
The Discrete Logarithm Modulo a Composite
Hides O(n) Bits

J. H�astad,�A. W. Schriftyand A. Shamiry

Abstract

In this paper we consider the one-way function fg;N (X) = gX (modN),

where N is a Blum integer. We prove that under the commonly as-

sumed intractability of factoring Blum integers, all its bits are individ-
ually hard, and the lower as well as upper halves of them are simulta-

neously hard. As a result, fg;N can be used in e�cient pseudo-random

bit generators and multi-bit commitment schemes, where messages can

be drawn according to arbitrary probability distributions.

Warning: Essentially this paper has been published in Journal of

Computer and System Sciences and is hence subject to copyright

restrictions. It is for personal use only.

1 Introduction

A function f(x) is one-way if it is easy to compute but hard to invert. One-
way functions have numerous cryptographic applications in public-key cryp-
tosystems, pseudo-random bit generation, commitment schemes and so on.
Several explicit constructions of one-way functions have been suggested un-
der some plausible number-theoretic assumptions. One such candidate is the
exponentiation function fg;P (X) = gX (modP), where P is a prime and g

�Royal Institute of Technology, Stockholm, Sweden, supported by Swedish board for

technical development.
yDepartment of Applied Mathematics and Computer Science, Weizmann Institute of

Science, Rehovot 76100, Israel.

1

is a generator of Z�
P ([BM]). Its inverse is the discrete logarithm function,

for which no e�cient algorithms have been found. Another problem that is
considered to be highly intractable is that of factoring a number which is the
product of two large primes. Among the one-way functions that are based
on the di�culty of factoring are the RSA / Rabin functions ([RSA], [Ra]),
as well as the quadratic residuosity problem and its related root extracting
function ([BBS]).

An interesting property of one-way functions is the existence of hard bits
in the argument which cannot be computed by any family of polynomial-size
Boolean circuits with 1/2+1/poly probability of success. This notion was
extensively investigated in the early 1980's, culminating in proofs that some
speci�c bits in these number theoretic functions (usually the most signi�cant
or the least signi�cant O(logn) bits of the n-bit argument) are individually
hard ([BM], [ACGS], [BBS]), and that those O(logn) bits are also simulta-
neously hard ([LW], [ACGS], [VV]). All the subsequent e�orts to extend the
techniques to prove the individual or simultaneous security of O(n) bits in
these number theoretic functions failed.

Goldreich and Levin [GL] have shown that for every one-way function
there is a logarithmic number of one-bit predicates that are hard, given the
value of the function. Extending their result to prove that more bits are hard
without imposing any assumptions on the one-way function is conjectured
to be impossible, since a function may be one-way and still depend only on
a small fraction of its bits. Explicit constructions of one-way functions for
which all the bits are secure do exist, but they rely on the composition of
hard bits from many one-way functions (rather than on a single application
of a natural function, e.g. in the probabilistic encryption functions of [GM],
[BG]).

Besides its theoretical signi�cance, proving a one-way function to have
many simultaneously hard bits can improve the e�ciency of many crypto-
graphic schemes. Very recently Impagliazzo and Naor ([IN]) have introduced
an e�cient pseudo-random bit generator based on the combinatorial one-way
function corresponding to the subset sum problem. Their novel construction
makes it possible to obtain O(n) pseudo-random output bits from each ap-
plication of the function on random inputs, but does not necessarily imply
that the input bits of the function are individually or simultaneously hard,
leaving the problem of constructing a natural function with O(n) secure bits
open.

2

In this paper we consider the well known one-way function fg;N(X) =
gX (modN), where N is a Blum integer. We prove that under the sole
assumption that factoring Blum integers is di�cult, all its bits are individu-
ally hard, and the lower and upper halves of them are simultaneously hard.
As a result, fg;N can be used in e�cient pseudo-random bit generators with
O(n)-bit output per stage and in multi-bit commitment schemes, in which
the messages can be drawn according to arbitrary probability distributions.

The paper is organized as follows: In section 2 we give the various de�-
nitions and assumptions used. In section 3 we deal with the individual bits
security of fg;N and in section 4 with the simultaneous bit security. We
present some applications of our enhanced security results in section 5 and
discuss several extensions of our work in section 6.

2 Preliminaries

Let N = P �Q, where P , Q are distinct odd primes, and let n be the binary
size of N . Let Z�

N be the multiplicative group containing the elements in
[1; N] that are relatively prime to N . The order of an element g 2 Z�

N ,
ordN(g), is the smallest c � 1 such that gc = 1 (modN). We denote
maxg2Z�

N
fordN(g)g by ON . Clearly:

ON = lcm(P � 1; Q� 1) � (P � 1)(Q� 1)

2
:

We refer to any g as a generator despite the fact that no g can generate all
the elements in Z�

N for N which is the product of two odd primes.
De�nition: For a given g let G � Z�

N be the set of elements generated by
it, i.e.:

G = fZjthere exists X 2 Z�
N s:t: Z = gX (modN)g

Note that the number of elements in G equals ordN(g).
De�nition: Fix a constant k. A high order g is an element for which:

ordN(g) � 1

nk
� (P � 1)(Q� 1):

A careful counting argument, for which we gratefully acknowledge Noga Alon,
shows that a substantial fraction of the elements in Z�

N have high order:

3

Proposition 1:
Let P and Q be randomly chosen primes of equal size, N = P �Q with binary
size n, and g a randomly chosen element in Z�

N , then:

Pr
�
ordN(g) <

1

nk
� (P � 1)(Q� 1)

�
� O

�
1

n(k�4)=3

�

Proof:

Pr
�
ordN(g) <

1

nk
� (P � 1)(Q� 1)

�
�

Pr
�
ON <

1

nk0
� (P � 1)(Q� 1)

�
+Pr

�
ordN(g) <

1

nk�k0
�ON

�
; for every k0 � k:

We next use the following two combinatorial lemmas and by choosing k0 =
(k + 5)=3 the proposition follows.
Lemma 1.1: For randomly chosen primes of equal size, P and Q, let N =
P �Q and n = dlogNe.

Pr
�
ON <

1

nl
� (P � 1)(Q� 1)

�
� O

�
1

nl�3

�

Lemma 1.2: Let P be a randomly chosen prime of size m.

Pr
�
ordP (g) <

1

ml
� (P � 1)

�
� O

�
1

m(l�1)=2

�

Proof of Lemma 1.1: ON = lcm(P � 1; Q� 1) = (P � 1)(Q� 1)=gcd(P �
1; Q� 1). Hence to prove the lemma we need to show that:

Pr(gcd(P � 1; Q� 1) > nl) � O
�

1

nl�3

�

Let m = dn=2e denote the binary size of P and Q. Let X = 2m � 1.
We shall �rst examine the sum of the gcd of all pairs of m-bit numbers:P

X=2�R1;R2�X gcd(R1; R2). Obviously:

X
X=2�R1;R2�X

gcd(R1; R2) �
XX
b=2

1

b
� X

2

4
� logX � X

2

4

4

We are interested in R1; R2 of the form P � 1; Q � 1. As the density of
primes in the interval [X=2; X] is known to be O(X= logX) (by an extension
of Heath-Brown to the Prime Numbers Theorem [GK]), the lemma follows.

Proof of Lemma 1.2: Let g be an element in Z�
P . It is well known that

the order of any element of a group divides the order of the group, and that
the number of elements of order d is exactly �(d), where �(�) is the Euler
function. Thus, for any prime P of binary size m:

jfg : ordP (g) < 1

ml
� (P � 1)gj = X

djP�1; d< 1

ml
�(P�1)

�(d) � X
djP�1; d< 1

ml
�(P�1)

d

For any m-bit number Y , let F (Y) denote the sum of all the divisors of
Y that are smaller than 1=ml � Y , i.e. F (Y) =

P
djY;d<1=ml�Y d. We shall

�rst bound the sum of F (Y) over all m-bit numbers:
PX

Y=X=2 F (Y), with

X = 2m � 1. It is easy to see that any number d < X=ml is summed up as
a divisor at most 1 +X=(2d) times. Hence:

XX
Y=X=2

F (Y) � X
d� 1

ml
�X

�
X

2d
+ 1

�
� d = O

X2

ml

!

Note that for any P 2 [X=2; X]:

Pr
�
ordP (g) <

1

ml
� (P � 1)

�
� Pr

�
F (P � 1) � 1

ml0
�X

�
+

1

ml0
; for every l0 � l:

To estimate Pr
�
F (P � 1) � 1=ml0 �X

�
we use our bound on the sum of

F (Y) together with the fact that O(X= logX) of the Y 0s in the interval are
of the form P � 1. It is easy to see that:

Pr
�
F (P � 1) � 1

ml0
�X

�
� O(ml0�l+1)

By choosing l0 = (l � 1)=2, the lemma follows.

