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Abstract

We consider the pebble game on DAGs with bounded fan-in introduced in [Paterson and Hewitt ’70] and the
reversible version of this game in [Bennett ’89], and study the question of how hard it is to decide exactly or
approximately the number of pebbles needed for a given DAG in these games.

We prove that the problem of deciding whether s pebbles suffice to reversibly pebble a DAG G is PSPACE-
complete, as was previously shown for the standard pebble game in [Gilbert, Lengauer and Tarjan ’80]. Via
two different graph product constructions we then strengthen these results to establish that both standard and
reversible pebbling space are PSPACE-hard to approximate to within any additive constant. To the best of our
knowledge, these are the first hardness of approximation results for pebble games in an unrestricted setting (even
for polynomial time). Also, since [Chan ’13] proved that reversible pebbling is equivalent to the games in [Dymond
and Tompa ’85] and [Raz and McKenzie ’99], our results apply to the Dymond–Tompa and Raz–McKenzie games
as well, and from the same paper it follows that resolution depth is PSPACE-hard to determine up to any additive
constant.

We also obtain a multiplicative logarithmic separation between reversible and standard pebbling space. This
improves on the additive logarithmic separation previously known and could plausibly be tight, although we are
not able to prove this.

We leave as an interesting open problem whether our additive hardness of approximation result could be
strengthened to a multiplicative bound if the computational resources are decreased from polynomial space to the
more common setting of polynomial time.
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I. INTRODUCTION

In the pebble game first studied by Paterson and Hewitt [26], one starts with an empty directed acyclic graph
(DAG) G with bounded fan-in (and which in this paper in addition will always have a single sink) and places
pebbles on the vertices according to the following rules:
• If all (immediate) predecessors of an empty vertex v contain pebbles, a pebble may be placed on v.
• A pebble may be removed from any vertex at any time.

The goal is to get a pebble on the sink vertex of G with all other vertices being empty, and to do so while
minimizing the total number of pebbles on G at any given time (the pebbling price of G). This game models
computations with execution independent of the actual input. A pebble on a vertex indicates that the corresponding
value is currently kept in memory and the objective is to perform the computation with the minimum amount of
memory.



The pebble game has been used to study flowcharts and recursive schemata [26], register allocation [33], time
and space as Turing-machine resources [10], [18], and algorithmic time-space trade-offs [8], [31], [35]–[37].
In the last 10–15 years, there has been a renewed interest in pebbling in the context of proof complexity as
discussed in the survey [24] (although in this context one is often interested also in the slightly more general
black-white pebble game introduced in [11]), and pebbling has also turned out to be useful for applications in
cryptography [1], [12]. An excellent overview of pebbling up to ca. 1980 is given in [28] and some more recent
developments are covered in the upcoming survey [25].

Bennett [3] introduced the reversible pebble game as part of a broader program [2] to investigate possibil-
ities to eliminate (or significantly reduce) energy dissipation in logical computation. Another reason reversible
computation is of interest is that observation-free quantum computation is inherently reversible. In the reversible
pebble game, the moves performed in reverse order should also constitute a legal pebbling, which means that
the rules for pebble placement and removal become symmetric as follows:
• If all predecessors of an empty vertex v contain pebbles, a pebble may be placed on v.
• If all predecessors of a pebbled vertex v contain pebbles, the pebble on v may be removed.

Reversible pebblings of DAGs have been studied in [19], [22] and have been employed to shed light on time-
space trade-offs in reversible simulation of irreversible computation in [4], [20], [21], [39]. In a different line
of work Potechin [29] implicitly used the reversible pebble game for proving lower bounds on monotone space
complexity, with the connection made explicit in the follow-up works [7], [15].

Another pebble game on DAGs that will be of interest in this paper is the Dymond–Tompa game [13] played
on a DAG G by a Pebbler and a Challenger. This game is played in rounds, with both players starting at the sink
in the first round. In the following rounds, Pebbler places a pebble on some vertex of G after which Challenger
either stays at the current vertex or moves to the newly pebbled vertex. This repeats until at the end of a round
Challenger is standing on a vertex with all (immediate) predecessors pebbled (or on a source, in which case
the condition vacuously holds), at which point the game ends. Intuitively, Challenger is challenging Pebbler to
“catch me if you can” and wants to play for as many rounds as possible, whereas Pebbler wants to “surround”
Challenger as quickly as possible. The Dymond–Tompa price of G is the smallest number r such that Pebbler
can always finish the game in at most r rounds. The Dymond–Tompa game has been used to establish that for
parallel time a speed-up by a logarithmic factor is always possible [13], and in [38] it was shown that a slightly
modified variant of this game exactly characterizes parallelism in complexity classes like ACi, NC, and P, and
can be used to re-derive, for instance, Savitch’s theorem. Furthermore, collapses or separations of these classes
can in principle be recast (or discovered) as bounds on Dymond–Tompa price. Interestingly, this characterization
of parallelism extends to proof complexity as well as discussed in [5].

A final game with pebbles that we want to just mention without going into any details is the Raz–McKenzie
game introduced in [30] to study the depth complexity of decision trees solving search problems. The reason
for bringing up the Dymond–Tompa and Raz–McKenzie games is that it was shown in [5] that both games are
actually equivalent to the reversible pebble game. Hence, any bounds derived for the reversible pebble game also
hold for Dymond–Tompa price and Raz–McKenzie price.

The main focus of this paper is to study how hard it is to decide exactly or approximately the pebbling price
of a DAG. For the standard pebble game Gilbert et al. [16] showed that given a DAG G and a positive integer s
it is PSPACE-complete to determine whether space s is sufficient to pebble G or not. It would seem natural to
suspect that reversible pebbling price should be PSPACE-complete as well, but the construction in [16] cannot
be used to show this.

Given that pebbling price is hard to determine exactly, an even more interesting question is if anything can
be said regarding the hardness of approximating pebbling price. Although this seems like a very natural and
appealing question, apparently next to nothing has been known about this.

Wu et al. [40] showed that “one-shot” standard pebbling price is hard to approximate to within any multiplicative
constant assuming the so-called Small Set Expansion (SSE) hypothesis. In a one-shot pebbling one is only allowed



to pebble each vertex once, however, and this is a major restriction since the complexity now drops from PSPACE-
complete to NP-complete [33]. Note that containment in NP is easy to see since any one-shot pebbling can be
described concisely just by listing the order in which the vertices should be pebbled (and it is easy to compute
when a pebble is no longer needed and can be removed). In contrast, in the general case pebbling strategies that
are optimal with respect to space can sometimes provably require exponential time.

