
Partial Caging: A Clearance-Based Definition and Deep Learning

Anastasiia Varava*1, Michael C. Welle*1, Jeffrey Mahler2, Ken Goldberg2,
Danica Kragic1 and Florian T. Pokorny1

Abstract— Caging grasps limit the mobility of an object to
a bounded component of configuration space. We introduce a
notion of partial cage quality based on maximal clearance of
an escaping path. As this is a computationally demanding task
even in a two-dimensional scenario, we propose a deep learning
approach. We design two convolutional neural networks and
construct a pipeline for real-time partial cage quality estimation
directly from 2D images of object models and planar caging
tools. One neural network, CageMaskNN, is used to identify
caging tool locations that can support partial cages, while
a second network that we call CageClearanceNN is trained
to predict the quality of those configurations. A dataset of
3811 images of objects and more than 19 million caging tool
configurations is used to train and evaluate these networks
on previously unseen objects and caging tool configurations.
Furthermore, the networks are trained jointly on configurations
for both 3 and 4 caging tool configurations whose shape
varies along a 1-parameter family of increasing elongation. In
experiments, we study how the networks’ performance depends
on the size of the training dataset, as well as how to efficiently
deal with unevenly distributed training data. In further analysis,
we show that the evaluation pipeline can approximately identify
connected regions of successful caging tool placements and we
evaluate the continuity of the cage quality score evaluation along
caging tool trajectories. Experiments show that evaluation of
a given configuration on a GeForce GTX 1080 GPU takes less
than 6 ms.

I. INTRODUCTION

A rigid object is caged if it cannot escape arbitrarily far
from its initial position. This notion provides one of the clas-
sical paradigms for reasoning about robotic grasping besides
form and force closure grasps [1], [2]. While form and force-
closure are concepts that can be analyzed in terms of local
geometry and forces, the analysis of caging configurations
requires knowledge about a whole connected component
of the free configuration space and is hence a challenging
geometric problem that has been studied analytically in
2D and 3D. However, since global geometric properties of
configuration space may also be estimated more robustly,
caging may hold promise particularly as a noise-tolerant
approach to grasping and manipulation. Caging grasps may
furthermore also be viewed as an intermediate step towards
acquiring a form closure grasp [2].

Provably-correct analytical methods have an obvious ad-
vantage, as they provide theoretical guarantees. However,
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Fig. 1: Given an image of an object (depicted in black) and 3 or 4 caging
tools (depicted in green), CageMaskNN determines whether a configuration
belongs to the “partial cage” subset. If it does, CageClearanceNN, evaluate
its quality according to the clearance measure learned by the network. On
the figure, the blue region corresponds to successful placements of the
fourth finger according to CageMaskNN, and their quality predicted by
CageClearanceNN.

they are often computationally expensive, while complete
caging guarantees may furthermore not be necessary in many
practical applications.

The notion of partial caging was first introduced by
Makapunyo et al. [3], where the authors define a partial
caging configuration as a non-caging formation of fingers
that only allows rare escape motions. They introduced a
quality measure for such configurations based on the com-
plexity and length of paths constructed by a sampling-
based motion planner, thus generalizing the binary notion
of caging to a property parameterized by cage quality. We
propose an alternative quality measure, which is based on the
maximum clearance along any possible escaping path. This
value is directly related to the maximum width of narrow
passages separating the object from the rest of the free space.
Intuitively, the quality of a partial cage depends on the width
of a “gate” through which the object can escape. While
we focus on the quality function definition, evaluation and
learning in this work, we observe that this function changes
continuously with respect to the caging tools’ positions, and
may hence in future be considered as a cost function for cage
acquisition. We propose a Gate-Based Clearance Estimation
Algorithm that evaluates partial caging configurations in a
sampling-based manner.

One challenge with both our work and [3] is that a single
configuration requires multiple runs of a motion planner
and – in the case of RRT – potentially millions of tree
expansion steps each, due to the non-deterministic nature
of these algorithms. This increases the computation time of
the evaluation process which can be critical for real-time
applications, such as scenarios where cage quality needs to
be estimated and optimized iterative to guide a caging tool
from a partial towards a final cage. We significantly speed
up the evaluation procedure for partial caging configurations
by designing a deep learning-based pipeline that identifies



partial caging configurations and approximates the partial
caging evaluation function. For this purpose, we create a
dataset of 3811 two-dimensional object shapes and 19055000
caging tool configurations and use it to train and evaluate our
pipeline.

