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1 Quick Recap of Last Lecture

In the previous lecture we proved that large resolution width implies large resolution length.
More specifically, for general resolution, we have the following theorem by Ben-Sasson and
Wigderson, which was published in [BW99] and later appeared as a full-length journal version
in [BW01].

Theorem 1.1 ([BW01]). For any unsatisfiable CNF formula F it holds that

W(F `⊥) ≤ W(F ) +
√

8n lnL(F `⊥) , (1.1)

where n is the number of variables in F .

Today, we will use Theorem 1.1 to prove exponential lower bounds on proof length in
resolution. The proof we do is also from [BW01]. This lower bound is one of the early classics
in proof complexity, proved already in 1985, but we will reprove it using the tools developed
in [BW01]. We remark that one way of viewing this result from an applied perspective is
that this shows that SAT solvers based on resolution cannot possibly solve certain formulas
efficiently.

Since our goal is to prove lower bounds on proof length, it will be more convenient to use
the following corollary, which is easily verified to be an immediate consequence of Theorem 1.1.

Corollary 1.2. For any unsatisfiable CNF formula F it holds that

L(F `⊥) ≥ exp
(

(W(F `⊥)−W(F ))2

8n

)
, (1.2)

where n is the number of variables in F .

2 A Lower Bound for Pigeonhole Principle Formulas

The pigeonhole principle says that if m > n, then there is no way to fit m pigeons into n holes
while having at most one pigeon in each hole. To formulate (the negation of) this statement as
a CNF formula, we let variables xij encode whether pigeon i sits in hole j. The formula PHPm

n

consists of the following clauses:

P i =
n∨

j=1

xij for i ∈ {1, 2, · · · ,m}, (2.1)

H ii′
j = xij ∨ xi′j for i, i′ ∈ {1, 2, · · · ,m}, i 6= i′, j ∈ {1, 2, · · · , n}. (2.2)

We call P i a pigeon axiom, which says that “pigeon i sits in some hole,” and H ii′
j a hole axiom,

which says that “hole j does not hold both pigeon i and i′.” PHPm
n is unsatisfiable whenever

m > n. Intuitively, PHPm
n is hardest when m = n + 1, when the formula is almost satisfiable,

and therefore PHPn+1
n will be today’s focus. Our goal is to prove an exponential lower bound

on proof length in resolution for these formulas.
The lower bound for PHPn+1

n stated next was proved by Armin Haken, who happens to be
the son of Wolfgang Haken (of Four-Colour Theorem fame).
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Theorem 2.1 ([Hak85]). L(PHPn+1
n `⊥) = exp(Ω(n)).

Note that PHPn+1
n is a CNF formula with Θ

(
n2

)
variables and Θ

(
n3

)
clauses, so if we let

N be the size of the formula PHPn+1
n , then the lower bound is exp

(
Ω

(
3
√

N
))

.

Remark 2.2. If one increases the number of pigeons m, the formulas become slightly easier.
Buss and Pitassi [BP97] showed that for m ≈ exp

(√
n log n

)
pigeons, the formulas PHPm

n have
resolution refutations with length polynomial in exp

(√
n log n

)
(which is significantly better

than exp(Ω(n))). However, the hardness is still exponential in n, being of order exp(nε) even
for m = ∞ pigeons. This was proven in an amazing paper by Raz in 2001 (journal version
in [Raz04]), later simplified and slightly improved by Razborov [Raz01]. (Note that having
more than, say, 2n2

or so pigeons does not help anyway, since it will take more than the trivial
length upper bound just to look at axiom clauses for all these pigeons, so we never need to
consider more than m ≈ 2n2

pigeons).

2.1 Problems with Applying Theorem 1.1 and a Work-Around

There are two problems if we try to use Theorem 1.1:

1. There exists refutation for PHPn+1
n of width O(n) = O

(√
|Vars(PHPn+1

n )|
)

.

2. The width of the formula is Ω(n).

If we plug this into (1.2), the denominator in the exponent becomes Θ
(
n2

)
(the number of

variables), which will kill anything in the numerator, but this numerator looks like it will only
be at most a constant anyway. . .

We want to get around this problem by reducing the number of variables and make the
formula “sparser.” To this end, consider a bipartite graph G = (U ∪ V,E), where |U | = m,
|V | = n, and let N(u) be the set of neighbours of vertex u. Similar to PHPn+1

n , we define the
“graph-version” pigeonhole principle PHP(G) to be the conjunction of the following clauses:

P u =
∨

v∈N(u)

xuv for u ∈ U (2.3)

Hu,u′
v = xuv ∨ xu′v for v ∈ V, u 6= u′, u, u′ ∈ N(v) (2.4)

We have the following observation.