One can also go in the other direction and study more general pebble games, such as the AND/OR pebble
game introduced by Lingas [23] in one of the works leading up to [16]. Here every vertex is labelled AND or OR.
For AND-vertices we have the usual pebbling rule, but for OR-vertices it is sufficient to just have one pebble
on some predecessor in order to be allowed to pebble the vertex. This game has a relatively straightforward
reduction from hitting set [14], which shows that it is hard to approximate to within a logarithmic factor, but the
reduction crucially depends on the OR-nodes.

We remark that hardness of approximation in PSPACE for other problems has been studied in [9], but those
techniques seem hard to adapt to pebble games since the reduction from QBF to pebbling is inherently unable
to preserve gaps.

Another problem that we study in the current paper is the relation between standard pebbling price and reversible
pebbling price. Clearly, the space needed to reversibly pebble a graph is at least the space required in the standard
pebble game. It is also not hard to see that there are graphs that require strictly more pebbles in a reversible
setting: for a directed path on n vertices only 2 pebbles are needed in the standard game, while it is relatively
straightforward to show that the reversible pebbling space is Θ(log n) [3], [22]. However, for “classic” graphs
studied in the pebbling literature, such as binary trees, pyramids, certain superconcentrators, and the worst-case
graphs in [27], the reversible and standard pebbling prices coincide asymptotically, and are sometimes markedly
closer than an additive logarithm apart.

This raises the question whether reversible and standard pebbling can be asymptotically separated with respect
to space. It might be worth pointing out in this context that for Turing machines it was proven in [20] that any
computation can be simulated reversibly in exactly the same space. In the more restricted pebbling model, it
was shown in [19] that if the standard pebbling price of a DAG G on n vertices is s, then G can be reversibly
pebbled with at most s2 log n pebbles. Thus, if there is not only an additive but also a multiplicative separation
between standard and reversible pebbling price, such a separation cannot be too large.

A. Our Results

We obtain the following results:
1. We establish an asymptotic separation between standard and reversible pebbling by exhibiting families of

graphs {Gn}∞n=1 of size Θ(n) with a single sink and fan-in 2 which have standard pebbling price s(n)
and reversible pebbling price Ω(s(n) log n). This construction works for any s(n) = O

(
n1/2−ε) with ε > 0

constant, where the constant hidden in the asymptotic notation in the lower bound has a (mild) dependence
on ε.

2. We prove that determining reversible pebbling price is PSPACE-complete. That is, given a single-sink
DAG G of fan-in 2 and a parameter s, it is PSPACE-complete to decide whether G can be reversibly
pebbled in space s or not.

3. Finally, we present two different graph products (for standard and reversible pebbling, respectively) that
take DAGs Gi of size ni with pebbling price si for i = 1, 2 and yield a DAG of size O

(
(n1 + n2)2

)
with

pebbling price s1 + s2 +Kp (for Kp = ±1 depending on the flavour of the pebble game). Combining these
graph products with the PSPACE-completeness results for standard pebbling in [16] and reversible pebbling
in item 2, we deduce that for any fixed K the promise problem of deciding for a DAG G (with a single
sink and fan-in 2) whether it can be pebbled in space s or requires space s+K is PSPACE-hard in both
the standard and the reversible pebble game.

We need to provide more formal definitions before going into a detailed discussion of techniques, but want
to stress right away that a key feature of the above results is the bounded fan-in condition. This is the standard



setting for pebble games in the literature and is also crucial in most of the applications mentioned above. Without
this constraint it would be much easier, but also much less interesting, to prove our results.1

Another aspect worth pointing out is that although the reversible pebble game is weaker than the standard
pebble game, it is technically much more challenging to analyze. The reason for this is that a standard pebbling
will always progress in a “forward sweep” through the graph in topological order, and so one can often assume
without loss of generality that once one has pebbled through some subgraph the pebbling will never touch this
subgraph again. For a reversible pebbling this is not so, since any pebble placed on any descendant of vertices
in the subgraph will also have to be removed at some later time, and this has to be done in reverse topological
order. Therefore, in any reversible pebbling there will be alternating phases of “forward sweeps” and “reverse
sweeps,” and these phases can also be interleaved at various levels. For this reason, controlling the progress of a
reversible pebbling is substantially more complicated. Despite the additional technical difficulties, however, we
consider the reversible pebble game to be at least as interesting to study as the standard and black-white pebble
games in view of its tight connection with parallelism in circuit and proof complexity as described in [5].

B. Organization of This Paper

We present the necessary preliminaries in Section II and then give a detailed overview of our results in
Section III. Due to space constraints we can only sketch the proofs in this extended abstract and therefore refer
to the upcoming full-length version for all missing details. Some concluding remarks are presented in Section IV.

II. PRELIMINARIES

All logarithms in this paper are base 2 unless otherwise specified. For a positive integer n we write [n] to
denote the set of integers {1, 2, . . . , n}. We use Iverson bracket notation

JBK =

{
1 if the Boolean expression B is true;
0 otherwise;

(1)

to convert Boolean values to integer values.

A. Boolean Formula Notation and Terminology

A literal a over a Boolean variable x is either the variable x itself or its negation x (a positive or negative
literal, respectively). A clause C = a1∨· · ·∨ak is a disjunction of literals. A k-clause is a clause that contains at
most k literals. A formula F in conjunctive normal form (CNF) is a conjunction of clauses F = C1 ∧ · · · ∧Cm.
A k-CNF formula is a CNF formula consisting of k-clauses. We think of clauses and CNF formulas as sets, so
that the order of elements is irrelevant and there are no repetitions.

A quantified Boolean formula (QBF) is a formula φ = Q1x1Q2x2 . . . Qnxn F , where F is a CNF formula
over variables x1, . . . , xn and Qi ∈ {∀, ∃} are universal or existential quantifiers (i.e., the formula is in prenex
normal form with all variables bound by quantifiers). It was shown in [34] that it is PSPACE-complete to decide
whether a QBF is true or not (where we can assume without loss of generality that F is a 3-CNF formula).

B. Graph Notation and Terminology

We write G = (V,E) to denote a graph with vertices V (G) = V and edges E(G) = E. All graphs in this
paper are directed acyclic graphs (DAGs). An edge (u, v) ∈ E(G) is an outgoing edge of u and an incoming
edge of v, and we say that u is a predecessor of v and that v is a successor of u. We write predG(v) to denote
the set of all predecessors of v in G and succG(v) to denote all its successors. Vertices with no incoming edges

1The reason to emphasize this is that for unbounded fan-in the first author proved a PSPACE-completeness result for reversible pebbling
in [6], but this result uses simpler constructions and techniques that do not transfer to the bounded fan-in setting. Another, somewhat
related, example is that deciding space in the black-white pebble game has also been shown to be PSPACE-complete for unbounded
indegree in [17], but there the unbounded fan-in can be used to eliminate the white pebbles completely, and again the techniques fail to
transfer to the bounded indegree case.



are called sources and vertices with no outgoing edges are called sinks. For brevity, we will sometimes refer to
a DAG with a unique sink as a single-sink DAG, and this sink will usually be denoted z.

