
Supplementary material for the paper
Free Space of Rigid Objects:

Caging, Path Non-Existence, and Narrow
Passage Detection

Anastasiia Varava?, J. Frederico Carvalho?, Florian T. Pokorny, and Danica
Kragic

KTH Royal Institute of Technology
{varava,jfpbdc,fpokorny,dani}@kth.se

In this document we provide the proofs of Propositions 1, 2, and 3, and
discuss the computational complexity in detail.

1 Computational Complexity

Let us now discuss the total computational complexity of the algorithm. Let s
be the number of slices, n and m be the number of balls in the object’s and
the obstacle’s spherical representation, respectively. We have pre-computed the
grids over SO(3) corresponding to different dispersion values, and therefore we
are only interested in the complexity of the connectivity graph construction. For
each slice, we execute two computationally expensive procedures: we compute
a weighted Voronoi diagram of the collision space, which allows us to extract
the balls representation of the free space, and then for each slice we compute its
intersections with adjacent slices. In practice, each orientation in Q has around
20 adjacent orientation values, so each slice has around 20 neighbours1.

In CGAL representation, the regular triangulation contains the correspond-
ing weighted Voronoi diagram. Note that a weighted Voronoi diagram can be
constructed by other means using for example the algorithm from [1]. The com-
plexity of this step is O(n2m2). The computation of the connected components
of each slice is linear on the number of balls in the dual diagram, which makes
the overall complexity of this step O(n2m2).

The complexity of finding the intersections between two connected compo-
nents belonging to different slices O(b log3(b)+k) in the worst-case [3], where b is
the number of balls in both connected components, and k the output complexity,
i.e., the number of pairwise intersections of the balls.

The complexity of the final stage of the algorithm — computing connected
components of the connectivity graph — is linear on the number of vertices,
and can be expressed as O(s c), where c is the average number of connected
components per slice (a small number in practice).

? The first two authors contributed equally.
1 This is the case for SO(3), in the case of SO(2) there are exactly 2 neighbours.



2 A. Varava, J. F. Carvalho et al.

2 Proposition 1: distance-displacement correspondence

Proposition 1. Given two unit quaternions p, q, the following equation holds:

D(pq̄) = 2 sin(ρ(p, q)). (1)

Proof. We proceed by reducing both sides of the equation to the same formula,
starting with the left-hand-side. To do this we once again point out that we
can identify quaternions with vectors in R4, and that a unit quaternion q =

cos(
θq ) + sin(

θq
2 )(qxi + qyj + qzk) is associated to a 3D rotation of an angle of

θq around the axis (qx, qy, qz) which we will denote wq.

D(Rpq̄) = 2|=pq̄|

= 2‖ cos(
θq
2

) sin(
θp
2

)wp − cos(
θp
2

) sin(
θq
2

)wq − sin(
θp
2

) sin(
θq
2

)wp × wq‖

= 2

√
‖ cos(

θq
2

) sin(
θp
2

)wp − cos(
θp
2

) sin(
θq
2

)wq‖2 + ‖ sin(
θp
2

) sin(
θq
2

)wp × wq‖2

Where the last equality is due to the fact that wp×wq is perpendicular to both
wp and wq, and is therefore a consequence of the Pythagorean theorem. Now
recall that ‖wp × wq‖ = sin(ωp,q) where ωp,q is the angle between wp, wq and
that 〈wp, wq〉 = cos(ωp,q), since ‖wp‖ = ‖wq‖ = 1. Recall also that sin2(θ) =
1− cos2(θ), whence we obtain

D(Rpq̄) =

2

√
‖ cos(

θq
2

) sin(
θp
2

)wp − cos(
θp
2

) sin(
θq
2

)wq‖2 + sin2(
θp
2

) sin2(
θq
2

)(1− 〈wp, wq〉2)

Furthermore let w̃p =
wq−〈wp,wq〉wp

‖wq−〈wp,wq〉wp‖ be the component of wq which is perpen-

dicular to wp, then we can rewrite cos(
θp
2 ) sin(

θq
2 )wq as

cos(
θp
2

) sin(
θq
2

)wq = cos(
θp
2

) sin(
θq
2

)(〈wp, wq〉wp + 〈w̃p, wq〉w̃p)

Substituting this into the formula, and using the pythagorean theorem to
separate he wp and w̃p components, we can proceed with

D(Rpq̄) = 2

√
‖(cos(

θq
2

)sin(
θp
2

)−cos(
θp
2

)sin(
θq
2

)〈wp, wq〉)wp‖2

+‖ cos(
θp
2

) sin(
θq
2

)〈wq, w̃p〉w̃p‖2 + sin2(
θp
2

) sin2(
θq
2

)(1− 〈wp, wq〉2)

Note that ‖wq‖, ‖wp‖, ‖w̃p‖ = 1, and therefore ‖〈wp, wq〉wp+〈wq, w̃p〉w̃p‖2 =
1 which by the Pythagorean theorem gives 〈wq, w̃p〉2 = 1− 〈wp, wq〉2, which we
can substitute once again.