Apart from evaluating given partial caging configurations,
we also use the proposed quality measure to choose poten-
tially successful placements of one out of 3 or 4 caging tools,
assuming the positions of the remaining tools are fixed. In
Fig. 1, we represent the output as a heat map, where for
every possible translational placement of a caging tool along
a grid the resulting partial caging quality value is computed.
Another application of the pipeline is the evaluation and
scoring of caging configurations along a given reference
trajectory.

The contributions of this paper can be summarized as
follows: i) a partial caging quality measure based on the
width of the gates formed by obstacles in the collision space
of the object; ii) a deep neural network, CageMaskNN, that
classifies caging tool positions as partial cages; iii) a deep
neural network, CageClearanceNN, that approximates the
partial caging quality measure; iv) a 2D partial caging dataset
consisting of 3811 object shapes and 19055000 caging tool
configurations, for 3 and 4 caging tools and where the shape
of each caging tool varies along a 1-parameter family of
elongation; each configuration is evaluated with respect to
the proposed partial caging quality measure. The dataset will
be made freely available on the first authors’ website upon
publication3.

II. RELATED WORK

One direction of caging research is devoted to point-
wise caging, where a set of points (typically two or three)
represents fingertips, and an object is usually represented
as a polygon or a polyhedron. Rimon and Blake in their
early work [4] proposed an algorithm to compute a set of
configurations for a two-fingered hand to cage planar non-
convex objects. Later, Pipattanasomporn and Sudsang [5]
proposed an algorithm reporting all two-finger caging sets
for a given concave polygon. Vahedi and van der Stappen in
[6] described an algorithm that returns all caging placements
of a third finger when a polygonal object and a placement
of two other fingers are provided. Later, Rodriguez et al. [2]
considered caging as a prerequisite for a form closure grasp
by introducing a notion of a pregrasping cage. Starting from
a pregrasping cage, a manipulator can move to a form closure
grasp without breaking the cage, hence guaranteeing that the
object cannot escape during this process.

One can derive sufficient caging conditions for caging
tools of more complex shapes by considering more complex
geometric and topological representations. For example, an
approach towards caging 3D objects with ‘holes’ was pro-
posed by some of the authors in [7], [8], [9]. Another shape
feature was later proposed in [10], where we presented a
method to cage objects with narrow parts. Makita et al. [11],

3https://people.kth.se/˜mwelle/

[12] have proposed sufficient conditions for caging objects
corresponding to certain geometric primitives.

Finally, research has studied the connectivity of the free
space of the object by explicitly approximating it. For in-
stance, Zhang et al. [13] use approximate cell decomposition
to check whether pairs of configurations are disconnected in
the free space. Another approach was proposed by Wan and
Fukui [14], who studied cell-based approximations of the
configuration space based on sampling. McCarthy et al. [15]
proposed to randomly sample the configuration space and re-
construct its approximation as a simplicial complex. Mahler
et al. [16], [17] extend this approach to verifying and gener-
ating energy-bounded cages – configurations where physical
forces and obstacles complement each other in restricting the
mobility of the object. These methods work with polygonal
objects and caging tools of arbitrary shape, and therefore
are applicable to a much broader set of scenarios. However,
these methods are computationally expensive, as discretizing
and approximating a three-dimensional configuration space
is not an easy task.

To enable a robot to quickly evaluate the quality of
a particular configuration and to decide how to place its
fingers, we design, train and evaluate a neural network that
approximates our caging evaluation function. This approach
is inspired by recent success in using deep neural networks
in grasping applications, where a robot policy to plan grasps
is learned on images of target objects by training on large
datasets of images, grasps, and success labels. Many ex-
periments suggest that these methods can generalize to a
wide variety of objects with no prior knowledge of the
object’s exact shape, pose, mass properties, or frictional
properties [18], [19], [20]. Labels may be curated from
human labelers [21], [22], [23], collected from attempts on
a physical robot [24], [25], or generated from analysis of
models based on physics and geometry [26], [27], [28],
[29]. We explore the latter approach, developing a data-
driven partial caging evaluation framework. Our pipeline
takes images of an object and caging tools as input and
outputs (i) whether a configuration is a partial cage and
(ii) for each partial caging configuration, a real number
corresponding to a predicted clearance is then used to rank
the partial caging configuration.

