
SIAM J. COMPUT. c© 2015 Society for Industrial and Applied Mathematics
Vol. 44, No. 4, pp. 1119–1153

SPACE COMPLEXITY IN POLYNOMIAL CALCULUS∗

YUVAL FILMUS† , MASSIMO LAURIA‡ , JAKOB NORDSTRÖM§, NOGA RON-ZEWI¶,
AND NEIL THAPEN‖

Abstract. During the last 10 to 15 years, an active line of research in proof complexity has been
to study space complexity and time-space trade-offs for proofs. Besides being a natural complexity
measure of intrinsic interest, space is also an important concern in SAT solving, and so research
has mostly focused on weak systems that are used by SAT solvers. There has been a relatively
long sequence of papers on space in resolution, which is now reasonably well-understood from this
point of view. For other proof systems of interest, however, such as polynomial calculus or cutting
planes, progress has been more limited. Essentially nothing has been known about space complexity
in cutting planes, and for polynomial calculus the only lower bound has been for conjunctive normal
form (CNF) formulas of unbounded width in [Alekhnovich et al., SIAM J. Comput., 31 (2002),
pp. 1184–1211], where the space lower bound is smaller than the initial width of the clauses in the
formulas. Thus, in particular, it has been consistent with current knowledge that polynomial calculus
could be able to refute any k-CNF formula in constant space. In this paper, we prove several new
results on space in polynomial calculus (PC) and in the extended proof system polynomial calculus
resolution (PCR) studied by Alekhnovich et al.: (1) We prove an ω(n) space lower bound in PC
for the canonical 3-CNF version of the pigeonhole principle formulas PHPn

m with m pigeons and n
holes, and show that this is tight. (2) For PCR, we prove an ω(n) space lower bound for a bitwise
encoding of the functional pigeonhole principle. These formulas have width O(log n), and hence this
is an exponential improvement over Alekhnovich et al. measured in the width of the formulas. (3)
We then present another encoding of the pigeonhole principle that has constant width, and prove an
ω(n) space lower bound in PCR for these formulas as well. (4) Finally, we prove that any k-CNF
formula can be refuted in PC in simultaneous exponential size and linear space (which holds for
resolution and thus for PCR, but was not obviously the case for PC). We also characterize a natural
class of CNF formulas for which the space complexity in resolution and PCR does not change when
the formula is transformed into 3-CNF in the canonical way, something that we believe can be useful
when proving PCR space lower bounds for other well-studied formula families in proof complexity.

∗Received by the editors October 22, 2012; accepted for publication (in revised form) March 4,
2015; published electronically August 26, 2015. A preliminary version of this paper appeared in
Proceedings of the 27th Annual IEEE Conference on Computational Complexity, 2012.

http://www.siam.org/journals/sicomp/44-4/89595.html
†Department of Computer Science, University of Toronto, Toronto, ON M5S 2E4, Canada

(yfilmus@ias.edu). The research of this author has received funding from the European Union’s
Seventh Framework Programme (FP7/2007–2013) under grant agreement 238381 and from the Na-
tional Science Foundation under agreement DMS-1128155.

‡KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden (lauria@kth.se). The re-
search of this author was supported by the Eduard Čech Center for Algebra and Geometry and
by the European Research Council under the European Union’s Seventh Framework Programme
(FP7/2007–2013)/ERC grant agreement 279611, and part of this work was performed at Sapienza–
Università di Roma.

§KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden (jakobn@kth.se). The re-
search of this author was supported by the European Research Council under the European Union’s
Seventh Framework Programme (FP7/2007–2013)/ERC grant agreement 279611 and by Swedish
Research Council grants 621-2010-4797 and 621-2012-5645.

¶School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540 (nogazewi@ias.edu).
The research of this author was supported by the Israel Ministry of Science and Technology, by the
Rothschild fellowship, and by NSF grant CCF-1412958. Part of the work of this author was performed
while visiting KTH Royal Institute of Technology, supported by the foundations Johan och Jakob
Söderbergs stiftelse, Stiftelsen Längmanska kulturfonden, and Helge Ax:son Johnsons stiftelse.

‖Institute of Mathematics, Academy of Sciences of the Czech Republic, Žitná 25, 115 67 Praha 1,
Czech Republic (thapen@math.cas.cz). This author was supported by grant IAA100190902 of
GA AV ČR, by the Center of Excellence CE-ITI under grant P202/12/G061 of GA ČR, and by
RVO: 67985840.

1119

http://www.siam.org/journals/sicomp/44-4/89595.html
mailto:yfilmus@ias.edu
mailto:lauria@kth.se
mailto:jakobn@kth.se
mailto:nogazewi@ias.edu
mailto:thapen@math.cas.cz

1120 FILMUS, LAURIA, NORDSTRÖM, RON-ZEWI, AND THAPEN

Key words. proof complexity, space, polynomial calculus, polynomial calculus resolution, PCR,
resolution, lower bounds

AMS subject classifications. 03B05, 03B35, 03B70, 03D15, 03F20, 68Q17, 68T15

DOI. 10.1137/120895950

1. Introduction. A proof system for a language L is a binary predicate P (x, π)
computable in time polynomial in the sizes of the inputs such that for all x ∈ L there
is a string π (a proof) for which P (x, π) = 1, while for any x �∈ L it holds for all strings
π that P (x, π) = 0. A propositional proof system is a proof system for tautology,
the language of tautologies in propositional logic.

The field of proof complexity, initiated by Cook and Reckhow [30], studies the
complexity of proving propositional formulas in different propositional proof systems.
One important motivation for proof complexity is the problem of P versus NP. A
proof system is said to be polynomially bounded if for every x ∈ L there is a proof πx

of size at most polynomial in the size of x. As observed in [30], one way of establishing
coNP �= NP, and hence P �= NP, would be to prove that there are no polynomially
bounded proof systems. This goal remains very distant, however, and it is probably
fair to say that most current work in proof complexity is driven by other concerns.

One such other concern, which has motivated an interesting line of research in
proof complexity in the last 10 to 15 years, is the satisfiability problem and the
study of proof complexity measures related to SAT solving. While it is generally
believed that satisfiability is an intractable problem in the worst case, impressive
algorithmic developments in the last two decades have led to SAT solvers that can
handle real-world problem instances with millions of variables. A somewhat surprising
aspect of this is that at the core, the state-of-the-art solvers today are still based on
the fairly simple Davis–Putnam–Logemann–Loveland (DPLL) procedure [32, 33] from
the early 1960s augmented with clause learning [5, 43, 45]; these programs are also
known as conflict-driven clause learning (CDCL) solvers. Despite the fact that such
SAT solvers can be seen to be searching for proofs in the relatively weak resolution
proof system, for which numerous exponential lower bounds are known, CDCL solvers
have carried the day in the international SAT competition [54] in recent years.

From the point of view of proof complexity, by studying proof systems that are, or
could potentially be, used by SAT solvers, one can hope to gain a better understanding
of the potential and limitations of such solvers. There is a growing literature of such
papers, with notable recent examples such as [4, 13, 26, 50]. While the current paper
is of a more purely theoretical nature, it is also partly motivated by similar concerns.

The two main bottlenecks for modern SAT solvers are running time and memory
usage. By studying proof size, proof space, and trade-offs between these two measures
in different proof systems, we want to understand how the important resources of time
and space are connected to one another and whether they can be optimized simultane-
ously or have to be traded for one another in SAT solvers using these proof systems.1

In this context, it seems that the most interesting proof systems are resolution, poly-
nomial calculus, and cutting planes. Concluding this brief general discussion, let

1 Perhaps we should point out that this is not just a vague, abstract hope that theory and
practice should somehow be related—for instance, recent experimental work by the third author
joint with Järvisalo, Matsliah and Živný [42] suggests that a deeper study of possible correlations
between theoretical space complexity in resolution and practical hardness (measured as the running
time) for CDCL solvers could yield interesting insights.

SPACE COMPLEXITY IN POLYNOMIAL CALCULUS 1121

us mention that some good starting points for a further study of proof complexity
in general are, for instance, [6, 55], while the survey [48] by the third author focuses
specifically on space complexity and time-space trade-offs. On the more applied side,
a recent and very comprehensive reference on SAT solving is [17].

1.1. Previous work. Any formula in propositional logic can be efficiently con-
verted to a conjunctive normal form (CNF) formula that is only linearly larger and is
unsatisfiable if and only if the original formula is a tautology. Therefore, any sound
and complete system for refuting CNF formulas can be considered as a general propo-
sitional proof system. Furthermore, while the general definition of a proof system
allows for any predicate P , in practice the proof systems studied in the proof com-
plexity literature tend to have the structure that a proof π can be viewed as a sequence
of lines, where each line either is (some encoding of) a disjunctive clause of the CNF
formula being refuted or follows from previous lines in the proof by the inference rules
of the proof system in question. We will say that such proof systems are sequential .
All proof systems considered in this paper are sequential proof systems for refuting
unsatisfiable CNF formulas.

Of the three proof systems mentioned above, the resolution proof system is by
far the most well-studied and well-understood. Resolution was introduced in [18] and
began to be investigated in connection with automated theorem proving in the 1960s
[32, 33, 53]. In this context, it is natural to prove bounds on the length of refutations,
i.e., the number of clauses, rather than on the total size (the two measures are easily
seen to be polynomially related). One of the early breakthroughs in proof complexity
was the result by Haken [39] that CNF formulas encoding the pigeonhole principle
(PHP) require proofs of exponential length. There has been a sequence of follow-up
papers establishing quantitatively stronger bounds for other formula families in, for
instance, [8, 16, 28, 56].

Motivated by the fact that memory usage is a major concern in applied SAT
solving, and by the question of whether proof complexity could say anything interest-
ing about this, the study of space in resolution was initiated by Esteban and Torán
in [34]. Alekhnovich et al. [1] extended the concept of space to a more general setting,
including other proof systems, and this setting is what will be of interest to us in
this paper. Intuitively, the space of a resolution refutation is the amount of memory
needed while verifying the refutation (where in resolution usually one thinks of each
clause as requiring one unit of memory, a measure that is known as clause space).
Perhaps somewhat surprisingly, it turns out that one need never use more than linear
(clause) space in resolution, and a sequence of papers [1, 11, 34] have established
matching lower bounds (up to constant factors).

Another sequence of papers [46, 49, 14] involving the third author clarified the
relation between length and space in resolution. While it follows from [3] that small
complexity with respect to space implies small complexity with respect to length,
building on [46, 49] the paper [14] established that there exist explicit formulas that are
maximally easy with respect to length, having linear length refutations, but which are
hard for space in that their clause space complexity is Ω(n/ logn) (and this separation
is optimal). Regarding trade-offs between length and space, some results in restricted
settings were presented in [10, 47], and strong trade-offs for general resolution were
finally obtained in [15]. Even more recently, [7] obtained trade-off results for formulas
that require even superlinear space if length is to be optimized.

In the polynomial calculus (PC) proof system introduced by Clegg, Edmonds,
and Impagliazzo [29], clauses are interpreted as multilinear polynomial equations over

1122 FILMUS, LAURIA, NORDSTRÖM, RON-ZEWI, AND THAPEN

some field, and a CNF formula is refuted by showing that there is no common root for
the polynomial equations corresponding to all the clauses. The minimal refutation
size of a formula in this proof system turns out to be closely related to the total
degree of the polynomials appearing in the refutation [41], and a number of strong
lower bounds on proof size have been obtained by proving degree lower bounds in, for
instance, [2, 12, 25, 41, 52].

The treatment of negated and unnegated literals in PC is asymmetric and means
that wide clauses with literals of the wrong sign can blow up to polynomial equations
of exponential size. To get a more symmetric treatment of space, [1] introduced
polynomial calculus resolution (PCR) as a common extension of PC and resolution.2

Briefly, in PCR one adds an extra set of parallel formal variables x, y, z, . . . as well
as axioms specifing that x and x must always take opposite signs (so that we can
think of the variable x as the literal negating x). In this way, negated and unnegated
literals can both be represented in a space-efficient fashion.

In this stronger PCR system, [1] managed to establish lower bounds on space mea-
sured as the number of monomials, but only sublinear bounds and only for formulas of
unbounded width (namely, for pigeonhole principle formulas). The problem of prov-
ing linear lower bounds on space in PC and PCR, and more importantly of proving
any nontrivial lower bounds for formulas of bounded width in terms of PCR space or
even PC space, was mentioned as an open problem in [1]. Thus, it has been theoreti-
cally consistent with the state of knowledge since [1] that all k-CNF formulas would
potentially be refutable in constant space in polynomial calculus. And as far as we
are aware, there have not been any trade-off results shown for PC or PCR before (the
partial results in) the recent paper [40].

At the time the paper [29] was published, there was quite some excitement about
polynomial calculus, since this proof system seemed to hold out the promise of better
SAT solvers than those based on resolution. This promise has failed to materialize so
far, however. There are PC-based solvers such as PolyBoRi [23], but in general they
seem to be an order of magnitude slower than state-of-the-art CDCL solvers (although
[24] reports that PolyBoRi can be faster on certain specific industrial instances).

To conclude our quick survey on research on space complexity and size-space
trade-offs in proof complexity, we also want to briefly discuss the cutting planes proof
system [31]. Here the clauses of a CNF formula are translated to linear inequalities
and the formula is refuted by showing that the polytope defined by these inequalities
does not have any zero-one integer points (corresponding to satisfying assignments).
We know of only one superpolynomial lower bound on cutting planes proof size [51]
(improving on the result [22] in a somewhat restricted setting). It is natural to define
the line space of a cutting planes refutation to be the maximal number of linear
inequalities that need to be kept in memory simultaneously during the refutation.
Just as for monomial space in PCR, line space in cutting planes is easily seen to be a
generalization of clause space in resolution and is hence upper bounded by the clause
space complexity. As far as we are aware, nothing is known on space for cutting
planes, much less for size-space trade-offs, except again for the recent paper [40].

2As a side note, we remark that if our main concern in studying space is the connection to SAT
solving, then it is not entirely clear that the generalization to PCR is the right way to go. The issue
is that PCR might in fact be a bit too strong in the sense that it magically eliminates a problem
with exponential space blow-up that actually appears to be an issue in practice for some PC-based
SAT solvers.

SPACE COMPLEXITY IN POLYNOMIAL CALCULUS 1123

1.2. Our results. In this paper, we focus on PC and PCR and prove several new
results. We give an overview of these results below. The notation and terminology
used follows that of the survey [48] fairly closely, but for completeness we provide all
the necessary preliminaries in section 2.

1.2.1. Upper bounds on space for k-CNF formulas in PC. A first natural
question when proving lower bounds on space in polynomial calculus is how strong
bounds we can hope for, i.e., what upper bounds there are to match. For the reso-
lution proof system, it is easy to show that any CNF formula F with m clauses over
n variables has a refutation in simultaneous length exp

(
min{m,n}+O(1)

)
and clause

space min{m,n} + O(1). Since PCR can simulate resolution efficiently line by line,
we get similar upper bounds for size and monomial space there.

For PC without extra variables for negative literals, however, it is easy to see
that one cannot polynomially simulate resolution. Namely, consider a formula F with
a wide clause consisting of only negative literals. Just representing such a clause
in the PC translation to a polynomial requires exponential size and space. This
counterexample for PC seems somewhat artificial, though, since we could transform F
to an equivalent 3-CNF formula in the canonical way and work with this formula
instead to avoid the problems with downloading wide all-negative clauses. Therefore,
we are interested in determining upper bounds for the worst case for PC when the
unsatisfiable input formulas are given in k-CNF.