De�nition: Let g 2 Z�
N . The exponentiation modulo a composite function

is de�ned by:
fg;N(X) = gX (modN):

5

Its inverse, the discrete logarithm modulo a composite, is de�ned only for
Z 2 G by:

f�1
g;N(Z) = X;

for the unique X � ordN(g) s.t. Z = fg;N(X).
Note that while the values of fg;N range from 1 to N , f�1

g;N outputs only values
up to ordN(g) which is strictly smaller than N .

Following is a list of the assumptions that are used throughout this paper.
Unless otherwise mentioned, we shall assume that all these assumptions hold,
even though some of our results can be derived without some of them.
Assumption a.1: P and Q are of equal size.
This assumption is commonly used in cryptography, and is believed to strengthen
the intractability of factorization.
Assumption a.2: P = Q = 3 (mod 4).
If the assumption holds, every square in Z�

N has exactly one square root that
is also a square. Hence, squaring is a permutation of the quadratic residues.
The numbers N = P � Q for which both assumptions hold are called Blum
integers.
Assumption a.3: g is a quadratic residue.
We refer to any g for which assumption a.3 holds as an admissible generator.
Note that Proposition 1 holds even if we restrict N to be a Blum integer and
g to be an admissible generator.
Intractability assumption [Y]: No family of polynomial-size Boolean cir-
cuits can factor a polynomial fraction of the Blum integers.
Note: All our assumptions and results use the non-uniform approach to com-
plexity, i.e. are stated in terms of polynomial-size Boolean circuits. However,
most of them can be stated, without any changes, in terms of probabilistic
polynomial-time algorithms. The only case, where an adjustment is required,
is in the proof of Theorem 7, as indicated there.
De�nition: An admissible triplet (g, N , Z) is such that:
1. N is a Blum integer.
2. g is an admissible generator.
3. Z 2 G.
The collection of admissible triplets can be e�ciently sampled, i.e. it is
possible to pick a random admissible triplet using a polynomial amount of
resources (time, random bits).

A well known result ([Ba], [Ch]) is:

6

Theorem 2:
Under the intractability assumption, the exponentiation modulo a Blum in-
teger, fg;N(X), is a one-way function.
Proof:
We present the simple proof of this theorem as it demonstrates some of the
basic techniques that are crucial for our results. We establish that it is
possible to plant a short yet hard secret inside the argument of fg;N , and use
that fact extensively in the sequel.

De�ne Y = gN (modN) = fg;N(N). Let S = f�1
g;N(Y) = N � d � ordN(g),

where d is the largest multiple of ordN(g) for which S is non-negative. Let
jSj denote the binary size of S. The following key lemma proves that S is
extremely small:
Lemma 2.1:

jSj �
�
n

2

�
+ 1

Proof: It is well known that for any g 2 Z�
N : ordN(g)jON , and therefore

ordN(g)j(P � 1)(Q � 1). Assume now that ordN(g) > P + Q � 1 � 2
p
N .

In that case it is easy to see that (P � 1)(Q � 1) is the largest multiple of
ordN(g), which is still smaller than N : (P �1)(Q�1) < N , but (P �1)(Q�
1) + ordN(g) = N � (P + Q � 1) + ordN(g) > N . Therefore by de�nition:
S = N � d � ordN(g) = N � (P � 1)(Q� 1) = (P +Q� 1). For g such that
ordN(g) � P + Q � 1, we get S < ordN(g) � P + Q � 1, which completes
the proof of the lemma.

Assume that fg;N is not a one-way function, i.e. there exists a family C
of polynomial-size Boolean circuits that computes f�1

g;N(Z) successfully on a
non-negligible fraction of the Blum integers N , the generators g 2 Z�

N and
the elements Z 2 G. We use C to factor a non-negligible fraction of the
Blum integers, thus contradicting the intractability assumption. Let N be
some random Blum integer and g a random generator in Z�

N for which C
computes f�1

g;N(Z) successfully on a non-negligible fraction of Z 2 G. For
such N and g we use C to compute S by applying standard randomization
techniques on Y (i.e. trying out su�ciently many inputs to C of the form
Y � gR for an appropriate choice of a random R). Subsequently we try to
factor N using S: If ordN(g) > P +Q� 1 (which by Proposition 1 is likely
to happen), then S = (P + Q � 1). Hence, by solving the two equations:
S = P +Q� 1 and N = P �Q we get the full factorization of N .

Notations: For a number U let un:::u1 denote the binary representation of

7

U , with un being the most signi�cant bit and u1 being the least signi�cant
bit. Note that most signi�cant bit always refers to the n-th bit in the binary
representation, even when U ranges over a smaller interval of possible values.
A substring uk:::uj of un:::u1 (1 � j < k � n) will be denoted by ukj . We
use the notation f < O(�(n)) for any function that vanishes faster than
any polynomial, i.e. for every polynomial poly(n) and n large enough f <
1=poly(n).

3 The Hard Bits of fg;N(x)

De�nition H.1: The i-th bit of the function fg;N is hard if no family of
polynomial-size Boolean circuits can, given a random admissible triplet (g,
N , Z), compute the i-th bit of f�1

g;N(Z) with probability of success greater
than 1=2 + 1=poly(n), for any polynomial poly(n).
Note that we use the direct de�nition of hardness (as in [BM]) rather than
de�ning a bit to be hard if its approximation is as hard as computing f�1

g;N

(as in [LW]).
The above well known de�nition of hardness is valid only for unbiased

bits. However, proving the security of the O(logn) most signi�cant bits of
fg;N calls for a new de�nition of hardness for bits that are a-priori known to
be biased (and therefore can be trivially predicted with probability greater
that 1=2). Let xi be the i-th input bit of the function fg;N and denote its bias
towards 0 by b(i). Note that only for i � n�O(logn) the bias is signi�cantly
greater than 1=2, yet the de�nition we give is valid for any bias. In particular
it implies de�nition H.1 for non-biased bits (b(i) = 1=2). Following the work
in [SS1] we de�ne:
De�nition: The weighted success rate of any family C of polynomial-size
Boolean circuits in predicting xi is:

ws(C; xi) =
1

b(i)
�Pr(C(g;N; Z) = xijC = 0)+

1

1� b(i)
�Pr(C(g;N; Z) = xijC = 1)

To make the conditional probabilities well de�ned we must require C to be
non-constant, i.e. output 0 and 1 with probabilities greater than 0. As is
explained in [SS1] this does not detract from the generality of the de�nition,
since a constant circuit can only discover deviations from the overall bias.

8

De�nition H.2: The i-th bit of the function fg;N , xi, is hard if for every fam-
ily C of polynomial-size Boolean circuits that is given a random admissible
triplet (g, N , Z):

ws(C; xi) < 2 +O(�(n))

Theorem 3:
Under the intractability assumption, for every 1 � i � n the i-th bit of fg;N
is hard.
Proof:
Overview:
Suppose that for a certain i, the i-th bit is not hard. For non-biased bits
(i < n � O(logn)) by de�nition H.1 there exists a polynomial-size oracle
(circuit) C : (g;N; Z) ! f0; 1g, (where (g, N , Z) is an admissible triplet)
that succeeds with probability exceeding 1=2 + 1=nc, for some constant c, in
predicting the i-th bit of f�1

g;N(Z). As in Theorem 2 let Y = gN (modN).

We use the oracle to factor N , by computing all the bits of S = f�1
g;N(Y)

and following the reduction of Theorem 2. In the following we discuss the
general techniques and procedures that are implemented in performing the
extraction of S using C. Dealing with the most signi�cant (biased) bits of
fg;N , imposes several additional di�culties, that are of a less general nature.
This analysis of the hardness of the biased bits is given in full in the proof
of Proposition 3.4.

Intuitively, we can regard an oracle for the i-th bit as a one-bit window
into the i-th position in a long unknown sequence of bits. By moving the
sequence underneath the window, we can see everything in it. We therefore
need a method to shift the unknown S to the right and to the left, by oper-
ating on the known Y . We should be careful not to cause a wraparound (i.e.
a reduction of the shifted S modulo the unknown ordN(g)), by zeroing some
known bits of S while operating on Y . The shifts to the left result essentially
from squaring Y . We cannot perform the shifts to the right by extracting
square roots of Y , since that cannot be done in polynomial time when the
factorization of N is unknown. Instead we develop a special technique by
which the right shifts result from changing the base g of the exponentia-
tion function, and using the fact that squaring modulo a Blum integer is a
permutation over the (randomly chosen) admissible generators.

As the oracle may err, one peek through the window in not enough.
We 'collect votes' on the value of the i-th bit by querying the oracle on

9

polynomiallymany randommultiples of the original input, and use a majority
vote to decide the value. To perform this randomization we have to guess an
estimate of the unknown ordN(g) as an upper bound on the random choices,
thus preventing the occurrence of a wraparound. Since the multiplication
involves the addition of the known exponent of the random value with the
unknown argument of fg;N , we should handle with care the unknown carry
into the i-th bit position from the addition of their least signi�cant i�1 bits.
We solve the problem by guessing the value of a logarithmic number of bits
right to the i-th bit and zeroing them. A straightforward implementation of
this guessing strategy for each bit position leads to an exponential algorithm,
but a more careful implementation can make sure that only a polynomial
number of candidates for the value of S exist.