Taking the transitive closures of the predecessor and successor relations, we define the ancestors ancG(v) of v
to be the set of vertices that have a path to v and the descendants descG(v) to be the set of vertices on some
path from v. By convention, v is an ancestor and descendant of itself. We write anc∗G(v) = ancG(v) \ {v} and
desc∗G(v) = descG(v)\{v} to denote the proper ancestors and proper descendants of v, respectively. These con-
cepts are extended to sets of pairwise incomparable vertices by taking unions so that ancG(U) =

⋃
u∈U ancG(u),

anc∗G(U) =
⋃
u∈U anc∗G(u), et cetera, where we say that the vertices in U are pairwise incomparable when no

vertex in the set is an ancestor of any other vertex in the set. When the graph G is clear from context we will
sometimes drop it from the notation.

C. Standard and Reversible Pebble Games

A pebble configuration on a DAG G = (V,E) is a subset of vertices P ⊆ V . We consider the following three
rules for manipulating pebble configurations:

1. P′ = P ∪ {v} for v /∈ P such that predG(v) ⊆ P (a pebble placement on v).
2. P′ = P \ {v} for v ∈ P (a pebble removal from v).
3. P′ = P \ {v} for v ∈ P such that predG(v) ⊆ P (a reversible pebble removal from v).

A standard pebbling from P0 to Pτ is a sequence of pebble configurations P = (P0,P1, . . . ,Pτ ) where each
configuration is obtained from the preceding one by the rules 1 and 2 while in a reversible pebbling rules 1
and 3 should be used. The time of a pebbling P = (P0, . . . ,Pτ ) is time(P) = τ , and the space is space(P) =
max0≤t≤τ{|Pt|}.

We say that a pebbling is unconditional if P0 = ∅ and conditional otherwise. The pebbling price PebG(P) of
a pebble configuration P is the minimum space of any unconditional standard pebbling on G ending in Pτ = P,
and we define the reversible pebbling price RPebG(P) by taking the minimum over all unconditional reversible
pebblings reaching P. The pebbling price of a single-sink DAG G with sink z is Peb(G) = PebG({z}), and the
reversible pebbling price of G is RPeb(G) = RPebG({z}). We refer to such pebblings as (complete) pebblings
of G or pebbling strategies for G. Again, when G is clear from context we can drop it from the notation, and
from now on we will usually abuse notation by omitting the curly brackets around singleton vertex sets.

For technical reasons, we will often be interested in distinguishing particular flavours of reversible pebblings.
Suppose that v is a vertex in G and that P = (P0 = ∅,P1, . . . ,Pτ ) is a reversible pebbling. We will use the
following terminology and notation:
• P is a visiting pebbling of v if v ∈ Pτ . The visiting price RPebV(v) of v is the minimal space of any such

pebbling.
• P is a surrounding pebbling of v if pred (v) ⊆ Pτ and the surrounding price RPebS(v) is the minimal space

of any such pebbling.
• P is a persistent pebbling of v if it is a reversible pebbling of v in the sense defined before, i.e., such

that Pτ = {v}. We will sometimes refer to RPeb(v) as the persistent price of v to distinguish it from the
visiting and surrounding prices.

We also define the visiting price for a single-sink DAG G with sink z as RPebV(G) = RPebVG(z) and the
surrounding price as RPebS(G) = RPebSG(z).

Note that because of reversibility we could obtain exactly the same visiting space measure by defining a visiting
pebbling of v to be a pebbling P = (P0,P1, . . . ,Pτ ) such that P0 = Pτ = ∅ and v ∈ ⋃0≤t≤τ Pt, and let the
visiting price be the minimal space of any such pebbling. This is because once we have reached a configuration
containing v we can simply run the pebbling backwards (because of reversibility) until we reach the empty
configuration again. We can therefore think of a pebbling as visiting v if there is a pebble on v at some point but
this pebble does not stay on v until the end of the pebbling. In a persistent pebbling the pebble remains on v until
all other pebbles have been removed. A surrounding pebbling, finally, is a pebbling that reaches exactly the point



where a pebble could be placed on v, since all its predecessors are covered by pebbles (i.e., v is “surrounded”
by pebbles), but where v is not necessarily pebbled.

It is not hard to see that for a single-sink DAG G we have the inequalities

Peb(G) ≤ RPebV(G) (2)

and
RPebS(G) ≤ RPebV(G) ≤ RPeb(G) . (3)

Perhaps slightly less obviously, we also have the following useful equality.

Proposition 1. For any vertex v in a DAG G it holds that RPebS(v) = RPeb(v)− 1.

Proof: To see that RPeb(v) ≤ RPebS(v) + 1 consider a surrounding pebbling PS of space RPebS(v).
Let P∗ be the pebbling which first runs PS to surround v, then puts a pebble on v, and finally runs the reverse of
PS to “unsurround” v (while keeping the pebble on v). Since P∗ is a persistent pebbling of space RPebS(v)+1,
the inequality follows.

We now prove that RPebS(v) ≤ RPeb(v) − 1. Consider a persistent pebbling P for v of space RPeb(v).
Let t be the last time that a pebble is put on v. Then vertex v is surrounded at time t, and there is a pebble
on v since time t. Let P≥t be the conditional pebbling obtained from P after time t, with the modification that
vertex v has no pebble throughout P≥t, and let PR≥t be this pebbling run in reverse. Then PR≥t is a surrounding
pebbling in space at most RPeb(v)− 1, and the inequality follows.

D. The Dymond–Tompa and Raz–McKenzie Games

As described above, the Dymond–Tompa game on a single-sink DAG G is played in rounds by two players
Pebbler and Challenger. In the first round Pebbler places a pebble on the sink z and Challenger challenges this
vertex. In all subsequent rounds, Pebbler places a pebble on an arbitrary empty vertex and Challenger chooses
to either challenge this new vertex (which we refer to as jumping) or to re-challenge the previously challenged
vertex (referred to as staying). The game ends when at the end of a round all the (immediate) predecessors of
the currently challenged vertex are covered by pebbles.2 The Dymond–Tompa price DT(G) of G is the maximal
number of pebbles r needed for Pebbler to finish the game, or expressed differently the smallest number r such
that Pebbler has a strategy to make the game end in at most r rounds regardless of how Challenger plays.