Interestingly, this turns out to be connected to a problem regarding width in
resolution. We know from [16] that if a formula cannot have resolution refutations
without at least one clause of linear length, then the length of any resolution refutation
has to be exponential. In fact, by counting one immediately gets not only that any
refutation must contain at least one wide clause in such a case, but that it must
contain an exponential number of wide clauses. Suppose now that we are considering
random k-CNF formulas, where the signs of the literals in the axioms will be randomly
(and evenly) divided. Is it true that in any resolution refutation of such a formula,
there must also be wide clauses with reasonably evenly divided positive and negative
literals? Or weakening this question a bit: Is it true that in any resolution refutation
of a random k-CNF formula, it holds with high probability that the refutation must
contain at least one clause with a large positive component and one clause (the same
one or another one) with a large negative component?

Somewhat surprisingly, the answer to this question is a resounding “no.” If we
want to minimize negative width (or positive width, for that matter), then for any
unsatisfiable k-CNF formula F we can find a resolution refutation that never has any
clause with more than k negative (positive) literals.

This is an interesting fact in itself, but it also has immediate consequences for
PC. Namely, the reason that PC cannot simulate resolution in the same way as PCR
is that clauses with many negative literals cause an exponential blow-up in monomial
space. But since we can construct a resolution refutation that never has more than
k negative literals in any clause, we can limit this blow-up to an exponential in k,
which is a constant. Hence, we get that PC has at least as good worst-case behavior
for k-CNF formulas as does resolution.

Theorem 1.1. Any unsatisfiable k-CNF formula F with m clauses over n vari-
ables has a PC refutation in simultaneous size exp(O(min{m,n})) and monomial
space O(min{m,n}), where the hidden constant depends on k.

1.2.2. Lower bounds on space for k-CNF formulas in PC. Next, we turn
our attention to lower bounds for k-CNF formulas in PC. There is a standard way

1124 FILMUS, LAURIA, NORDSTRÖM, RON-ZEWI, AND THAPEN

to turn any CNF formula F into an equivalent 3-CNF formula F̃ by converting every
wide clause C = a1 ∨ a2 ∨ · · · ∨ aw to the set of 3-clauses C̃ = {y0} ∪ {yj−1 ∨ aj ∨ yj |
1 ≤ j ≤ w} ∪ {yw}, where the yi are new variables that do not appear anywhere else.

Let P̃HPm
n denote the pigeonhole principle formula PHPm

n converted to 3-CNF in this
way. For resolution we know that the space requirements for these two versions are
the same, but the Ω(n) lower bound on space in PCR for PHPm

n in [1] unfortunately

breaks down for P̃HPm
n , and no lower bound has been known even for PC.

Intuitively, one would like to think of the semantics of the new auxiliary variables
as being yi ≡

∨w
j=i+1 aj and use this to extract a PCR refutation of PHPm

n from any

PCR refutation of P̃HPm
n by substituting

∨w
j=i+1 aj for yi. Sadly, this idea does not

work. The problem is that the semantics of the negation of yi in the 3-CNF conversion
is yi ≡

∨i
j=1 aj , and under this interpretation there is nothing ruling out that both

yi and yi “are true simultaneously,” as it were. Therefore, this simulation idea fails.

However, for PC we never need to deal with yi, since this literal does not exist,
and if we do the substitution for yi above, then it turns out we can in fact extract a

PC refutation of PHPm
n from any PC refutation of P̃HPm

n . This immediately yields a
first nontrivial lower bound on space for 3-CNF formulas in PC. Using the ideas from
section 1.2.1 together with results from the literature, it is not hard to show that this
bound is asymptotically tight.

Theorem 1.2. The space of refuting the pigeonhole principle converted to a 3-

CNF formula P̃HPn+1
n in PC is Θ(n), or Θ

(
3
√
N
)
expressed in the formula size N .

This lower bound holds for the standard (from the algebraic point of view) en-
coding equating 0 with true and 1 with false. Since PC is clearly very sensitive to
such issues of representation, it is natural to ask whether the lower bound is due to
an unfavorable encoding and could be avoided by a preprocessing step flipping the
polarities of the literals in the formula in some way. However, it is straightforward
to show, appealing to [1], that Theorem 1.2 holds even if we allow arbitrary flips of
literal polarities in the formula.

1.2.3. Lower bounds on space for k-CNF formulas in PCR. The main
goal of this paper is to prove lower bounds on space for k-CNF formulas not in PC,
but in the stronger PCR system. And here the simple simulation used to obtain
Theorem 1.2 no longer works, for the reasons sketched above.

As a first step, we instead consider an alternative encoding of the pigeonhole
principle. In the PHPm

n formula, we have variables pi,j encoding that pigeon i sits in
hole j. However, there is another way to encode the pigeonhole principle that arises
naturally in bounded arithmetic, which uses variables x[i, �] for � = 1, . . . , log2 n to
encode in binary the hole into which pigeon i goes. Note that in this encoding the
pigeonhole principle will automatically be functional, i.e., every pigeon gets sent to
exactly one hole and not more. These “bit-graph pigeonhole principle formulas”
have width logarithmic in n and, as we prove, require space linear in n in PCR.
Hence, this provides an exponential improvement over [1] measured in the width of the
formulas.

Theorem 1.3. The space in PCR of refuting bit-graph pigeonhole principle for-
mulas BPHPn+1

n is Ω(n), or Ω
(

3
√
N/ logN

)
expressed in the formula size N .

We then tweak the formulas in a specific way to have “hole indicators” for each
hole and pigeon, where we say that pigeon i sits in hole j if the exclusive or of the
hole indicator variables for (i, j−1) and (i, j) is true. While we certainly do not claim
that this is the most natural encoding of the pigeonhole principle ever presented in

SPACE COMPLEXITY IN POLYNOMIAL CALCULUS 1125

the literature, it has the nice feature that it can be written as a 4-CNF and that the
proof of Theorem 1.3 still works with very minor modifications. So in this way we are
finally able to prove strong lower bounds on PCR space for k-CNF formulas.

Theorem 1.4. The space in PCR of refuting the XOR pigeonhole principle
XPHPn+1

n encoded in 4-CNF is Ω(n), or Ω
(

3
√
N
)
expressed in the formula size N .

The proofs of Theorems 1.3 and 1.4 are very much inspired by [1] and follow the
arguments in that paper fairly closely, but they also require some subtle but crucial
twists. We refer to section 5 for the proof of Theorem 1.3. The easy modifications to
prove Theorem 1.4 are described in section 6.

1.2.4. Space complexity of wide CNF formulas and their 3-CNF
versions. While Theorem 1.4 establishes nontrivial PCR space lower bounds for
specially crafted 4-CNF formulas, we still do not know any lower bounds for 3-CNF

formulas. In particular, the PCR space complexity of the “3-CNF version” P̃HPm
n

of the pigeonhole principle formulas remains open. Returning to the discussion in
section 1.2.2, it is natural to ask what happens in general to the space complexity of a
CNF formula F when it is transformed to the 3-CNF formula F̃ in the canonical way
described above. It is clear that such a transformation can never increase the space
complexity. For all formula families that we are aware of, the space complexity, when
it is known, does not decrease either, but stays the same. It would be very interesting
to know whether this is true in general or whether it is somehow possible to come up
with a family of wide formulas Fn where the space complexity of F̃n is asymptotically
smaller.

As a first step toward resolving this question, we characterize a natural class of
CNF formulas for which the space complexity in resolution and PCR provably does
not decrease when the formula is transformed into a 3-CNF. Suppose that for every
wide clause a1 ∨ · · · ∨ aw in F there are also axioms ai ∨ aj for all 1 ≤ i < j ≤ w
requiring that any satisfying assignment of the clause is constrained to have Hamming
weight 1 (we call such a formula weight-constrained). Then for such a formula F the

idea in section 1.2.2 of substituting
∨w

j=i+1 aj for yi and
∨i

j=1 aj for yi turns out to
actually work.

Theorem 1.5. Let F be a weight-constrained CNF formula and let F̃ be its
3-CNF version as described above. Then F and F̃ have the same space complexity
in resolution up to a small additive constant, and in PCR the two formulas have the
same space complexity up to a small multiplicative constant.

In particular, this means that for the standard encoding of the functional pi-
geonhole principle, which has precisely such weight constraints, the space complexity
of the wide formula and its 3-CNF version is essentially the same. Unfortunately,
nothing is known about the PCR space complexity of this formula, and in particular
the techniques in [1] break down when functional axioms are added to the formula.
However, what Theorem 1.5 says is that if one can manage to prove PCR space lower
bounds for the wide functional pigeonhole principle, then the same bound also holds
for the 3-CNF version. We hope that this insight can be useful when approaching the
task of proving PCR space lower bounds for (3-CNF versions of) the functional pi-
geonhole principle and other well-studied formula families in proof complexity. Also,
it would be interesting to see if Theorem 1.5 could be generalized to hold for any CNF
formula, even without weight constraints, or if there is some counterexample.

1.3. Subsequent developments. After the conference version [36] of this paper
was published, Bonacina and Galesi [19] developed a further generalization of the

1126 FILMUS, LAURIA, NORDSTRÖM, RON-ZEWI, AND THAPEN

techniques in [1] and in our paper leading to, among other things, optimal (linear)
space lower bounds in PCR for random k-CNF formulas with k ≥ 4. The machinery
developed in [19] was in turn used in [35] to prove further space lower bounds for
Tseitin formulas and to describe a generic way of constructing formulas that are hard
for PCR space (using so-called XORification). Very recently, Bonacina et al. [20]
further refined the techniques in [19] to obtain the first PCR space lower bounds for
3-CNF formulas, albeit with a logarithmic factor loss.

In joint work [21] with Bonacina and Galesi, the fifth author developed the tech-
niques in [19] in another direction to prove optimal quadratic lower bounds on total
space in resolution of random 4-CNF formulas. This lower bound, too, was extended
to random 3-CNF formulas in [20], except for a squared log factor loss.

Regarding time-space trade-offs, in [9] Beck and Tang together with the third
author extended the size-space trade-off results for resolution in [15] and [7] to PCR,
albeit with a slight loss in the parameters. In particular, this improves on the results
for PCR established in [40]. For cutting planes, the trade-offs in [40] were significantly
strengthened in [38].

Finally, in very recent joint work [37] with Galesi and Pudlák, the fifth author
explained the failures so far to establish lower bounds on cutting planes space by
showing that any CNF formula can be refuted by a cutting planes proof using only a
constant number of linear inequalities in memory (although this proof has coefficients
of exponential size).

1.4. Outline of this paper. The rest of this paper is organized as follows. We
start by presenting the necessary preliminaries in section 2. In section 3, we prove that
the space of refuting k-CNF formulas in polynomial calculus is at most O(n), where n
is the number of variables, and in section 4 we prove a polynomial calculus space lower
bound for 3-CNF versions of the pigeonhole principle formulas. In sections 5 and 6 we
then present what we consider to be our main results, namely, space lower bounds in
PCR for CNF formulas of small width. In section 5, we study formulas of logarithmic
width, and in section 6 we extend the result to a family of CNF formulas of constant
width. In section 7, we consider CNF formulas where all wide clauses have weight
constraints which specify that exactly one literal is true. We show that the space for
refuting these formulas and their standard 3-CNF versions coincide asymptotically
both in resolution and PCR. Finally, in section 8, we make some concluding remarks
and discuss a few open problems.

2. Preliminaries. Let x be a Boolean variable. A literal over x is either the
variable x itself (a positive literal) or its negation, denoted ¬x or x (a negative literal).
It will also be convenient to use the alternative notation xb for b ∈ {0, 1}, where xb is
x when b = 0 and x when b = 1. Note that this notational convention is the opposite
of what is found in some other papers in the proof complexity literature, but as we
will see shortly it is the natural choice in the context of polynomial calculus.

A clause C = a1∨· · ·∨ak is a disjunction of literals. Below we will think of clauses
as sets, so that the ordering of the literals is immaterial and no literals are repeated.
We denote the empty clause, i.e., the clause containing no literals, by ⊥. A clause
containing at most k literals is called a k-clause. A CNF formula F = C1∧· · ·∧Cm is
a conjunction of clauses. We will think of CNF formulas as sets of clauses. A k-CNF
formula is a CNF formula consisting of k-clauses.

Assignments are functions that assign a truth value for each variable in v. We
write α, β to denote truth value assignments. An assignment satisfies a Boolean
function if it makes the function true. For example, a clause is true if any of its

SPACE COMPLEXITY IN POLYNOMIAL CALCULUS 1127

constituent literals is true; the empty clause ⊥ is always false. In the context of the
algebraic proof systems PC and PCR (defined below) we will identify 0 with true and
1 with false (so that xb is true if x = b).

We say that a proof system for refuting unsatisfiable CNF formulas is sequential
if a proof π in the system is a sequence of lines, where each line is derived from
previous lines by one of a finite set of allowed inference rules . Following the exposition
in [34], we view a proof as similar to a nondeterministic Turing machine computation,
with a special read-only input tape from which the clauses of the CNF formula F
being refuted (the axioms) can be downloaded and a working memory where all
derivation steps are made. Then the length of a proof is essentially the time of
the computation and space measures memory consumption. The following definition
is a straightforward generalization of [1], where we employ the standard notation
[n] = {1, . . . , n}.

Definition 2.1 (refutation). For a sequential proof system P with lines of the
form Li, a P-configuration D, or, simply, a configuration, is a set of such lines.
A sequence of configurations {D0, . . . ,Dτ} is said to be a P-derivation from a CNF
formula F if D0 = ∅ and for all t ∈ [τ], the set Dt is obtained from Dt−1 by one of
the following derivation steps:

Axiom download. Dt = Dt−1∪{LC}, where LC is the encoding of a clause C ∈ F
in the syntactic form prescribed by the proof system (an axiom clause).

Inference. Dt = Dt−1 ∪ {L} for some L inferred by one of the inference rules
for P from a set of assumptions L1, . . . , Lm ∈ Dt−1.

Erasure. Dt = Dt−1 \ {L} for some L ∈ Dt−1.
A P-refutation π : F ⊥ of a CNF formula F is a P-derivation π = {D0, . . . ,Dτ}
such that D0 = ∅ and ⊥ ∈ Dτ , where ⊥ is the representation of contradiction (e.g.,
for resolution the empty clause without literals).

Definition 2.2 (refutation size, length, and space). Given a size measure S (L)
for lines L in P-derivations (which we usually think of as the number of symbols in L,
but other definitions can also be appropriate depending on the context), the size of a
P-derivation π is the sum of the sizes of all lines in a derivation, where lines that are
derived multiple times are counted with repetitions. The length of a P-derivation π is
the number of axiom downloads and inference steps in it. For a space measure SpP(D)
defined for P-configurations, the space of a derivation π is defined as the maximal
space of a configuration in π.

We define the P-refutation size of a formula F , denoted SP(F ⊥), to be the
minimum size of any P-refutation of it. The P-refutation length LP(F ⊥) and
P-refutation space SpP(F ⊥) of F are analogously defined. When the proof system
in question is clear from context, we will drop the subindex in the proof complexity
measures.