Observation 2.3. If G′ = (U ∪ V,E′) has E′ ⊇ E, then L(PHP(G) `⊥) ≤ L(PHP(G′) `⊥).

Proof. Consider assignment ρ setting xuv = 0 for all (u, v) ∈ E′\E. We claim that PHP(G′)�ρ =
PHP(G). This means that from any resolution proof π for PHP(G′) we can get a proof for
PHP(G) by applying the restriction ρ, and thus follows the upper bound. To see that the claim
is true, note that the pigeon axioms are the same because for all (u, v) ∈ E′ \E, xuv is set to 0
and thus does not appear after restriction, and the hole axioms involving xuv get satisfied and
can therefore be ignored after restricting with ρ.

If we take Km,n to be the complete bipartite graph with m vertices to the left and n vertices
to the right, a moment of thought reveals that PHP(Km,n) = PHPm

n . Therefore we can derive
lower bound for L(PHPn+1

n ` ⊥) by giving lower bound for L(PHP(G) ` ⊥), where G is a
carefully chosen bipartite graph with n + 1 vertices to the left and n vertices to the right.

Suppose that the graph G has constant left-degree d. Then PHP(G) is a d-CNF formula
with d(n + 1) = Θ(n) variables, which means that we are potentially “back in business.” If we
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can find such a G with W(PHP(G) `⊥) = Ω(n), then we would have

L(PHPn+1
n `⊥) ≥ L(PHP(G) `⊥)

≥ exp
(

Ω
(

(n− d)2

d(n + 1)

))
≥ exp(Ω(n))

since d = O(1).

2.2 Expander Graphs

Let us now step back a bit and consider why PHPn+1
n is hard. Intuitively, one reason is that

it is almost satisfiable. Every set of s ≤ n pigeons fit perfectly into the holes. This means that
no “local argument” can derive a contradiction. Therefore the graph we are looking for should
have similar properties, namely it should be

1. a sparse graph (with constant left-degree),

2. but with good connectivity properties.

One of the possible candidates is the following class of graphs.

Definition 2.4 (Bipartite vertex expander graph). The bipartite graph G = (U ∪ V,E)
is a bipartite vertex (d, s, e)-expander graph, or just a (d, s, e)-expander for short, if

1. G has constant left-degree d;

2. for each U ′ ⊆ U , |U ′| ≤ s, it holds that |N(U ′)| ≥ e · |U ′|.

Condition 1 implies that G is sparse, and condition 2 means that G is well-connected in that
to disconnect a large part of the graph, one has to cut a lot of edges. In other words, it will be
hard to make local argument because there will always be many external variables involved.

One could hope that if G is such a graph, then PHP(G) might be hard. It turns out that to
carry out this argument, we need something slightly stronger than Definition 2.4, as described
next.

Definition 2.5 (Unique-neighbour expander). G = (U ∪V,E) is a (d, s, e)-unique-neighbour
expander (or sometimes boundary expander) if

1. G has constant left-degree d;

2. for each U ′ ⊆ U , |U ′| ≤ s, it holds that |∂U ′| ≥ e · |U ′|, where v ∈ ∂U ′ if |N(v) ∩ U ′| = 1.

We refer to ∂U ′ as the boundary of U ′, which consists of all vertices v ∈ V that have only
one neighbour in U ′. Intuitively, if a set U ′ expands very well, the sets of neighbours of its
vertices could not intersect too much, and thus the boundary ∂U ′ should not be small. More
formally, the following proposition shows that a good vertex expander must also be a good
unique-neighbour expander.

Proposition 2.6. Any (d, s, κ)-expander is a (d, s, 2κ− d)-unique-neighbour expander.

Proof. Left as an exercise.
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2.3 Two Key Lemmas

We will establish Theorem 2.1 by proving the two lemmas below and then combining them.

Lemma 2.7. For a (d, s, e)-unique-neighbour expander with e ≥ 1, W(PHP(G) `⊥) ≥ s · e/2.

Lemma 2.8. There is a constant c > 1 such that for all n large enough, there are graphs
G = (U ∪ V,E), |U | = n + 1, |V | = n, that are (5, n/c, 1)-unique-neighbour expanders.

Proof sketch for Lemma 2.8. There are constructive proofs, but we will not go there. Instead,
one can use the probabilistic method to show that (5, n/c, 3)-expanders exist. For all u ∈ U ,
pick 5 neighbours in V uniformly and independently at random among all

(
n
5

)
subsets. For the

right c, such a graph is an expander with overwhelming probability. This is proved by showing
that all sets U ′ ⊆ U with |U ′| ≤ s are expanding almost surely. And the probability could not
be large (indeed, could not be greater than 0) unless such expanders exist. So they do exist.

