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My world

Efficient computation.

P Polynomial time

BPP Probabilistic Polynomial time (still efficient)

NP Non-deterministic Polynomial time
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Randomness in computation

In practice for free and usually very low probability of error.

Whether needed is a very basic theoretical question.

Primality in deterministic polynomial time. Great progress in
theory, of no importance in practice.
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World view

We assume P 6= NP and even NP 6⊆ BPP.

Stronger assumptions that NP (or some particular problem in NP)
cannot be solved in time

1 2O((log n)k ).

2 2O(nδ) some δ > 0.

3 O(2cn) some c > 0.

Not needed in this talk but at least the first is not controversial
and all are used.
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Hard problems

NP-complete The hardest problems in NP, assumed hard.

NP-hard Even harder problems, if in P then NP = P. Many
times non-decision problems closely related to NP.
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Interesting family of problems

Constraints on constant size subsets of Boolean variables.

Constraint Satisfaction Problems, CSPs.

Model problems for now 3-Sat, 3-Lin.
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3-Sat

Satisfiability of 3-CNF formulas, i.e.

ϕ = (x1 ∨ x7 ∨ x12) ∧ (x2 ∨ x3 ∨ x8) ∧ . . . (x5 ∨ x23 ∨ x99)

n variables, m clauses (i.e. disjunctions)

ϕ = ∧m
i=1Ci
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Basics for 3-Sat

Probably the most classical NP-complete problem, from Cook’s
original list in 1971.

No algorithm is known to run faster than 2cn and work has been
done trying to improve the value of c .
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3-Lin

System of linear equations modulo 2 with at most three variables
in each equation.

x1 + x2 + x3 = 1
x1 + x2 = 1
x1 + x2 + x4 = 1

x2 + x4 = 0
x1 + x3 + x4 = 0

x2 + x3 + x4 = 1
x1 + x3 = 0

mod 2

m equations n variables. Easy to solve by Gaussian elimination.
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Max-CSP

New view. Given the set of constraints, maybe not all
simultaneously satisfiable, try to satisfy as many as possible.

Optimization as opposed to decision.
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Hope and fears

Hope for Max-3Sat: We know we cannot find the best solution but
maybe we can find something reasonably good.

Fear for Max-3Lin: If we cannot satisfy all equations, Gaussian
elimination does not seem to do anything interesting.
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Max-3-Lin vs Max-3-Sat

Observation: (x1 ∨ x2 ∨ x3) is true iff 4 of the equations

x1 + x2 + x3 = 1
x1 + x2 = 1
x1 + x3 = 1

x2 + x3 = 1
x1 = 1

x2 = 1
x3 = 1

mod 2

are satisfied (and otherwise none).
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A reduction

Take 3-CNF ϕ = ∧m
i=1Ci create 7m equations using last page

giving system L.

Easy fact: ϕ is satisfiable iff we can simultaneously satisfy 4m
equations of L.

Max-3-Lin is NP-hard!

The fear was justified.
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Performance measure for hope

Approximation ratio,

α =
Value(Found solution)

Value(Best solution)

worst case over all instances. α = 1 the same as finding optimal,
otherwise α < 1.

For a randomized algorithm we allow expectation over internal
randomness, worst case over inputs.
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The mindless algorithm

Give each variable a random value with looking at the constraints.

For Max-3-Sat with each clause of length 3 we satisfy each clause
with probability 7/8.

Approximation ratio at least 7/8 (even deterministically).
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The hope for Max-3-Sat

If a formula with m clauses is satisfiable then we can find an
assignment that satisfies αm clauses where α > 7/8.

It turns out that this hope cannot be fulfilled, but first a detour.
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The basic question

For which types of constraints can we beat the random mindless
algorithm and on what instances?

As soon as optimal value is significantly better than random,
i.e. (1 + ε) times random fraction.

When the optimal value is (very) large, i.e. (1− ε)m.

When we can satisfy all constraints, satisfiable instances.
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Two branches

Positive results. Efficient algorithms with provable
performance ratios.

Negative results. Proving that certain tasks are NP-hard, or
possibly hard given some other complexity assumption.

Johan Håstad Efficient approximability of CSPs



Max-CSP
Semi-Definite programming

Inapproximability results
Classification

The favorite techniques

Algorithms: Semi-definite programming. Introduced in this context
by Goemans and Williamson.

Lower bounds: The PCP-theorem and its consequences. Arora,
Lund, Motwani, Sudan and Szegedy.
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Max-Cut

Given a graph, partition the graph into two parts cutting as many
edges as possible.

Famous NP-complete problem. Constraints: xi 6= xj for any edge
(i , j).
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Max-Cut in formulas

The task is to maximize with xi ∈ {−1, 1} and edges E ,∑
(i ,j)∈E

1− xixj

2
.

Relax by setting yij = xixj and requiring that Y is a symmetric
positive semidefinite matrix with yii = 1.
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Positive semidefinite matrices?