Let us also for completeness describe the Raz–McKenzie game, which is also played on a single-sink DAG G
by two players Pebbler and Colourer. In the first round Pebbler places a pebble on the sink z and Colourer
colours it red. In all subsequent rounds, Pebbler places a pebble on an arbitrary empty vertex and Colourer then
colours this new pebble either red or blue. The game ends when there is a vertex with a red pebble, while all its
predecessors in the graph have blue pebbles. The Raz–McKenzie price RM(G) of G is the smallest number r
such that Pebbler has a strategy to make the game end in at most r rounds regardless of how Colourer plays.

The intuition for this game is that the vertices on the graphs have assigned values true (blue) or false (red),
with the condition that each vertex has value equal to the conjunction of the values of its predecessors. Colourer
claims that the sink is false, but the above condition vacuously implies that all source vertices must be true.
Colourer loses when Pebbler discovers a violation of the condition. Pebbler wants to find the violation as soon
as possible, while Colourer wants to fool Pebbler for as long as possible.

In [5] the first author proved that the equalities

DT(G) = RM(G) = RPeb(G) (4)

hold for any single-sink DAG G, i.e., that the reversible pebbling price, the Dymond–Tompa price and the
Raz–McKenzie price all coincide. Thus, any result we prove for one of these games is also guaranteed to hold

2We remark that our description follows [5] and thus differs slightly from the original definition in [13], but the two versions are
equivalent for all practical purposes.



(a) Path blown up to sequence of K3,3-graphs. (b) Road graph of length 9 and width 3.

Figure 1. Modifications of path graphs to amplify difference between reversible and standard pebbling price.

for the other games. The above equalities are very convenient in that they allow us to switch back and forth
between the reversible pebble game and the Dymond–Tompa game (or Raz–McKenzie game) when proving upper
and lower bounds, depending on which perspective is more suitable at any given time. In particular, when proving
lower bounds for reversible pebblings it is often helpful to do so by devising good Challenger strategies in the
Dymond–Tompa game. One final technical remark in this context is that in all such strategies that we construct
it holds that Challenger will either stay or jump to an ancestor of the currently challenged vertex. Because of
this we can assume without loss of generality that Pebbler only pebbles vertices in the subgraph consisting of
ancestors of the currently challenged vertex. If Pebbler pebbles some vertex outside of this subgraph Challenger
will just stay put on the current vertex, and so Pebbler just wastes a round.

III. OVERVIEW OF RESULTS AND SKETCHES OF PROOFS

In this section we give a detailed overview of our results and also sketch some of the main ideas in the proofs.
We refer to the upcoming full-length version for all formal proofs and missing technical details.

A. Separation Between Standard and Reversible Pebbling

As mentioned in Section I, the strongest separation hitherto known between standard and reversible pebbling
is for the length-` path on vertices {v1, v2, . . . , v`+1} with edges (vi, vi+1) for all i ∈ [`], which has a stan-
dard pebbling with 2 pebbles whereas reversible pebblings require space Θ(log `) [3], [22]. We give a simple
construction improving this to a multiplicative logarithmic separation.

Theorem 2. For any function s(n) = O
(
n1/2−ε) for ε > 0 constant there are DAGs {Gn}∞n=1 of size Θ(n)

with a single sink and fan-in 2 such that Peb(G) = O(s(n)) and RPeb(G) = Ω(s(n) log n) (where the hidden
constant depends linearly on ε).

A first observation is that if we did not have the bounded fan-in restriction, Theorem 2 would be very easy.
In such a case we could just take the path of length `, blow up every vertex vi to s vertices v1

i , . . . , v
s
i , and add

edges
(
vji , v

j′

i+1

)
for all j, j′ ∈ [s], so that we get a sequence of complete bipartite graphs Ks,s glued together as

shown in Figure 1(a). It is not hard to show that any reversible pebbling of this DAG would have to do s parallel,
synchronized pebblings of the paths

{
vj1, v

j
2, . . . , v

j
`+1

}
for j ∈ [s], which would require space Ω(s log `), whereas

a standard pebbling would clearly only need space O(s).
For bounded indegree it is not a priori clear what to do, however, or indeed whether there should even be a

multiplicative separation. But it turns out that one can actually simulate a lower bound proof along the same lines
as above by considering a layered graph as in Figure 1(b), with s parallel paths of length up to ` and with every
path having an extra edge fanning out to its “neighbour path” above (or at the bottom for the top row) at each
level. We will refer to this construction as a road graph of length ` and width s (where a path is a maximally
narrow road of width 1). It is easy to verify that the standard pebbling price of a road of width s ≥ 2 is s+ 2.
We claim that the reversible pebbling price is Ω

(
s log(`/s)

)
, from which Theorem 2 follows.

To prove the reversible pebbling lower bound it is convenient to think instead in terms of Challenger strategies
in the Dymond–Tompa game. The idea is that Challenger will stay put on the sink until Pebbler has pebbled
enough vertices so that there are no pebble-free paths from any source vertex to the sink. Intuitively, the cheapest



way for Pebbler to disconnect the graph is with a straight cut over some layer. When this happens, Challenger
looks at the latest pebbled vertex and compares the subgraph between the sources and the cut with the subgraph
between the cut and the sink. If more than half of the graph is before the cut, Challenger jumps to the latest
pebbled vertex. If not, Challenger stays on the sink. This strategy is then repeated on a graph of at least half the
length. Since every cut by Pebbler requires s pebbles, Challenger can survive for roughly s log ` rounds (except
that the rigorous argument is not quite this simple, and the slightly smaller factor log(`/s) in the formal statement
of the theorem is in fact inherent).

B. PSPACE-Completeness of Reversible Pebbling

Moving on to technically more challenging material, let us next discuss our PSPACE-completeness result for
reversible pebbling, which we restate here more formally for the record.

Theorem 3. Given a single-sink DAG G of fan-in 2 and a parameter s, it is PSPACE-complete to decide
whether G can be reversibly pebbled in space s or not. In more detail, given a QBF φ = Q1x1Q2x2 . . . Qnxn F ,
where F is a 3-CNF formula over variables x1, . . . , xn, there is a polynomial-time constructible single-sink
graph G(φ) of fan-in 2 and a polynomial-time computable number γ(φ) such that RPeb

(
G(φ)

)
= γ(φ) +

Jφ is FALSEK.