We begin the proof with a detailed description of the bit-zeroing, shifting
and randomization techniques, which provide us with the necessary tools for
extracting S. We then separate the proof into four possible cases and show:

1. The middle bits (dn=2e � O(logn) � i � dn=2e + O(logn)) are hard
(Proposition 3.1).

2. Every bit to the right of the middle (1 � i � dn=2e�O(logn)) is hard
(Proposition 3.2).

3. Every non-biased bit to the left of the middle (dn=2e+O(logn) � i �
n� O(logn) is hard (Proposition 3.3).

4. The O(logn) most signi�cant bits of fg;N are hard (Proposition 3.4).

The actual extraction of S in this theorem involves two possible proce-
dures. The simpler is the Forward-Extract procedure, where the unknown
bits of S are computed from the right (least signi�cant) to the left. The
more complicated is the Backward-Extract procedure, where the bits are
discovered from the left to the right. We describe both procedures in de-
tail while proving Proposition 3.1. We use a simpli�ed version of procedure
Forward-Extract in the proof of Proposition 3.2. A very careful application
of procedure Backward-Extract is required for the proofs of Propositions 3.3
and 3.4.

Assumptions a.2 and a.3 on P , Q and g are required to enable performing
the general right shifts technique that we develop. However, as we shall

10

demonstrate, the use of this technique is necessary only when the oracle is
located to the right of the middle. As a result Propositions 3.1, 3.3 and 3.4
can be strengthened to hold without assumptions a.2 and a.3.

We shall henceforth assume that the randomly chosen g is of high order
and perform our analysis accordingly. More speci�cally we assume that:

ordN(g) � 32

n4c+4
� (P � 1)(Q� 1)

The probability that g is not of high order is by Proposition 1 O(1=n4c=3))
and since the oracle has an overall 1=nc advantage in predicting correctly
the i-th bit of fg;N (for any g), by our choice of the order it has at least a
1=2nc advantage in predicting correctly the i-th bit for high order g's. For
notational simplicity let � = 4c+ 4. We express most quantities in terms of
�, even when smaller quantities can be used.

In many of our procedures we need a fairly accurate guess on the order
of g. Since all we need is a logarithmic number of signi�cant digits we
can try all possibilities and still remain polynomial time. Let on:::o1 be the
binary representation of ordN(g) and let om be the leftmost non-zero bit of
ordN(g). We assume from now on the we know the value of m and of om�j

for j = 1; : : : ; d� logne.
Main Techniques:
Let V = fg;N(U), for U � ordN(g). Note that uj = 0 for m+ 1 � j � n.
Bit-Zeroing Technique:
The operation of zeroing a known j-th bit of U (while operating on V) is
denoted by ZRj(g; V). It is easy to see that:

ZRj(g; V) = V � g�uj�2j�1

(modN)

Shifting Techniques:
Shifting to the left: Assume we are guaranteed that um = 0, and we know
um�1. We shift the sequence of bits um�1:::u1 one bit to the left, while zeroing
the new m-th bit of the shifted U , by using the knowledge of m and um�1

to transform V into (ZRm�1(g; V))
2 (modN). We cancel um�1 to prevent

the shifted value of U from becoming greater than ordN(g) and causing an
overow, which will entirely change the value of U by subtracting from it
ordN(g). As ordN(g) and therefore m are unknown, we have to guess the
value of m as indicated above.

11

Shifting to the right: We can shift the sequence of bits representing U
one bit to the right, with the known least signi�cant bit falling o�, by trans-

forming V into
q
ZR1(V) (modN), under an appropriate choice of one of

the four possible square roots. However, square roots modulo N cannot be
e�ciently computed without knowledge of the factorization of N , so we have
to compute it in an indirect way.

Assume now that g was not arbitrarily chosen, but created by squar-
ing mod N another admissible generator g0. Let V 0 = fg0;N(U): Using the
knowledge of V 0 and of the least signi�cant bit of U we get:

shifted U = f�1
g;N(ZR1(g

0; V 0))

As V 0 depends on U , if U is unknown V 0 is also unknown. However, since
we only use the technique to obtain shifts of S = f�1

g;N(Y) for Y = fg;N(N),
it is easy to derive Y 0 = fg0;N(S) via Y

0 = fg0;N(N).
Observe that we only use g0 to calculate square roots. All the queries to

the oracle are with respect to the same original g.
We can use this method to perform a bounded number of shifts to the

right. In order to perform at most k shifts to the right, we prepare in advance
the sequence: fgjgk+1

j=0 , where gj = g2j�1 (modN), and use g = gk+1 as the
base of the exponentiation function. Since squaring is a permutation of the
quadratic residues modulo a Blum integer N , a random choice of g0 will
produce a random admissible g for any k.
Randomization Technique:
We perform the randomization by querying the oracle on t(n) = n2c+3 inputs
of the form: (g, N , V � gR) for randomly chosen n-bit R = rn:::r1 such that
0 � R < ordN(g). We then determine the value of ui by a majority vote.
Two main problems arise:

1. Despite our knowledge of R, we cannot know whether a carry from
the addition of the i � 1 least signi�cant bits of the known R and the
unknown U e�ects the i-th bit of the sum, and thus we cannot infer
ui from the answers of the oracle for the i-th bit. If, on the other
hand, we were guaranteed that ui�1:::ui�d� log ne = 000:::0, we could dis-
card the possibility of a carry except in the low probability event that
ri�1:::ri�d� log ne = 111:::1 (whose probability is at most 1=n�). As the
actual values of ui�1:::ui�d� logne are unknown, we try out all their (poly-
nomial number of) possible values. For each value we act as if it was

12

the correct value, zero it and compute the unknown bit ui accordingly.
Our procedures for the extraction of S make sure that the ambiguity
concerning its value remains polynomial, so that an exhaustive search
can �nd the correct value.

2. As the exact value of ordN(g) is unknown and cannot be computed in
polynomial time, we use an approximation e = en:::e1 of ordN(g) to
enable a su�ciently random choice of R:

ej =
�
oj for m� d� logne � j � n
0 otherwise

Proposition 3.1:
Under the intractability assumption, for every i : dn=2e � O(logn) � i �
dn=2e+O(logn) the i-th bit of fg;N is hard.
Proof:
Assume that for some dn=2e�O(logn) � i � dn=2e+O(logn), the i-th bit is
not hard. We extract the half-sized secret S by using the following method:
The Forward-Extract Procedure:

1. Shift S dn=2e�d� logne bits to the left. This will not cause a wraparound
by our assumption on the order of g. For each of the (polynomial num-
ber of) guesses of the i � dn=2e + d� logne least signi�cant bits of S,
which have not passed under the oracle's location, do the following
stages. (For i < dn=2e � d� logne there is no need to guess any bits.
See the proof of Proposition 3.2 for further discussion).

2. Zero these guessed bits to prevent any carry into the oracle's location
during the randomization.

3. Let Y 0 denote Y after the transformations of previous stages. Let sj be
the bit that is currently at the oracle's location. Deduce sj by querying
the oracle on t(n) random multiples Y 0 �gR (modN), for random R < e
(see previous discussion of randomization technique), and zero it.

4. Shift S one bit back to the right, placing sj+1 at the oracle's location.
The right shifts may be performed directly since S is located to the left
of its original location. (See the following note.)

13

5. Repeat stages 3-4 until S reaches its initial position, to extract all bits,
sj, for
maxfi� dn=2e + d� logne; 1g � j � i.

6. For i < dn=2e + 1 guess the dn=2e + 1 � i leftmost non-zero bits of S
that have not passed under the oracle's location.

7. Output the values obtained for S.

The correct value of S among the resulting candidates from the procedure is
chosen by trying to factor N with each computed S.
Note: The shifts to the right in the above procedure move S back at most
to its initial position but not further to the right. Therefore it is possible to
perform the right shifts directly without using the general shift to the right
technique. An e�cient implementation of these right shifts involves saving
the intermediate results of the initial shifts to the left and reusing them. The
same holds also for all the other procedures that are used when the oracle is
located left to the middle. For this reason, Propositions 3.1, 3.3 and 3.4 can
be strengthened to hold without assumptions a.2 and a.3, as we have already
indicated.

The following scheme illustrates the position of S during the procedure,
given an oracle for the (dn=2e + 1)-th bit. We denote an unknown value
of a bit by a question mark. All bits that are known a-priori to be zero
are denoted by a zero. Bits of S that were discovered or assigned values
and subsequently zeroed are denoted by an exclamation mark. The oracle's
location is indicated by a box.

14

Before the procedure begins:

After stages 1,2:

During the procedure (stages 3-6):

Finally:

... ! 0 ...

... 0 ? ! 0 ...

.. 0 ? ! 0 ...

... ? ... ! ... 0 ...0

d� logne- �

... ? 0 ...