Y symmetric matrix is positive semidefinite iff one of the following
is true

All eigenvalues λi ≥ 0.

zTYz ≥ 0 for any vector z ∈ Rn.

Y = V TV for some matrix V .

yij = xixj is in matrix language Y = xxT .
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By a result by Alizadeh we can to any desired accuracy solve

max
∑
ij

cijyij

subject to ∑
ij

ak
ijyij ≤ bk

and Y positive semidefinite.

Intuitive reason, set of PSD is convex and we should be able to
find optimum of linear function (as is true for LP).
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View using Y = V TV

Want to solve

max
x∈{−1,1}n

∑
(i ,j)∈E

1− xixj

2
.

but as Y = V TV we instead maximize

max
‖vi‖=1,i=1,...n

∑
(i ,j)∈E

1− (vi , vj)

2
,

i.e. optimizing over vectors instead of real numbers.
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Going vector to Boolean

The vector problem accepts a more general set of solutions. Gives
higher objective value.

Key question: How to use the vector solution to get back a
Boolean solution that does almost as well.
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Rounding vectors to Boolean values

Great suggestion by GW.

Given vector solution vi pick random vector r and set

xi = Sign((vi , r)),

where (vi , r) is the inner product.
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Intuition of rounding

Contribution
1− (vi , vj)

2
to objective function large, implying angle between vi , vj large,
Sign((vi , r)) 6= Sign((vj , r)) likely.

vi vj

PPPPPPPPPPPPPPq

��������������)
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Analyzing GW

Do term by term, θ angle between vectors.
Contribution to semi-definite objective function

1− (vi , vj)

2
=

1− cos θ

2
.

Probability of being cut

Pr [Sign((vi , r)) 6= Sign((vj , r))] =
θ

π
.

Minimal quotient gives approximation ratio

αGW = min
θ

2θ

π(1− cos θ)
≈ .8785
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Immediate other application

Original GW-paper derived same bound for approximating
Max-2-Sat.

Improved [LLZ] to ≈ .9401 (not analytically proved).

“Obvious” semi-definite program. More complicated rounding.

Many other applications some using many additional ideas.
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Switching sides

Let us turn to hardness results.
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Proving NP-hardness results for approximability problems

Want to study problem X .

Given a Sat-formula ϕ, produce an instance, I of X such that:
ϕ satisfiable → Value(I ) ≥ c .
ϕ not satisfiable → Value(I ) ≤ s.

It is NP-hard to approximate our problem within s/c + ε.

Running approximation algorithm on I tells us whether ϕ is
satisfiable.
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Inapproximability for Max-3-Sat

Given a Sat-formula ϕ, produce a different Sat-formula ψ with m
clauses such that:

ϕ satisfiable → ψ satisfiable.

ϕ not satisfiable → Can only simultaneously satisfy only (1− ε)m
of the clauses of ψ.

Gives inapproximability ratio (1− ε).
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Probabilistically Checkable Proofs (PCPs)

A proof that 3-Sat formula ϕ is satisfiable.

Traditionally an assignment to the variables.

Checked by reading all variables and checking.

We want to read much less of the proof, only a constant number
of bits.
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Sought reduction gives PCP!

Proof: An assignment to variables of ψ.
Checking: Pick a random clause and read the variables that appear
in the clause and check if it is satisfied.

Preserving satisfiability: ϕ satisfiable implies ψ satisfiable and we
always accept.
Amplifying non-satisfiability: ϕ not satisfiable implies ψ only
(1− ε)-satisfiable and we reject with probability ≥ ε.
Repeat a constant number of times to decrease fooling probability.
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Thinking more carefully

Our type of reduction is equivalent to a good PCP.
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The PCP theorem

PCP theorem: [ALMSS] There is a proof system for satisfiability
that reads a constant number of bits such that

Verifier always accepts a correct proof of correct statement.

Verifier rejects any proof for incorrect statement with
probability 1/2.

Translates to any NP statement by a reduction.
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Proof of PCP theorem

Original proof: Algebraic techniques, properties of polynomials,
proof composition, aggregation of queries, etc. Many details.

Interesting new proof by Dinur (2005) that is essentially
combinatorial. Relies on recursion and expander graphs.

These basic proofs give BAD inapproximability constants
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Improving constants

A long story, one final point:

Theorem [H]: For any ε > 0, it is NP-hard to approximate
Max-3-Lin within 1/2 + ε.

Matches mindless algorithm up to ε. No nontrivial approximation
in non-satisfiable case.

Fear realized in worst possible way.
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Ingredients in proof/construction

Two prover games.

Parallel repetition for two-prover games. [R]

Coding strings by the long code. [BGS]

Using discrete Fourier transforms in the analysis. [H]
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Classifying CSPs

1 Hard to approximate better than random mindless algorithm
on satisfiable instances.

Approximation resistant on satisfiable
instances, (Max-3-Sat).