Generative approaches to training dataset collection for
grasping typically fall into one of three categories: meth-
ods based on probabilistic mechanical wrench space anal-
ysis [29], methods based on dynamic simulation [26], [28],
and methods based on geometric heuristics [27]. Our work is
related to methods based on grasp analysis, but we derive a
partial caging evaluation function based on caging conditions
rather than using mechanical wrench space analysis.

III. PARTIAL CAGING AND CLEARANCE

A. Partial Caging

In this section, we discuss the notion of partial caging.
Let C be the configuration space of the object, Ccol ⊂ C
be its subset containing configurations in collision, and let
Cfree = C − Ccol be the free space of the object. Let us
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assume Ccol is bounded. Recall the traditional definition of
caging:

Definition 1: A configuration c ∈ Cfree is a cage if it is
located in a bounded connected component of Cfree.

In practical applications, it may be beneficial to identify
not just cages, but also configurations which are in some
sense ‘close’ to a cage, i.e., configurations from which it is
difficult but not necessarily impossible to escape. Such partial
caging can be formulated in a number of ways: for example,
one could assume that an object is partially caged if its
mobility is bounded by physical forces, or it is almost fully
surrounded by collision space but still can escape through
narrow openings.

We introduce the maximal clearance of an escaping path
as a quality measure. Intuitively, we are interested in partial
caging configurations where an object can move within a
connected component, but can only escape from it through
a narrow passage. The ‘width’ of this narrow passage then
determines the quality of a configuration.

Let us now provide the necessary definitions. Since by
our assumption the collision space of the object is bounded,
there exists a ball BR ⊂ C of a finite radius containing it.
Let us define the escape region Xesc ⊂ C as the complement
of this ball: Xesc = C −BR.

Definition 2: A collision-free path p : [0, 1] → Cfree
from a configuration c to Xesc is called an escaping path.
The space of all possible escaping paths is denoted by
EP(Cfree, c).

Let cl : EP(Cfree, c) → R+ be a cost function defined
as the minimum distance from the object along the path p
to the caging tools: cl(p) = minc∈p(dist(oc,g)) where oc is
the object placed in the configuration c and g denotes the
caging tools. We define the caging evaluation function as
follows:

Qcl(c) =

{
minp∈EP(Cfree,c) cl(p), EP(Cfree, c) 6= ∅
0, EP(Cfree, c) = ∅.

(1)

B. The set Ccage

Fig. 2: On the left, an object (blue) can easily escape from the caging tool
(grey); on the right, the object is partially surrounded by the caging tool
and escaping is therefore harder. Both escaping paths will have the same
clearance ε.

Observe that a low value of clearance measure on arbitrary
configurations of Cfree does not guarantee that a config-
uration is a sufficiently “good” partial cage. For example,

consider only one convex caging tool located close to the
object as in Fig. 2 (left). In this case, the object can easily
escape. However, the clearance of this escaping path will be
low, because the object is initial located very close to the
caging tool. The same clearance value can be achieved in a
much better partial caging configuration, see Fig. 2 (right).
Here, the object is almost completely surrounded by a caging
tool, and it can escape through a narrow gate. Clearly, the
second situation is much preferable from the caging point
of view. Therefore, we would like to be able to distinguish
between these two scenarios.

Assume that caging tools are placed such that the object
can escape. We increase the size of the caging tools by an
offset, and eventually, for a sufficiently large offset, the object
collides with the enlarged caging tools; let us assume that
the size of the offset at this moment is εcol > 0. We are
interested in those configurations for which there exists an
intermediate size of the offset 0 < εclosed < εcol, such that
the object is caged by the enlarged caging tools, but is not in
collision. This is not always possible, as in certain situations
the object may never become caged before colliding with
enlarged caging tools. The left part of Fig. 3 illustrates this
situation.

Fig. 3: The light blue disc depicts the object. The black discs depict caging
tools, their offset is depicted in red. The RRT is depicted in purple. From left
to right, three consecutive enlargements of the caging tools are depicted. The
object can always escape until its initial configuration stops being collision-
free.