..

..

.

It is not di�cult to show that:

Claim 1.1: The procedure yields at most 2ji�dn=2e+1j�2d� log ne = nO(1) possible
values for S.

This follows since each set of guesses for the least signi�cant bits of S (and
at times some left non-zero bits of S) yields a unique value for S.

Claim 1.2: With probability greater than
(1=nc) one of the output values
is the correct value of S.

Proof: Consider the following two conditions:

1. For the particular choice of N and g, the probability (over R) that the
oracle gives the correct answer is at least 1=2 + 1=2nc.

2. The order of g is at least N=n�.

We claim that whenever these two conditions are satis�ed a correct value of
S will be derived with a probability that is exponentially close to 1. We leave
this routine veri�cation to the reader.

Now observe that since the overall probability that the oracle is correct
is 1=2 + 1=nc the probability (over g and N) that 1. will happen is at least
1=2nc. On the other hand by Proposition 1 we know that the probability of
2. not happening is at most 1=n4c=3 and the claim follows.

15

Claim 1.3: The above procedure can be used to factor a non-negligible
fraction of the Blum integers with an overwhelming probability of success,
by trying random admissible g's.

This follows from the two other claims.

We now present the Backward-Extract procedure. In this procedure the
bits of S are discovered from the most signi�cant bit to the least signi�cant
bit. The main property of the procedure, which makes it essential for the
proofs dealing with the left bits, is that at any stage of its application all the
bits left to the oracle's location are known. The current procedure is appli-
cable only when the oracle's location is logarithmically close to the middle
but can be modi�ed to work for all bits to the left of the middle (see the
proofs of Propositions 3.3 and 3.4).

Let �i = minfdn=2e+1; ig, and let � denote concatenation. Following is a
description of the Backward-Extract procedure:
The Backward-Extract Procedure:

1. For i > dn=2e + 1 shift S i� dn=2e � 1 bits to the left.

2. Create a list L1 of the possible candidates for s�i based on any guess of
the d� logne right bits that are adjacent to it. For all possible guesses
k = 0; :::; 2d� log ne of the bits s�i�1:::s�i�d� log ne, do:

(a) Zero these guessed bits (with the original Y transformed to Y 0
k)

(b) Query the oracle on t(n) random multiples Y 0
k � gR (modN), for

random R < e.

(c) Use a majority vote to deduce the current guess for s�i and denote
it by CS1

k .

3. Let s�i�j be the bit that is currently evaluated. Shift S j bits to the left
placing s�i�j at the oracle's location. Unlike the general shift to the left
technique, perform the left shifts without zeroing the discovered bits.
Let Y j denote the resulting Y .

4. Let Lj be the list containing the candidates values for the j left bits
of S: CSj

0,...,CS
j
2d� log ne. Create a new list Lj+1, which will include

candidate values for s�i�j too. For all possible values k = 0; :::; 2d� logne

do:

16

(a) If CSj
k exists in the list Lj, then in CSj

k s�i�j+1 was determined

according to the guess k = k
d� log ne
1 of s�i�j:::s�i�j�d� log ne+1. Try a

value b for s�i�j�d� log ne. Let v = k
d� log ne�1
1 �b be the current guess

for s�i�j�1; :::; s�i�j�d� log ne.

(b) Zero s�i�j�1; :::; s�i�j�d� log ne according to v, transforming Y j into
Y j
v . Deduce s�i�j by querying the oracle on t(n) random multiples
Y j
v � gR (modN), for R < e.

(c) Check whether the resulting value of s�i�j equals kd� log ne, i.e. the

value that has been assigned to that bit while creating CSj
k. If so,

enter the value CSj+1
v = CSj

k � s�i�j into Lj+1.

(d) Repeat previous stages with s�i�j�d� log ne = 1� b.

5. Repeat stages 3-4 to extract all bits, s�i�j, maxfi+ d� logne � dn=2e�
1; 1g � �i� j � �i.

6. For i < dn=2e+1 guess the dn=2e+1�i leftmost non-zero bits of S that
have not passed under the oracle's location. For i > dn=2e+1�d� logne
guess the i + d� logne � dn=2e � 1 rightmost bits of S that have not
passed under the oracle's location.

In the above process we initially create a list L1 of the possible candidates
for s�i based on any guess of the d� logne right bits that are adjacent to it. As
we proceed, we create a new list Lj containing the candidate values for the j
left bits of S out of the existing list Lj�1, by following stage 4. From a rough
analysis of the procedure it seems possible for each candidate value CSj

k to be
extended in two di�erent ways (by concatenating both s�i�j = 0 and s�i�j = 1
to its right). This seemingly doubles the length of the list in every stage
and causes an exponential blow-up in the number of candidate values. In
fact every candidate value CSj

k is uniquely de�ned in terms of j and k: We
perform the left shifts without zeroing the bits that were discovered, and all
the di�erent trials for the evaluation of s�i�j are done on the same transformed

value of Y , Y j. Thus a certain candidate CSj+1
v (with v = k

d� log ne�1
1 � b) can

be generated either from candidate value CSj
k with kd� log ne = 1 or from a

candidate value with kd� log ne = 0 but not from both, since we use the guess
v to determine explicitly the value of kd� log ne = s�i�j and thus evaluate the

guess k. Repeating this argument we see that each string CSj
k has a unique

17

extension to the right. It is therefore easy to see that claims 1.1-1.3 hold for
the Backward-Extract procedure as well.

Observe that it is crucial to this uniqueness argument that we do not zero
the bits that have passed under the oracle's location.

The following scheme illustrates the position of S during the procedure,
given an oracle for the (dn=2e + 1)-th bit (i.e. �i = dn=2e + 1). We denote
an unknown value of a bit by a question mark. All bits that are known
a-priori to be zero are denoted by a zero. Bits of S that were discovered or
assigned values are denoted by an exclamation mark. The oracle's location
is indicated by a box.
Before the procedure begins:

After stages 2:

During the procedure:

Finally:

!

!

!

!

... ! 0 ...0

... 0 !?. ... 0 ...

.. 0 ! ? 0 ...

... 0 ? ...

d� logne- �

... ? 0 ...

..

..

.

Proposition 3.2:
Under the intractability assumption, for every i : 1 � i � dn=2e � O(logn),
the i-th bit of fg;N is hard.
Proof

Assume that for some 1 � i � dn=2e � O(logn), the i-th bit is not hard.
For all cases where i < dn=2e � d� logne we use a simpli�ed version of
procedure Forward-Extract. (Otherwise Proposition 3.1 still holds). As we
shift S i bits to the left (stage 1 of Forward-Extract, where i substitutes the
(dn=2e�d� logne)-shift), we know that all the i�1 least signi�cant bits are 0.

18

We can therefore extract the successive bits of S, by repeatedly performing
stages 3-4 of procedure Forward-Extract for all bits sj, 1 � j � dn=2e + 1.
In this simpli�ed version we need not try out all possible values of the least
signi�cant bits of S, whereas in Proposition 3.1 some of the bits of S remain
to the oracle's right after the initial shift so that an exhaustive search cannot
be avoided.

To make the right shifts possible (after the �rst i shifts which merely
move S back to its original position, but leave dn=2e � i+ 1 of the bits of S
unknown) we must use the general right shift technique. We choose a random

g0, create fgigdn=2e�i+2
i=0 with gi+1 = g2i (modN) and use g = gdn=2e�i+2 as

the base of the exponentiation function. Since by assumption a.2 squaring
is a permutation over the admissible generators, randomly choosing g0 will
result in a random g, thus ensuring that the oracle is correct for g with a
non-negligible probability. By the same arguments as before we get:

Claim 2.1: The Simpli�ed Forward-Extract procedure yields a single value
for S.

Claim 2.2: With probability at least
(1=nc) the value output is the correct
value of S.

Claim 2.3: The procedure can be used to factor a non-negligible fraction
of the Blum integers with an overwhelming probability of success, by trying
random admissible g0's.

Proposition 3.3:
Under the intractability assumption, for every i : dn=2e + O(logn) � i �
n� O(logn) the i-th bit of fg;N is hard.
Proof:
Assume that for some dn=2e + O(logn) � i < n � O(logn), the i-th bit
is not hard. Again we use the answers of an oracle for that i-th bit to
derive S and subsequently factor N . For non-extreme left bits (i.e. for
dn=2e � i � (1 � ")n, for any constant ") it is possible to use the Forward-
Extract procedure to extract successive "n-bit blocks of S, as demonstrated
in [SS2]. This method cannot be extended to arbitrary left i's. Instead we
must use the Backward-Extract procedure.