At a high level, our proof is similar to that in [16] for standard pebbling: we build gadgets for variables,
clauses, and universal and existential quantifiers, and then glue them together in the right way so that pebbling
through the gadgets corresponds to verifying satisfying assignments for universally and existentially quantified
subformulas of the QBF φ. However, the execution of this simple idea is highly nontrivial even in [16], and
we run into several additional technical difficulties when we want to do an analogous reduction for reversible
pebbling.

For starters, since the difference in pebbling price for graphs G(φ) obtained from true and false QBFs φ is
just an additive 1, we need exact control over the pebbling price of all components used in the reduction. For
standard pebbling there is no problem here—exact bounds on pebbling price are known for quite a wide selection
of graphs—but in the reversible setting this becomes an issue already for almost the simplest possible graph: the
complete binary tree of height h. An easy inductive argument shows that the standard pebbling price of such a
tree is exactly h+2. Since reversible pebblings find paths more challenging than do standard pebblings, one could
perhaps expect an extra additive log h or so in the reversible pebbling bound. However, the asymptotically correct
bound turns out to be h + Θ(log∗ h) as shown in [19], and the upper and lower bounds on the multiplicative
constant obtained in that paper are far from tight.

The story is even worse for the workhorse of the construction in [16] (and many other pebbling results), namely
pyramids of height h, which have i vertices at level i for i = 1, . . . , h + 1, and where the jth vertex at level i
has incoming edges from the jth and (j + 1)st vertices at level i + 1. There is a very neat proof in [10] that
the standard pebbling price is again exactly h + 2, but for reversible pebbling price nothing has been known
except that it has to be somewhere between h+ 2 and h+ O(log∗ h) (where the latter bound follows since any
strategy for a complete binary tree of height h works for any DAG of height h). As a crucial first step towards
establishing Theorem 3, we exactly determine the reversible pebbling price of pyramids (and also binary trees).

Theorem 4. For ∆ denoting a positive integer, let g be the function defined recursively as

g(∆) =

{
0 if ∆ = 1;
2g(∆−1)+∆−2 + g(∆− 1) otherwise;

and let the inverse g−1 of this function be defined as

g−1(h) = min{∆ | g(∆) ≥ h} .
Then the persistent pebbling price of a pyramid of height h, as well as of a complete binary tree of height h, is
h+ g−1(h), where g−1 is efficiently computable.



Even though Theorem 4 is an important step, we immediately run into new problems when trying to use it
as a building block in our reduction for reversible pebbling. In the standard pebble game a complete pebbling
is any pebbling that reaches the sink. For the reversible game there is a subtle distinction in that we can ask
whether it is sufficient to just reach the sink or whether the rest of the graph must also be cleared of pebbles. As
discussed in Section II, this leads to two different flavours of reversible pebblings, namely persistent pebblings,
which leave a pebble on the sink with the rest of the graph being empty, and visiting pebblings, which just reach
the sink (and can then be thought to run in reverse after having visited the sink to clear the whole graph including
the sink from pebbles). The pebblings we actually care about are the persistent ones, but we cannot rule out
the possibility that subpebblings of gadgets are visiting pebblings. Clearly, the difference in pebbling space is at
most 1, but this is exactly the additive 1 of which we cannot afford to lose control! To make things worse, for
pyramids it turns out that persistent and visiting pebbling prices actually do differ except in very rare cases.

Because of this, we have to build more involved graph gadgets for which we can guarantee that visiting and
persistent prices coincide. These gadgets are constructed in two steps. First, we take a pyramid and append a
path of suitable length, depending on the height of the pyramid, to the pyramid sink, resulting in a graph that we
call a teabag. Second, we take such teabags of smaller and smaller size and stack them on top of one another,
which yields a graph that looks a bit like a Christmas tree. These Christmas tree graphs are guaranteed to have
the same pebbling price regardless of whether a reversible pebbling is visiting or persistent.

With this in hand we are almost ready to follow the approach in the PSPACE-completeness reduction
for standard pebbling in [16]. The idea is that we want to build gadgets for the quantifiers in a formula
φ = ∀x∃y · · ·Qz F of specified pebbling price so that the only way to pebble the graph G(φ) without using
too much space is to first pebble the gadget for ∀x, then ∃y, et cetera, in the correct order until all quantifier
gadgets have been pebbled. Once we get to the clause gadgets, we would like that the pebbles in the quantifier
gadgets are locked in place encoding a truth value assignment to the variables, and that the only way to pebble
through the clause gadgets without exceeding the space budget is if every clause contains at least one literal
satisified by this truth value assignment.

In order to realize this plan, there remains one more significant technical obstacle to overcome, however. To
try to explain what the issue is, we need to discuss the PSPACE-completeness reduction in [16] in slightly
more detail. The way this reduction imposes an order in which the quantifier gadgets have to be pebbled is that
pyramid graphs are included “at the bottom” of the gadgets (i.e., topologically first in order). The source vertices
of the quantifier gadgets all appear in such pyramids, and one has to pebble through these pyramids to reach the
rest of a gadget (where pebble placements encode variable assignments as mentioned above).

In the first, outermost quantifier gadget the pyramids have large height. In the second gadget the pyramid
heights are slightly smaller, et cetera, down to the last, innermost quantifier gadget where the pyramids have
smallest height. In this way, the pyramids are used to “lock up” pebbles and force a strict order of pebbling of
the gadgets. It can be shown that in order not to exceed the pebbling space budget, any pebbling strategy has
to start by pebbling the highest pyramids in the first gadget. If the pebbling starts anywhere else in the graph,
this will mean that there are already pebbles elsewhere in the graph when the pebbling strategy reaches the first,
highest pyramids in the outermost quantifier, but if so the overall pebbling has to use up too much space to pebble
through this pyramid. One can also show that once the pyramids in the outermost quantifier gadget have been
pebbled, the pebbling cannot proceed until the next quantifier gadget is pebbled. The pyramids in this gadget
have smaller height, but there are also pebbles stuck in place in the outermost gadget, meaning that pyramids
must again be pebbled in exactly the right order to stay within the space budget.

These properties can be used to normalize pebbling strategies in the standard pebble game. Without loss of
generality, one can assume that any strategy that starts pebbling a pyramid in a gadget will complete this local
pebbling in one go, leaving a pebble at the sink of the pyramid, and will not place pebbles anywhere else until
the pebbling of the pyramid has been completed. Also, once a pyramid in a quantifier gadget has been pebbled
in this way, one can prove that it will never be pebbled again since there is now at least one additional pebble
at some vertex later in the topological order in the graph, and a repeated pebbling of the pyramid in question
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Figure 3. Gadget for variable xi and pebble positions corresponding to truth value assignments.

would therefore exceed the space budget. Thus, not only do the pyramids enforce that the gadgets are pebbled
in the right order—they also serve as single-entry access points to the gadgets, making sure that each gadget is
pebbled exactly once.