Title Suppressed Due to Excessive Length 3

D(Rpq̄)

= 2

√
(cos(

θq
2

) sin(
θp
2

)− cos(
θp
2

) sin(
θq
2

)〈wp, wq〉)
2

+ cos2(
θp
2

) sin2(
θq
2

)(1− 〈wp, wq〉2) + sin2(
θp
2

) sin2(
θq
2

)(1− 〈wp, wq〉2)

Now we want to deal only with a combination of tangents, therefore we divide
the term inside the square root by cos2(

θp
2 ) cos2(

θq
2 ) yielding:

D(Rpq̄) = 2| cos(
θp
2

) cos(
θq
2

)|

√
(tan(

θp
2

)− tan(
θq
2

)〈wp, wq〉)
2

+ tan2(
θq
2

)(1− 〈wp, wq〉2) + tan2(
θp
2

) tan2(
θq
2

)(1− 〈wp, wq〉2)

Now, expanding the sqares and multiplying into all the terms under the
squareroot sign, as well as eliminating terms that cancel out, results in:

D(Rpq̄) = 2| cos(
θp
2

) cos(
θq
2

)|
√

tan2(
θp
2

)− 2 tan(
θp
2

) tan(
θq
2

)〈wp, wq〉

+ tan2(
θq
2

) + tan2(
θp
2

) tan2(
θq
2

)− tan2(
θp
2

) tan2(
θq
2

)〈wp, wq〉2

By introducing an extra 1 − 1 into the square root, we can use these terms
to complete products in order to simplify the equation.

D(Rpq̄) =2| cos(
θp
2

) cos(
θq
2

)|
√

1 + tan2(
θp
2

) + tan2(
θq
2

) + tan2(
θp
2

) tan2(
θq
2

)

−(1 + tan(
θp
2

) tan(
θq
2

)〈wp, wq〉)
2

=2| cos(
θp
2

) cos(
θq
2

)|
√

(1 + tan2(
θp
2

))(1 + tan2(
θq
2

))

−(1 + tan(
θp
2

) tan(
θq
2

)〈wp, wq〉)
2

Finally, recall that 1 + tan2(θ) = 1
cos2(θ) , which gives us

D(Rpq̄) = 2

√
1− cos2(

θp
2

) cos2(
θq
2

)(1 + tan(
θp
2

) tan(
θq
2

)〈wp, wq〉)
2



4 A. Varava, J. F. Carvalho et al.

Now we begin to explore the right-hand side of the equation, by noting that

when sin(θ) > 0 then sin(θ) = | sin(θ)| =
√

sin2(θ) =
√

1− cos2(θ). Furthermore

we note that cos−1 maps [−1, 1] to [0, π] and particularly it maps [0, 1] to [0, π/2]
where the sine function is positive, therefore, we get

2 sin(ρ(p, q)) = 2 sin(cos−1(|〈p, q〉|))

= 2
√

1−cos2(cos−1(|〈p, q〉|))

= 2
√

1−〈p, q〉2

= 2

√
1−(cos(

θp
2

) cos(
θq
2

)+sin(
θp
2

) sin(
θq
2

)〈wp, wq〉)
2

And finally, we get the same formula as before:

2 sin(ρ(p, q)) = 2

√
1− cos2(

θp
2

) cos2(
θq
2

)(1 + tan(
θp
2

) tan(
θq
2

)〈wp, wq〉)
2

Hence concluding the proof of Proposition 1.

3 Proposition 2: correctness

Proposition 2 (correctness). Consider an object O and a set of obstacles S.
Let c1, c2 be two collision-free configurations of the object. If c1 and c2 are not
path-connected in G(aCfreeε (O)), then they are not path-connected in Cfree(O).

