon\right)}^{f r e e}=\operatorname{Dual}\left(\mathcal{C}^{c o l}\left(\mathcal{O}_{\varepsilon}^{\phi_{i}}\right)\right) \times U\left(\phi_{i}, \varepsilon\right) \tag{2}
\end{equation*}
$$

Now, recall that by definition $\left(\operatorname{Dual}\left(\mathcal{C}^{c o l}\left(\mathcal{O}_{\varepsilon}^{\phi_{i}}\right)\right)\right)^{c} \subset \mathcal{C}^{c o l}\left(\mathcal{O}_{\varepsilon}^{\phi_{i}}\right)$ [2], and that we choose ε and $U\left(\phi_{i}, \varepsilon\right)$ so that for any $\phi \in U\left(\phi_{i}, \varepsilon\right), \mathcal{C}^{c o l}\left(\mathcal{O}_{\varepsilon}^{\phi_{i}}\right) \subset \mathcal{C}^{c o l}\left(\mathcal{O}^{\phi}\right)$. This implies that $\left(\operatorname{Dual}\left(\mathcal{C}^{\operatorname{col}}\left(\mathcal{O}_{\varepsilon}^{\phi_{i}}\right)\right)\right)^{c} \subseteq \mathcal{C}^{\text {col }}\left(\mathcal{O}^{\phi}\right)$ for any $\phi \in U\left(\phi_{i}, \varepsilon\right)$, and conversely that $\mathcal{C}^{\text {free }}\left(\mathcal{O}^{\phi}\right) \subset \operatorname{Dual}\left(\mathcal{C}^{\text {col }}\left(\mathcal{O}_{\varepsilon}^{\phi_{i}}\right)\right)$. Finally, since $S l_{U\left(\phi_{i}, \varepsilon\right)}^{\text {free }}=\bigcup_{\phi} \mathcal{C}^{\text {free }}\left(\mathcal{O}^{\phi}\right) \times$ $\{\phi\}$, we have:

$$
\begin{equation*}
S l_{U\left(\phi_{i}, \varepsilon\right)}^{f r e e} \subseteq a S l_{U\left(\phi_{i}, \varepsilon\right)}^{f r e e} \tag{3}
\end{equation*}
$$

We now want to show that if there is no path between two vertices $v=$ $(a C, U)$ and $v^{\prime}=\left(a C^{\prime}, U^{\prime}\right)$ in $\mathcal{G}\left(a \mathcal{C}_{\varepsilon}^{f r e e}\right)$, then there is no path between connected components of $a \mathcal{C}_{\varepsilon}^{f r e e}(\mathcal{O})$ corresponding to them. It is enough to show that if two vertices corresponding to adjacent slices are not connected by an edge, then they represent two components which are disconnected in $S l_{U}^{f r e e} \cup S l_{U^{\prime}}^{f r e e}$.

Consider two adjacent slices $S l_{U\left(\phi_{i}, \varepsilon\right)}$ and $S l_{U\left(\phi_{j}, \varepsilon\right)}$, and two path-connected components $C_{1} \subset a S l_{U\left(\phi_{i}, \varepsilon\right)}^{f r r e e}$ and $C_{2} \subset a S l_{U\left(\phi_{j}, \varepsilon\right)}^{f r e e}$. Let $a C_{1}$ and $a C_{2}$ be their respective representations as unions of balls.

Let v_{1} and v_{2} be the vertices of $\mathcal{G}\left(a \mathcal{C}_{\varepsilon}^{\text {free }}(\mathcal{O})\right)$ corresponding to these components: $v_{1}=\left(a C_{1}, U\left(\phi_{i}, \varepsilon\right)\right)$ and $v_{2}=\left(a C_{2}, U\left(\phi_{j}, \varepsilon\right)\right)$. By construction, these are adjacent slices, therefore $U\left(\phi_{i}, \varepsilon\right) \cap U\left(\phi_{j}, \varepsilon\right) \neq \emptyset$ and since there is no edge between v_{1} and v_{2}, we get $a C_{1} \cap a C_{2} \neq \emptyset$. But, by construction $C_{1} \subseteq a C_{1} \times U\left(\phi_{i}, \varepsilon\right)$ and $C_{2} \subseteq a C_{2} \times U\left(\phi_{j}, \varepsilon\right)$, therefore, we get:

$$
C_{1} \cap C_{2} \subseteq\left(a C_{1} \times U\left(\phi_{i}, \varepsilon\right)\right) \cap\left(a C_{2} \times U\left(\phi_{j}, \varepsilon\right)\right)=\emptyset
$$

And so C_{1} and C_{2} are disjoint in the union of the corresponding slices.