There is no hope of building gadgets with such properties in a reversible pebbling setting. It is simply not true
that a reversible pebbling will pebble through a subgraph and then never return. Instead, as already discussed
reversible pebblings will proceed in alternating phases of interleaved “forward sweeps” and “reverse sweeps,” and
subgraphs will be entered also in reverse topological order. Therefore, it is not sufficient to add “space-locking”
subgraphs at the source vertices of the gadgets. Rather, we have to insert “single-passage points” inside and in
between the gadgets for quantifiers and clauses. We obtain such subgadgets by further tweaking our Christmas
tree construction so that it can also connect two vertices in such a way that any pebbling has to “pay a toll” to
go through this subgraph. We cannot describe these gadgets, which we call turnpikes, in detail here, but mention
that the “space-locking” property that they have is that when the entrance vertex is eliminated by having a pebble
placed on that vertex, then the cost of pebbling through the rest of the turnpike drops by 1. This is critically
used in the subgraph compositions described next.

Assuming the existence of the necessary technical subgraph constructions sketched above, we can now de-
scribe the overall structure of our reduction from quantified Boolean formulas to reversible pebbling (where all
parameters shown in the figures are fixed appropriately in the formal proofs). In the following figures we denote
a Christmas tree of (visiting and persistent) pebbling price r by the symbol in Figure 2(a), where we only display
the sink vertex. We denote the turnpike gadget just discussed by the symbol in Figure 2(b). We write r to denote
the toll parameter of the turnpike, where a turnpike with toll r has persistent price r + 2, but only r + 1 if we
do not count the source a as part of the turnpike.

For every variable xi we have a variable gadget as shown in Figure 3(a), where we think of a truth value
assignment ρ as represented by pebbles on vertices {x̄i, x′i} when ρ(xi) = FALSE and on {xi, x̄′i} when ρ(xi) =
TRUE, as shown in Figures 3(b) and 3(c), respectively.

For every clause Cj we have a clause gadget as depicted in Figure 4(a). The vertices labelled `′j,k and `j,k in
Figure 4(a) are identified with the corresponding vertices for the positive or negative literal `j,k in the variable
gadget in Figure 3(a). If ρ satisfies a literal, then there is a pebble on the entrance vertex of the corresponding
turnpike, meaning that we can pebble through the gadget for a clause containing that literal with one less pebble
than if ρ does not satisfy the clause.

To build the subgraph corresponding to a 3-CNF formula F =
∧m
j=1Cj we join clause gadgets sequentially
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using the conjunction gadget in Figure 4(b). For technical reasons we start by joining a dummy graph with
the first clause gadget, then we join the result to the second clause gadget, and so on up to the mth clause
of F . The resulting graph has the property that if pebbles are placed on the variable gadgets according to an
assignment ρ that satisfies F , then the number of additional pebbles needed to pebble the graph is one less than
if the assignment is falsifying.

Finally we have one quantifier gadget for each variable. To describe this part of the construction, we sort
the variables indices in reverse order from the innermost to the outermost quantifier and denote by φi the
subformula with just the i innermost quantifiers, so that φ0 = F =

∧m
j=1Cj , φi = Qixi φi−1 for Qi ∈ {∀,∃},

and φ = φn. We construct graphs G(i) := G(φi), starting with G(0) which is just the subgraph corresponding
to the CNF formula F . To construct G(i+1) from G(i) we add an existential gadget as in Figure 5(a) if xi is
existentially quantified and a universal gadget as in Figure 5(b) if xi is universally quantified. An example of the
full construction can be found in Figure 6.

Given this construction we argue along the same lines as in in [16], although as mentioned above there are
numerous additional technical complications that we cannot elaborate on in this brief overview of the proof. We
show that given an assignment ρi to {xn, . . . , xi+1}, the number of additional pebbles needed to pebble G(i)

differs by 1 depending on whether φi is true under the assignment ρi or not. An existential gadget can be optimally
pebbled by setting xi to any value that satisfies φi−1. To pebble a universal gadget one needs to assign xi to
some value, pebble through the gadget, unset xi and assign it to the opposite value, and finally pebble through



the gadget again, and both assignments to xi must yield satisfying assignments to φi−1 in order for the pebbling
not to go over budget. Proceeding by induction, we establish that the complete graph G(n) can be pebbled within
the specified space budget only if φ = φn is true, which yields Theorem 3.

C. PSPACE-Inapproximability up to Additive Constants

Let us conclude the detailed overview of our contributions by describing what is arguably the strongest result
in this paper, namely a strengthening of the PSPACE-completeness of standard pebbling in [16] and of reversible
pebbling in Theorem 3 to PSPACE-hardness results for approximating standard and reversible pebbling price to
within any additive constant K.

Theorem 5. For any fixed positive integer K it is PSPACE-complete to decide whether a single-sink DAG G
with fan-in 2 has (standard or reversible) pebbling price at most s or at least s+K.

We remark that it would of course have been even nicer to prove multiplicative hardness results. We want to
stress again, though, that to the best of our knowledge these are the first results ever for hardness of approximation
of pebble games in a general setting. The fact that these results hold even for PSPACE could perhaps be taken
both as an indication that it should be possible to prove much stronger hardness results for algorithms limited to
polynomial time, and as a challenge to do so.

We obtain Theorem 5 by defining and analyzing two graph product constructions, one for standard and one
for reversible pebbling, which take two graphs and output product graphs with pebbling price equal to the sum
of the pebbling prices of the two input graphs (except for an additive adjustment). These graph products can then
be applied iteratively K − 1 times to the graphs obtained by the reductions from QBFs. In the next theorem we
state the formal properties of these graph products.

Theorem 6. Given single-sink DAGs Gi of fan-in 2 and size ni for i = 1, 2, there are polynomial-time
constructible single-sink DAGs S(G1, G2) and R(G1, G2) of fan-in 2 and size O

(
(n1 + n2)2

)
such that

• For standard pebbling price it holds that Peb(S(G1, G2)) = Peb(G1) + Peb(G2)− 1.
• For reversible pebbling price it holds that RPeb

(
R(G1, G2)

)
= RPeb(G1) + RPeb(G2) + 1.

In the remainder of this section we try to convey some of the flavour of the arguments used to prove Theorem 6
and to give a sense of some of the technical obstacles that have to be overcome during the analysis. In what
follows, we will mostly focus on the reversible pebble game, since it is the technically more challenging and
therefore also the more interesting case. We will briefly discuss the product construction for standard pebbling
at the very end of the section. We will refer to G1 as the outer graph and G2 as the inner graph in the graph
products R(G1, G2) and S(G1, G2).