Remark 2.3. We want to stress that length is defined as the number of axiom
downloads and inference steps, whereas erasure steps do not count. Also, the size
measure does not sum the sizes of all configurations in a derivation but rather the
sizes of all formulas downloaded or inferred. This is to be consistent with the stan-
dard definitions in the proof complexity literature, where length is usually defined
as the number of lines in a listing of the derivation, or the number of nodes in a
directed acyclic graph representing the derivation, and where one sums the sizes of all
lines/nodes to obtain the size of the derivation. The reader who so prefers, however,
could instead define the length of a derivation π = {D0, . . . ,Dτ} as the number of
steps τ in it, since the difference is at most a factor of 2, and the size measure also

1128 FILMUS, LAURIA, NORDSTRÖM, RON-ZEWI, AND THAPEN

would not change significantly if one summed the sizes of all configurations Dt.
Let us next give formal definitions in the framework of Definition 2.1 of the proof

systems that will be of interest in this paper. Below, the notation

(2.1)
G1 · · · Gm

H

means that if G1, . . . , Gm have been derived previously in the proof (and are currently
in memory), then we can infer H .

Definition 2.4 (resolution). In resolution, the lines in a derivation are clauses,
and inferences follow the resolution rule

(2.2)
B ∨ x C ∨ x

B ∨ C

for clauses B and C. We refer to (2.2) as resolution on the variable x and to B ∨C
as the resolvent of B ∨ x and C ∨ x on x. Sometimes it will be useful to allow an
additional weakening rule

(2.3)
B

B ∨ C

for clauses B and C. Weakening is admissible, in the sense that weakening can be
eliminated from every resolution refutation without increasing any of the standard
parameters such as length, size, or space.

For resolution, the length measure is as defined in Definition 2.2. We will consider
three separate space measures: clause space, total space, and width.

Definition 2.5 (width and space in resolution). The width W(C) of a clause C
is the number of literals in it, and the width of a CNF formula or clause configuration
is the size of the widest clause in it. The clause space Sp(C) of a clause configuration
C is the number of clauses in C, and the total space TotSp(C) is the total number of
literals in C counted with repetitions. The width or space of a resolution refutation π is
the maximum that the corresponding measure attains over any configuration C ∈ π.

Remark 2.6. When studying and comparing the complexity measures for reso-
lution in Definition 2.5, as was noted in [1] it is preferable to prove the results for
k-CNF formulas, i.e., formulas where all clauses have size upper-bounded by some
constant. This is especially so since the width and space measures can “misbehave”
rather artificially for formula families of unbounded width (see [47, section 5] for a
discussion of this). Since every CNF formula can be rewritten as an equivalent for-
mula of bounded width, it therefore seems natural to insist that the formulas under
study should have width bounded by some constant.

The polynomial calculus (PC) proof system was introduced in [29] under the name
“Gröbner proof system.” In a PC refutation, clauses are interpreted as multilinear
polynomials. For instance, the requirement that the clause x∨y∨z should be satisfied
gets translated to the equation xy(1 − z) = 0 or xy − xyz = 0 (recall that we think
of 0 as true and 1 as false), and we derive contradiction by showing that there is no
common root for the polynomial equations corresponding to all the clauses.

Definition 2.7 (polynomial calculus). Lines in a PC proof are multivariate
polynomial equations p = 0, where p ∈ F[x, y, z, . . .] for some (fixed) field F. It is
customary to omit “= 0” and only write p. The derivation rules are as follows, where
α, β ∈ F, p, q ∈ F[x, y, z, . . .], and x is any variable:

Boolean axioms.
x2 − x

(forcing 0/1-solutions)

SPACE COMPLEXITY IN POLYNOMIAL CALCULUS 1129

Linear combination.
p q

αp+ βq

Multiplication.
p
xp

For an assignment α to variables and a PC configuration P, we say that α satisfies P,
or P(α) = 0, if when we substitute 0 for each true variable in α and 1 for each false
variable in α then all polynomials in P are zeroed.

Definition 2.8 (PC refutation). The PC translation of a clause C is the prod-
uct

∏
x∈P x×∏x∈N(1− x) written out as a sum of monomials, where P is the set of

variables which appear positively in C and N is the set of variables appearing nega-
tively. Note that the PC translation is defined in such a way that a literal xb (where
b ∈ {0, 1}) is satisfied if its PC translation is zeroed when substituting x = b.

A PC refutation of a CNF formula F is a derivation of 1. The size measure for
lines (polynomials) in a PC derivation is the number of monomials in the polynomial
(counted with repetitions).3 The (monomial) space of a PC configuration (a set of
polynomials) is the total number of monomials in the configuration (counted with
repetitions).4

The representation of a clause
∨n

i=1 xi as a PC polynomial is
∏n

i=1(1−xi), which
means that the number of monomials is exponential in the clause width. This problem
arises only for negative literals, however—a large clause with only positive literals is
translated to a single monomial. This is a weakness of monomial space in PC when
compared to clause space in resolution. In order to obtain a cleaner, more symmetric
treatment of proof space, in [1] the proof system polynomial calculus resolution (PCR)
was introduced as a common extension of PC and resolution. The idea is to add an
extra set of parallel formal variables x, y, z, . . . so that positive and negative literals
can both be represented in a space-efficient fashion. Thus, in PCR the clause x∨y∨z
gets translated to the single monomial xyz.

Definition 2.9 (polynomial calculus resolution). Lines in a PCR proof are
polynomials over the ring F[x, x, y, y, z, z, . . .], where as before F is some field. We
have all the axioms and rules of PC plus the following axioms:

Complementarity.
x+ x− 1

for all pairs of variables (x, x)

A truth value assignment α to the variables x, y, z, . . . extends to an assignment α̃ to
the variables x, x, y, y, z, z, . . . by assigning ¬α(x) to x. The assignment α satisfies a
PCR configuration P if its extension α̃ satisfies P (under the semantics of PC).

Definition 2.10 (PCR refutation). The PCR translation of a clause C is the
monomial

∏
x∈P x ×∏x∈N x, where P is the set of variables which appear positively

in C, and N is the set of variables which appear negatively in C. A PCR refutation
of a CNF formula is a derivation of 1. Size, length, and space are defined as for PC.

3Note that if one wanted to nitpick, one could argue that the number of variables in each mono-
mial should also be counted to get a true size measure. However, size as defined in Definition 2.8,
which is the standard definition in the literature, clearly is within a linear factor of this and is much
cleaner to work with (assuming that the field F is constant so that we do not need to worry about
issues regarding representation of the coefficients).

4Alekhnovich et al. [1] define monomial space as the maximal number of distinct monomials in
any configuration. While their lower bounds hold even for this stricter definition (and so do ours),
we think that their definition is somewhat artificial and prefer the definition given here.

1130 FILMUS, LAURIA, NORDSTRÖM, RON-ZEWI, AND THAPEN

The point of the complementarity rule is to force x and x to have opposite values
in {0, 1}, so that they encode complementary literals. This means that one can
potentially avoid an exponential blow-up in size measured in the number of monomials
(and thus also for space). In PCR, monomial space is a natural generalization of clause
space, since every clause translates into one monomial as just explained.

We remark that although the measure of total space, considering the total number
of symbols in memory, is perhaps a priori the most natural one, most papers on
proof space have focused on space measured as the number of lines in memory (in
particular, the number of clauses). However, as observed in [1], for strong enough
proof systems, this “line space” measure is no longer interesting since just one unit of
memory can contain a big AND of all formulas derived so far. But this measure does
make perfect sense for resolution. For PC/PCR, however, measuring just the number
of polynomial equations is not meaningful, since every equation can be of exponential
size and encode very much information. Instead, the natural generalization of clause
space is monomial space.

In general, admissible inferences in a sequential proof system are defined by a set of
syntactic inference rules. In what follows, we will also be interested in a strengthened
version of this concept, which was made explicit in [1].

Definition 2.11 (syntactic and semantic derivations). We refer to derivations
according to Definition 2.1, where each new line L has to be inferred by one of the
inference rules for P, as syntactic derivations. If instead any line L that is semanti-
cally implied by the current configuration can be derived in one atomic step, we talk
about a semantic derivation.

More precisely, in a resolution refutation, a clause D can be inferred from a con-
figuration C if every truth assignment which satisfies all clauses in C also satisfies D.
In a semantic PC refutation, a polynomial Q can be inferred from a clause configura-
tion P if every 0/1 assignment to the variables in P which zeroes all polynomials in P

also zeroes Q. Semantic PCR is defined similarly.

Clearly, semantic derivations are at least as strong as syntactic ones, and they
are easily seen to be superpolynomially stronger with respect to length for any proof
system where superpolynomial lower bounds are known. This is so since a semantic
proof system can download all axioms in the formula one by one, and then deduce
contradiction in one step since the formula is unsatisfiable. Therefore, semantic ver-
sions of proof systems are mainly interesting when we want to reason about space or
about the relationship between space and length. If we can prove lower bounds not
just for syntactic but even for semantic versions of proof systems, this of course makes
these bounds much stronger.

An even stronger proof system, defined in [1], is functional calculus (FC). This
purely semantic system works with arbitrary Boolean functions, regardless of their
syntactical representation complexity. In fact, the space complexity for FC defined
below will simply minimize over all such representations. Although this system is not
natural, the space lower bound for PCR applies to it as well, and it is a useful tool
for proving lower bounds when an abstraction from particulars of a given syntactical
system is desirable and instructive.

Definition 2.12 (functional calculus). A line of an FC derivation is an arbi-
trary Boolean function (that is, a Boolean-valued function of Boolean variables). The
single inference rule is the semantic one, i.e., derive g from f1, . . . , fn whenever every
truth assignment that satisfies f1, . . . , fn also satisfies g. An FC-refutation of a CNF
formula is an FC proof of 1 from Boolean axioms and the clauses in the formula,
considered as Boolean functions.

SPACE COMPLEXITY IN POLYNOMIAL CALCULUS 1131

When defining the clause space of FC configurations, we must overcome the fol-
lowing problem. A line in FC is an arbitrary Boolean function f . Clearly, f can be
represented by many circuits over some complete Boolean basis, each with a different
amount of clauses. The natural way to solve this problem is to define the clause space
to be the minimal number of clauses in any such representation.

Definition 2.13 (FC clause space). Let P be a set of Boolean functions over
variables x1, . . . , xn. The (clause) space of P in FC, denoted SpFC(P), is the minimal s
such that we can choose s clauses with the property that every f ∈ P can be represented
as a Boolean function over the chosen clauses. Formally, SpFC(P) is defined as

min{s : ∃{Ci}si=1 : ∀f(x1, . . . , xn) ∈ P ∃g(y1, . . . , ys) f ≡ g(C1, . . . , Cs)} ,

where C1, . . . , Cs are clauses over x1, . . . , xn, and g runs over arbitrary Boolean func-
tions in s variables. The space of an FC refutation is the maximal space of any
configuration P encountered during the proof.

A proof in PCR can be converted to a proof in FC by replacing each polynomial
L(x1, . . . , xn) by the Boolean function,

(2.4) f(x1, . . . , xn) =

{
� if L(x1, . . . , xn) = 0,

⊥ if L(x1, . . . , xn) �= 0.

The space of a PCR configuration P under FC is at most the number of distinct
monomials appearing in P. In particular, switching from the PCR space measure to
the FC space measure cannot increase space. This shows that FC space lower bounds
also apply to PCR. Although FC is potentially much stronger than PCR, it turns out
that the lower bounds in [1] apply equally well to FC. The same is true for the PCR
lower bounds proven in this paper.

3. Upper bounds on space for k-CNFs in PC. In this section, we prove
that any CNF formula of constant width can be refuted in PC using linear space and
exponential size simultaneously, as stated next.

Theorem 3.1 (detailed version of Theorem 1.1). Any unsatisfiable k-CNF for-
mula over n variables can be refuted in the PC proof system in monomial space
2k(n+ 6), length 4n · 3n, and size 2k · 8n · 3n.

For the proof of the above theorem we introduce the notion of negative width,
which is the number of negative literals in a clause. The reason for focusing on negative
width is that, as discussed after Definition 2.8, the representation of negative literals
is what causes the PC space to blow up compared to resolution (for which worst-case
upper bounds as stated above were already known).

The proof of Theorem 3.1 consists of two main steps. In the first step we show
that any unsatisfiable k-CNF formula in n variables can be refuted in the resolution
proof system in clause space n+2, negative width k, and length 3n simultaneously. In
the second step we describe how such a refutation can be simulated in the PC proof
system in monomial space 2k(n+ 6), length 4n ·3n, and size 2k ·8n ·3n simultaneously.
Let us start by defining formally the notion of negative width.

Definition 3.2 (negative width). The negative width W−(C) of a clause C

is the number of negative literals in C, and the negative width W−(C) of a clause
configuration C is the maximum negative width of a clause in it. The negative width

W−(π) of a resolution refutation π is the maximum negative width of a configuration

in π. The negative width W−(F ⊥) of refuting a CNF formula F is the minimum
negative width of any resolution refutation of F .

1132 FILMUS, LAURIA, NORDSTRÖM, RON-ZEWI, AND THAPEN

Our first technical lemma says that unsatisfiable k-CNF formulas can be refuted
in resolution in linear space, exponential length, and in the smallest possible negative
width.

Lemma 3.3. Let F be an unsatisfiable k-CNF formula in n variables. Then F
can be refuted in resolution in negative width k, clause space n + 2, and length 3n

simultaneously.
For the proof, we need the following lemma from [34].
Lemma 3.4. Let F be an unsatisfiable CNF formula in n variables. Then F can

be refuted in resolution in clause space n+ 2 and length 2n+1 − 1 simultaneously.
Proof of Lemma 3.3. The proof is by induction on the number of variables n. If

n ≤ k, then it follows from Lemma 3.4 that F has a refutation π in clause space at
most n+2 and length at most 2n+1−1 ≤ 3n. Since there are only k different variables
the negative width of π is necessarily at most k.

For the induction step, suppose that the statement holds for every k-CNF formula
in n variables and let F be an unsatisfiable k-CNF formula in n + 1 variables. For
b ∈ {�,⊥} and a clause C let C�x=b denote the restricted clause obtained from C by
setting x to b, i.e.,

(3.1) C�x=⊥ =

⎧⎪⎨⎪⎩
� if x ∈ C,

C \ {x} if x ∈ C,

C otherwise;

C�x=� =

⎧⎪⎨⎪⎩
C \ {x} if x ∈ C,

� if x ∈ C,

C otherwise.

We denote by F�x=b the k-CNF formula which contains all clauses of the form C�x=b

for C ∈ F except the trivial � clauses (which can be removed without loss of gener-
ality).

Pick an arbitrary variable x and consider the restricted formula F�x=⊥. By the
inductive hypothesis, F�x=⊥ has a refutation of length 3n, clause space n + 2, and
negative width k. It is an easy observation (essentially from [16]) that from such a
refutation we can obtain a derivation of x from F in the same length, clause space,
and negative width simply by “unrestricting” F , i.e., by applying the same inference
steps as in the refutation of F�x=⊥ but to the clauses of F . For any clause C in
the refutation of F�x=⊥ the corresponding clause in the new derivation is either C or
C ∨ x. Thus the final configuration in this proof includes either the empty clause ⊥
or the unit clause x. In either case, x can be derived via weakening. The length and
space of the derivation do not change, and since x is a positive literal neither does the
negative width.