4 Proposition 3: δ-completeness

Proposition 3 (δ-completeness). Let c_{1}, c_{2} be two configurations in $\mathcal{C}^{\text {free }}(\mathcal{O})$. If they are not path-connected in $\mathcal{C}^{\text {free }}(\mathcal{O})$, then for any $\delta>0$ there exists $\varepsilon>0$ such that the corresponding configurations are not path-connected in $\mathcal{G}\left(a \mathcal{C}_{\varepsilon}^{\text {freee }}\left(\mathcal{O}_{+\delta}\right)\right)$, where the graph is produced according to the procedure outlined in Rem. 1.

In proving this proposition we make used of the notion of the signed distance between two sets:

$$
\mathrm{d}_{\mathrm{s}}(\mathcal{O}, \mathcal{S})= \begin{cases}\min _{p \in O} d(p, \mathcal{S}) & \text { if } \mathcal{O} \cap \mathcal{S} \neq \emptyset \\ -\max _{p \in \mathcal{O} \cap \mathcal{S}} d(p, \mathcal{S}) & \text { otherwise }\end{cases}
$$

Note that $\mathrm{d}_{\mathrm{s}}(A, B)$ is not necessarily the same as $\mathrm{d}_{\mathrm{s}}(B, A)$.
Proof. Recall from (see Rem. 1) that there is an edge between vertices $\left(a C_{1}, \phi_{1}\right)$, $\left(a C_{2}, \phi_{2}\right)$ only if $U\left(\phi_{1}, \varepsilon\right)$ overlaps with $U\left(\phi_{2}, \varepsilon\right)$ and C_{1} overlaps with C_{2} where $C_{i}=a C_{i} \cap \mathcal{C}^{\text {free }}\left(\mathcal{O}_{\varepsilon}^{\phi_{i}}\right)$ for $i=1,2$ i.e. the components of the actual free space of $\mathcal{O}_{\varepsilon}^{\phi_{i}}(i=1,2)$ corresponding to the approximations $a C_{1}$ and $a C_{2}$. This means that we can perform the analysis in terms of collisions in workspace, rather than looking at the configuration space.

Recall now that we want to prove that for a pair of configurations c_{1}, c_{2} which are not path-connected in $\mathcal{C}^{\text {free }}(\mathcal{O})$, then for any $\delta>0$ they are not pathconnected in $\mathcal{G}\left(a \mathcal{C}_{\varepsilon}^{\text {free }}\left(\mathcal{O}_{+\delta}\right)\right)$ for some $\varepsilon>0$. Therefore, we start by noting that since c_{1} and c_{2} are not path-connected there exists a collision configuration c in any path between them, and since collision implies regular intersection, we have $\mathrm{d}_{\mathrm{s}}(c(\mathcal{O}), \mathcal{S})<0$. Thus, for the same configuration c we have $\mathrm{d}_{\mathrm{s}}\left(c\left(\mathcal{O}_{+\delta}\right), \mathcal{S}\right)<-\delta$.

To see that this will result in path non-existence, we take an arbitrary $\varepsilon>0$ and consider the collision space $a \mathcal{C}_{\varepsilon}^{c o l}\left(\mathcal{O}_{+\delta}\right)$. Further, we let $c=(p, \phi) \in \mathbb{R}^{3} \times$ $S O(3)$, and for any ϕ_{i} such that $\phi \in U\left(\phi_{i}, \varepsilon\right)$, we define $c_{i}=\left(p, \phi_{i}\right)$. Finally, we restrict ourselves to the case where $\varepsilon<\delta$ and define $\delta^{\prime}=\delta-\varepsilon$, then we get:

$$
\begin{aligned}
\mathrm{d}_{\mathrm{s}}\left(c_{i}\left(\mathcal{O}_{+\delta^{\prime}}\right), \mathcal{S}\right) & \leq \operatorname{dist}\left(c\left(\mathcal{O}_{+\delta^{\prime}}\right), c_{i}\left(\mathcal{O}_{+\delta^{\prime}}\right)\right)+\mathrm{d}_{\mathrm{s}}\left(c\left(\mathcal{O}_{+\delta^{\prime}}\right), \mathcal{S}\right) \\
& \leq \varepsilon-\delta^{\prime}
\end{aligned}
$$

Which implies that, as long as we choose ε such that $\varepsilon-\delta^{\prime}<0$ (i.e. $\varepsilon<\delta / 2$) we obtain the required result.

References

1. Aurenhammer, F. and Edelsbrunner, H., 1984. An optimal algorithm for constructing the weighted Voronoi diagram in the plane. Pattern Recognition, 17(2), pp.251257.
2. Edelsbrunner, H.: Deformable smooth surface design. Discrete and Computational Geometry (1999), 21(1), 87-115.
3. Zomorodian, A., Edelsbrunner H.: Fast software for box intersections, Proceedings of the 16th annual symposium on Computational geometry, 129-138 (2000).

[^0]: * The first two authors contributed equally.
 ${ }^{1}$ This is the case for $S O(3)$, in the case of $S O(2)$ there are exactly 2 neighbours.