Intuitively, when taking the graph product of G1 and G2 the idea is to replace every vertex v of the outer
graph G1 with a (possibly slightly modified) copy of the inner graph G2. We will refer to this copy as the v-block
in the product graph. The edges inside blocks are specified by the inner graph. For edges (u, v) ∈ E(G1) in the
outer graph, we will need to connect the sink of the u-block to vertices in the v-block in some way, and this is
the crux of the construction.

A first naive approach would be to add an edge from the sink of the u-block to every source vertex of the
v-block (as shown in the graph product N (G1, G2) in Figure 7). Sadly, this simple idea fails for both standard
and reversible pebbling. It is not hard to find examples showing that the pebbling price of N (G1, G2) is not a
function of the pebbling prices of G1 and G2.

A slightly more refined idea is to add edges from the sink of the u-block to all vertices in the v-block (as in
the graph T (G1, G2) in Figure 7). While we can observe right away that this idea is a non-starter, since it will
blow up the fan-in of the product DAG (and with no bounds on fan-in the gap amplification would be trivial),
it turns out that the analysis yields interesting insights for the graph product that we will actually use. We will
therefore employ this toy construction to showcase some of the ideas and technical challenges that arise in the
actual proof of Theorem 6.
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Figure 7. Examples of graph products as applied to a pyramid of height 1 (denoted G1) and a rhombus (denoted G2).

Recall that we want to prove that RPeb
(
T (G1, G2)

)
= s1 + s2 − 1, where si = RPeb

(
Gi
)

for i = 1, 2. To
reversibly pebble the product graph T (G1, G2) in at most this amount of space we simulate a minimal space
pebbling of G1, where pebble placement or removal involving a vertex v of G1 invokes a complete pebbling
(or unpebbling) of the copy of G2 corresponding to the v-block. This simulation uses at most s2 pebbles in the
relevant v-block and at most s1 − 1 pebbles on sinks of other blocks, i.e., no more than s1 + s2 − 1 pebbles in
total.

Proving the lower bound RPeb
(
T (G1, G2)

)
≥ s1 +s2−1 is the difficult part. Here the approach is to assume

that we are given a complete pebbling PT of T (G1, G2) and extract from it a pebbling strategy P for G1 with
the hope that an expensive configuration in P will also help us to pinpoint an expensive configuration in PT .

The most straightforward way to obtain a pebbling strategy P for G1 from PT would be to make a vertex v
in G1 contain a pebble or not depending only on the local pebble configuration of the v-block in T (G1, G2).
A natural idea is that v should get a pebble if the v-block has a pebble on its sink and that this pebble should
be removed from v when the corresponding block has been emptied of pebbles. If we apply this reduction to a
pebbling PT of T (G1, G2) we obtain a valid pebbling of G1. The problem, however, is that PT might locally be
doing a visiting pebbling (as defined in Section II-C) of the copy of G2 corresponding to the v-block as a way
of moving pebbles on or off other blocks. The consequence of this would be that a configuration of maximal
space s1 in P may result from a configuration in PT that uses space only s1 + s2 − 2, which is off by one
compared to what we need and hence destroys the gap in pebbling price that we are trying to create.

If the visiting price of G2 is the same as its persistent price, then this problem does not arise, but since this
does not hold for graphs in general we need to argue more carefully. It is true that a visiting pebbling of a copy
of G2 might save one pebble as compared to a persistent pebbling, but whenever the sink contains a pebble in a
visiting but not persistent pebbling we know that there must also be some other vertex in G2 that has a pebble
(or else the pebbling would be persistent by definition). We need to count such pebbles also in our analysis.

To this end, we make a distinction between blocks that have paid the persistent price and the blocks that have
paid the visiting price but not the persistent price. We say that the copy of G2 corresponding to some v-block



is visiting-locked, or just v-locked for brevity, at some point in time if the current pebble configuration on its
vertices requires reversible pebbling space s2 − 1 to be reached, and that the v-block is persistent-locked (or
p-locked for short) if the configuration has reversible pebbling price s2.

We can now define a more refined way of projecting PT -configurations to P-configurations as follows. If a
v-block has paid the persistent price, we put a pebble on the corresponding vertex v in G1. If a block has paid
just the visiting price but not the persistent price, then we might still put a pebble on v in G1, but we only do
so if an additional (and slightly delicate) technical condition3 holds for the pebbling configurations in the blocks
corresponding to predecessors of v. This technical condition is designed so that with some additional work4 we
are still able to extract a legal pebbling strategy for G1 by applying this projection. Furthermore, it will be the
case that every pebbling move on a vertex in the outer graph G1 is the result of the copy of G2 corresponding
to some v-block paying the persistent or visiting price.

The reversible pebbling P thus extracted will be a persistent pebbling of G1 by construction, so it must contain
a configuration with s1 pebbles. If this configuration was reached because a block paid the persistent price, then
that block contains s2 pebbles at a time when at least s1 − 1 other blocks have at least 1 pebble each, which
is the lower bound that we are after. If the pebble configuration on G1 in P was reached because a block paid
the visiting price, however, then we are potentially still one pebble short. This is where the additional technical
condition mentioned above comes into play. This condition on the predecessor blocks implies that we can find
at least one other block that also paid just the visiting price and therefore must contain two pebbles. Summing
up, we obtain one block that has at least s2 − 1 pebbles, another block that has at least 2 pebbles, and at least
s1 − 2 additional blocks that contain at least 1 pebble each, and so the lower bound holds in this case as well.
(Incidentally, this second case is the one where our first, naive, graph product N (G1, G2) fails.)

We already observed, however, that the construction T (G1, G2) does not get us very far because it blows up
the indegree of the resulting product graph. Therefore, in the actual proof of Theorem 6 we have to consider a
different construction. Briefly, the idea is to start with the graph T (G1, G2) but to bring the indegree down by
splitting each vertex w in every block into three vertices wext, wint, wout. All edges to w from other blocks are
routed to wext, all edges from within the block are routed to wint, and finally we add edges from wext and wint

to wout. This is the graph product R(G1, G2) that we use to amplify differences in reversible pebbling price,
and that is also illustrated in Figure 7. Now we have to prove that the ideas just outlined work for this new
construction where each vertex has been replaced by a small “cloud” of three vertices. The proof of this is much
more technically challenging than for the toy case discussed above, and there is no room to go into details here.