Some helpful facts for these calculations are:

1. Union bound: Pr[A ∪ B] ≤ Pr[A] + Pr[B].

2.
(

n
k

)k ≤
(
n
k

)
≤

(
en
k

)k.

3. If m > n, then (
n
k

)(
m
k

) <
( n

m

)k
.

The detailed calculations are left as an exercise.

Remark 2.9. There are also explicit constructions of expanders, for instance in [CRVW02], but
note that we do not need explicitness—this is just a construction inside the lower bound proof,
which is the proof that we care about.

Even more importantly, in proof complexity lower bounds for non-explicit formulas are
perfectly fine anyway. To see this, recall what we discussed during the first lecture about
doing proof complexity as a way to separate NP from co-NP. Now, to do this, it would work
just as fine to prove non-constructively that for any propositional proof system, there is some
non-explicit formula family Fn of polynomial size such that the proofs for these formulas grow
superpolynomially.

2.4 Proof Strategy for Lemma 2.7

We now present the strategy used to prove Lemma 2.7. We want to define a “measure of
progress” µ : {clauses} → N such that given any resolution refutation π = {D1, D2, · · · , DL},
we can use µ to determine, for any clause in the refutation, how much progress we have made
towards deriving contradiction. We want the measure µ to have the following properties:

1. µ(axioms) ≤ 1;

2. µ(the final clause ⊥) is large;

3. µ can only increase gradually, so there must exist some Di ∈ π with medium-sized measure;

4. Such a “medium-progress” clause Di must contain many literals, i.e., W(Di) is large,
which shows that the resolution refutation π is at least as wide as this clause.
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Since this holds for any resolution refutation π, we get the width lower bound that we are after.
To construct such a measure µ, let H denote the set of all hole axioms and let P denote the

set of all pigeon axioms, where as before we write P u for the the pigeon axiom associated with
pigeon u. Then we define

µ(D) = min

{
|U ′| : H ∧

∧
u∈U ′

P u � D

}
. (2.5)

Intuitively, µ measures how many pigeon axioms have we used so far to derive D. We now
verify that µ satisfies the requirements above.

First of all, we have µ(D) ≤ n for all D ∈ π, because with all the pigeon axioms as well as
all the hole axioms we can derive the empty clause ⊥, which implies everything.

For all C ∈ H, we have µ(C) = 0 because if H is satisfied, then all clauses C ∈ H have
to be satisfied and no pigeon axioms at all are needed. Similarly, for all C ∈ P, it holds that
µ(C) = 1 since picking U = {u} for P u = C is sufficient (as an aside, observe that µ(C) > 0
because when all variables xij are assigned 0, H is satisfied but not P u).

For the final empty clause ⊥ we have µ(⊥) > s, since any set U ′ of size no more than s fits
into |N(U ′)| ≥ |U ′| distinct holes. This follows from the next theorem.

Theorem 2.10 (Hall’s Marriage Theorem). For G = (U ∪ V,E), there is a matching of
U into V if and only if for all U ′ ⊆ U , we have |N(U ′)| ≥ |U ′|.

This means that for all vertex sets U ′ of size no more than s, H∧
∧

u∈U ′ P u is satisfiable, so
H ∧

∧
u∈U ′ P u 2 ⊥.

Remark 2.11. The condition in Theorem 2.10 is clearly necessary. The interesting thing is that
it is also sufficient. We will not prove the theorem, however, since it is a standard fact in
combinatorics.

Returning to our measure µ, if D∨x D′∨x
D∨D′ is an application of the resolution rule, then

µ(D ∨D′) ≤ µ(D ∨ x) + µ(D′ ∨ x). This is so because if for sets of pigeons U1 and U2 we have
H∧

∧
u∈U1

P u � D∨x and H∧
∧

u∈U2
P u � D′ ∨x, then by the soundness of the resolution rule

it holds for U1 ∪ U2 that H∧
∧

u∈U1 ∪U2
P u � D ∨D′. This means that in each resolution step,

µ can at most double.
Hence there must exist some D ∈ π such that s/2 ≤ µ(D) < s. Fix such a D, and then fix

also a set of pigeons U ′ of minimal size such that the implication

H ∧
∧

u∈U ′

P u � D (2.6)

holds. Observe that by construction, we have s/2 ≤ |U ′| = µ(D) < s.
Now we want to argue that all unique neighbours of U ′ must be represented by variables in

the clause D. This gives us W(D) ≥ |∂U ′|. Note that this is sufficient to establish Lemma 2.7,
since the expansion properties of G give us that |∂U ′| ≥ e · |U ′| ≥ es/2, and hence W(π) ≥
W(D) ≥ es/2. Thus, it will be sufficient for us to prove the following claim.