Our �rst presentation of the Backward-Extract procedure was for an or-
acle located at the middle. We performed the left shifts without zeroing the
recently discovered bits and ensured (by limiting the amount of left shifts
that were performed) that this did not cause an overow. In some cases this

19

limitation required us to guess a logarithmic number of bits of S. In this
proposition the oracle is located in an arbitrary left location so that limiting
the amount of left shifts (as done in Proposition 3.1) will leave many (too
many to guess) bits of S unseen by the oracle. Here we must perform the left
shifts as in the general shift to the left technique and zero some bits. This
makes it no longer clear that the length of the lists Lj, containing the candi-
date values for the j left bits of S, does not grow exponentially, and hence we
need a new way of trimming the list. Let l1; :::; l� denote the elements of the
list Lj ordered from the largest l1 to the smallest l�. (Note that each number
in the list is smaller than 2j � 1.) We shall demonstrate how to handle the
list in such a way that at every stage j of the Backward-Extract procedure
it is still the case that l1 � l� � 2d� log ne. To do this we show how to trim Lj

whenever 2d� log ne < l1 � l� � 2d� log ne+1.
The key idea of the trimming is to check a certain bit of another secret

S 0, which is de�ned by:

S 0 =

&
22d� log ne

l1 � l�

'
� (S � l� � 2dn=2e+1�j)

De�ne the crucial position by cp = dn=2e� j+2d� logne+1 (its importance
will soon be evident). We now make two observations, which lead us to the
following rule by which we trim Lj:
Trimming Rule: Shift S 0 i� cp bits to the left. Deduce s0cp by querying the

oracle on t(n) random multiples gshiftedS
0 � gR (modN), for R < e. If s0cp = 1,

discard the candidate value l� from the list Lj. Otherwise discard l1 from
that list. Repeat until you reach a list in which l1 � l� � 2d� log ne.

20

Observations:

1. If the candidate value l� indeed contains the j leftmost non-zero bits
of S, then 0 � S 0 � 2d� log ne � 2dn=2e+1�j. In particular s0cp = 0, and also
s0cp�1:::s

0
cp�d� log ne = 0:::0.

2. If the candidate value l1 indeed contains the j leftmost non-zero bits of
S, then S 0 = 22d� log ne+dn=2e+1�j + � where 0 � � � 2d� log ne � 2dn=2e+1�j .
Therefore: s0cp = 1, s0q = 0 for q > cp, and also s0cp�1:::s

0
cp�d� log ne = 0:::0.

These two observations together with a standard sampling argument im-
ply that with high probability we will never discard a correct value and hence
by similar arguments as before we can prove:

Claim 3.1: Procedure Backward-Extract combined with the Trimming Rule
yields at most 2d� log ne possible values for S.

Claim 3.2: With probability greater than
(1=nc) one of the output values
is the correct value of S.

Claim 3.3: Procedure Backward-Extract combined with the Trimming Rule
can be used to factor a non-negligible fraction of the Blum integers with an
overwhelming probability of success, by trying random admissible g's.

Proposition 3.4:
Under the intractability assumption, the O(logn) most signi�cant bits of
fg;N are hard.
Proof:
First let us observe that if the bias of the bit in question is at most 1

2
n�c

(i.e. the probability of the bit being 1 is in the interval [1�n
�c

2
; 1+n

�c

2
]) then

the methods of Proposition 3.3 will work. (We leave this veri�cation to the
reader). Thus we will assume that the bias is at least 1

2
n�c and in particular

m � i � c logn + 1, where m is the location of the leftmost non-zero bit in
ordN(g). Also note that when the bias of the bit is exponentially close to 1
(which is the case for i > m), this bit is trivially hard by de�nition H.2.

Assume that for some m� c logn� 1 � i � m the i-th bit is not hard by
de�nition H.2. We will use the same outline of the reconstruction of S as in
Proposition 3.3, i.e. we will use the oracle to determine if the shifted S 0 is a
number of the form � or 2i�1+� where 0 < � � 2i�1�d� log ne (if it is of neither
form we do not care what happens). Problems arise since it is no longer true
that asking the oracle questions about numbers of the form R+ shifted S 0

21

for a randomly chosen R between 0 and e will allow us to distinguish the two
cases.

By [SS1] the fact that there is an oracle for which the weighted success
rate is signi�cantly greater than 2 (proving the bit to be weak by de�nition
H.2) implies that there is another oracle for which the probabilities of correct
1-answers and of erroneous 1-answers signi�cantly di�er. For this oracle C
there exists some constant c such that:

jPr(C = 1jxi = 1)� Pr(C = 1jxi = 0)j � 1

nc

Let I be the entire interval [0; e] and for any interval J let P1(J) the
fraction of 1-answers the oracle gives on J . Let J + a denote the interval J
shifted a. For natural reasons we will be working modulo e. We will need
the following key lemma:

Lemma 4.1: If we know an interval J of length at least d such that jP1(J)�
P1(J + 2i�1)j � 20d�12i�1�d� log ne then we can recover S.

Proof: Assume without loss of generality that P1(J) � P1(J + 2i�1) �
20d�12i�1�d� log ne. We will use the same procedure as in Proposition 3.3.
The only di�erence is that instead of choosing a random R < e we will
choose a random R in J . We need only to check that the oracle will be
able to distinguish the two extreme cases. If l1 contains the correct left-
most non-zero bits of S then the shifted S 0 is of the form 2i�1 + � where
0 � � � 2i�1�d� log ne. Thus when we choose R from J , R + shifted S 0 lies
in an interval whose symmetric di�erence with J + 2i�1 is of size at most
2i�d� log ne. Thus the expected fraction of 1-answers in this case is at most
P1(J + 2i�1) + 1

d
2i�d� log ne. Similarly we get that if l� contains the correct

value for the left bits of S then we will get the answer 1 with probability at
least P1(J)� 1

d
2i�d� log ne. By assumption we can tell these two cases apart if

we sample n � (P1(J)� P1(J + 2i�1))
�2

times.

The proof will in fact proceed by identifying a polynomial number of
intervals such that Lemma 4.1 will be true for one of these intervals. This
interval can then be identi�ed by sampling and then used in the Trimming
Rule.

Divide I into K = b e
2i�1 c + 1 intervals I1; I2 : : : IK where Ij = [(j �

1)2i�1; j2i�1] for j < K and IK = [(K � 1)2i�1; e]. We have two cases:

22

1. There is a j < K � 1 such that jP1(Ij)� P1(Ij+1)j � n�c

20K
.

2. There is no such j.

In case 1 we are done by Lemma 4.1 (since K is only polynomially large)
and we only have to worry about case 2. The failure of 1 implies that there
is a q such that for all j < K, jP1(Ij)� qj � n�c

20
. To get the stated di�erence

in the overall behavior of the oracle we need jP1(IK)� qj � 4�2i�1

5jIK jnc
(the sign

depending on the parity of K). Observe that this implies jIKj � 4�2i�1

5nc
. Now

consider the intervals IjK = IK + j2i�1 for 0 � j � T , where T = d en2c
jIK j

e. We

shall now prove that these intervals cover I very nicely. In particular I
2(K�1)
K

has a common border with IK�1
K which on its other side has I0K = IK: Let fa

be the number of intervals of the form IjK, 0 � j � T that a point a belongs
to.
Lemma 4.2: For any two points a1 and a2 we have jfa1 � fa2 j � 2.
Proof: Since we are working modulo e we are basically on the circle and
we have no problems with the border. The size of the circle is e which by
de�nition equals (K � 1)2i�1 + jIKj. We establish the lemma by using the
following two claims:
Claim 4.3: If a1 � a2 mod 2i�1 then jfa1 � fa2 j � 1.
Claim 4.4: If a2 < a1 < a2 + 2i�1 then fa1 � fa2 � 1.
The lemma clearly follows from these two claims.

To see the �rst claim assume that a1 = a2 + k2i�1 where 0 < k < K � 1.
Then it is true that a2 2 Ij0K i� a1 2 Ij0+kK and since it is not hard to see that
neither of the points is in the intermediate intervals the claim follows.

For the second claim, suppose that a1 2 Ij0K . Then we claim that a2 2
Ij0+kK for some k of the form l(K � 1) and that a1 62 IjK for j0 < j < j0 + k.
This is clearly su�cient to establish the original claim. To see this later
claim, observe that Ij0+K�1

K has its right endpoint coinciding with the left

endpoint of Ij0K and in general I
j0+l(K�1)
K has its right endpoint coinciding

with the left endpoint of I
j0+(l�1)(K�1)
K . Thus the �rst l for which the left

endpoint of I
j0+l(K�1)
K is to the left of a2 is the desired interval. To see that

a1 does not belong to any of the intermediate intervals, observe that the only
IjK to which it could belong are of the form j = j0 + l(K � 1) + 1. However
if a1 belongs to I

j
K then the left endpoint of Ij�1

K is already to the left of a2
and hence we have established the claim.

23

Examining the new division of I into T intervals IjK , that we have de�ned,
we again have two cases:

1. There is a j such that j < T such that jP1(I
j
K)� P1(I

j+1
K)j � n�c

20T
.