Proof. Recall that the approximation of the free space is constructed as follows:

aCfreeε (O) =

s⋃
i=1

aSlfreeU(φi,ε)
,

where
aSlfreeU(φi,ε)

= Dual(Ccol(Oφi
ε ))× U(φi, ε) (2)

Now, recall that by definition (Dual(Ccol(Oφi
ε )))

c ⊂ Ccol(Oφi
ε ) [2], and that

we choose ε and U(φi, ε) so that for any φ ∈ U(φi, ε), Ccol(Oφi
ε ) ⊂ Ccol(Oφ). This

implies that (Dual(Ccol(Oφi
ε )))

c ⊆ Ccol(Oφ) for any φ ∈ U(φi, ε), and conversely

that Cfree(Oφ) ⊂ Dual(Ccol(Oφi
ε )). Finally, since SlfreeU(φi,ε)

=
⋃
φ Cfree(Oφ) ×

{φ}, we have:

SlfreeU(φi,ε)
⊆ aSlfreeU(φi,ε)

, (3)



Title Suppressed Due to Excessive Length 5

We now want to show that if there is no path between two vertices v =
(aC,U) and v′ = (aC ′, U ′) in G(aCfreeε ), then there is no path between connected
components of aCfreeε (O) corresponding to them. It is enough to show that if
two vertices corresponding to adjacent slices are not connected by an edge, then
they represent two components which are disconnected in SlfreeU ∪ SlfreeU ′ .

Consider two adjacent slices SlU(φi,ε) and SlU(φj ,ε), and two path-connected

components C1 ⊂ aSlfreeU(φi,ε)
and C2 ⊂ aSlfreeU(φj ,ε)

. Let aC1 and aC2 be their

respective representations as unions of balls.
Let v1 and v2 be the vertices of G(aCfreeε (O)) corresponding to these compo-

nents: v1 = (aC1, U(φi, ε)) and v2 = (aC2, U(φj , ε)). By construction, these are
adjacent slices, therefore U(φi, ε) ∩ U(φj , ε) 6= ∅ and since there is no edge be-
tween v1 and v2, we get aC1∩aC2 6= ∅. But, by construction C1 ⊆ aC1×U(φi, ε)
and C2 ⊆ aC2 × U(φj , ε), therefore, we get:

C1 ∩ C2 ⊆ (aC1 × U(φi, ε)) ∩ (aC2 × U(φj , ε)) = ∅

And so C1 and C2 are disjoint in the union of the corresponding slices.

4 Proposition 3: δ−completeness

Proposition 3 (δ-completeness). Let c1, c2 be two configurations in Cfree(O).
If they are not path-connected in Cfree(O), then for any δ > 0 there exists
ε > 0 such that the corresponding configurations are not path-connected in
G(aCfreeε (O+δ)), where the graph is produced according to the procedure outlined
in Rem. 1.

In proving this proposition we make used of the notion of the signed distance
between two sets:

ds(O,S) =

{
minp∈O d(p,S) if O ∩ S 6= ∅
−maxp∈O∩S d(p,S) otherwise

Note that ds(A,B) is not necessarily the same as ds(B,A).

Proof. Recall from (see Rem. 1) that there is an edge between vertices (aC1, φ1),
(aC2, φ2) only if U(φ1, ε) overlaps with U(φ2, ε) and C1 overlaps with C2 where
Ci = aCi ∩ Cfree(Oφi

ε ) for i = 1, 2 i.e. the components of the actual free space
of Oφi

ε (i = 1, 2) corresponding to the approximations aC1 and aC2. This means
that we can perform the analysis in terms of collisions in workspace, rather than
looking at the configuration space.

Recall now that we want to prove that for a pair of configurations c1, c2
which are not path-connected in Cfree(O), then for any δ > 0 they are not path-
connected in G(aCfreeε (O+δ)) for some ε > 0. Therefore, we start by noting that
since c1 and c2 are not path-connected there exists a collision configuration c in
any path between them, and since collision implies regular intersection, we have
ds(c(O),S) < 0. Thus, for the same configuration c we have ds(c(O+δ),S) < −δ.



6 A. Varava, J. F. Carvalho et al.

To see that this will result in path non-existence, we take an arbitrary ε > 0
and consider the collision space aCcolε (O+δ). Further, we let c = (p, φ) ∈ R3 ×
SO(3), and for any φi such that φ ∈ U(φi, ε), we define ci = (p, φi). Finally, we
restrict ourselves to the case where ε < δ and define δ′ = δ − ε, then we get:

ds(ci(O+δ′),S) ≤ dist(c(O+δ′), ci(O+δ′)) + ds(c(O+δ′),S)

≤ ε− δ′

Which implies that, as long as we choose ε such that ε− δ′ < 0 (i.e. ε < δ/2)
we obtain the required result.

References

1. Aurenhammer, F. and Edelsbrunner, H., 1984. An optimal algorithm for construct-
ing the weighted Voronoi diagram in the plane. Pattern Recognition, 17(2), pp.251-
257.

2. Edelsbrunner, H.: Deformable smooth surface design. Discrete and Computational
Geometry (1999), 21(1), 87–115.

3. Zomorodian, A., Edelsbrunner H.: Fast software for box intersections, Proceedings
of the 16th annual symposium on Computational geometry, 129–138 (2000).