2 Hard to do better than random mindless algorithm on
(almost) satisfiable instances.

Approximation resistant,
(Max-3-Lin).

3 Can beat random mindless algorithm as soon as optimal is
significantly better than random.

Fully approximable,
(Max-Cut).

4 Have an approximation constant better than achieved by
random mindless algorithm, but not in previous class.

Somewhat approximation resistant.
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Johan Håstad Efficient approximability of CSPs



Max-CSP
Semi-Definite programming

Inapproximability results
Classification

Classifying CSPs

1 Hard to approximate better than random mindless algorithm
on satisfiable instances. Approximation resistant on satisfiable
instances, (Max-3-Sat).

2 Hard to do better than random mindless algorithm on
(almost) satisfiable instances. Approximation resistant,
(Max-3-Lin).

3 Can beat random mindless algorithm as soon as optimal is
significantly better than random.

Fully approximable,
(Max-Cut).

4 Have an approximation constant better than achieved by
random mindless algorithm, but not in previous class.

Somewhat approximation resistant.
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Constraints of 2 variables

All such predicates are fully approximable, even over larger
domains.

Semi-definite programming is all powerful.
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Constraints of 3 variables

Approximation resistant iff we accept either all strings of even
parity or all strings of odd parity.

Fully approximable (class 3) iff un-correlated with parity of all
three variables.

Reduces to (real) sum of predicates on two
variables.

Other (nontrivial) cases belong to class 4.

Approximation resistance applies to satisfiable instances if accepts
at least 6 inputs.
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Unknown width 3

What happens with the “not two ones” predicate on satisfiable
instances.

Could we do better than random?

Not true for just (1− ε)-satisfiable instances!

Parity is different for satisfiable and almost satisfiable instances!
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Width 4

Partial classification by Hast.

400 essentially different predicates.

79 approximation resistant.

275 not approximation resistant.

46 not classified.

# Acc 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Non-res 1 4 6 19 27 50 50 52 27 26 9 3 1 0 0
Res 0 0 0 0 0 0 0 16 6 22 11 15 4 4 1
Unkn 0 0 0 0 0 0 6 6 23 2 7 1 1 0 0

Satisfiability ignored.
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Large width

General facts, assume width k

Accepts very few inputs, non-trivially approximable.

Exists rather sparse approximation resistant predicates.

The really dense predicates are approximation resistant.
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General result on sparse predicates

Any k-ary Boolean predicate can be approximated within ck2−k

[CMM].

No predicate with ≤ ck accepting configurations is approximation
resistant.

Uses semi-definite programming.
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Sparse resistant predicates

For any l1 and l2 there are predicates on k = l1 + l2 + l1l2 Boolean
variables that accept 2l1+l2 vectors and are approximation resistant.

Only 2O(
√

k) accepted inputs.
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Very dense predicates

If k ≥ l1 + l2 + l1l2 any predicate on k Boolean variables that
rejects fewer than 2l1l2 inputs is approximation resistant [Hast].

This is 2o(k) but still a reasonable number. For small k constants
can be improved.
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General fact?

It seems like the more inputs a predicate accepts the more likely it
is to be approximation resistant.

Approximation resistance is not a monotone property. Have
example P,Q,

P(x) → Q(x)

P approximation resistant.

Q not approximation resistant.
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Asymptotic question

For large k is a random predicate of Boolean variables
approximation resistant?

Probably ...
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Johan Håstad Efficient approximability of CSPs



Max-CSP
Semi-Definite programming

Inapproximability results
Classification

Unique games conjecture.

Made by Khot.

CSP of width 2 over large domains. Ci (xa, xb), for each value of xa

exists a unique value of xb to satisfy the constraint and vice versa.

Conjecture: Hard to distinguish (1− ε)-satisfiable from
ε-satisfiable.

True? A new complexity class?
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Consequences of UGC

Many, some central:

Constant αGW sharp for Max-Cut [KKMO].

Vertex Cover is hard to approximate within 2− ε [KR].

Optimal constant ≈ .9401 for Max-2-Sat [A].

Random predicates are approximation resistant [H].
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Summing up

We have a huge classification problem ahead of us.

NP-completeness of decision problem is almost universally true and
understood since the 1970-ies [S].

Approximation resistance on satisfiable instances means that
efficient computation cannot do anything. Much stronger notion of
hardness.

Open: Settle the unique games conjecture!

Most basic fact: Max-3-Sat is approximation resistant on
satisfiable instances.
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Johan Håstad Efficient approximability of CSPs



Max-CSP
Semi-Definite programming

Inapproximability results
Classification

Summing up

We have a huge classification problem ahead of us.

NP-completeness of decision problem is almost universally true and
understood since the 1970-ies [S].

Approximation resistance on satisfiable instances means that
efficient computation cannot do anything. Much stronger notion of
hardness.

Open: Settle the unique games conjecture!

Most basic fact: Max-3-Sat is approximation resistant on
satisfiable instances.
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