2. There is no such j.

In case 1 we are again done by Lemma 4.1 (T is large but still polynomially
bounded) and all that remains is to prove that 2 cannot happen. The fact
that no j satisfying 1 exists implies that jP1(I

j
K) � P1(IK)j � n�c=20 for

all j. Now consider P1(I): It is a weighted average of the P1(Ij) and thus
j(P1(I)�qj � 1

2
jP1(IK)�qj+n�c=20 (using the assumption that jIKj � 1

2
jIj).

On the other hand by Lemma 4.2 if we pick a random j and then pick a
random point from IjK then each point is picked with a probability that is
within a factor (1 + 2

n2c
) of the probability it would have been picked by the

uniform distribution. This fact implies

jP1(I)� 1

T

T�1X
j=0

P1(I
j
K)j �

2

n2c

which together with the assumption that we are in case 2 implies

jP1(I)� qj � jP1(IK)� qj � 2

n2c
� 1

20nc

and we have reached a contradiction which completes the proof of Proposition
3.4.

4 The Simultaneously Hard Bits of fg:N

In the following section we de�ne the strong notion of simultaneous security,
which states that it is computationally hard to succeed in computing any
information whatsoever about groups of bits of fg;N . We then show that fg;N
is indeed secure in that sense.
De�nition: pkj : [1; N] ! f0; 1gk�j+1 is the function pkj (U) = uk:::uj, with
k > j.
De�nition H.3: The bits of fg;N at locations j � i � k are simultaneously
hard, if (pkj (f

�1
g;N(Z)); Z) is polynomially indistinguishable from (rkj ; Z) for

randomly chosen admissible (g, N , Z) and a random R = rn1 .

24

De�nition H.4: A non-biased i-th bit, j � i � k, of the function fg;N is
relatively hard to the right (to the left) if no family of polynomial-size Boolean
circuits can, given a random admissible triplet (g, N , Z) and in addition the
i� k (j � i respectively) bits of f�1

g;N(Z) to its right (left), compute the i-th

bit of f�1
g;N(Z) with probability of success greater than 1=2 + 1=poly(n), for

any polynomial poly(n).
De�nition H.5: The i-th bit, j � i � k, of the function fg;N , xi, is relatively
hard to the right (to the left) if for every family C of polynomial-size Boolean
circuits which is given a random admissible triplet (g, N , Z) and in addition
the i � k (j � i respectively) bits of f�1

g;N(Z) to its right (left): ws(C; xi) <
2 +O(�(n)).
Proposition 4:
The following conditions are equivalent:
1. The bits of fg;N at locations j � i � k are simultaneously hard.
2. Each bit j � i � k of f�1

g;N(Z) is relatively hard to the right.

3. Each bit j � i � k of f�1
g;N(Z) is relatively hard to the left.

Proof:
The proof of this equivalence for non-biased bits is basically the well known
proof of the universality of the next bit test [Y]. Let us give an outline of this
proof. Assume that the bits are not simultaneously hard. Then, in particular
there exists a distinguisher, D, for which (w.l.o.g.):

Pr(D(pkj (f
�1
g;N(Z)); g; N; Z) = 1)� Pr(D(rkj ; g; N; Z) = 1) � ";

for some non-negligible ", with the probability taken over the random choices
of g, N , Z and rkj . Let:

pi = Pr(D(pj+i�1
j (f�1

g;N(Z)) � rkj+i; g; N; Z) = 1)

pi = Pr(D(rk�ij � pkk�i+1(f
�1
g;N(Z)); g; N; Z) = 1)

Where strings of negative length are null.
Clearly:

pk�j+1 = pk�j+1 = Pr(D(pkj (f
�1
g;N(Z)); g; N; Z) = 1)

Also:
p0 = p0 = Pr(D(rkj ; g; N; Z) = 1)

By the pigeonhole principle there exist i1 and i2 for which pi1 � pi1�1 � "=n
and pi2 � pi2�1 � "=n. For each case we construct an oracle which proves the

25

corresponding bit to be relatively weak either to the right or to the left. The
well known technique of constructing these oracles is explained in [BH] and
is therefore omitted.

For biased bits, where de�nition H.5 should be used, the proof of this
equivalence is given in [SS1] and is also omitted.

Theorem 5:
Under the intractability assumption, the dn=2e+O(logn) right hand bits of
fg;N are simultaneously hard.
Theorem 6:
Under the intractability assumption, the dn=2e + O(logn) left hand bits of
fg;N are simultaneously hard.
Proof of Theorem 5:
It su�ces to show that every right hand bit of fg;N is relatively hard to the
right by de�nition H.4. In general, even if each bit is individually hard, it
does not immediately imply the simultaneous hardness of all bits: In order
to use an oracle for a relatively weak to the right i-th bit, all the i� 1 least
signi�cant bits of the unknown value must be supplied too, a very hard task
in general. However, careful analysis of the Forward-Extract procedure shows
that such a task is possible.

Let X = f�1
g;N(Z). Assume that the theorem is false, i.e. for some 1 �

i � dn=2e+O(logn) there exists an oracle C(g; N; Z; xi�1
1) (for admissible

triplets) that succeeds in predicting xi with probability 1=2+", for some non-
negligible ". We extract the bits of S = f�1

g;N(Y), where Y = gN (modN)
using procedure Forward-Extract in exactly the same way as in Theorem 3
(either directly or in its simpli�ed version, according to the location of i).
The only di�erence is in the queries to the oracle, where we have to supply
the i� 1 least signi�cant bits of the argument. By examining both versions,
it is easy to see that after the initial shift to the left and for each subsequent
right shift and bit-zeroing of S (corresponding to a certain transformed value
Y 0 of Y) the i � 1 least signi�cant bits of f�1

g;N(Y
0) are zero. Therefore the

i� 1 least signi�cant bits of Y 0 � gR are the known bits of R, ri�1
1 , which can

be given to the oracle.

26

Proof of Theorem 6:
We �rst deal with the non-biased left hand bit of fg;N , (up to the O(logn)
most signi�cant bits). As in Theorem 5, it su�ces to show that every
non-biased left hand bit of fg;N is relatively hard to the left by de�nition
H.4. Let X = f�1

g;N(Z). Assume that the theorem is false, i.e. for some
dn=2e�O(logn) � i � n�O(logn) there exists an oracle C(g; N; Z; xni+1)
(for admissible triplets) that succeeds in predicting xi with probability 1=2+",
for some non-negligible ". By examining the proof of Proposition 3.3 it seems
plausible to use the Backward-Extract procedure combined with the Trim-
ming Rule, since that ensures that before the randomization is performed
all the bits left to the oracle's location are zero. Therefore it seems that
the left bits that should be supplied to the oracle in every query are simply
the left bits of the exponent of the random multiplier. Unfortunately that
is not true! During the randomization we ensure that with high probability
no carry reaches the oracle's location. However there may be a carry from
the i-th bit into the (i + 1)-th bit (which is given as input to the oracle),
and its existence depends on the value of the unknown bit of S (or S 0 in the
Trimming Rule).

We solve this problem by performing the randomization with random
values R < e such that ri = 0. In that case we are indeed guaranteed that in
every query the bits left of the oracle's location are those of the random R.
However now we cannot determine the value of the i-th bit simply by taking a
majority vote, since it might not be the case that the oracle has any advantage
over 1/2 in correctly predicting the i-th bit (based on the bits to its left) on
half of the possible values as determined by our randomization. Instead
we use the fact that if the oracle has probability signi�cantly greater than
1/2 of correctly predicting the i-th bit (or in other words its probability of
correct predictions is signi�cantly greater than that of erroneous predictions)
then its probability of correct 1-answers signi�cantly di�ers from that that
of erroneous 1-answers:

Pr(C(g;N; Z; xni+1) = 1jxi = 1)� Pr(C(g;N; Z; xni+1) = 1jxi = 0) � 2"

It is possible to perform a-priori tests on C (using inputs with known xni)
to determine the corresponding two probabilities. Thus instead of using the
answers of the oracle to perform a majority vote, we estimate the relative
frequency of the 1-answers with accuracy greater than ". (It is again easy

27

to see that t(n) queries are su�cient). By that we can derive the unknown
value of xi.

Note that, as we have already observed, when performing the randomiza-
tion for the Trimming Rule if none of the extreme values in the list (l1 and l�)
are the correct candidates, then we are not guaranteed that the d� logne bits
right to s0cp are 0 and a carry may reach the oracle's location. We may there-
fore get that the frequency of 1-answers is altogether di�erent from the two
a-priori measured probabilities. In that case both values can be discarded
from the list.

To extend the proof to the biased bits (using de�nition H.5) we have to
be slightly careful. Using the notations of the proof of Proposition 3.4 we
argue as follows:

If the oracle behaves signi�cantly di�erently on I2j+1 and I2j+2 for any j
when the correct bits for the left n� i positions are given to the oracle (they
are basically j with some zeroes in front) we are done by the same reasoning
as in Lemma 4.1 (there are only polynomially many possibilities so we can
try them all). The only time we can get into trouble is when K is even and
most of the oracles advantage is when the left n� i bits take their maximal
value. Now create a \new" oracle C 0 by always feeding this maximal value
of the n� i bits to our original oracle (no matter if they are correct or not).
Note that by assumption P 0

1(IK) and P 0
1(IK�1) are substantially di�erent.