Claim 2.12. For all v ∈ ∂U ′ some variable xuv ,v occurs in D.

Proof. Fix v∗ ∈ ∂U ′ and a unique neighbour u∗ ∈ N(v∗). Assume that no variable xu′,v∗

appears in D. We want to derive a contradiction.
Observe first that if we remove u∗ from U ′, then by the definition of µ and since U ′ was

chosen minimal it holds that
H ∧

∧
u∈U ′\{u∗}

P u 2 D .

But if so, then there exists an assignment α such that α
(
H ∧

∧
U ′\{u∗} P u

)
= 1 but α(D) = 0

(that is what it means that the left-hand side does not imply the right-hand side). Furthermore,
without loss of generality we can assume that α(xu′v∗) = 0 for all u′ ∈ N(v∗). This is so because:

3-5



• H cannot be falsified by flipping variable assignments to false since all variables in H
appear negated.

• P u cannot not be falsified for u ∈ U ′ \ {u∗}, since u∗ is the unique neighbor of v∗ in U ′.

• D cannot get satisfied, since there are no variables xu′v∗ in D by assumption. (And from
this very assumption we will now very soon derive our contradiction.)

Now let α∗ be the same assignment as α except that we set α∗(xu∗v∗) = 1. We still have
α∗(H) = 1 because each clause in H is a disjunction of exactly two variables, and we only
flipped a single variable, namely xu∗v∗ . Thus all clauses in H will still be satisfied under α∗.
Furthermore, since α∗(P u∗)

= 1 we now have for the full set U ′ that α∗ (∧
u∈U ′ P u

)
= 1.

However, it still holds that α∗(D) = 0 for the same reason as above.
But this means that α∗ (

H ∧
∧

u∈U ′ P u
)

= 1 and α∗(D) = 0, which contradicts the the
implication in (2.6). Hence, the assumption that no variable xu′,v∗ occurs in D must have been
wrong. The claim follows.

Putting all the pieces together as described above, Theorem 2.1 now follows.

3 Tseitin Contradictions

At the end of the lecture, we started talking about another family of CNF formulas defined in
terms of graphs, the so-called Tseitin contradictions. They are defined as follows.

Let G be a connected undirected graph of size n. We say that a function f : V (G) → {0, 1}
has odd weight if

∑
f(v) ≡ 1 (mod 2). We introduce a variable xe for each edge e ∈ E(G). For

each vertex v ∈ V (G), we define a set of clauses PARITY v encoding

PARITY v =
⊕
e3v

xe ≡ f(v) (mod 2) ,

that is, that if we sum the truth values of all the edges incident to v then this sum is odd if
f(v) = 1 and even otherwise. Then for a graph G and an odd-weight function f , the Tseitin
contradiction Ts(G, f) is defined to be the CNF formula

Ts(G, f) =
∧

v∈V (G)

PARITY v.

How do we encode PARITY v? The trick is to add clauses ruling out all incorrect assignments
as explained in the next example.

Example 3.1. Say that we want to write down clauses encoding x⊕ y ⊕ z = 1. Then there are
four assignments that we need to rule out, namely all assignments with an even number of true
variables. To exclude an assignment (x0, y0, z0) with x0⊕y0⊕z0 = 0, add a clause with opposite
signs for all variables. Since this clause has to be satisfied, this means that some variable must
take a value that disagrees with the assignment (x0, y0, z0). To encode x ⊕ y ⊕ z = 1, we thus
add the following clauses:

x ∨ y ∨ z falsified by x = y = z = 0,
x ∨ y ∨ z falsified by x = y = 1, z = 0,
x ∨ y ∨ z falsified by x = z = 1, y = 0,
x ∨ y ∨ z falsified by y = z = 0, x = 1.

It is straightforward to verify that all valid assignments of x, y, z satisfy all the above clauses,
so the above clauses encode x⊕ y ⊕ z = 1.

Generalizing the above example, one can prove the following lemma.
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Lemma 3.2. If the maximal degree of G is d, then Ts(G, f) is a d-CNF formula with at most
nd/2 variables and at most n · 2d−1 clauses.

We will return to the Tseitin contradictions next time and prove a lower bound for them in
resolution that is in some sense even stronger than the lower bound for the pigeonhole principle
formulas that we proved in this lecture.
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