Let us formally describe this situation. Let Cεfree be the
free space of the object induced by ε−offset of caging tools.
As we increase the size of the offset, we get a nested family
of spaces Cεcolfree ⊂ ... ⊂ Cεfree ⊂ ... ⊂ C0free, where εcol is
the smallest size of the offset causing a collision between the
object and the enlarged caging tools. There are two possible
scenarios: in the first one, there is a value 0 < εclosed < εcol
such that when the offset size reaches it the object is caged
by the enlarged caging tools. This situation is favorable for
our application, as in this case the object has some freedom
to move within a partial cage, but cannot escape arbitrarily
far as its mobility is limited by a narrow gate (see Fig. 4).
We denote the set of all configurations falling into this
category as the caging subset Ccage. These configurations are
promising partial cage candidates, and our primary interest
is to identify these configurations. In the second scenario,
for any ε between 0 and εcol, the object is not caged in the
respective free space Cεfree, as shown in Fig. 3.

We define the notion of partial caging as follows:
Definition 3: Any configuration c ∈ Ccage of the object is

called a partial cage of clearance Qcl(c).



Note that the case where EP(Ccage, c) = ∅ corresponds
to the case of a complete (i.e., classical) cage. Thus, partial
caging is a generalization of complete caging.

Based on this theoretical framework, we propose a partial
caging evaluation process that consists of two stages. First,
we determine whether a given configuration belongs to
the caging subset Ccage. If it does, we further evaluate
its clearance with respect to our clearance measure Qcl,
where, intuitively, configurations with smaller clearance are
considered more preferable for grasping and manipulation.

C. Gate-Based Clearance Estimation Algorithm

Input: object O, caging tools G, εmax

Output: clearance of an escaping path εcl
εmin ← 0;
while Can-Escape(O, G, ε0) do

εcl ← (εmin + εmax)/2;
if Can-Escape(O, G, εcl) then

εmin ← εcl
end
else

εmax ← εcl
end

end
return εmin;

Algorithm 1: Gate-Based Clearance Estimation

Fig. 4: From left to right: the object can escape only in the first case, and
becomes completely caged when we enlarge the caging tools.

In this section, we propose one possible approach to
estimate Qcl(c) – the Gate-Based Clearance Estimation Al-
gorithm. Instead of finding a path with maximum clearance
directly, we gradually inflate the caging tools by a distance
offset until the object becomes completely caged. For this,
we first approximate the object and the caging tools as union
of discs, see Fig. 4. This makes enlarging the caging tools an
easy task – we simply increase the radii of the discs in the
caging tools’ approximation by a given value. To estimate
Qcl(c), we approximate objects and caging tools as unions
of discs. The procedure is then described in Alg. 1.

We perform bisection search to find the offset value at
which an object becomes completely caged. For this, we
consider offset values between 0 and the diameter of the
workspace. We run RRT at every iteration of the bisection
search in order to check whether a given value of the offset
makes the object caged. In the experiments, we choose a
threshold of 4 million iterations 1 and assume that the object

1Our experimental evaluation for our test dataset suggested that if after 4
million iterations RRT had not found an escaping path, then the object was
caged with overwhelming likelihood. We thus considered RRT with this
setting to provide a sufficiently good approximation for training the neural
network.

is fully caged if RRT does not produce an escaping path
at this offset value. Note that this procedure, due to the ap-
proximation with RRT up to a maximal number of iterations,
does not guarantee that an object is fully caged; however,
since no rigorous bound on the number of iterations made
by RRT is known, we choose a threshold that performs well
in practice since errors due to this RRT-based approximation
become insignificant for sufficiently large maximal numbers
of RRT sampling iterations. In Alg. 1, Can-Escape(O,G, εcl)
returns True if the object can escape and is in a collision-
free configuration.

IV. LEARNING Qcl

To estimate the quality of a configuration, we need to
run RRT several times to determine the critical value of
the offset at which the object becomes caged. The more
difficult it is to find a path, the longer we should run each
iteration. In real-time applications, a robot has to make
decisions immediately and has to be able to evaluate caging
configurations within milliseconds. Thus, the main obstacle
on the way towards using the caging evaluation function
defined above in real time is the computation time needed
to evaluate a single partial caging configuration. To address
this problem, we design and train two convolutional neural
networks. The first acts as a binary classifier that identifies
configurations that belong to Ccage defined in the previous
section. The second one approximates the caging evaluation
function Qcl to further classify configurations. The network
takes images of an object and caging tools as input, and
returns an approximation of the partial caging evaluation
function from Def. 3. The process is visualized in Fig. 1.
Our goal is to estimate Qcl given O ⊂ R2 – an object in
a fixed position, and G = {g1, g2, .., gn} – a set of caging
tools. We assume that caging tools are usually disconnected,
while objects always have a single connected component.
In our current implementation, we consider n ∈ {3, 4}, and
multiple caging tool shapes.

