On the Approximation Resistance of a Random Predicate

Johan Håstad

KTH Numerical Analysis and Computer Science

August 20, 2007

Constraint Satisfaction Problems where each input is a bit. Same predicate appears P in all constraints. A *k*-ary predicate P that accepts *t* of the 2^{*k*} inputs. k-Sat Disjunctions of k literals, $t = 2^k - 1$. k-Lin Linear equations with k variables in each equation, $t = 2^{k-1}$.

Subspace ℓ dimensional subspace of k dimension, $t = 2^{\ell}$.

Please note that negations are allowed for free, and so are permutations of the inputs.

We get families of equivalent predicates.

Finding optimal solution is almost always, [S78], NP-complete and we are interested in approximation problem.

Max-CSP: Find the assignment that satisfies that maximum number of constraints.

Finding optimal solution is almost always, [S78], NP-complete and we are interested in approximation problem.

Max-CSP: Find the assignment that satisfies that maximum number of constraints.

Given a list of m k-tuples of literals find an assignment that makes as many as possible of the resulting k-tuples of bits satisfy P.

An algorithm has approximation ratio α if for any instance

 $\frac{\text{Value of found solution}}{\text{Value of optimal solution}} \geq \alpha$

For randomized algorithms, expectation over internal coinflips, always worst case inputs.

- It is easy to approximate Max-P within $t2^{-k}$.
- A random assignment satisfies on the average $t2^{-k}m$ constraints and this can be found deterministically.

- It is easy to approximate Max-P within $t2^{-k}$.
- A random assignment satisfies on the average $t2^{-k}m$ constraints and this can be found deterministically.

The trivial approximation ratio.

A predicate *P* is approximation resistant if $\forall \epsilon > 0$ it is hard to approximate max-CSP(*P*) within $\epsilon + t2^{-k}$.

- A predicate *P* is approximation resistant if $\forall \epsilon > 0$ it is hard to approximate max-CSP(*P*) within $\epsilon + t2^{-k}$.
- A predicate *P* is approximation resistant on satisfiable instances if $\forall \epsilon > 0$ it is hard distinguish instances where we can satisfy all constraints from those where we can only satisfy a fraction $\epsilon + t2^{-k}$ of the constraints.

A predicates P is hereditary approximation resistant if whenever $P(x) \Rightarrow Q(x)$ then Q is also approximation resistant.

- Approximation resistance on satisfiable instances is possibly the ultimate hardness for a CSP.
- Efficient computation cannot tell whether we can satisfy all constraints or only the fraction obtained by a random assignment.

Approximation resistance on satisfiable instances is possibly the ultimate hardness for a CSP.

Efficient computation cannot tell whether we can satisfy all constraints or only the fraction obtained by a random assignment.

Are there such predicates?

Constraints on two variables , k = 2.

Semidefinite programming [GW95] shows that there are no approximation resistant predicates on two binary variables.

Constraints on two variables , k = 2.

Semidefinite programming [GW95] shows that there are no approximation resistant predicates on two binary variables.

Extends to all domains sizes [H05] and binary constraints.

Max-3-Lin is hereditary approximation resistant [H01], and this gives all approximation resistant predicates [Z98] on three inputs.

Max-3-Lin is hereditary approximation resistant [H01], and this gives all approximation resistant predicates [Z98] on three inputs.

Max-3-Sat is approximation resistant on satisfiable instances. What happens for the "not two ones predicate" on satisfiable instances?

Partial classification by Hast [H05].

400 essentially different predicates.

- 79 approximation resistant.
- 275 not approximation resistant.
- 46 not classified.

# Acc	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Non-res	1	4	6	19	27	50	50	52	27	26	9	3	1	0	0
Res	0	0	0	0	0	0	0	16	6	22	11	15	4	4	1
Unkn	0	0	0	0	0	0	6	6	23	2	7	1	1	0	0

Satisfiability ignored.

How common is approximation resistance?