From now on we keep the clause x in memory and next consider the formula
F�x=�. A naive approach would be to use the same strategy as above for deriving the
clause x from F and conclude by resolving x with the literal x in memory. However,
this will not work since it may cause an increase of negative width. We instead
simulate such a refutation directly. Actually, we just need to simulate downloads of
the clauses of F�x=� which are not in F . Such clauses are of the form C where C ∨ x
is in F , so it is sufficient to download C ∨ x, resolve with x which is in memory, and
erase C ∨ x. Notice that this simulation uses two additional clauses in memory. In
the end we get the empty clause, which concludes the refutation of F .

So far we obtained a simulation which uses space n+ 4, instead of n + 3, which
is what we want. To save one more unit of space, we perform a preprocessing step
on the refutation of F�x=�. Namely, we enforce that no download step increases the
clause space above n+ 1. If this happens at an axiom download, then the download
step must be immediately followed by an erasure step, because otherwise the clause

SPACE COMPLEXITY IN POLYNOMIAL CALCULUS 1133

space would go above n+ 2, which is contrary to our inductive hypothesis. But this
means that we can swap the order of these two steps and first do the erasure step
and then the download step. In this way the space after any download step will be
at most n+1, which in turns means that our simulation causes the space to go up to
n+ 3 at most.

The length of the total refutation is 3n for the first part and 2 · 3n for the second
part (each axiom downloads in the second part is substituted with an inferences of
length 2, i.e., a download, a resolution step, and an erasure), yielding a total length
of at most 3n+1. It is straightforward to verify that the negative width is still k. The
lemma follows.

The second lemma needed to establish Theorem 3.1 says that if a k-CNF formula
can be refuted in resolution in clause space s, negative width w, and length L simul-
taneously, then it can be refuted in PC in monomial space 2w(s+4), length 4nL, and
size 2w8nL simultaneously. We will actually prove a slightly more general result that
will be useful in section 4. For this generalization we need to count the total number
of negative literals in a configuration.

Definition 3.5 (total negative space). For a clause set C we define its total neg-
ative space TotSp−(C) as the total number of negative literals in clauses in C counted
with repetitions. For a refutation π we define its total negative space TotSp−(π) as
the maximum total negative space of a configuration in it. The total negative space
TotSp−(F ⊥) of refuting a CNF formula F is the minimum total negative space of
any resolution refutation of F .

Lemma 3.6. Suppose that the CNF formula F can be refuted in resolution simul-
taneously in clause space s, length L, negative width w, and total negative space N .
Then F can be refuted in PC simultaneously in length 4nL, size 2w8nL, and monomial
space 4 · 2w +min

{
s2w, s+ 2N

}
.

Proof. Let π be a resolution refutation of F in clause space at most s, length
at most L, negative width at most w, and total negative space at most N . We may
assume without loss of generality that there is no application of the weakening rule—
as observed in Definition 2.4, this does not increase length or clause space, and it is
easy to verify that the same holds also for negative width and total negative space.

Let π be written as the sequence of clause configurations {C1, . . . ,Ct} and let
π′ be the sequence of configurations {C′

1, . . . ,C
′
t} obtained from π by replacing each

clause in a configuration Ci with its PC translation as described in Definition 2.8.
Since the negative width of any clause in any configuration Ci is at most w, its PC
translation has at most 2w monomials. Since each configuration Ci contains at most
s clauses this implies in turn that each PC configuration C′

i contains at most s2w

monomials. But since we know that the total negative space is at most N , another
upper bound on the number of monomials in a configuration C′

i is s+ 2N .

It remains to show how to carry out in PC the transition from a configuration
C′

i to the next configuration C′
i+1 in π′. Clearly, if Ci+1 was obtained from Ci via

axiom download or erasure, then the transition from C′
i to C′

i+1 can be carried out
in PC employing the same rule. By assumption π does not use the weakening rule so
the only case that remains is when Ci+1 is obtained from Ci by an application of the
resolution rule to a pair of clauses A∨x and B∨x. This case is not hard but requires
a bit of work.

Claim 3.7. Let A and B be clauses such that the variable x does not appear in
A or B. Suppose that A ∨ x, B ∨ x, and A ∨ B all have negative width at most w.
Let pC denote the PC translation of a clause C according to Definition 2.8. Then

1134 FILMUS, LAURIA, NORDSTRÖM, RON-ZEWI, AND THAPEN

it holds that the configuration
{
pA∨x, pB∨x, pA∨B

}
=
{
xpA, (1 − x)pB, pA∨B

}
can be

derived from the configuration
{
pA∨x, pB∨x

}
in PC using at most 4n inference steps

and additional monomial space at most 2w+2. All polynomials in the derivation have
at most 2w+1 monomials each.

Proof. To prove the claim, we use as a building block the following space-efficient
inference of the polynomial

∏
� z�
∏

κ(1 − yκ) from the polynomial 1, where {z�}�
and {yκ}κ are two arbitrary sets of variables (which we think of as the positive and
negative literals in some clause):⎛⎜⎜⎝

1
⎞⎟⎟⎠→

⎛⎜⎜⎝
1
z1

⎞⎟⎟⎠→

⎛⎜⎜⎝
1
z1
z1z2

⎞⎟⎟⎠→

⎛⎜⎜⎝
1

z1z2

⎞⎟⎟⎠→ · · · →

⎛⎜⎜⎝
1∏
� z�

⎞⎟⎟⎠→

⎛⎜⎜⎝
1∏
� z�

y1
∏

� z�

⎞⎟⎟⎠→

→

⎛⎜⎜⎝
1∏
� z�

y1
∏

� z�
(1 − y1)

∏
� z�

⎞⎟⎟⎠→

⎛⎜⎜⎝
1

(1− y1)
∏

� z�

⎞⎟⎟⎠→

⎛⎜⎜⎝
1

(1 − y1)
∏

� z�
y2(1 − y1)

∏
� z�

⎞⎟⎟⎠→(3.2)

→

⎛⎜⎜⎝
1

(1− y1)
∏

� z�
y2(1− y1)

∏
� z�

(1− y2)(1 − y1)
∏

� z�

⎞⎟⎟⎠→
⎛⎜⎜⎝

1
(1− y2)(1 − y1)

∏
� z�

⎞⎟⎟⎠→ · · · →

⎛⎜⎜⎝
1∏

� z�
∏

κ(1− yκ)

⎞⎟⎟⎠.
We stress that 1 is kept in the final configuration and that all polynomials above are
PC encodings of clauses. Using (3.2) we can derive pA∨B as follows:

• First derive xpA∨B = pA∨B∨x from xpA.
• Then derive (1 − x)pA∨B = pA∨B∨x from (1− x)pB .
• Finally, take the sum of these two polynomials and then erase them from
memory.

The derivation of xpA∨B from xpA is just a suitably modified version of (3.2) with all
polynomials multiplied by xpA, and the same applies to the derivation of (1−x)pA∨B

from (1− x)pB . The length of each subderivation (3.2) is the number of variables z�
plus twice the number of variables yκ (recall that erasure steps do not count toward
length, as discussed in Remark 2.3). Hence, the total length is at most 4n, where n
is the total number of variables. Each polynomial is the encoding of a clause with at
most w + 1 negative literals, so it contains at most 2w+1 monomials.

To count the number of additional monomials, observe that the most expensive
configuration is the first one that contains the polynomial (1 − x)pA∨B. At this
point we have in memory xpA, (1 − x)pB , xpA∨B, (1 − x)pA∨B, and all premises
used to infer the latter polynomial. Let w′ ≤ w be the negative width of A ∨ B.
The number of monomials in xpA∨B and (1− x)pA∨B is, respectively, 2w

′
and 2w

′+1.
The premises of (1−x)pA∨B collectively account for 2w

′+1 more monomials, since no
monomial cancels in any of the inference steps in the subderivation (3.2). Thus, this
configuration has 4 · 2w′

additional monomials compared to the final configuration{
xpA, (1− x)pB , pA∨B

}
.

Returning to the proof of Lemma 3.6, the number of monomials in each config-
uration C′

i is at most min{2ws, 2N + s}. For every i ∈ [t], the transition from C′
i to

C′
i+1 is carried out in PC either directly or using Claim 3.7. In this way we obtain a

PC refutation of F of length at most 4nL, and space at most

(3.3) 2w+2 +min
{
2ws, 2N + s

}
= min

{
2w(s+ 4), 2w+2 + 2N + s

}

SPACE COMPLEXITY IN POLYNOMIAL CALCULUS 1135

as required. By assumption, the negative width is at most w and therefore all the
polynomials in Ci have at most 2w monomials. By Claim 3.7, the polynomials in the
intermediate configurations have at most 2w+1 monomials. Thus, the total size of the
refutation is 2w8nL. This concludes the proof of the lemma.

Theorem 3.1 now follows immediately from Lemmas 3.3 and 3.6. Let us write out
the proof for completeness.

Proof of Theorem 3.1. Lemma 3.3 implies that F can be refuted in resolution in
space n+ 2, negative width k, and length 3n simultaneously. Lemma 3.6 then yields
that F can be refuted in PC in space 2k((n+ 2) + 4) = 2k(n+ 6), length 4n · 3n and
size 2k · 8n · 3n.

4. Space complexity of 3-CNF PHP formulas in PC. We next want to
prove an Ω(n) space lower bound on the 3-CNF extended version of the pigeonhole
principle PHPm

n and show that this lower bound is tight up to constant factors. Let us
start by recalling the definition of the pigeonhole principle and its extended version.

Definition 4.1 (pigeonhole principle formula). The pigeonhole principle formula
PHPm

n is the formula over variables {pi,j | i ∈ [m], j ∈ [n]}, where we think of [m] as
the set of pigeons and of [n] as the set of holes, consisting of the following clauses:

• ∨n
j=1 pi,j for all i ∈ [m] (pigeon axioms),

• pi1,j ∨ pi2,j for all i1, i2 ∈ [m], i1 �= i2, and all j ∈ [n] (hole axioms).

As mentioned briefly in the introduction, the extended version F̃ of a CNF formula
F is defined as follows.

Definition 4.2 (extended version). The extended version of a clause C =
a1 ∨ a2 ∨ · · · ∨ an, n > 3, is the set of clauses

C̃ = {y0} ∪ {yj−1 ∨ aj ∨ yj | 1 ≤ j ≤ n} ∪ {yn}

with n + 2 clauses over 2n + 1 variables. If C has at most three literals we define
C̃ = {C}. We will refer to the variables y0, y1, . . . , yn as extension variables as
opposed to the original variables of F .

The extended version F̃ of a CNF formula F is the union of all extended versions
of clauses in F , where the extension variables used for each clause in F are distinct.

It is not hard to verify that the extended version F̃ of a CNF formula F is
unsatisfiable if and only if F itself is unsatisfiable.

For the extended version P̃HPm
n of the PHP formula we will denote the extension

variables of the ith pigeon axiom
∨n

j=1 pi,j by yi,j , so that this clause turns into the
3-CNF formula

(4.1) yi,0 ∧ (yi,0 ∨ pi,1 ∨ yi,1) ∧ (yi,1 ∨ pi,2 ∨ yi,2) ∧ · · · ∧ (yi,n−1 ∨ pi,n ∨ yi,n) ∧ yi,n.

We will need the following theorem by Alekhnovich et al. [1].

Theorem 4.3. For any m > n, it holds that SpPCR
(
PHPm

n ⊥) = Ω(n).

Since PCR is at least as strong as PC with respect to space, the above theorem
holds for PC as well.

Corollary 4.4. For any m > n, it holds that SpPC
(
PHPm

n ⊥) = Ω(n).

It is not difficult to see that SpPC
(
F̃ ⊥) ≤ SpPC

(
F ⊥) + O(1). This is

so since every PC refutation of F can be transformed into a PC refutation of F̃
using only constant additional space (by rederiving C from C̃ whenever a clause C is

1136 FILMUS, LAURIA, NORDSTRÖM, RON-ZEWI, AND THAPEN

downloaded). The main theorem of this section says that for the PHPm
n formulas the

converse is also true (up to a constant multiplicative factor).
Theorem 4.5. For any positive integers m > n, it holds that SpPC

(
PHPm

n ⊥) ≤
3
2SpPC

(
P̃HPm

n ⊥)+O(1).
Combining Corollary 4.4 and Theorem 4.5, we obtain the first nonconstant PC

monomial space lower bound for a 3-CNF formula.

Corollary 4.6. For any m > n, it holds that SpPC
(
P̃HPm

n ⊥) = Ω(n).

Proof of Theorem 4.5. We show how to transform any PC refutation of P̃HPm
n

into a PC refutation of PHPm
n without increasing the monomial space by more than

a constant factor. Let π = {C1, . . . ,Cτ} be a PC refutation of P̃HPm
n in space s. Let

π′ = {C′
1, . . . ,C

′
τ} be the sequence of configurations obtained from π by replacing any

extension variable yi,j , 0 ≤ j ≤ n, in any polynomial by the product
∏n

�=j+1 pi,� (in
particular, we substitute 1 for the variable yi,n).

Since variables are replaced by monomials, we have Sp(C′
i) = Sp(Ci) for all i ∈ [τ].

We need to show that all transitions from C′
i to C′

i+1 can be carried out in PC without
increasing the number of monomials by more than a constant factor. Clearly, if Ci+1

is obtained from Ci by erasure, linear combination, or multiplication by an original
variable of PHPm

n , then C′
i+1 can be obtained from C′

i by applying the same rule. It
remains to analyze the cases when Ci+1 is obtained from Ci through multiplication
by an extension variable or by an axiom download.

If Ci+1 is obtained from Ci by multiplying a polynomial q by an extension vari-
able yi,j , then this can be simulated by a sequence of multiplications by the variables
pi,j+1, pi,j+2, . . . , pi,n. For this we need extra space to store in memory, one at a time,
the intermediate polynomials of the form

∏r
�=j+1 pi,� · q for j + 1 ≤ r < n. Since the

configuration Ci+1 contains both polynomials q and yi,jq and has space at most s,
this implies that the space of the intermediate polynomial

∏r
�=j+1 pi,� · q is at most

s/2. Hence the monomial space increases by a factor of at most 3/2.
Now consider the case when Ci+1 is obtained from Ci via an axiom down-

load. An axiom of the form yi,0 is replaced by
∏

j∈[n] pi,j , which is the PC trans-
lation of the ith pigeon axiom. The axiom yi,n corresponds to 1 − 1 = 0 and
can thus be ignored. A generic axiom yi,j−1 ∨ pi,j ∨ yi,j gets translated in PC as(
1 −∏n

�=j pi,�
)
pi,j

∏n
�=j+1 pi,� =

∏n
�=j pi,� −

∏n
�=j p

2
i,�. The latter polynomial can be

derived in constant monomial space from the axioms p2i,j − pi,j . To see this, note first

that we get pi,j − p2i,j by multiplying the Boolean axiom in the preceding sentence

by −1. Suppose that we have derived t− t2 for a (multilinear) monomial t and want
to derive xt−(xt)2. Then we can multiply t− t2 by x2 and x−x2 by t (or in the latter
case by the variables in t one by one, to be precise), and then add the two resulting
polynomials to obtain xt − (xt)2. A similar procedure can be employed to infer the
substituted version of a Boolean axiom y2i,j − yi,j over an extension variable.

A natural question is whether the lower bound given in Corollary 4.6 is tight. We
show that when m = n+1 this is indeed the case (up to a constant factor). Note that
appealing to Theorem 3.1 is not sufficient here—this will only yield an upper bound

of O
(
n2
)
on the PC space of P̃HPn+1

n , since the number of variables in P̃HPn+1
n

is Θ
(
n2
)
. Recalling again that SpPC

(
F̃ ⊥) ≤ SpPC

(
F ⊥) + O(1) for any CNF

formula F , we see that it suffices to prove the upper bound stated next.
Lemma 4.7. For any m > n, it holds that SpPC

(
PHPm

n ⊥) ≤ n+O(1).