A. Dataset Generation
We create a dataset of object models consisting of two-

dimensional slices of objects’ three-dimensional mesh repre-
sentations created for the Dex-Net 2.0 framework [29]. We
further approximate each model as a union of discs.

Fig. 5 shows four objects in three configurations. The
dataset is composed of 3811 objects, 124435 partial caging
configurations, and 18935565 configurations that do not
belong to the caging subset Ccage.

Fig. 5: First column: polygonal representations of objects (red) and in black
their approximation by a union of discs of various sizes closely matching
the polygonal shape; second and third column: configurations that do not
belong to Ccage; last column: a partial caging configuration.



B. Architecture of Convolutional Neural Networks

We propose a multi-resolution architecture that takes the
input image as 64x64x2, 32x32x2, and 16x16x2 tensors.
This architecture is inspired by inception blocks [30]. We
utilize the same architecture for both CageMaskNN and
CageClearanceNN. The network CageMaskNN determines
whether a certain configuration belongs to Ccage, while
CageClearanceNN predicts the clearance Qcl value for a
given input configuration.

Fig. 6: As caging depends on global geometric properties of objects, a
CNN architecture with multi-resolution input was designed to capture these
features efficiently.

The architecture for the networks is shown in Fig. 6.
Both networks take images of an object and caging tools on
uniform background with position and orientation belonging
to the same coordinate frame constituting a two-channel
image (64x64x2) as input. CageMaskNN performs binary
classification of configurations by returning 0 in case a
configuration belongs to Ccage, and 1 otherwise. CageClear-
anceNN uses clearance Qcl values as labels and outputs a
real value – the predicted clearance of a partial cage. The
networks are trained using Tensorflow’s [31] implementation
of the Adam algorithm [32]. The loss is defined as the mean-
squared-error (MSE) of the prediction and true label. The
batch size was chosen to be 100 in order to compromise
between learning speed and gradient decent accuracy.

V. TRAINING AND EVALUATION OF THE NETWORKS

A. CageMaskNN

We generate 4 datasets containing 5%, 10%, 15%, and
20% caging configurations in Ccage respectively. This is
achieved by oversampling as well as by performing rotational
augmentation with 90, 180 and 270 degrees of the existing
caging configurations.

The evaluation is performed on a test set consisting of
50% caging examples from Ccage. In Fig. 7, we show the
ROC-curve and PR-curve. The F1-score and accuracy are
visualized as well. All four versions of the network where
trained with 3048 objects with 2000 configuration each,
using a batch size of 100 and 250000 iterations. To avoid
overfitting, a validation set of 381 objects is evaluated after
every 100th iteration. The final scoring is done on a test
set consisting of 381 previously unseen objects. The mean

squared error (MSE) on the unseen test set was 0.0758,
0.0634, 0.0973 and 0.072 for the 5%, 10%, 15% and 20%
version respectively, indicating that CageMaskNN is able to
generalize to novel objects and configurations from our test
set.

Training set AUC AP
1 object 0.92 0.88
1 object, no validation 0.91 0.88
10 objects 0.91 0.88
10 objects, no validation 0.93 0.85
100 objects 0.97 0.92
1000 objects 1.00 1.00

TABLE I: AUC - Area under ROC curve and AP - average precision for
different training set constitutions, evaluated on the test set. In all training
sets 10 % of configurations belong to in Ccage. Varying this distribution
between 5 % and 20 % did not lead to any difference in AUC and AP
values.

Fig. 7: F1-score and accuracy of the network depending on different
thresholds

We observe that the network version with 10% cage
relevant data performs slightly better than the other versions.
Only the 5% setting however perform visibly worse.

Next, we investigate how the performance of the networks
depends on the size of the training data. Fig. 8 demonstrates
how the performance of the networks increases with the
number of objects in the training dataset. As shown, the net-
work performs relatively well even with a modest numbers of
objects. One key factor is the validation set which lowers the
generalisation error by choosing the best performance during
the entire training run, thus reducing the risk of overfitting.

Fig. 8: F1-score and accuracy of the network trained with 1, 10, 100, and
1000 objects, respectively.