Looking more closely at the proof of Proposition 3.4 one can make the fol-
lowing statement (with substantially di�erent interpreted as \at least 1=poly(n)
for a suitable polynomial poly(n)".):

For any oracle C such that P1(IK�1) and P1(IK) are substantially di�erent
one of the following statements is true:

1. There is a j < K such that P1(Ij�1) and P1(Ij) are substantially dif-
ferent.

2. There is a j < T such that P1(I
j�1
K) and P1(I

j
K) are substantially

di�erent.

Using C 0 = C in this statement makes it straightforward to prove the theorem
also in this case.

28

5 Applications

5.1 Commitment Schemes

Several cryptographic schemes require a party to commit to a certain mes-
sage without revealing any information on the content of the message. The
message is drawn out of an arbitrary collection, which may be very sparse.
Most known commitment schemes are designed to hide a single bit. Multi-
bit commitment improves the e�ciency of existing protocols as presented in
[KMO]. Recently Naor has presented a multi-bit commitment scheme [Na]
using any pseudo-random bit generator. We construct a di�erent scheme
that uses fg;N directly.

The simultaneous security of the dn=2e right hand bits of fg;N implies
that fg;N hides dn=2e uniformly distributed bits. To use fg;N in a multi-bit
commitment scheme, it should be proven that fg;N hides O(n) arbitrarily dis-
tributed bits in a polynomially secure manner. We now formally de�ne the
notion of simultaneous security with respect to non-uniform probability dis-
tributions, prove that most of our results still hold under these distributions
and construct a simple multi-bit commitment scheme accordingly.
De�nition: NU(g; N; Z) denotes any probability distribution function of
admissible triplets in which:

1. g and N are uniformly distributed.

2. Let X = f�1
g;N(Z). The distribution of Z is induced by any probability

distribution P (X) in which:

(a) xdn=2e:::x1 are arbitrarily distributed, and

(b) xn:::xdn=2e+1 are uniformly distributed (in the range determined
by X � ordN(g)).

De�nition H.6: The i-th bit, 1 � i � dn=2e, of the function fg;N is non-
uniformly hard (NU-hard) if no family of polynomial-size Boolean circuits
can, given a random NU -distributed admissible triplet (g, N , Z), compute
the i-th bit of f�1

g;N(Z) with probability of success greater than 1=2+1=poly(n),
for any polynomial poly(n).
De�nition H.7: The k right most bits of fg;N are simultaneously NU-hard,
if (pk1(f

�1
g;N(Z)); Z) is polynomially indistinguishable from (xk1; Z), for any

NU -distributed admissible (g; N; Z) and P -distributed X = xn1 .

29

Theorem 7:
Under the intractability assumption, the dn=2e right hand bits of fg;N are
simultaneously NU -hard. In particular for every 1 � i � dn=2e the i-th bit
of fg;N is NU -hard.
Proof:
The proof of the theorem is essentially a non-uniform version of the proof of
Theorem 5. If the theorem is false then in particular there exists a certain as-
signment, A, for the dn=2e right hand bits of fg;N such that (A; fg;N(r

n
dn=2e+1�

A)) is polynomially distinguishable from (A; Z), where (g, N , Z) is a
NU -distributed admissible triplet, and R is a randomly chosen string, s.t.
rndn=2e+1 � A < ordN(g). As we shall prove Theorem 5 can be strengthen to
show that for any speci�c dn=2e-bit message, A, (A; fg;N(r

n
dn=2e+1 � A)) is

polynomially indistinguishable from (A; Z) for uniformly distributed admis-
sible (g, N , Z) and a random R which is de�ned as above. Exploiting once
again the fact that we work in the non-uniform complexity model leads to
the conclusion that the same holds when the admissible (g, N , Z) is NU -
distributed.

To prove the strengthened version of Theorem 5, assume that there ex-
ists an assignment, A, for which (A; fg;N(r

n
dn=2e+1 � A)) is polynomially

distinguishable from (A; Z), for the above de�ned arguments. Using the
hybrid technique as in Proposition 4 it is possible to show that if this dis-
tinguishability holds then there exists a certain 1 � i � dn=2e such that
(A; fg;N(r

n
i+1 � ai1)) is polynomially distinguishable from (A; fg;N(r

n
i � ai�1

1)),
where ai1 denotes the i rightmost bit of A. In other words there exists a
distinguisher D such that (w.l.o.g.):

Pr
�
D(g;N;A; fg;N(r

n
i+1 � ai1) = 1

�
� Pr

�
D(g;N;A; fg;N(r

n
i � ai�1

1) = 1
�
� "

for some non-negligible ".
Using D it is possible to construct an oracle C(g;N;A; fg;N(r

n
i � ai�1

1))
that predicts the i-th bit of the random (and therefore unknown) R with
probability greater than 1=2 + " [BH]. We have used such a construction
in Proposition 4. We complete the proof by using the oracle C to extract
the bits of S = f�1

g;N(Y) with Y = fg;N(N). For that we use the Forward-
Extract procedure directly or in its simpli�ed version (according to i, as in
Propositions 3.1 and 3.2) with special attention to combining A in the queries
to the oracle. Both versions ensure that after the initial shift and guess all

30

the bits right to the i-th bit in the argument of the transformed Y (denoted
Y 0) are 0. The oracle requires, however, those bits to be the right bits of A.

Our queries to the oracle will therefore be: (g, N , A, Y 0 �grni �gai�1
1 (modN)),

for random R < e. It is easy to see that indeed this procedure can be used to
factor a non-negligible fraction of the Blum integers with an overwhelming
probability of success, which by the intractability assumption leads to the
desired contradiction.

Note that unlike previous proofs, this proof relies on the use of the non-
uniform complexity model. However even this theorem can be proven in the
uniform complexity model under the additional assumption that the distri-
bution P (X) (and therefore NU(g; N; Z)) is polynomially samplable (as
in [ILL]). Note also that under the appropriate de�nition of NU(g; N; Z),
Theorem 7 is the exact analogue of Theorem 5 (with dn=2e+O(logn) simulta-
neously NU -hard bits). We refrained from giving this version for notational
simplicity.

By Theorem 7 it is possible to commit to a dn=2e-bit valueM by choosing
randomly N and g, picking a uniformly distributed R s.t. rndn=2e+1 �M <
ordN(g) and sending Z = fg;N(r

n
dn=2e+1 �M), where � denotes concatenation.

In particular the theorem implies that the existence of even a single pair of
messages (chosen by the opponent) whose committed values can be e�ciently
distinguished will lead to the factorization of N :
Corollary 7.1:
Let M0; M1 2 f0; 1gdn=2e, be any pair of dn=2e-bit messages. Let Zj =
fg;N(r

n
dn=2e+1 �Mj), j = 0; 1, with R a uniformly distributed string such that

rndn=2e+1 �Mj < ordN(g). Then, (Mj; Zj) and (Mj; Z1�j) are polynomially
indistinguishable.

Note that the conditions of practical commitment schemes are somewhat
di�erent from the underlining conditions of our previous proofs: In these
proofs we can try out various values for g and ensure that at least one of them
is of high order and that at least one of our guesses for its order is correct.
However when we use fg;N in practice, we must guarantee that a randomly
chosen generator g has high order (which happens with high probability),
if we are to count on the security of fg;N . Furthermore it is necessary not
only to verify that g is of high order, but to know the exact order of the
generator (to ensure and prove that R has been chosen correctly). Recall
that ordN(g) divides (P � 1)(Q � 1). Thus in practice the factorization of

31

(P � 1)(Q � 1) must be known to the party that chooses the commitment
scheme, by carefully choosing the primes.
De�nition [BM]: A prime P of size n is hard if P = tP 0 + 1, where P 0 is a
prime and 1 < t < poly(n).

Since hard primes have an asymptotically polynomial density among the
integers of the sequence tP 0 + 1 [BM] hard primes can be found e�ciently.
The commitment protocol will be performed in practice using a Blum integer
which is the product of randomly chosen hard primes, and its security will rely
on a somewhat di�erent assumption, namely that no family of polynomial-
size Boolean circuits can factor a polynomial fraction of the Blum integers
that are the product of hard primes. This might at �rst sound like a stronger
assumption, but in fact it is weaker, since if we can factor a non-negligible
fraction of Blum integers which are the product of hard primes then we can
factor a non-negligible fraction of all Blum integers, while the converse is not
clearly true.

5.2 Pseudo-Random Bit Generation

Any one-way function can be used for the construction of a pseudo-random
bit generator, due to the recent results of [ILL] and [H]. However, the general
techniques are very ine�cient. The simple construction of [BM] is inapplica-
ble to fg;N , since for composite N it is not one to one. fg;N is also not regular
(i.e. not every possible value has the same number of preimages), hence even
the (ine�cient) construction of [GKL] cannot be used. We are interested
in an e�cient construction, using the simultaneous security of dn=2e bits of
fg;N to output as many bits as possible in every stage of the generation.