SPACE COMPLEXITY IN POLYNOMIAL CALCULUS 1137

Putting together Corollary 4.6 and Lemma 4.7 we obtain Theorem 1.2. For the
proof of Lemma 4.7 we will use the following claim (where we recall the definition of
total negative space in Definition 3.5).

Claim 4.8. For clauses C, D and positive integers s, t, let F be the CNF formula(
C ∨

s∨
i=1

ai

)
∧
⎛⎝D ∨

t∨
j=1

bj

⎞⎠ ∧
⎛⎝ s∧

i=1

t∧
j=1

(ai ∨ bj)

⎞⎠ .

Then the clause C ∨ D can be derived from F in resolution in clause space 4. Fur-
thermore, if ai and bj are all positive literals and C,D contain only positive literals,
then C ∨D can be derived from F in resolution in clause space 4 and total negative
space 4 simultaneously.

Proof. For any fixed i ∈ [s] we can deriveD∨ai by resolving the axiomD∨∨t
j=1 bj

with the axioms ai∨b1, . . . , ai∨bt one by one, erasing both premises from memory after
each resolution step. In this way, we can derive any clause D ∨ ai in clause space 3.
Then we can obtain C ∨ D by resolving C ∨ ∨s

i=1 ai with D ∨ ai for i = 1, . . . , s
using a total of four clauses of space. Finally, note that if the clauses C and D as
well as all literals ai and bj are positive, then we have at most four negative literals
simultaneously in memory.

Let us now use Claim 4.8 to prove Lemma 4.7.
Proof of Lemma 4.7. We focus on the case m = n+1. Observe that when m > n

all clauses of PHPn+1
n are also clauses of PHPm

n , so this is without loss of generality.
We use (the proof of) Lemma 1 in [27] to show that PHPn+1

n can be refuted
in resolution in clause space n+ O(1) and total negative space O(1) simultaneously.
Once we have such an efficient resolution refutation we apply Lemma 3.6 to get a
PC refutation which meets the claimed bound. The refutation of PHPn+1

n in [27]
is best explained in an inference system specialized for such a formula. We will
later see how to simulate this refutation efficiently in the resolution system. For
any sets P ⊆ [n + 1] and H ⊆ [n] we denote by (P → H) the positive clause∨

i∈P

∨
j∈H pi,j . The axioms are our usual pigeon axioms, which for the ith pigeon is

written as ({i} → [n]) in this notation. The inference rule is

(4.2)
C ∨ (A → {j}) D ∨ (B → {j})

C ∨D ∨ (A ∩B → {j})
for positive clauses C,D, subsets A,B ⊆ [n + 1], and an integer j ∈ [n]. This can
be thought of as a special version of the resolution rule (2.2) tailored to the PHP
formula.

Let P be a (nonempty) set of pigeons. We will show by induction on the set
size |P | that for any P ⊆ [n + 1] the positive clause

(
P → [n + 1 − |P |]) can be

derived in clause space at most |P | + 2. From this we can conclude that the spe-
cialized inference system derives the empty clause ([n + 1] → ∅) in clause space at
most n+ 3.

For the base case |P | = 1 this is immediate since the clause is an axiom. For
|P | > 1, suppose that P = {i1, i2, . . . it} and let j = n + 2 − |P | and C =

(
P →

[n + 1 − |P |]). Note that each clause C ∨ (P \ {i�} → {j}) is a weakening of the

clause
(
P \ {i�} → [n+ 2− |P |]) which can be derived in clause space |P |+ 1 by the

inductive hypothesis. Then C can be derived in space |P |+ 2 as follows:

1138 FILMUS, LAURIA, NORDSTRÖM, RON-ZEWI, AND THAPEN

C ∨ (P \ {i1} → {j}) C ∨ (P \ {i2} → {j})
C ∨ (P \ {i1, i2} → {j}) C ∨ (P \ {i3} → {j})

...
C ∨ (P \ {i1, . . . , it−1} → {j}) C ∨ (P \ {it} → {j})

C ∨ (∅ → {j})
.

By the induction principle, we obtain a refutation in our specialized inference
system in positive clause space at most n+ 3.

Next, we show how to simulate this refutation in resolution. All clauses in the
refutation contain only positive literals, so we just need to show how to simulate the
inference rule (4.2) without increasing the clause space and the total negative space by
more than a constant. If we let

(
A\B → {j}) = ∨s

i=1 ai and
(
B\A → {j}) = ∨t

j=1 bi
and recall that we have axioms pi,j ∨ pi′,j for all i, i′ ∈ [n + 1], i �= i′, and j ∈ [n]

corresponding to ai ∨ bj , we can appeal to Claim 4.8 to deduce that the inference
rule (4.2) can be simulated in resolution by increasing both the clause space and the
total negative space by at most a constant.

Concluding, we have that the formula PHPn+1
n can be refuted in clause space

n+O(1) and total negative space O(1) simultaneously. Lemma 3.6 then implies that
PHPn+1

n can be refuted in monomial space n+O(1). As already observed, this then
also holds for PHPm

n for any m > n.

5. A PCR space lower bound for bit-graph PHP formulas. In this sec-
tion, we present a PCR space lower bound for an encoding of the pigeonhole principle
that has clauses of only logarithmic width. The lower bound we get is linear in the
number of holes, just as in [1], but measured in the initial width of the clauses it is an
exponential improvement. In section 6, we will improve this further to a qualitatively
similar bound for CNF formulas of constant width, resolving an open problem in [1].
We believe that the result in this section is of independent interest, however, since
the lower bound holds for a natural family of CNF formulas, whereas the formulas
in section 6 are more contrived and are designed specifically to get PCR space lower
bounds.

The formulas we consider are so-called bit-graph pigeonhole principle formulas,
which are encodings of the functional pigeonhole principle. In contrast to the standard
encoding, which uses clauses pi,j ∨pi,j′ to enforce the functionality condition that the
pigeon i is not sent to two distinct holes j and j′, for the formulas studied in this
section this condition does not require extra axiom clauses but is hard-coded in the
variable representation. Such an encoding arises naturally in bounded arithmetic.

In what follows, we write [i, j] to denote the set {i, i + 1, . . . , j}, and [i, j) to
denote {i, i+ 1, . . . , j − 1}.

Definition 5.1 (bit-graph pigeonhole principle formula). Let n = 2�. The bit-
graph pigeonhole principle formula BPHPm

n has propositional variables x[p, i] for each
p ∈ [0,m) and i ∈ [0, �). We think of [0,m) as a set of pigeons and of [0, n) as a set of
holes. Each pigeon p is thought of as being mapped to the hole whose binary encoding
is given by the string x[p, � − 1] · · ·x[p, 1]x[p, 0], and we say that the variables x[p, i]
are associated with the pigeon p.

The formula BPHPm
n then asserts that no two pigeons are mapped to the same

hole. For every two pigeons p1 �= p2 ∈ [0,m) and every hole h ∈ [0, n),

SPACE COMPLEXITY IN POLYNOMIAL CALCULUS 1139

BPHPm
n contains a hole axiom

H(p1, p2, h) =
�−1∨
i=0

x[p1, i]
1−hi ∨

�−1∨
i=0

x[p2, i]
1−hi ,

stating that either p1 is not mapped to h or p2 is not mapped to h, where h�−1 · · ·h1h0

is the binary encoding of h.
Recall the notational convention adopted in the preliminaries that for a variable

v we have v0 ≡ v and v1 ≡ v, so that vb = 0 (i.e., vb is true) if and only if v = b.
Keeping this in mind, we see that what the axiom clause H(p1, p2, h) says is that for
at least one of the pigeons p1 or p2, the binary expansion of the hole to which this
pigeon is sent does not match the binary expansion of h.

Fix n = 2� ≥ 1 and m > n. We will prove a PCR space lower bound for BPHPm
n

using a similar approach to that in Alekhnovich et al. [1]. As in [1], our proof will also
apply to the much stronger functional calculus proof system (see Definition 2.12).

Notice that we can identify total truth value assignments α to the variables of
BPHPm

n with functions fα : [0,m) → [0, n) mapping pigeons to holes. In what follows,
we will switch freely back and forth between these two ways of looking at assignments.
Let us next state two key definitions.

Definition 5.2 (well-behaved assignment). Let α be a total assignment to the
variables of BPHPm

n and let S ⊆ [0,m) be a set of pigeons. We say that α is well-
behaved on S if the holes assigned by α to the pigeons in S are all distinct.

Definition 5.3 (commitment). A disjunctive commitment, or just commitment,
is a clause of the form x[p1, i1]

b1 ∨ x[p2, i2]
b2 , where p1 and p2 are distinct pigeons.

A commitment set is a set of commitments where all pigeons are distinct. We
think of a commitment set as the conjunction of its constituent commitments. The
domain of a commitment set A, written domA, is the set of pigeons mentioned in A.
The size of a commitment set A, denoted |A|, is the number of commitments in A.

An assignment α is well-behaved on and satisfies a commitment set A if α is
well-behaved on domA and satisfies A.

The following observation is central to our argument. It states that given a one-
to-one assignment of fewer than n/2 pigeons to holes and a literal associated to a new
pigeon, we can always find some new hole to assign to that pigeon so that the literal
is satisfied.

Lemma 5.4. Suppose S is any set of fewer than n/2 pigeons, α is an assignment
well-behaved on S, and x[p, i]b is a literal associated with a pigeon p /∈ S. Then we
can modify α by reassigning p in such a way that the new assignment is well-behaved
on S ∪ {p} and satisfies the literal x[p, i]b.

Proof. There are exactly n/2 holes for pigeon p that will satisfy the literal x[p, i]b

if p is sent there. Fewer than n/2 holes are taken by the pigeons in S so there
is a hole h, not assigned to any pigeon in S, such that sending p to h will satisfy
x[p, i]b.

Corollary 5.5. Let S, T be two disjoint sets of pigeons such that |S∪T | ≤ n/2,
and let X be a set containing exactly one literal associated with pigeon p for each p ∈
T . Then any assignment which is well-behaved on S can be modified, by reassigning
pigeons in T , into an assignment which is well-behaved on S ∪ T and satisfies all
literals in X.

Proof. Consider the pigeons in T one by one and apply Lemma 5.4.

1140 FILMUS, LAURIA, NORDSTRÖM, RON-ZEWI, AND THAPEN

m1

m2

m3

m4

m5

C1

C2

C3

C4

C5

C6

C7

C8

C11

C12

C13

C9

C10

(a) Bipartite graph with mono-
mials mi ∈ P and commit-
ments Cj ∈ A.

m1

m2

m3

m4

m5

C1

C2

C3

C4

C5

C6

C7

C8

C11

C12

C13

C9

C10m′
4

m′
5

(b) Hall’s theorem applied on
M \ Γ (with monomial copies)
and A \N(Γ).

m1

m2

m3

m4

m

C1

C2

C3

C4

C5

C6

C7

C8

C11

C12

C13

C ′

C ′′

(c) Graph with Γ and match-
ings constructed at end of ar-
gument.

Fig. 1. Illustration of argument in proof of the locality lemma.

Definition 5.6 (entailment). Given a commitment set A and a PCR configura-
tion P, we say that A entails P over well-behaved assignments if every assignment α
which is well-behaved on and satisfies A also satisfies P.

The idea of the lower bound is that, given a purported refutation using small
space, we can inductively construct a commitment set At for each configuration Pt

in the proof in such a way that the commitment set At entails the configuration Pt.
The following lemma, based on a similar lemma in [1], is the technical heart of the
lower bound. We will use it to show that as long as the configurations do not get
too big, we never need to use a commitment set that is more than twice as large as
the corresponding configuration. We can then use Corollary 5.5 to show that all the
configurations are satisfiable, resulting in a contradiction.

Lemma 5.7 (locality lemma). Let A be a commitment set and P be a PCR con-
figuration such that A entails P over well-behaved assignments and |A| ≤ n/4. Then
there is a commitment set B of size |B| ≤ 2 · Sp(P) such that B entails P over well-
behaved assignments.

Proof. Consider a bipartite graph with the left vertex set being the set M of
all distinct monomials in P and the right vertex set being the set of all disjunctive
commitments in A. We draw an edge between a monomial m ∈ M on the left and a
commitment C ∈ A on the right if there is a pigeon p mentioned in both (that is, there
is some variable x[p, i]b in m and some literal x[p, i′]b

′
in C, where i may be different

from i′, and b from b′). To follow the rest of the argument, it might be helpful for the
reader to consider the illustration in Figure 1(a).

Let Γ ⊆ M be a set of maximal size such that |N(Γ)| ≤ 2 · |Γ|, where N(Γ) is
the neighborhood of Γ. Note that Γ is not necessarily unique, but such a maximal set
always exists, since Γ = ∅ satisfies the requirement.

It must hold for all S ⊆ M \ Γ that |N(S) \ N(Γ)| > 2 · |S|, since otherwise we
could add S to Γ to get a larger set. But this implies that there is a matching of
every monomial m ∈ M \ Γ to two distinct commitments C ′, C′′ ∈ A \ N(Γ) such

SPACE COMPLEXITY IN POLYNOMIAL CALCULUS 1141

that no two m,m′ share any commitments. To see this, just make two copies of each
monomial/vertex in m ∈ M \ Γ with the same edges from both copies to the vertices
on the right, apply Hall’s theorem, and then identify the two copies of the monomial
again (this step is depicted in Figure 1(b), where Γ and N(Γ) are in the upper half
of the graph).

Pick a monomial m ∈ M \ Γ and suppose it has been matched to the two dis-
junctive commitments C′ = x[p′, i′]b

′ ∨ x[q′, j′]c
′
and C′′ = x[p′′, i′′]b

′′ ∨ x[q′′, j′′]c
′′
, as

shown in Figure 1(c). By the definition of our bipartite graph, m mentions at least
one pigeon each from C′ and C′′, so suppose without loss of generality that p′ and p′′

are such pigeons. (It can be the case that m also mentions q′ or q′′ or both, but the
edges in the bipartite graph only guarantee that m mentions at least one pigeon in
each of C′ and C′′. This is all we will need here.) Thus, there exist literals x[p′, i1]b1
and x[p′′, i2]b2 such that m = x[p′, i1]b1 · x[p′′, i2]b2 ·m′. We construct a new commit-
ment Cm = x[p′, i1]b1 ∨ x[p′′, i2]b2 . We construct commitments in this way for every
m ∈ M \ Γ and let our new commitment set be B = N(Γ) ∪ {Cm | m ∈ M \ Γ},
that is, the union of all these new commitments with the old commitments from A

in N(Γ). We claim that this is the commitment set we are looking for.

First, it is easily verified that B is indeed a commitment set. This is so since all
pigeons mentioned in A are different, and the pigeons in B are just a subset of the
pigeons in A. Second, with regard to size it clearly holds that |B| ≤ 2 · |Γ|+ |M \Γ| ≤
2 · |M | ≤ 2 · Sp(P) (taking a look at Figure 1(c) might be helpful in verifying this).
However, we also need to show that B entails P over well-behaved assignments. That
is, we must prove that every β that is well-behaved on and satisfies B also satisfies P.
Note that this is a priori not clear. We know that this holds for A by assumption, but
domA is potentially much larger than domB and so A only has to deal with much
more well-behaved assignments. Also, and more seriously, the commitments in B are
not a subset of those in A, and on the contrary might be in conflict with A in the
sense that satisfying literals in B falsifies literals in A.