B. CageClearanceNN

The purpose of CageClearanceNN is to predict the value
of the clearance measure Qcl given a partial caging config-
uration. CageClearanceNN is trained on 3048 objects. The
score is scaled with a factor of 0.1 as we found the network



to improve performance for smaller training input values.
To explore how many objects are needed to reach a certain
performance, several additional versions of the same network
are trained. The result in Fig.9 shows a rapid performance
increase in terms of MSE as we increase the number of train-
ing data objects to 1000, and a slight performance increase
between 1000 and 3048 training objects. This indicates that
further increases in performance may require a significant
scaling-up of the training dataset.

Fig. 9: left: test set label distribution, right: MSE performance for networks
trained with 1, 10, 100, 1000 and 3048 objects.

We also investigated the MSE for specific clearance value
intervals. Fig. 10 shows the MSE performance on the test
set with respect to the clearance values scaled by 0.1.
The network that was trained only on one object does
not generalise over the entire clearance/label spectrum, but
performance then increases with more objects. The outliers
with large errors that are present in the network trained
on 100 objects(bottom left) are significantly lower for the
network trained on 1000 objects. On the right side, we can
see the MSE for the final CageClearanceNN network. We
observe that the errors are heavily concentrated along small
values and relatively evenly distributed among clearance
values.

Fig. 10: MSE for each test case sorted for labels. Left: shows performance
of 1, 10, 100, 1000 objects (top left, top right, bottom left, bottom right).
Right: shows MSE of entire test set for the final CageClearanceNN. Note
that the figure on the right is zoomed in as errors are significantly smaller
(see the left y-axis of that figure)

VI. CAGING PIPELINE EVALUATION

A. Caging tool placement

In this experiment, we consider the scenario where n− 1
out of n caging tools are already placed in fixed locations,
and our framework is used to evaluate a set of possible
placements for the last tool to acquire a partial cage. We
represent possible placements as cells of a two-dimensional

grid and assume that the orientation of the caging tool is
fixed. Fig. 11 illustrates this approach.

In the example a, we can see that placing the caging
tool closer to the object results in better partial caging
configurations. This result is consistent with our definition
of the partial caging quality measure. We note furthermore,
that CageMaskNN obtains an approximately correct region-
mask of partial caging configurations for this novel object.

Example b demonstrates the same object with elongated
caging tools. Observe that this results in a larger region for
possible placement of the additional tool.

Example c depicts the same object but the fixed disc-
shaped caging tool has been removed and we are considering
three instead of four total caging tools. This decreases the
number of possible successful placements for the additional
caging tool. We can see that our framework determines the
successful region correctly, but is more conservative than the
ground truth.

In the example d, we consider an object with two large
concavities and three caging tools. We observe that Cage-
MaskNN identifies the region for Ccage correctly and pre-
serves its connectivity. Similarly to the previous experiments,
we can also observe that the most promising placements (in
blue) are located closer to the object.

B. Random Disc Caging Tools Configurations at Fixed Dis-
tances

We now study the performance of our networks for four
disc-shaped caging tools with a fixed distance from the object
ε given by a = 6, b = 9 and c = 12 times the radius of the
displayed disc-shaped caging tools. We analyze these three
different values of ε and see how the performance changes.
We randomly sample n = 10000 configurations for each of
the different values of ε. The caging tools are positioned
along the indicated distance offset lines and we do not allow
configurations in self-collision (see Fig. 12).

Table II shows the F1 score as well as the accuracy for
CageMaskNN and the MSE for CageQualityNN for two
novel objects and the three considered distance offsets.

ε object 1 (top) object 2 (bottom)
F1 Acc. E-GT F1 Acc. E-GT

a 0.64 0.93 6.82 0.36 0.9 8.96
b 0.72 0.93 21.31 0.4 0.89 19.11
c 0.78 0.94 34.33 0.49 0.87 24.13

TABLE II: Performance of CageMaskNN in terms of F1 score and accuracy,
and CageClearanceNN in terms of Mean Squared Error relative to ground
truth evaluation by RRT for each of the three distance thresholds and two
previously unseen objects.

We observe that the F1 and accuracy performance in-
creases as the caging tools are further away from the object.
We believe this is because, as we increase distance, the
impact of objects’ local concavities decreases, while at close
proximity the detailed local geometry matters more. On the
other hand, MSE increase with distance, as the absolute
magnitude of encountered clearance values also increases.