At this point we want to switch gears a bit and briefly discuss an application in proof complexity of the
PSPACE-hardness result for reversible pebbling. Perhaps the most well-studied proof system for proving the
unsatisfiability of, or refuting, CNF formulas is resolution (we do not give any formal definition here, referring
instead to, for instance, [32] for the necessary details). Every resolution proof can be represented as a DAG,
and the depth of this proof is the length of a longest path in this DAG. The resolution depth of refuting an
unsatisfiable CNF formula is the smallest depth of any resolution proof for the formula. It was shown in [5] that
computing the reversible pebbling price of a graph of fan-in ` reduces to computing the resolution depth of a
(`+ 1)-CNF formula, and from this we can obtain the following corollary.

3We do not want to get into too detailed a technical argument here, but just for the record pebble configurations on T (G1, G2) can be
projected to configurations on G1 in two stages as follows:

1. Let P ⊆ V (G1) consist of all vertices u such that the configuration on the u-block in T (G1, G2) is persistent-locked.
2. Let P′ ⊆ V (G1)\P consist of all vertices v such that (a) v is not already surrounded by P, and (b) the configuration on the v-block

in T (G1, G2) is visiting-locked.
With this notation, the projected pebble configuration on G1 is defined to be P ∪ P′.

4One added technical complication that we have to take care of here is that when we apply our projection to a pebbling PT of
T (G1, G2) to obtain a sequence of pebble configurations on G1, this sequence need not be a valid pebbling of G1. However, when the
projected pebble configuration on G1 changes after a pebbling move we can insert a legal pebbling sequence between the two projected
configurations that passes through all vertices of G1 corresponding to v-locked blocks, where pebbles are added in topological order and
removed in inverse topological order, and this local pebbling does not affect the overall argument.
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Figure 8. Illustration of standard pebbling graph product S(G1, G2).

Corollary 7. For any fixed positive integer K, it is PSPACE-complete to compute the resolution depth of refuting
3-CNF formulas up to an additive error K.

Proof: Assuming that we can efficiently compute the resolution depth within an additive error at most K,
we show how to efficiently compute the reversible pebbling price of any graph G within an additive error K+ 1,
contradicting Theorem 5.

Letting z denote the unique sink of G, we consider a new graph G′ which is G augmented with a new
successor z′ of z (i.e., G′ = (V ∪ {z′}, E ∪ {(z, z′)}) in formal notation). The reversible pebbling prices of G
and G′ differ by at most one. For any graph G, [5] exhibits an efficiently constructible unsatisfiable CNF
formula FG that requires resolution depth equal to the reversible pebbling price of G′. The width of the formula
is equal to the fan-in of G plus one, so the result holds for 3-CNFs.

Hence, if we could estimate the resolution depth of refuting FG, i.e., the reversible pebbling price of G′, within
error K, this would yield an estimate of the reversible pebbling price of G to within error K + 1.

We wrap up this section by switching back to pebbling and describing the product construction S(G1, G2)
used to amplify standard pebbling price. In this construction we also replace every vertex of G1 with a copy
of G2, but this time we append what we refer to as a centipede graph to the sink of every copy. A centipede is
a path where each vertex but the source has an extra, unique predecessor. To connect the blocks, for every edge
(u, v) ∈ E(G1) we add edges from the sink of the u-centipede to every source of the v-centipede. See Figure 8
for an illustration.

Setting si = Peb
(
Gi
)

for i = 1, 2, we can pebble the graph product S(G1, G2) in space s1 + s2 − 1 by
simulating an optimal pebbling of G1: placing a pebble on a vertex v of G1 is simulated by optimally pebbling
the sink of the corresponding v-block, and removing a pebble is simulated by removing the pebble on the sink.

This pebbling strategy is in fact optimal, and we can show this by projecting any standard pebbling PS
of S(G1, G2) to a strategy P for G1. Each time any block in S(G1, G2) contains s2 pebbles, we pebble all
vertices in G1 whose predecessors have pebbles and whose corresponding block in S has a pebble. When a
block in S(G1, G2) becomes empty, we remove the pebble from the corresponding vertex in G1. This projection



has the property that when the sink of a block is pebbled, the corresponding vertex in G1 is also pebbled.
Arguing similarly to in the reversible case, we show that a strategy PS for S using s pebbles yields a strategy
for G1 using s−s2 + 1 pebbles. Therefore, PS must use space at least s1 + s2 − 1, and hence the graph product
S(G1, G2) has the property claimed in Theorem 6.

IV. CONCLUDING REMARKS

In this paper, we study the pebble game first introduced in [26] as well as the more restricted reversible
pebble game in [3], where by [5] the latter game is also equivalent to the Dymond–Tompa game [13] and the
Raz–McKenzie game [30].

We establish that it is PSPACE-hard to approximate standard and reversible pebbling price up to any additive
constant. To the best of our knowledge, these are the first hardness of approximation results for such pebble
games, even for polynomial time. It would be very interesting to show stronger inapproximability results for
pebbling price under stronger assumptions. On the one hand, we are only able to show additive hardness, but
on the other hand our results hold for arbitrary algorithms using a polynomial amount of memory. It seems
reasonable to believe that the problem should become much harder for algorithms restricted to polynomial time,
but showing this seems like a challenging task—in some sense, it appears that pebbling might be so hard a
problem that it is even hard to prove that it is hard.

Another challenging problem is to prove approximation hardness, or even just PSPACE-completeness, for the
black-white pebble game [11] modelling nondeterministic computation. This game is a strict generalization of
the standard (black) pebble game, and so intuitively it should be at least as hard, but the added option of placing
nondeterministic white pebbles anywhere in the graph completely destroys locality and makes the reduction in
[16] break down. Hertel and Pitassi [17] showed a PSPACE-completeness result in the nonstandard setting when
unbounded (and very large) fan-in is allowed. Essentially, the large fan-in makes it possible to lock down almost
all pebbles in one place at a time (namely on the predecessors of a large fan-in vertex to be pebbled) and to
completely rule out any use of white pebbles, reducing the whole problem to black pebbling (although this
reduction, it should be stressed, is far from trivial). This approach does not work for bounded fan-in graphs,
however, which is the standard setting studied in the 1970s and 80s and the setting that could potentially have
interesting applications in, for instance, proof complexity.

We also show in this paper that standard black pebbling is asymptotically stronger than reversible pebbling
by exhibiting families of DAGs over n vertices which have standard pebblings in space s but for which the
reversible pebbling price is Ω(s log n). Since any DAG on n vertices with standard pebbling price s can be
reversibly pebbled in space O(s2 log n), our separation is at most a linear factor (in s ≤ n) off from the optimal.
It would be interesting to determine how large the separation can be. We do not rule out the possibility that the
separation we give might in fact be asymptotically optimal.
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