We prove that B entails P over well-behaved assignments in a slightly roundabout
way. Assuming that we have an assignment β well-behaved on and satisfying B, we
show how to obtain another assignment α (depending on β) such that

1. P(α) = P(β) and
2. α is well-behaved on and satisfies A.

By item 2 it follows from the inductive hypothesis that α satisfies P. But if so, then
β also satisfies P by item 1, which is what we want to prove.

To this end, let S be the set of pigeons in domB, and let T be the set of pigeons
in domA \ domB (notice that domB ⊆ domA). Let X be the set of literals that for
each p ∈ T includes the (unique) literal x[p, i]b associated with p and appearing in A.
Notice that each commitment in A \ N(Γ) will have at least one literal in X (some
commitments will potentially have both literals in X). Since |A| ≤ n/4, we have
|S ∪ T | ≤ n/2. Apply Corollary 5.5 to S, T , and β to get a truth value assignment α
that is well-behaved on S ∪ T , agrees with β on pigeons outside T , and satisfies all
literals in X . We claim that this is the assignment that we need.

To see this, note first that no monomial in Γ mentions pigeons in T (by construc-
tion), so α and β agree on monomials in Γ. For m ∈ M \Γ, all β satisfying B must set
the monomial m to zero, since this is how the new commitments were constructed.
Reassigning pigeons in T can change variables in m, but there is still at least one
variable that is set to zero, zeroing the whole monomial. So for all m ∈ M \ Γ, the
assignment α gives the same value to m as does β, namely, 0. Hence α and β agree

1142 FILMUS, LAURIA, NORDSTRÖM, RON-ZEWI, AND THAPEN

on all monomials in M and P(α) = P(β). This takes care of item 1 above. By Corol-
lary 5.5, α is well-behaved on S ∪ T = domA. Also, since α satisfies all literals in X
as well as N(Γ), consequently α satisfies A. This takes care of item 2, and as already
discussed it now follows that P(α) = 0. Thus, every β that is well-behaved on and
satisfies B must also satisfy P. The lemma follows.

Using this lemma, we can now prove our PCR space lower bound for bit-graph
pigeonhole principle formulas.

Theorem 5.8 (detailed version of Theorem 1.3). SpPCR(BPHP
m
n ⊥) > n/8.

Proof. Let π = {P0, . . . ,Pτ} be a PCR refutation of BPHPm
n in monomial space

at most n/8, i.e., a PCR derivation such that P0 = ∅ and 1 ∈ Pτ . We will construct
by induction a sequence of commitment sets A0, . . . ,Aτ such that for each step t,
it holds that |At| ≤ 2 · Sp(Pt) and At entails Pt over well-behaved assignments. In
particular, by Corollary 5.5 (with S = ∅) this will imply that every configuration Pt

is satisfiable, which gives a contradiction for Pτ .

Clearly, we may define A0 to be the empty commitment. Now suppose we have
constructed At. To construct At+1, we consider three cases depending on how Pt+1

is obtained from Pt.

Axiom download. We distinguish two download cases: (a) complementarity ax-
ioms of the form x+ x− 1 or Boolean axioms of the form x2 − x and (b) hole axioms
H(p1, p2, h). In the former case, we can simply set At+1 = At since any truth value
assignment satisfies such an axiom by definition, so let us focus on hole axiom down-
loads.

Suppose that Pt+1 is Pt together with some hole axiom H(p1, p2, h). Suppose
first that the pigeons mentioned in H(p1, p2, h) are already in domAt. Then we set
At+1 = At. Let α be any assignment well-behaved on and satisfying At+1. Then α
satisfies Pt by the inductive hypothesis, and must also satisfy H(p1, p2, h) since it is
well-behaved on the pigeons in H(p1, p2, h).

Otherwise, there are either one or two pigeons mentioned in H(p1, p2, h) which
are not in domAt. Then for each such pigeon pi we add a “dummy” commitment Cpi

to At whose sole purpose is to put pi into the domain of At+1. We can take Cpi to
be x[pi, 0] ∨ x[p′i, 0], where p′i is any pigeon which has not been used so far. We can
find such p′1 and p′2, if needed, because |Pt| ≤ |Pt+1| − 1 ≤ n

8 − 1 and because the
total number of used pigeons is at most 2|At|+ |{p1, p2}| ≤ 4|Pt|+2 < n− 2. In both
cases, we add at most two new commitments, and so |At+1| ≤ 2 · Sp(Pt+1). Clearly,
any well-behaved assignment assigning values to the variables in H(p1, p2, h) satisfies
this clause, and hence At+1 entails Pt+1 over well-behaved assignments, as required.

Inference. Suppose Pt+1 = Pt ∪ {P}, where P semantically follows from Pt. We
put At+1 = At. Clearly |At+1| ≤ 2 · Sp(Pt+1). Suppose now that α is an assignment
which is well-behaved on and satisfies At+1. The induction hypothesis implies that α
satisfies Pt. Since P semantically follows from Pt+1, α also satisfies P .

Erasure. Suppose Pt+1 ⊂ Pt. Since |At| ≤ 2 · Sp(Pt) ≤ n/4, Lemma 5.7 applies
and furnishes us with a commitment set At+1 such that |At+1| ≤ 2 · Sp(Pt+1) and
At+1 entails Pt+1 over well-behaved assignments.

A nice feature of this lower bound is that it applies equally well to functional
calculus. Recall that in FC, polynomials are replaced by arbitrary Boolean functions
(more accurately, Boolean-valued functions of Boolean variables). The space of a
configuration P is the minimal number s such that for some s clauses C1, . . . , Cs

(which we consider as Boolean functions), any function in P can be written as a
function g(C1, . . . , Cs) of these clauses. Such a minimal set of clauses is known as a

SPACE COMPLEXITY IN POLYNOMIAL CALCULUS 1143

defining set of clauses . The space of a functional calculus refutation is the maximal
space of any configuration encountered during the refutation.

Here is a simple example to illustrate the definition. Consider the Boolean func-
tions f1 = x ∨ y ∨ z and f2 = x ∧ y, and let P be the configuration {f1, f2}. Both
functions f1, f2 can be written as functions of the two monomials C1 = x ∨ y and
C2 = z in the following way: f1 = C1 ∨ C2, f2 = ¬C1. Since no single monomial
suffices for this purpose, the space of P is exactly 2.

The proof of Lemma 5.7 applies equally well under the functional calculus defini-
tion of space. In the first step of the proof, we construct a bipartite graph between
the set of monomials M appearing in the given configuration P and the set of com-
mitments A. For PCR, M is simply the set of monomials appearing in P. For the
functional calculus, we use a defining set of clauses for P. The rest of the proof carries
over without changes.

In more detail, the proof constructs a new, smaller set of commitments B. Given
any assignment β that is well-defined on and satisfies B, the proof constructs a new
assignment α that is well-defined on and satisfies A, with the additional property
that all monomials in M have the same value in both α and β. Since A entails P over
well-behaved assignments, P(α) = 0. As all monomials retain their values in β, also
P(β) = 0. The conclusion is that B also entails P over well-behaved assignments.

The proof of Theorem 5.8 applies with only one small modification. Given a small-
space functional calculus refutation {P0, . . . ,Pτ} of BPHPm

n , the proof constructs a
matching sequence {A0, . . . ,Aτ} of commitment sets such that for all t ∈ [τ] it holds
that At entails Pt over well-behaved assignments, and furthermore |At| ≤ 2 · Sp(Pt).
Corollary 5.5 then implies that the final configuration Pτ is satisfiable, contrary to
the assumption that 1 ∈ Pτ .

The commitment sets A0, . . . ,Aτ are constructed inductively, starting with the
empty commitment set for A0. An inference step requires no changes to the com-
mitment set, and erasures are handled by Lemma 5.7. When an axiom H(p1, p2, h)
is downloaded during step t, there are two cases. If both pigeons mentioned in the
axiomH(p1, p2, h) are already in the commitment set At, no changes are needed. Oth-
erwise, either one or two new commitments are added to At+1. This could invalidate
the invariant |At+1| ≤ 2 · Sp(Pt+1), since it might be the case that Sp(Pt+1) = Sp(Pt)
(this cannot occur for PCR under our definition of space, although it could occur
under the laxer definition of [1] that only counts distinct monomials). An application
of Lemma 5.7 takes care of this issue, however.

6. A PCR space lower bound for XOR-PHP formulas. We now apply the
machinery developed in section 5 to a different encoding of the pigeonhole principle,
namely, a slightly obfuscated version using exclusive or and “hole indicators” to specify
which pigeons are placed in which holes. In the standard pigeohole principle every
pigeon has one bit for each of the n holes to encode whether that pigeon sits there.
In this alternative encoding every pigeon has n+1 bits, and we consider a hole j ≤ n
as occupied if there is a bit flip between positions j and j+1. We guarantee that the
pigeon is sitting in some hole by enforcing the first and last position to be different.
(To be precise, this enforces that each pigeon is assigned to an odd number of holes.)
With this encoding, we can obtain strong PCR space lower bounds for CNF formulas
of constant width.

Let us start by presenting the formal definition of this formula construction, where
we recall that [0, n) = {0, . . . , n− 1} and [0, n] = {0, . . . , n}.

1144 FILMUS, LAURIA, NORDSTRÖM, RON-ZEWI, AND THAPEN

Definition 6.1 (XOR PHP formula). The XOR pigeonhole principle formula
XPHPm

n has propositional variables x[i, j] for each i ∈ [0,m) and j ∈ [0, n], where we
think of [0,m) as a set of pigeons and [0, n] as a set of hole indicators. The formula
XPHPm

n asserts the following:
1. Every pigeon gives different values to the first and last hole indicators. That

is, for all i ∈ [0,m), it holds that x[i, 0] �≡ x[i, n].
2. At most one pigeon is assigned to any given hole. That is, for all distinct

i, i′ ∈ [0,m) and all j ∈ [0, n), it holds that (x[i, j] ≡ x[i, j + 1]) ∨ (x[i′, j] ≡
x[i′, j + 1]).

This is written as a 4-CNF formula consisting of 2m pigeon axioms

x[i, 0] ∨ x[i, n]

x[i, 0] ∨ x[i, n]
(6.1)

for all i ∈ [0,m), encoding condition 1, and 4
(
m
2

)
n hole axioms

x[i, j] ∨ x[i, j + 1] ∨ x[i′, j] ∨ x[i′, j + 1]

x[i, j] ∨ x[i, j + 1] ∨ x[i′, j] ∨ x[i′, j + 1]

x[i, j] ∨ x[i, j + 1] ∨ x[i′, j] ∨ x[i′, j + 1]

x[i, j] ∨ x[i, j + 1] ∨ x[i′, j] ∨ x[i′, j + 1]

(6.2)

for all i, i′ ∈ [0,m), i �= i′, and j ∈ [0, n), encoding condition 2.
The formula XPHPm

n is unsatisfiable for m > n. To see this, notice that by the
clauses (6.1), for each pigeon i ∈ [0,m) there must be at least one hole j ∈ [0, n)
for which i gives different values to indicators j and j + 1; say that such a hole j is
assigned to pigeon i. Since n < m, by the pigeonhole principle there must be some
pair of distinct pigeons which are assigned the same hole. But this contradicts the
clauses (6.2). An important observation is that for any i and j′ it is possible to fix
the value of x[i, j′] to 0 or 1 without imposing any constraints on which hole j can be
assigned to pigeon i.

We will prove a PCR space lower bound for XPHPm
n by essentially the same

argument as in section 5. The only real difference is that it is a little easier for us
to satisfy Lemma 6.4 (the counterpart of Lemma 5.4), which leads to a space lower
bound of n/4 rather than n/8.

Definition 6.2 (well-behaved assignment). Let α be an assignment to all the
variables of XPHPm

n and let S ⊆ [0,m) be a set of pigeons. We say that α is well-
behaved on S if two things hold:

1. For each pigeon i ∈ S, α assigns exactly one hole j to i by setting x[i, j′] = bi
for all j′ in [0, j] and x[i, j′] = 1−bi for all j

′ in [j+1, n], for some bi ∈ {0, 1}.
2. The holes assigned by α to the pigeons in S are all distinct.

Definition 6.3 (commitment). As before, a commitment is a disjunction of two
literals coming from two distinct pigeons. A commitment set is a set of commitments
in which no pigeon appears twice.

Lemma 6.4. Suppose S is any set of fewer than n pigeons, α is an assignment
well-behaved on S, and x[i, j]b is a literal associated with a pigeon i /∈ S. Then we
can modify α by reassigning the pigeon i in such a way that the new assignment is
well-behaved on S ∪ {i} and satisfies the literal x[i, j]b.

Proof. Choose a hole k which is not already occupied by any pigeon in S. Then
assign hole k to pigeon i using an assignment as in Definition 6.2. For one of bi = 0
or bi = 1 the assignment will satisfy x[i, j]b.

SPACE COMPLEXITY IN POLYNOMIAL CALCULUS 1145

Corollary 6.5. Let S, T be two disjoint sets of pigeons such that |S ∪ T | ≤ n,
and let X be a set containing one literal associated with pigeon i for each i ∈ T . Then
any assignment which is well-behaved on S can be modified, by reassigning pigeons in
T , into an assignment which is well-behaved on S ∪ T and satisfies all literals in X.

Proof. Consider the pigeons in T one by one and apply Lemma 6.4.
Definition 6.6 (entailment). Given a commitment set A and a configuration

P, we say that A entails P over well-behaved assignments if for every assignment α
which is well-behaved on domA it holds that if α satisfies A, then α also satisfies P.

Lemma 6.7 (locality lemma). Let A be a commitment set and P be a configuration
such that A entails P over well-behaved assignments and |A| ≤ n/2. Then there is
a commitment set B of size |B| ≤ 2 · Sp(P) such that B entails P over well-behaved
assignments.

Proof. The proof of this lemma is virtually the same as the proof of Lemma 5.7.
Consider the bipartite graph with on one side the set M of all monomials in P

and on the other side the set of all commitments in A. We draw an edge between
a monomial and a commitment if there is a pigeon mentioned in both. Let Γ be a
maximal set of monomials such that |N(Γ)| ≤ 2|Γ|. By Hall’s theorem, there exist
two injective functions f1, f2 : M \ Γ → P \N(Γ) with disjoint ranges.

The new commitment set B consists of N(Γ) together with one additional com-
mitment Cm for each monomial m ∈ M \Γ. It immediately follows that |B| ≤ 2Sp(P).
To define Cm, consider the two commitments C1, C2 matched to m. The commitment
C1 mentions some pigeon i1 which has an associated literal x[i1, j1]

b1 appearing in
m. Similarly, C2 mentions some pigeon i2 which has an associated literal x[i2, j2]

b2

appearing in m. We define Cm = x[i1, j1]
b1 ∨ x[i2, j2]

b2 . As a result, any assignment
satisfying Cm will zero the monomial m.

We proceed to show that B entails P over well-behaved assignments. Let α be an
assignment which is well-behaved on and satisfies B. We will define a new assignment
β such that each monomial in M gets the same value in both α and β, but also such
that β is well-behaved on and satisfies A, implying that P(β) = 0 and hence that
P(α) = 0.

Let S be the set of pigeons in domB, and let T be the set of pigeons in domA \
domB. With a view to applying Corollary 6.5, let X be the set of literals that for
each pigeon i ∈ T includes the (unique) literal x[i, j]b appearing in A.