Can we find big classes of approximation resistant predicates? What about a random predicate?

- A random predicate from space $R_{p,k}$ accepts each input with probability p (and has $t \approx p2^k$).
- Is a random predicate approximation resistant for p = 1/2?

A predicate given by a subspace of dimension $l_1 + l_2$ with $k = l_1 + l_2 + l_1 l_2$.

Showed to be approximation resistant by Samorodnitsky and Trevisan [ST00] and hereditary so by Hast [H05].

A predicate given by a subspace of dimension $l_1 + l_2$ with $k = l_1 + l_2 + l_1 l_2$.

Showed to be approximation resistant by Samorodnitsky and Trevisan [ST00] and hereditary so by Hast [H05].

Gives many approximation resistant predicates but does not apply to a random predicate.

A predicate given by a subspace of dimension d with $2^{d-1} < k \le 2^d - 1$.

Assuming the Unique Games Conjecture (UGC) showed to be approximation resistant by Samorodnitsky and Trevisan [ST05].

Made by Khot [K02], a binary CSP over a large alphabet L. Problem: Distinguish instances where we can satisfy fraction $1 - \epsilon$ from those where we can only satisfy fraction δ . Made by Khot [K02], a binary CSP over a large alphabet L.

Problem: Distinguish instances where we can satisfy fraction $1 - \epsilon$ from those where we can only satisfy fraction δ .

Conjecture: $\forall \epsilon, \delta > 0$ there \exists alphabet size *L* for which the problem is NP-complete, and constraints are "unique".

Made by Khot [K02], a binary CSP over a large alphabet L.

Problem: Distinguish instances where we can satisfy fraction $1 - \epsilon$ from those where we can only satisfy fraction δ .

Conjecture: $\forall \epsilon, \delta > 0$ there \exists alphabet size *L* for which the problem is NP-complete, and constraints are "unique".

A very open conjecture.

Theorem: Assuming the unique games conjecture a random predicate from $R_{1/2,k}$ is with high probability, for sufficiently large k, approximation resistant.

Extends to $p = k^{-c}$ for $1/2 \le c \le 1$, $c \approx k2^{-d}$.

Assuming UGC P_{ST}^2 is hereditary approximation resistant. Extending the proof of Samorodnitsky and Trevisan. Lemma: For $S \subseteq [d]$ functions f_S such that

- One function (almost) unbiased, $|E[f_S(x)]| \leq \delta$.
- No two functions have high common influnce, max(inf_i(f_{S1}), inf_i(f_{S2})) ≤ ε.

$$\left| E_{x_1...x_d} \left[\prod_{S \subseteq [d]} f_S(\prod_{i \in S} x_i) \right] \right| \leq \delta + (2^d - 2)\sqrt{\epsilon},$$

i.e. Gowers uniformity norm is small.

Lemma: For $S \subseteq [d]$ functions f_S such that

- One function (almost) unbiased, $|E[f_S(x)]| \leq \delta$.
- No two functions have high common influnce, max(inf_i(f_{S1}), inf_i(f_{S2})) ≤ ε.

$$\left| E_{x_1...x_d} \left[\prod_{S \subseteq [d]} f_S(\prod_{i \in S} x_i) \right] \right| \leq \delta + (2^d - 2)\sqrt{\epsilon},$$

i.e. Gowers uniformity norm is small.

New simpler more direct proof compared to [ST05].

Prove that if Q is random from $R_{1/2,k}$ then it is likely that there is a P_{ST}^2 -equivalent predicate P' such that $P' \Rightarrow Q$.

Second moment method using only P_{ST}^2 -equivalent predicates that are very different.

- Approximation resistance is a very strong notion of hardness.
- If the Unique Games Conjecture is true then a vast majority of predicates are approximation resistant.

- Prove result without the unique games conjecture.
- Prove approximation resistance on satisfiable instances.
- Olassify more predicates with respect to approximation resistance.