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Abstract

‘We show how to improve the dependence on the number of occurrences
of a variable when approximating CSPs. The result applies when the
interesting part of the predicate is odd and says that the advantage is
Q(D*1/2) if each variable appears in at most D terms.

1 History of this paper

The result of this paper was obtained independently but after the paper by
Barak et al [1]. The underlying ideas of the two proofs are essentially the same
but as this note was written and the presentations of [1] and this note are quite
different I decided to make a very primitive version of this note available to the
public. For a proper academic paper discussion of the problem and its history
we refer to [1].

2 The argument
Let the multilinear expansion of the objective function be
flz) = Z Jaz®

where each term is of degree at most k and each variable appears in at most D
terms. We have the following theorem.

Theorem 2.1 There is a constant dj, only depending on k such that in proba-
bilistic polynomial time it is possible to find an assignment x such

[f(@)] > dp D72 " | fal.

We suspect that the methods discussed in [1] are sufficient to derandomize
also the algorithm in the current paper.



Proof: We first give the algorithm.

1. Select a random set, S, of the variables by including each variable in S with
probability one half. For notational convenience we rename the variable
x; to y; if it is placed in S.

2. Select uniformly random values, y° for the variables of S. Let g(x) =
f(x,9°) be the induced function in the remaining variables.

3. Write g(z) = ¢°(y")+ X, zig" (y°) + G*(x, y°) where G? contains all terms
that remain at least degree two in the x-variables.

4. Find a suitable parameter ¢ and set x; to the sign of ¢*(y") with probability
(1+t)/2 for all ¢ independently.

5. If the value obtained is not large enough repeat from step 1.

We return how to find a suitable parameter ¢ later. Let us analyze this
procedure. We say that a set « is good if it contains exactly one element of S.
In expectation we have

E| > fal| =527 |fal.

« good

The good sets naturally fall in the classes V; where o € Nj if it contains only
x; of the variables not in S. It is not difficult to see that conditioned on the
first two steps the expected value of f(x,y°) is a degree k polynomial, Q(t). If
we let g denote the coefficient of the linear term we have q; = > |g*(y°)]. We
claim that
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for a constant c; depending only on k. Indeed the first inequality is just saying
llgill1 > ckllg:ll2 which is true as all LP-norms are comparable for degree k — 1
polynomials. The last step follows from Cauchy-Schwarz inequality as

> Ul < (Z 1>1/2 (Z f3>1/2<¢5(2 fz>m.
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As the union of all N; give all the good sets we conclude from (1) that
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It is easy to see that g1 < )_  |fa| and thus with probability at least %k2_kckD_1/2
we have 1
@ > k2 e DT Y D fal.
(0%
Now recall Markov brothers’ inequality which says that if P is a polynomial
of degree k then
max |P(t)| > ¢, P'(0),
e |P(1)] > ¢, P'(0)
where ¢), is an explicit and known constant. This implies that there is a value
of t such that that

1 - _
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Once 4 is chosen, the polynomial @ is completely explicit and hence it is
possible to find (a very good approximation of) the optimal ¢. In particular
it is possible, in polynomial time, to find a value of ¢ which satisfies |Q(t)| >
%k‘?‘kczckD_lm Yol fal- Setting dj, = ikQ‘kczck it is easy to see that the
algorithm succeeds with a good probability. .

Let us end with some brief comments. First observe that there are several
ways to choose a suitable . As one alternative one could use a uniformly random
t and use an inequality of the form then

EtE[—l,l]HP(t)” > ¢ P'(0),

which is clearly true for some value of ¢} even if I do not know a reference and
the best value for ¢]. As a further alternative [1] uses extrema of Chebychev
polynomials as a set of possible choices for ¢.

We might be interested in finding an assignment such that f(z) is large
and positive. If f is odd this is easy since we can simply negate an z giving a
large negative value. In the general case this is not possible and indeed, as also
observed in [1], this is a real problem as can be seen from the following example.

Let us take Max-Cut where we score 2 for cut edges and —2 for not cut
edges. Consider the complete graph on D + 1 vertices. We have the objective

function
—Qina:j = (fo) - (X:xi)2 <D+1
i>j i

and thus the global optimum is at most D 4+ 1. On the other hand the sum
of the absolute values of all coefficients is Q(D?) (and the global maximum of
the absolute value is also €(D?)). This implies that to get a general result
for arbitrary predicates that we can beat the trivial approximation ratio by an
additional term Q(D~'/?) we must use that fact the global maximum is large.
Thus something new is needed.
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