In Fig. 12 the highest scoring configurations among 10000
random samples per offset are plotted for each distance. We



Fig. 11: Here, we depict the results of four different experiments. The green region indicates configuration where the additional caging tool completes the
configuration in such a way that the resulting configuration is a partial cage. The small squares in the ground truth figures depict the caging tools that are
being placed (their orientations are fixed). We plot the output for each configuration directly and visualize the result as a heatmap diagram (blue for partial
caging configurations, white otherwise). The best placements according to CageClearanceNN are depicted in dark blue, and the worst ones in yellow. The
results are normalized between 0 and 1. Grey area corresponds to the placements that would result in a collision.

Fig. 12: Random caging tool configuration sampled at distance ε for a = 6
(red), b = 9 (green) and c = 12 (blue) times the radius of the displayed
disc caging tools. The shown configurations achieved the lowest clearance
score among n = 10000 randomly sampled configuration for each ε.

observe that, as we increase the distance, an equally spaced
out configuration is selected as optimal choice for caging,
confirming intuition. Furthermore, for the bottom object, the
large concavity causes two of the caging tools to be placed
alongside the concavity, while for the object in the first row,
the local concavity at the top right appears to not have
influenced the ranking sufficiently. Both objects have not
been seen by the network during training, so that even the
detection of the large concavity in the second row is in our
view a success given the modest size of utilized training data
and infinite dimensionality of the space of possible object
shapes.

C. Evaluating Qcl along a trajectory

We now consider a use case of Qcl along a caging
tool trajectory during manipulation enabled by the fact
that the evaluation of a single caging configuration using
CageMaskNN and CageClearanceNN takes less than 6ms
on a GeForce GTX 1080 GPU.

The results for two simulated sample trajectories are de-
picted in Fig. 13 and a video is available in the supplementary
material. In the first row, we consider a trajectory of two
parallel caging tools, while in the trajectory displayed in the

bottom row, we consider the movement of 4 caging tools:
caging tool 1 moves from the top left diagonally downwards
and then straight up, caging tool 2 enters from the bottom
left and then exits towards top, caging tool 3 enters from the
top right and then moves downwards, while caging tool 4
enters from the bottom right and then moves downwards.

The identification of partial caging configurations by
CageMaskNN is rather stable as we move the caging tool
along the reference trajectories, but occurs at a slight offset
from the ground truth. In the second example, the clearance
of the partial cage decreases continuously as the caging
tools gets closer to the object. Predicted clearance values
display little noise and low absolute error relative to the
ground truth. Note that a value of −1 in the quality plots
refers to configurations identified as not being in Ccage by
CageMaskNN.

Fig. 13: Evaluation of the pipeline along two trajectories. The trajectory
(left, green) is evaluated with CageMaskNN (middle) and CageClearanceNN
(right), which evaluates Qcl for those configurations where CageMaskNN
returns 0. The predictions by the networks are displayed in orange while
ground truth is shown in blue.

VII. LIMITATIONS AND FUTURE WORK

The main challenge of our approach is the requirement to
generate sufficiently dense training data over the joint space
of all caging tools’ configurations and caging tool and object



shapes. While our experimental evaluation in terms of MSE
indicated that our network is able to achieve surprisingly
low average errors on novel objects, one may in applications
want to train the network with either a larger distribution of
objects, or a distribution of objects as similar as possible to
the objects that will be encountered in practice. In Fig.14,
we illustrate how a lack of training data of sufficiently
similar shapes can cause a break-down of CageMaskNN and
CageClearanceNN, e.g. when only 1 or 10 objects are used
for training. Similarly, even when trained on the full training
dataset of 3048 objects, the subtle geometric details of partial
caging region cannot be recovered for the novel test object,
likely requiring further training data and refinement of the
approach.

Fig. 14: Performance of CageMaskNN and CageClearanceNN given dif-
ferent numbers of training objects and evaluated on a single novel object.
The top left displays the ground truth mask and clearance values for a
fourth missing disc-shaped caging tool, top middle: only 1 object is used
for training, top right:10 objects are used for training, bottom left: 100
objects, bottom middle: 1000 objects, bottom right: all 3048 objects are
used for training. Note that the threshold had to be adjusted to 0.6 for the
single object and 0.61 for the 10 object case to yield any discernible mask
results at all.

In the future, we will focus on evaluating our cage
clearance measure using robotic experiments. We also aim
to generalize our approach to 3D caging as well as caging
in the presence of a potential energy field.
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