Since |A| ≤ n/2, we know that |S ∪ T | ≤ n, and so we can apply Corollary 6.5 to
the assignment α to get an assignment β which is well-behaved on S ∪ T , is identical
to α on pigeons outside T , and satisfies X . As α and β differ only on T , all monomials
in Γ get the same value in both assignments. Every other monomial in M is zeroed
in both assignments. Since α and β are identical on S, β satisfies all commitments
N(Γ). The choice of X guarantees that it satisfies all other commitments in A.

Theorem 6.8 (detailed version of Theorem 1.4). SpPCR(XPHP
m
n ⊥) > n/4.

Proof. The proof of this theorem is virtually identical to that of Theorem 5.8. In
order to derive a contradiction, suppose that π = {P0, . . . ,Pτ} is a PCR refutation of
XPHPm

n in space at most n/4. We construct inductively a sequence of commitment
sets A0, . . . ,Aτ such that at each time step t it holds that |At| ≤ 2|Pt| and At entails
Pt over well-behaved assignments. In particular, by Corollary 6.5 this will imply that
every configuration Pt is satisfiable, which then leads to the desired contradiction
for Pτ .

For P0 = ∅ we define A0 = ∅ to be the empty commitment. Suppose now that we
have constructed At. To construct At+1 we consider three cases, depending on which
rule is used to obtain Pt+1 from Pt.

1146 FILMUS, LAURIA, NORDSTRÖM, RON-ZEWI, AND THAPEN

Axiom download. There are three kinds of axioms: logical axioms, pigeon axioms,
and hole axioms. Logical axioms are handled in the same way as semantic inferences.

Suppose that Pt+1 is Pt together with some axiom D which is either a pigeon
axiom or a hole axiom. Suppose first that the pigeons mentioned in D (one pigeon
in the case of a pigeon axiom, two pigeons in the case of a hole axiom) are already in
At. Then we put At+1 = At. Let α be any assignment well-behaved on and satisfying
At+1. Then α satisfies Pt by the inductive hypothesis, and must also satisfy D since
it is well-behaved on the pigeons in D.

Otherwise, there are either one or two pigeons mentioned in D which are not in
domAt. For each such pigeon i we add a “dummy” commitment Ci to At whose sole
purpose is to put i into the domain of At+1. Specifically, we find a new pigeon i′

which is used neither in D nor in At, and we set Ci to be x[i, 0]∨x[i′, 0]. We are able
to find such i′ for both commitments since |Pt| ≤ |Pt+1| − 1 ≤ n

4 − 1. Thus the total
number of pigeons used is at most 2|At|+2 ≤ 4|Pt|+2 ≤ n− 2. We add at most two
new commitments, and so |At+1| ≤ 2Sp(Pt+1).

Inference. Suppose Pt+1 = Pt ∪ {P}, where P semantically follows from Pt.
We put At+1 = At. Any assignment α which is well-behaved on and satisfies At+1

satisfies Pt by the induction hypothesis. Since P semantically follows from Pt, α also
satisfies P .

Erasure. Suppose Pt+1 ⊂ Pt. Since |At| ≤ 2Sp(Pt) ≤ n/2, Lemma 6.7 applies
and furnishes us with a commitment set At+1 such that |At+1| ≤ 2Sp(Pt+1) and At+1

entails Pt+1 over well-behaved assignments.
The lower bound also applies to the functional calculus, as can be established by

reasoning completely analogous to that at the end of section 5.

7. Space complexity of 3-CNF versions of wide CNF formulas. In this
paper we have proved the first monomial space lower bound on k-CNF formulas for
constant k. While the lower bounds for PC in section 4 apply to 3-CNF formulas, we
can only get our techniques for PCR in section 6 to work for k ≥ 4, however. This
seems to be a real technical barrier for this approach, since even the lower bounds for
random k-CNF formulas in [19] and for Tseitin k-CNF formulas on random k-regular
graphs in [35] only work for k ≥ 4.

In this context, one especially simple and intriguing open problem is the following.
Suppose that we have a CNF formula F with wide clauses and that we convert it to
its canonical equivalent 3-CNF version F̃ as described in Definition 4.2. What is the
space complexity of F̃ compared to that of F? Clearly, the space needed to refute
the 3-CNF version cannot increase by more than a small additive constant. But are
there formulas for which the conversion to 3-CNF can decrease the space complexity
substantially?

Although the question of how the space complexities of F and F̃ are related
remains open in the general case, we are able to show for a particular class of CNF
formulas, which we call weight-constrained formulas, that the space complexity of their
extended versions stays essentially the same (up to a constant factor) in both resolu-
tion and PCR. One interesting CNF formula belonging to this class is the functional
pigeonhole principle FPHPm

n (the definition of which is given below for completeness).
In particular, our result implies that in order to prove space lower bounds for the ex-
tended version of the functional pigeonhole principle in PCR it suffices to prove space
lower bounds for the standard version with wide clauses.

We start with the definition of a weight-constrained formula.

SPACE COMPLEXITY IN POLYNOMIAL CALCULUS 1147

Definition 7.1 (weight-constrained formula). We say that a CNF formula F is
weight-constrained if for each clause a1∨a2∨· · ·∨a� in F with � ≥ 4, F also contains
clauses ai ∨ aj for all 1 ≤ i < j ≤ �.

Thus, a weight-constrained F encodes explicitly that exactly one literal in each
of its wide clauses must be true. One natural weight-constrained CNF formula is
the functional pigeonhole principle FPHPm

n mentioned above, which is similar to the
regular pigeonhole principle PHPm

n but with the additional constraint that a single
pigeon cannot occupy more than one hole.

Definition 7.2 (functional pigeonhole principle). The functional pigeonhole
principle FPHPm

n is a CNF formula over variables {pi,j | i ∈ [m], j ∈ [n]} consisting
of the following clauses:

• ∨n
j=1 pi,j for all i ∈ [m];

• pi1,j ∨ pi2,j for all i1, i2 ∈ [m], i1 �= i2, and all j ∈ [n];
• pi,j1 ∨ pi,j2 for all i ∈ [m] and all j1, j2 ∈ [n], j1 �= j2.

Recall the definition of the extended version of a CNF formula F given in Defi-
nition 4.2. The first result in this section says that for any such weight-constrained
F , the space complexity of F and of its extended version F̃ are roughly the same in
resolution.

Theorem 7.3 (Theorem 1.5 for resolution). Let F̃ be the extended 3-CNF version
of a weight-constrained CNF formula F . Then for resolution clause space it holds that
SpR(F ⊥) = SpR

(
F̃ ⊥)+O(1).

Proof. We clearly have SpR
(
F̃ ⊥) ≤ SpR(F ⊥) + O(1), since any axiom of F

can be rederived from F̃ in space at most 3 and plugged into a refutation of F .

In the other direction, let π = {C1, . . . ,Cτ} be a resolution refutation of F̃ . Our
goal is to find a resolution refutation of F which uses a constant amount of additional
space. To this end, we will substitute all literals defined on extension variables with
clauses defined on original variables.

Let C = a1 ∨ a2 ∨ · · · ∨ a� be a clause in F , and let {y0} ∪ {yi−1 ∨ ai ∨ yi |
1 ≤ i ≤ �} ∪ {y�} be its extended version. Intuitively, the positive extension literal yi
encodes that at least one of the literals ai+1, . . . a� is true, while the negative extension
literal yi encodes that at least one of the variables a1, . . . , ai is true. Our substitution
is based on this intuition. More precisely, we substitute literals yi and yi as follows:

(7.1) yi �→
∨�

t=i+1at ; yi �→
∨i

t=1at.

Note that, in particular, this results in the substitutions y� �→ ⊥ and y0 �→ ⊥.
Let π′ = {C′

1, . . . ,C
′
τ} be the sequence of configurations obtained from π by

applying the above substitution to all clauses. We claim that π′ can be turned into a
syntactic resolution refutation of F without significant increase in space. Clearly, the
space complexity of π′ is the same as the space complexity of π. We need to show
that all transitions from C′

i to C′
i+1 can be carried out syntactically using a constant

amount of additional space. We split the proof into cases according to the way in
which Ci+1 was derived from Ci in the original refutation π.

Erasure. In this case the transition from C′
i to C′

i+1 is an application of erasure,
too.

Axiom download. Suppose that Ci+1 was obtained from Ci by downloading an

axiom A ∈ F̃ . It is easily verified that in this case the substitution turns A into some
C ∈ F . In the latter case the transition from C′

i to C′
i+1 downloads the axiom C and

the space complexity does not increase.

1148 FILMUS, LAURIA, NORDSTRÖM, RON-ZEWI, AND THAPEN

Inference rules. If Ci+1 was obtained from Ci by resolving two clauses over
one of the original variables, then C′

i+1 can be obtained from C′
i by resolving the

corresponding clauses over the same variable. Suppose instead that Ci+1 was obtained
from Ci by resolvingA∨yi and B∨yi on the extension variable yi. Let A

′ and B′ be the
clauses obtained from A and B, respectively, after the substitution in (7.1). We want

to show that A′∨B′ can be obtained from A′∨∨�
t=i+1 ai and B′∨∨i

t=1 ai in constant
clause space. The variable yi comes from extending the clause C = a1 ∨ a2 · · · ∨ a�,
and since F is weight-constrained we have in F all clauses ai ∨ aj for 1 ≤ i < j ≤ �.
We can therefore appeal to Claim 4.8 to derive the desired conclusion. The theorem
follows.

Our second result in this section is an analogue of the above theorem for PCR,
although here we get a multiplicative rather than additive increase in the space.

Theorem 7.4 (Theorem 1.5 for PCR). Let F̃ be the extended version of a
weight-constrained CNF formula F . Then for PCR it holds that SpPCR(F ⊥) =

Θ
(
SpPCR

(
F̃ ⊥)).

Proof. The proof is similar to the proof of Theorem 7.3 except that we now define
a substitution of extension variables with products of variables instead of clauses. As
for resolution, the inequality SpPCR

(
F̃ ⊥) ≤ SpPCR(F ⊥) + O(1) is immediate.

To prove the other direction, suppose that C = a1 ∨ a2 ∨ · · · ∨ a� is a clause of F
and let us write {y0}∪{yj−1∨aj∨yj | 1 ≤ j ≤ �}∪{y�} to denote its extended version.
For yi and yi (which are now both formal and distinct variables) we substitute

(7.2) yi �→
∏�

t=i+1at ; yi �→
∏i

t=1at,

where we note that in analogy with (7.1) we obtain y� �→ 1 and y0 �→ 1.

Let π = {C1, . . . ,Cτ} be a PCR refutation of F̃ and let π′ = {C′
1, . . . ,C

′
τ} be

the sequence of configurations obtained from π by applying the above substitution
to all polynomials in π. Then the monomial space of π′ is equal to that of π, and
all that needs to be done is to show how to make space-efficient PCR derivations of
C′

i+1 from C′
i. We split the proof into cases according to the way in which Ci+1 was

derived from Ci in the original refutation π.
Erasure. In this case the transition from C′

i to C′
i+1 is an application of erasure,

too.
Axiom download of a clause in F̃ . Suppose that Ci+1 was obtained from Ci by

downloading an axiom A ∈ F̃ . It can be verified that the substitution turns the PCR
translation of A into the PCR translation of some C ∈ F . In the latter case the
transition from C′

i to C′
i+1 is a download of the PCR encoding of an axiom C and

the space complexity does not increase.
Inference rules. If Ci+1 follows from Ci either via the addition rule or via mul-

tiplication by an original variable, then C′
i+1 follows from C′

i using the same rule.
If Ci+1 was obtained from Ci via multiplication of a polynomial q by an extension
variable yi, the transition from Ci to Ci+1 is the sequence of multiplications by orig-
inal variables ai+1, ai+2, . . . , a�. To do that efficiently we only keep in memory one
additional intermediate polynomial of the form q ·∏r

t=i+1 at, i + 1 ≤ r < �. Since
the configuration Ci+1 contains both polynomials q and qyi and has space at most s,
the intermediate polynomials q ·∏r

t=i+1 at have at most s/2 monomials each, and the
monomial complexity increases by a factor of at most 3/2. The case of multiplication
by yi is very similar.

SPACE COMPLEXITY IN POLYNOMIAL CALCULUS 1149

Logical axioms. If Ci+1 was obtained from Ci by downloading an axiom of the
form x2 − x, where x is an original variable, then C′

i+1 can be obtained from C′
i

by downloading the same axiom. Consider instead the logical axiom y2i − yi for an
extension variable yi. The corresponding polynomial after substitution is (a1 · · ·ai)2−
(a1 · · · ai), and we deduce it as follows. For each t ∈ [i] we download a2t − at and
multiply to obtain

(7.3) (a1 · · · at−1)a
2
t (a

2
t+1 · · · a2i)− (a1 · · · at−1)at(a

2
t+1 · · ·a2t) .

Summing polynomials of the form (7.3) for all t ∈ [i] yields (a1 · · ·ai)2 − (a1 · · · ai),
and this calculation can be performed in constant monomial space. Logical axioms
y2i − yi can be dealt with in the same way as y2i − yi.

It remains to consider complementarity axioms yi+ yi− 1. Here we need to show
how to construct a small-space derivation of

(7.4)
∏i

t=1at +
∏�

t′=i+1at′ − 1 = q + q′ − 1,

where we denote q =
∏i

t=1 at and q′ =
∏�

t′=i+1 at′ . First, we observe that using
Claim 4.8 we can get a resolution refutation of the set of clauses

(7.5)
{∨i

t=1at,
∨�

t′=i+1at′
} ∪ {at ∨ at′

∣∣1 ≤ t ≤ i < t′ ≤ �
}

in constant space. PCR simulates resolution efficiently, so we can use essentially
the same derivation to deduce 1 from the polynomials q, q′, and atat′ in constant
monomial space. We use this derivation as a template to build the actual derivation
of q+q′−1. To do that we multiply every line of the derivation by (q−1)(q′−1), which
gives a constant space derivation of (q−1)(q′−1) from some premises q(q−1)(q′−1),
q′(q− 1)(q′− 1), and atat′(q− 1)(q′− 1) for 1 ≤ t ≤ i < t′ ≤ �. With (q− 1)(q′− 1) in

memory we conclude the derivation by downloading the axiom qq′ =
∏�

t=1 at and by
computing the difference qq′−(q−1)(q′−1) which is the desired polynomial q+q′−1.
The only missing part is how to deduce in small space the premises q(q − 1)(q′ − 1),
q′(q− 1)(q′ − 1) and atat′(q− 1)(q′ − 1) for 1 ≤ t ≤ i < t′ ≤ �. The first two premises
have q2 − q and (q′)2 − q′, respectively, as factors, so they are provable from logical
axioms in the same way as above. All the other polynomials have atat′ as a factor,
and this factor is the PCR encoding of some initial clause of F because the formula
is weight-constrained. Hence, these formulas can be derived in constant space from
these initial clauses. The theorem follows.

8. Concluding remarks. In this paper, we prove the first lower bounds on
space in polynomial calculus (PC) and polynomial calculus resolution (PCR) for CNF
formulas of constant width. This resolves a longstanding open question from [1]. We
also establish nontrivial upper bounds for proof size and space in PC, showing that for
CNF formulas of constant width the worst-case behavior is the same as for resolution
and PCR. Finally, we study how the space complexity of a CNF formula is related
to the space complexity of its standard transformation to 3-CNF and show that for
a certain class of CNF formulas, including the functional pigeonhole principle, the
space complexity of a wide formula and its 3-CNF version coincide asymptotically for
both resolution and PCR.

