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Abstract

We show how to improve the dependence on the number of occurrences
of a variable when approximating CSPs. The result applies when the
interesting part of the predicate is odd and says that the advantage is
Ω(D−1/2) if each variable appears in at most D terms.

1 History of this paper

The result of this paper was obtained independently but after the paper by
Barak et al [1]. The underlying ideas of the two proofs are essentially the same
but as this note was written and the presentations of [1] and this note are quite
different I decided to make a very primitive version of this note available to the
public. For a proper academic paper discussion of the problem and its history
we refer to [1].

2 The argument

Let the multilinear expansion of the objective function be

f(x) =
∑

fαx
α

where each term is of degree at most k and each variable appears in at most D
terms. We have the following theorem.

Theorem 2.1 There is a constant dk only depending on k such that in proba-
bilistic polynomial time it is possible to find an assignment x such

|f(x)| ≥ dkD−1/2
∑
|fα|.

We suspect that the methods discussed in [1] are sufficient to derandomize
also the algorithm in the current paper.
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Proof: We first give the algorithm.

1. Select a random set, S, of the variables by including each variable in S with
probability one half. For notational convenience we rename the variable
xi to yi if it is placed in S.

2. Select uniformly random values, y0 for the variables of S. Let g(x) =
f(x, y0) be the induced function in the remaining variables.

3. Write g(x) = g0(y0)+
∑
i xig

i(y0)+G2(x, y0) where G2 contains all terms
that remain at least degree two in the x-variables.

4. Find a suitable parameter t and set xi to the sign of gi(y0) with probability
(1 + t)/2 for all i independently.

5. If the value obtained is not large enough repeat from step 1.

We return how to find a suitable parameter t later. Let us analyze this
procedure. We say that a set α is good if it contains exactly one element of S.
In expectation we have

E

 ∑
α good

|fα|

 = k2−k
∑
α

|fα|.

The good sets naturally fall in the classes Ni where α ∈ Ni if it contains only
xi of the variables not in S. It is not difficult to see that conditioned on the
first two steps the expected value of f(x, y0) is a degree k polynomial, Q(t). If
we let q1 denote the coefficient of the linear term we have q1 =

∑
|gi(y0)|. We

claim that

E
[
|gi(y0)|

]
≥ ckE

[
(gi(y

0))2
]1/2

= ck

(∑
α∈Ni

f2α

)1/2

≥ D−1/2ck
∑
α∈Ni

|fα|, (1)

for a constant ck depending only on k. Indeed the first inequality is just saying
‖gi‖1 ≥ ck‖gi‖2 which is true as all Lp-norms are comparable for degree k − 1
polynomials. The last step follows from Cauchy-Schwarz inequality as

∑
α∈Ni

|fα| ≤

(∑
α∈Ni

1

)1/2(∑
α∈Ni

f2α

)1/2

≤
√
D

(∑
α∈Ni

f2α

)1/2

.

As the union of all Ni give all the good sets we conclude from (1) that

E[q1] = E

[∑
i

|gi(y)|

]
≥ ckD−1/2E

 ∑
α good

|fα|

 ≥ k2−kckD
−1/2

∑
α

|fα|. (2)
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It is easy to see that q1 ≤
∑
α |fα| and thus with probability at least 1

2k2−kckD
−1/2

we have

q1 ≥
1

2
k2−kckD

−1/2
∑
α

|fα|.

Now recall Markov brothers’ inequality which says that if P is a polynomial
of degree k then

max
t∈[−1,1]

|P (t)| ≥ c′kP ′(0),

where c′k is an explicit and known constant. This implies that there is a value
of t such that that

|Q(t)| ≥ 1

2
k2−kc′kckD

−1/2
∑
α

|fα|.

Once y0 is chosen, the polynomial Q is completely explicit and hence it is
possible to find (a very good approximation of) the optimal t. In particular
it is possible, in polynomial time, to find a value of t which satisfies |Q(t)| ≥
1
3k2−kc′kckD

−1/2∑
α |fα|. Setting dk = 1

4k2−kc′kck it is easy to see that the
algorithm succeeds with a good probability.

Let us end with some brief comments. First observe that there are several
ways to choose a suitable t. As one alternative one could use a uniformly random
t and use an inequality of the form then

Et∈[−1,1][|P (t)|] ≥ c′′kP ′(0),

which is clearly true for some value of c′′k even if I do not know a reference and
the best value for c′′k . As a further alternative [1] uses extrema of Chebychev
polynomials as a set of possible choices for t.

We might be interested in finding an assignment such that f(x) is large
and positive. If f is odd this is easy since we can simply negate an x giving a
large negative value. In the general case this is not possible and indeed, as also
observed in [1], this is a real problem as can be seen from the following example.

Let us take Max-Cut where we score 2 for cut edges and −2 for not cut
edges. Consider the complete graph on D + 1 vertices. We have the objective
function

−2
∑
i>j

xixj = (
∑

x2i )− (
∑
i

xi)
2 ≤ D + 1

and thus the global optimum is at most D + 1. On the other hand the sum
of the absolute values of all coefficients is Ω(D2) (and the global maximum of
the absolute value is also Ω(D2)). This implies that to get a general result
for arbitrary predicates that we can beat the trivial approximation ratio by an
additional term Ω(D−1/2) we must use that fact the global maximum is large.
Thus something new is needed.
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