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Boolean CSPs

Constraint Satisfaction Problems where each input is a bit.

Same predicate appears P in all constraints.

A k-ary predicate P that accepts t of the 2k inputs.
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Examples of CSPs

k-Sat Disjunctions of k literals, t = 2k − 1.

k-Lin Linear equations with k variables in each equation,
t = 2k−1.

Subspace ` dimensional subspace of k dimension, t = 2`.
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Equivalent predicates

Please note that negations are allowed for free, and so are
permutations of the inputs.

We get families of equivalent predicates.
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Max-CSPs

Finding optimal solution is almost always, [S78], NP-complete and
we are interested in approximation problem.

Max-CSP: Find the assignment that satisfies that maximum
number of constraints.

Given a list of m k-tuples of literals find an assignment that makes
as many as possible of the resulting k-tuples of bits satisfy P.
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Approximation ratio

An algorithm has approximation ratio α if for any instance

Value of found solution

Value of optimal solution
≥ α

For randomized algorithms, expectation over internal coinflips,
always worst case inputs.
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Trivial result

It is easy to approximate Max-P within t2−k .

A random assignment satisfies on the average t2−km constraints
and this can be found deterministically.

The trivial approximation ratio.
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Approximation resistance

A predicate P is approximation resistant if ∀ε > 0 it is hard to
approximate max-CSP(P) within ε + t2−k .

A predicate P is approximation resistant on satisfiable instances if
∀ε > 0 it is hard distinguish instances where we can satisfy all
constraints from those where we can only satisfy a fraction
ε + t2−k of the constraints.

Johan Håstad Approximation resistance of CSPs



Approximation resistance

A predicate P is approximation resistant if ∀ε > 0 it is hard to
approximate max-CSP(P) within ε + t2−k .

A predicate P is approximation resistant on satisfiable instances if
∀ε > 0 it is hard distinguish instances where we can satisfy all
constraints from those where we can only satisfy a fraction
ε + t2−k of the constraints.
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Hereditary properties

A predicates P is hereditary approximation resistant if whenever
P(x) ⇒ Q(x) then Q is also approximation resistant.
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My view

Approximation resistance on satisfiable instances is possibly the
ultimate hardness for a CSP.

Efficient computation cannot tell whether we can satisfy all
constraints or only the fraction obtained by a random assignment.

Are there such predicates?
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Binary constraints

Constraints on two variables , k = 2.

Semidefinite programming [GW95] shows that there are no
approximation resistant predicates on two binary variables.

Extends to all domains sizes [H05] and binary constraints.
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The case k = 3

Max-3-Lin is hereditary approximation resistant [H01], and this
gives all approximation resistant predicates [Z98] on three inputs.

Max-3-Sat is approximation resistant on satisfiable instances. What
happens for the “not two ones predicate” on satisfiable instances?
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The case k = 4

Partial classification by Hast [H05].

400 essentially different predicates.

79 approximation resistant.

275 not approximation resistant.

46 not classified.

# Acc 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Non-res 1 4 6 19 27 50 50 52 27 26 9 3 1 0 0
Res 0 0 0 0 0 0 0 16 6 22 11 15 4 4 1
Unkn 0 0 0 0 0 0 6 6 23 2 7 1 1 0 0

Satisfiability ignored.

Johan Håstad Approximation resistance of CSPs



Questions

How common is approximation resistance?

Can we find big classes of approximation resistant predicates?

What about a random predicate?
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Random predicates

A random predicate from space Rp,k accepts each input with
probability p (and has t ≈ p2k).

Is a random predicate approximation resistant for p = 1/2?
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Predicate P1
ST

A predicate given by a subspace of dimension l1 + l2 with
k = l1 + l2 + l1l2.

Showed to be approximation resistant by Samorodnitsky and
Trevisan [ST00] and hereditary so by Hast [H05].

Gives many approximation resistant predicates but does not apply
to a random predicate.
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Predicate P2
ST

A predicate given by a subspace of dimension d with
2d−1 < k ≤ 2d − 1.

Assuming the Unique Games Conjecture (UGC) showed to be
approximation resistant by Samorodnitsky and Trevisan [ST05].
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Unique Games Conjecture

Made by Khot [K02] , a binary CSP over a large alphabet L.

Problem: Distinguish instances where we can satisfy fraction 1− ε
from those where we can only satisfy fraction δ.

Conjecture: ∀ε, δ > 0 there ∃ alphabet size L for which the
problem is NP-complete, and constraints are “unique”.

A very open conjecture.

Johan Håstad Approximation resistance of CSPs



Unique Games Conjecture

Made by Khot [K02] , a binary CSP over a large alphabet L.

Problem: Distinguish instances where we can satisfy fraction 1− ε
from those where we can only satisfy fraction δ.

Conjecture: ∀ε, δ > 0 there ∃ alphabet size L for which the
problem is NP-complete, and constraints are “unique”.

A very open conjecture.
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Main result

Theorem: Assuming the unique games conjecture a random
predicate from R1/2,k is with high probability, for sufficiently large
k, approximation resistant.

Extends to p = k−c for 1/2 ≤ c ≤ 1, c ≈ k2−d .
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Proof 1

Assuming UGC P2
ST is hereditary approximation resistant.

Extending the proof of Samorodnitsky and Trevisan.
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Key Lemma

Lemma: For S ⊆ [d ] functions fS such that

One function (almost) unbiased, |E [fS(x)]| ≤ δ.

No two functions have high common influnce,
max(infi (fS1), infi (fS2)) ≤ ε.∣∣∣∣∣∣Ex1...xd

 ∏
S⊆[d ]

fS(
∏
i∈S

xi )

∣∣∣∣∣∣ ≤ δ + (2d − 2)
√

ε,

i.e. Gowers uniformity norm is small.

New simpler more direct proof compared to [ST05].
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Proof 2

Prove that if Q is random from R1/2,k then it is likely that there is
a P2

ST -equivalent predicate P ′ such that P ′ ⇒ Q.

Second moment method using only P2
ST -equivalent predicates that

are very different.
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Summary

Approximation resistance is a very strong notion of hardness.

If the Unique Games Conjecture is true then a vast majority of
predicates are approximation resistant.
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Open problems

1 Prove result without the unique games conjecture.

2 Prove approximation resistance on satisfiable instances.

3 Classify more predicates with respect to approximation
resistance.
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