When the conference version [36] of this paper first appeared, the space complexity
measure in PC and PCR was still very poorly understood, and our concluding remarks

1150 FILMUS, LAURIA, NORDSTRÖM, RON-ZEWI, AND THAPEN

gave a long list of open problems. The last few years have seen quite dramatic
developments in this area, as described in section 1.3, and many of the open questions
we originally listed have now been resolved, fully or partially. There are still quite a
few natural problems that have remained out of reach, however, and we conclude this
paper by briefly discussing some such problems which we believe merit further study.

1. Show lower bounds on PCR space for Tseitin formulas over expanders and
for FPHP formulas (or even extended versions of the PHP formulas, which
might be a strictly easier problem in view of the results in section 7). The
refined methods in [19, 20] still do not seem strong enough to deal with
these formulas, and while the paper [35] has some partial results for Tseitin
formulas, it fails to prove lower bounds in terms of graph expansion only. It
seems that we still do not have quite the right techniques to analyze PCR
space, and indeed it would be interesting to see if progress on space lower
bounds for the above formulas could also lead to optimal lower bounds for
random 3-CNF formulas, eliminating the logarithmic factor loss in [20].

2. Prove (or refute) that degree is a lower bound on monomial space in PCR (in
analogy with the result for resolution shown in [3]). Again, there are some
partial results in this direction in [35]—namely, that if a formula requires
large degree, then the so-called XORified version of the formula requires large
monomial space—but the original problem remains wide open. If it could be
proved that degree is a lower bound for space in PCR, then space lower
bounds for FPHP formulas would follow from the recent results in [44].

3. Separate size and space in PCR by proving that there are k-CNF formulas
that have small PCR refutations but require large PCR space for any char-
acteristic of the underlying field. A separation of size and space in PCR was
established in [35], but the formulas used there depend on the field character-
istic. A natural candidate family of formulas for this are the formulas used
in [14] to separate size and space in resolution.

4. Separate resolution from PCR with respect to space. That is, show that
there are families of CNF formulas (preferably of constant width) for which
the monomial space complexity in PCR grows asymptotically slower than the
clause space complexity in resolution (or show that no such separation exists).

5. Prove nontrivial lower (or upper) bounds on space for cutting planes with
coefficients of polynomial size. As discussed in section 1.3, it was shown
in [37] that cutting planes can refute any CNF formula in constant line space,
but the coefficients in such refutations have exponential size.

6. Show size-space trade-offs for cutting planes with coefficients of polynomial
size. By [37], the results in [40, 38] imply size-space trade-offs for cutting
planes, but the space-efficient proofs again have coefficients of exponential
size. It would be interesting to obtain trade-off results where the upper
bounds are for coefficients of polynomial size, or even constant size. This
might also be relevant from an applied perspective, since a natural heuristic
when trying to implement SAT solvers based on cutting planes (also referred
to as pseudo-Boolean solvers) is to try to keep the size of the coefficients
down.

Acknowledgments. This article is the result of a long process, and various sub-
sets of the authors would like to acknowledge useful discussions they had during the
last few years with various subsets of Paul Beame, Eli Ben-Sasson, Michael Brick-
enstein, Arkadev Chattopadhyay, Trinh Huynh, Johan H̊astad, Alexander Razborov,

SPACE COMPLEXITY IN POLYNOMIAL CALCULUS 1151

and Iddo Tzameret. We are also grateful to Mladen Mikša and Marc Vinyals (and to
the anonymous reviewers) for carefully reading this manuscript and finding numerous
typos and other mistakes that needed to be fixed. Needless to say, any remaining
errors are solely the responsibility of the authors.

The work presented in this paper was initiated at the Banff International Research
Station workshop on proof complexity (11w5103) in October 2011, and part of the
work was also performed during the special semester on logic and complexity at the
Charles University in Prague, which took place during the autumn of 2011 and was
supported by the Marie Curie Initial Training Network MALOA (Mathematical Logic
and Applications).

Any opinions, finding, and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect the views of the National
Science Foundation or other funding agencies.

REFERENCES

[1] M. Alekhnovich, E. Ben-Sasson, A. A. Razborov, and A. Wigderson, Space complexity
in propositional calculus, SIAM J. Comput., 31 (2002), pp. 1184–1211.

[2] M. Alekhnovich and A. A. Razborov, Lower bounds for polynomial calculus: Non-
binomial case, Proc. Steklov Inst. Math., 242 (2003), pp. 18–35; also available online from
http://people.cs.uchicago.edu/˜razborov/files/misha.pdf.

[3] A. Atserias and V. Dalmau, A combinatorial characterization of resolution width, J. Comput.
System Sci., 74 (2008), pp. 323–334.

[4] A. Atserias, J. K. Fichte, and M. Thurley, Clause-learning algorithms with many restarts
and bounded-width resolution, J. Artificial Intelligence Res., 40 (2011), pp. 353–373.

[5] R. J. Bayardo, Jr., and R. Schrag, Using CSP look-back techniques to solve real-world
SAT instances, in Proceedings of the 14th National Conference on Artificial Intelligence
(AAAI ’97), 1997, pp. 203–208.

[6] P. Beame, Proof complexity, in Computational Complexity Theory, S. Rudich and A. Wigder-
son, eds., IAS/Park City Math. Ser. 10, AMS, Providence, RI, 2004, pp. 199–246.

[7] P. Beame, C. Beck, and R. Impagliazzo, Time-space tradeoffs in resolution: Superpolynomial
lower bounds for superlinear space, in Proceedings of the 44th Annual ACM Symposium
on Theory of Computing (STOC ’12), 2012, pp. 213–232.

[8] P. Beame, R. Karp, T. Pitassi, and M. Saks, The efficiency of resolution and Davis-Putnam
procedures, SIAM J. Comput., 31 (2002), pp. 1048–1075.

[9] C. Beck, J. Nordström, and B. Tang, Some trade-off results for polynomial calculus, in
Proceedings of the 45th Annual ACM Symposium on Theory of Computing (STOC ’13),
2013, pp. 813–822.

[10] E. Ben-Sasson, Size space tradeoffs for resolution, SIAM J. Comput., 38 (2009), pp. 2511–2525.
[11] E. Ben-Sasson and N. Galesi, Space complexity of random formulae in resolution, Random

Structures Algorithms, 23 (2003), pp. 92–109.
[12] E. Ben-Sasson and R. Impagliazzo, Random CNF’s are hard for the polynomial calculus,

Comput. Complexity, 19 (2010), pp. 501–519.
[13] E. Ben-Sasson and J. Johannsen, Lower bounds for width-restricted clause learning on small

width formulas, in Proceedings of the 13th International Conference on Theory and Appli-
cations of Satisfiability Testing (SAT ’10), Lecture Notes in Comput. Sci. 6175, Springer,
New York, 2010, pp. 16–29.

[14] E. Ben-Sasson and J. Nordström, Short proofs may be spacious: An optimal separation of
space and length in resolution, in Proceedings of the 49th Annual IEEE Symposium on
Foundations of Computer Science (FOCS ’08), 2008, pp. 709–718.

[15] E. Ben-Sasson and J. Nordström, Understanding space in proof complexity: Separations
and trade-offs via substitutions, in Proceedings of the 2nd Symposium on Innovations in
Computer Science (ICS ’11), 2011, pp. 401–416.

[16] E. Ben-Sasson and A. Wigderson, Short proofs are narrow—resolution made simple, J.
ACM, 48 (2001), pp. 149–169.

[17] A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, Eds., Handbook of Satisfiability,
Frontiers Artificial Intelligence Appl. 185, IOS Press, Amsterdam, 2009.

http://people.cs.uchicago.edu/{~}razborov/files/misha.pdf

1152 FILMUS, LAURIA, NORDSTRÖM, RON-ZEWI, AND THAPEN

[18] A. Blake, Canonical Expressions in Boolean Algebra, Ph.D. thesis, University of Chicago,
1937.

[19] I. Bonacina and N. Galesi, Pseudo-partitions, transversality and locality: A combinatorial
characterization for the space measure in algebraic proof systems, in Proceedings of the 4th
Conference on Innovations in Theoretical Computer Science (ITCS ’13), 2013, pp. 455–472.

[20] I. Bonacina, N. Galesi, T. Huynh, and P. Wollan, Space proof complexity for random
3-CNFs via a (2 − ε)-Hall’s theorem, Technical report TR14-146, Electronic Colloquium
on Computational Complexity (ECCC), 2014.

[21] I. Bonacina, N. Galesi, and N. Thapen, Total space in resolution, in Proceedings of the
55th Annual IEEE Symposium on Foundations of Computer Science (FOCS ’14), 2014,
pp. 641–650.

[22] M. Bonet, T. Pitassi, and R. Raz, Lower bounds for cutting planes proofs with small co-
efficients, in Proceedings of the 27th Annual ACM Symposium on Theory of Computing
(STOC ’95), 1995, pp. 575–584.

[23] M. Brickenstein and A. Dreyer, PolyBoRi: A framework for Gröbner-basis computations
with Boolean polynomials, J. Symbolic Comput., 44 (2009), pp. 1326–1345.

[24] M. Brickenstein, A. Dreyer, G.-M. Greuel, M. Wedler, and O. Wienand, New devel-
opments in the theory of Gröbner bases and applications to formal verification, J. Pure
Appl. Algebra, 213 (2009), pp. 1612–1635.

[25] S. R. Buss, D. Grigoriev, R. Impagliazzo, and T. Pitassi, Linear gaps between degrees
for the polynomial calculus modulo distinct primes, J. Comput. System Sci., 62 (2001),
pp. 267–289.

[26] S. R. Buss, J. Hoffmann, and J. Johannsen, Resolution trees with lemmas: Resolution
refinements that characterize DLL-algorithms with clause learning, Log. Methods Comput.
Sci., 4 (2008).

[27] S. R. Buss and T. Pitassi, Resolution and the weak pigeonhole principle, in Proceedings of
the 11th International Workshop on Computer Science Logic (CSL ’97), Lecture Notes in
Comput. Sci. 1414, Springer, New York, 1998, pp. 149–156.

[28] V. Chvátal and E. Szemerédi, Many hard examples for resolution, J. ACM, 35 (1988),
pp. 759–768.

[29] M. Clegg, J. Edmonds, and R. Impagliazzo, Using the Groebner basis algorithm to find
proofs of unsatisfiability, in Proceedings of the 28th Annual ACM Symposium on Theory
of Computing (STOC ’96), 1996, pp. 174–183.

[30] S. A. Cook and R. Reckhow, The relative efficiency of propositional proof systems, J. Sym-
bolic Logic, 44 (1979), pp. 36–50.

[31] W. Cook, C. R. Coullard, and G. Turán, On the complexity of cutting-plane proofs, Discrete
Appl. Math., 18 (1987), pp. 25–38.

[32] M. Davis, G. Logemann, and D. Loveland, A machine program for theorem proving, Com-
mun. ACM, 5 (1962), pp. 394–397.

[33] M. Davis and H. Putnam, A computing procedure for quantification theory, J. ACM, 7 (1960),
pp. 201–215.

[34] J. L. Esteban and J. Torán, Space bounds for resolution, Inform. and Comput., 171 (2001),
pp. 84–97.

[35] Y. Filmus, M. Lauria, M. Mikša, J. Nordström, and M. Vinyals, Towards an under-
standing of polynomial calculus: New separations and lower bounds (extended abstract),
in Proceedings of the 40th International Colloquium on Automata, Languages and Pro-
gramming (ICALP ’13), Lecture Notes in Comput. Sci. 7965, Springer, New York, 2013,
pp. 437–448.

[36] Y. Filmus, M. Lauria, J. Nordström, N. Thapen, and N. Ron-Zewi, Space complexity in
polynomial calculus, in Proceedings of the 27th Annual IEEE Conference on Computational
Complexity (CCC ’12), 2012, pp. 334–344.

[37] N. Galesi, P. Pudlák, and N. Thapen, The space complexity of cutting planes refutations, in
Proceedings of the 30th Annual Computational Complexity Conference (CCC ’15), 2015.

[38] M. Göös and T. Pitassi, Communication lower bounds via critical block sensitivity, in Pro-
ceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC ’14), 2014,
pp. 847–856.

[39] A. Haken, The intractability of resolution, Theoret. Comput. Sci., 39 (1985), pp. 297–308.
[40] T. Huynh and J. Nordström, On the virtue of succinct proofs: Amplifying communication

complexity hardness to time-space trade-offs in proof complexity, in Proceedings of the
44th Annual ACM Symposium on Theory of Computing (STOC ’12), 2012, pp. 233–248.

[41] R. Impagliazzo, P. Pudlák, and J. Sgall, Lower bounds for the polynomial calculus and the
Gröbner basis algorithm, Comput. Complexity, 8 (1999), pp. 127–144.

SPACE COMPLEXITY IN POLYNOMIAL CALCULUS 1153

[42] M. Järvisalo, A. Matsliah, J. Nordström, and S. Živný, Relating proof complexity mea-
sures and practical hardness of SAT, in Proceedings of the 18th International Conference
on Principles and Practice of Constraint Programming (CP ’12), Lecture Notes in Comput.
Sci. 7514, Springer, New York, 2012, pp. 316–331.

[43] J. P. Marques-Silva and K. A. Sakallah, GRASP: A search algorithm for propositional
satisfiability, IEEE Trans. Comput., 48 (1999), pp. 506–521.

[44] M. Mikša and J. Nordström, A generalized method for proving polynomial calculus degree
lower bounds, in Proceedings of the 30th Annual Computational Complexity Conference
(CCC ’15), 2015.

[45] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik, Chaff: Engineer-
ing an efficient SAT solver, in Proceedings of the 38th Design Automation Conference
(DAC ’01), 2001, pp. 530–535.

[46] J. Nordström, Narrow proofs may be spacious: Separating space and width in resolution,
SIAM J. Comput., 39 (2009), pp. 59–121.

[47] J. Nordström, A simplified way of proving trade-off results for resolution, Inform. Process.
Lett., 109 (2009), pp. 1030–1035.

[48] J. Nordström, Pebble games, proof complexity and time-space trade-offs, Log. Methods Com-
put. Sci., 9 (2013), pp. 15:1–15:63.

[49] J. Nordström and J. Håstad, Towards an optimal separation of space and length in resolu-
tion, Theory Comput., 9 (2013), pp. 471–557.

[50] K. Pipatsrisawat and A. Darwiche, On the power of clause-learning SAT solvers as resolu-
tion engines, Artificial Intelligence, 175 (2011), pp. 512–525.

[51] P. Pudlák, Lower bounds for resolution and cutting plane proofs and monotone computations,
J. Symbolic Logic, 62 (1997), pp. 981–998.

[52] A. A. Razborov, Lower bounds for the polynomial calculus, Comput. Complexity, 7 (1998),
pp. 291–324.

[53] J. A. Robinson, A machine-oriented logic based on the resolution principle, J. ACM, 12 (1965),
pp. 23–41.

[54] The international SAT Competitions, http://www.satcompetition.org.
[55] N. Segerlind, The complexity of propositional proofs, Bull. Symbolic Logic, 13 (2007), pp. 482–

537.
[56] A. Urquhart, Hard examples for resolution, J. ACM, 34 (1987), pp. 209–219.

http://www.satcompetition.org

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