Using the Leftover Hash Lemma, presented in [ILL] and [IZ], we give a
construction of an extender E : f0; 1g3n ! f0; 1g3:5n�O(log2 n). The pseudo-
random bit generation is achieved through repeated applications of the ex-
tender to a random seed (as demonstrated in [BH]).

Let N = P � Q be a Blum integer of size n and let g be an admissible
high order generator. Let n � O(logn) � m � n � 2 be an integer such
that 2m � ordN(g) < 2m+1. As before, hard primes must be used to �nd m
and ordN(g) in practice. Let Hn;t be a family of universal hash functions,
where t = m� log2 n. It is well known that 2n bits su�ce to de�ne a unique
function h 2 Hn;t (see for example [IZ], where some simple constructions
are demonstrated). Let h be a randomly chosen function in Hn;t and let X

32

be a random n-bit string. Let x
dn=2e
1 denote the dn=2e right hand bits of

X(modordN(g)) and let � denote concatenation. The extender E is:

E(h �X) = h � h (fg;N(X)) � xdn=2e1 :

Note: The fact that O(n) bits of fg;N are simultaneously secure and not
just O(logn) is crucial for the construction of E. Applying the hash function
causes a log2 n-bit loss in the length of E's output. The �nal O(n) extension
is possible only because of the many simultaneously secure bits, which more
than compensate for this loss.
Theorem 8:
E is a perfect extender.

33

Proof:
The proof is a direct result of the following two lemmas.
Lemma 8.1: For randomly chosen h � X, h � h (fg;N(X)) is polynomially
indistinguishable from a randomly chosen (2n+ t)-bit string.
Proof: The hash functions are de�ned on the set G, of elements in Z�

N that
can be expressed as powers of g. In our construction the distribution of the
elements in G is induced by a uniform probability distribution of X. Clearly,
by de�nition of ordN(g):

min
Z2G

f� log(Pr(Z))g = log(ordN(g)) � m

The lemma is then a straightforward application of the Leftover Hash Lemma
([ILL], [IZ]).

Lemma 8.2: x
dn=2e
1 are simultaneous secure given h � h (fg;N(X)).

Proof: Identical to the proof of Theorem 5. The only di�erence results
from the fact that the inputs to the oracle are not admissible triplets but g,
N , h, h(fg;N(X)). Note that the fact that m is made public (through the

publication of the range of h) does not detract from the security of x
dn=2e
1

since it can be guessed in polynomial time (indeed we guess m in our shifting
and randomization techniques).

6 Discussion

In this paper we have explored some of the unique properties of exponentia-
tion modulo a Blum integer, which make it the �rst number theoretic function
all of whose bits are proven to be individually hard and half of whose bits
are proven to be simultaneously hard. The results presented in this paper
can be extended in several directions:

1. It is interesting to see which mixed groups of bits from the right and
left half of fg;N can be proven to be simultaneously secure. We can
show that the bits of the complement of every window of length bn=2c
are simultaneously secure, i.e. for every 1 � j � dn=2e the rightmost j
bits together with the leftmost dn=2e�j bits are simultaneously secure.
In particular the rightmost dn=4e bits together with the leftmost dn=4e
bits are simultaneously secure.

34

2. The factorization of Blum integers may remain intractable even if some
of the bits of P and Q are known. E�cient factorization techniques are
known only when at least dn=3e bits of P or Q are given [RS]. Assume
that the factorization of Blum integers remains computationally hard
even when we are given the bn=4c leftmost non-zero bits of P or Q.
Under this strengthened intractability assumption it is easy to show
that three quarters of the bits of fg;N are simultaneously secure, as
the length of the unknown part of S is now only dn=4e + 1 instead of
dn=2e+ 1.

3. Let F denote any set of composites for which it is assumed that it is
computationally hard to distinguish Blum integers from the numbers
in F (and thus in particular it is di�cult to factor these numbers).
Such a set is, for example, the set of all composites N which are the
products of a small number of large primes. Under this strengthened
assumption our results hold not only for Blum integers but for all F as
well, even though our proof techniques are not directly applicable to
numbers in F . This generalization was �rst observed by Silvio Micali
(personal communication).

Acknowledgements

We would like to thank Noga Alon for his help in the proof of Proposition
1. Our paper greatly bene�ted from the helpful insight of Uriel Feige, Oded
Goldreich, Ra� Heiman and Moshe Tenenholtz.

References

[ACGS] Alexi, W., Chor, B., Goldreich, O., Schnorr, C.P., "RSA/Rabin bits
are 1/2+1/poly(log N) secure", Proc. 25th FOCS, 1984, pp. 449-457.

[Ba] Bach, E., "Discrete Logarithms and Factoring", Report No.
UCB/CSD 84/186, Univ. of California, 1984.

[BBS] Blum, L., Blum, M., Shub, M., "A Simple Secure Pseudo-Random
Number Generator", SIAM J. on Computing, Vol. 15, No. 2, 1986,
pp. 364-383.

35

[BG] Blum, M., Goldwasser, S., "An E�cient Probabilistic Public Key
Encryption Scheme which Hides All Partial Information", Proc.
CRYPTO 84, pp. 289-302.

[BM] Blum, M., Micali, S., "How to Generate Cryptographically Strong
Sequences of Pseudo-Random Bits", SIAM J. Computing, Vol. 13,
No. 4, 1984, pp. 850-864.

[BH] Boppana, R.B., Hirschfeld, R., "Pseudorandom Generators and
Complexity Classes", to appear in Advances in Computer Research,
vol. 5, editor: S. Micali, JAI Press.

[Ch] Chor, B., Two Issues in Public Key Cryptography: RSA Bit Security
and a New Knapsack Type System, MIT Press, 1986.

[GKL] Goldreich, O., Krawczyk, H., Luby, M., "On the Existence of Pseu-
dorandom Generators", Proc. 29th FOCS, 1988, pp. 12-24.

[GL] Goldreich, O., Levin, L.A., "A Hard-Core Predicate for all One-Way
Functions, Proc. 21st STOC, 1989, pp. 25-32.

[GK] Goldwasser, S., Kilian, J., "Almost All Primes Can be Quickly Cer-
ti�ed", Proc. 18th STOC, 1986, pp. 316-329.

[GM] Goldwasser, S., Micali, S., "Probabilistic Encryption", JCSS, Vol.
28, 1984, pp. 270-299.

[H] H�astad, J., "Pseudo-Random generators under Uniform Assump-
tions", Proc. 22nd STOC, 1990, pp.395-404.

[ILL] Impagliazzo, R., Levin, L.A., Luby, M., "Pseudo-Random Genera-
tion from One-Way Functions", Proc. 20th STOC, 1988, pp. 12-24.

[IN] Impagliazzo, R., Naor, M., "E�cient Cryptographic Schemes Prov-
ably as Secure as Subset Sum", Proc. 30th FOCS, 1989, pp. 236-241.

[IZ] Impagliazzo, R., Zuckerman, D., "How to Recycle Random Bits",
Proc. 30th FOCS, 1989, pp. 248-254.

[KMO] Kilian, J., Micali, S., Ostrovsky, R., "Minimum Resource Zero-
Knowledge Proofs", Proc. 30th FOCS, 1989, pp. 474-479.

36

[LW] Long, D.L., Wigderson, A., "The Discrete Logarithm Hides O(log
n) Bits", SIAM J. Computing, Vol. 17, No. 2, 1988, pp. 363-372.
Also: "How discreet is the Discrete Log?" Proc. 15th STOC, 1983,
pp. 413-420.

[Na] Naor, M., "Bit Commitment Using Pseudo-Randomness", Presented
in CRYPTO 89.

[Ra] Rabin, M.O., "Digital Signature and Public Key Cryptosystems
as Intractable as Factoring", Technical Report, MIT LCS TR-212,
1979.

[RS] Rivest, R.L., Shamir, A., "E�cient Factoring Based on Partial In-
formation", Proc. Eurocrypt 85, pp. 31-34.

[RSA] Rivest, R.L., Shamir, A., Adleman, L., "A Method for Obtaining
Digital Signatures and Public Key Cryptosystems", Comm. ACM
21:120-126, 1978.

[SS1] Schrift, A.W., Shamir. A. "On the Universality of the Next Bit
Test", Presented in Crypto 90.

[SS2] Schrift, A.W., Shamir. A. "The Discrete Log is Very Discreet", Proc.
22nd STOC, 1990, pp. 405-415.

[VV] Vazirani, U.V., Vazirani, V.V., "E�cient and Secure Pseudo-
Random Number Generator", Proc. 25th FOCS, 1984, pp. 458-463.

[Y] Yao, A.C., "Theory and Applications of Trapdoor Functions", Proc.
23rd FOCS, 1982, pp. 80-91.

37

