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Abstract

We give a short introduction to some questions in complexity the-
ory and proceed to give some recent developments. In particular, we
discuss probabilistically checkable proofs and their applications in es-
tablishing inapproximability results. In a traditional proof the proof-
checker reads the entire proof and decides deterministically whether
the proof is correct. In a probabilistically checkable proof the proof-
checker randomly verifies only a very small portion of the proof but
still cannot be fooled into accepting a false claim except with small
probability.

1 Introduction

The question of what can be done in a completely mechanical way has now
been studied for at least 70 years. The early studies led to the invention
of the Turing machine [29], a formal model of computation in the form of
a primitive computer and the definition that a task can be solved mechan-
ically iff it can be solved by the Turing machine. Many other definitions
of mechanically computability were proposed but as they were all proved
to be equivalent this led to the consensus that indeed the correct model
had been found. The (non-mathematical) statement that computability by
the Turing machine indeed captures the true spirit of the intuitive notion of
“computable by a mechanical procedure” is usually called “Church’s thesis”.

With the invention of modern computers it was realized that in practice it
does not make a big difference whether a problem cannot be solved at all by a
computer or if any general solution requires 10200 elementary computational
steps. In the latter case, even if every atom in the universe is turned into a
super-fast computer, we would not see the end of the computation before our
sun has long ago ceased to exist. This realization lead to the development of
complexity theory, where we do not only care that the problem can be solved
mechanically but where we also study how many elementary computational
steps are needed.
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One basic parameter of complexity theory is the length of the input.
Clearly it is reasonable to expect that more operations are needed to factor
a 1024-bit number than a 128-bit number. The variable n is usually used
to denote the size of the input. Sometimes it is simply the number of bits
needed to specify the input but it is also commonly used to denote a more
natural size-parameter closely related to the number of bits needed to specify
the input. In particular if one studies graphs, n is usually the number of
nodes in the graph, while the number of bits to fully specify a graph on n
nodes is

(n
2

)
.

The most studied computational problems are problems where “reason-
able” size instances can be solved “reasonably” quickly. This informally
defined set of problems in practice coincides well with a class that can be
defined formally in a simple way; the class P , polynomial time.

A computational problem belongs to P if the number of elementary steps
needed to solve it on instances of size n can be bounded by a polynomial,
i.e. as O(nk).

Many computational problems could be put into the class P , some by
straightforward algorithms and some by more sophisticated algorithms, but
some natural problems resisted all attempts. Many such problems had the
additional property that if indeed the answer was found then it could be
verified in polynomial time. An example would be integer factorization.
It might be difficult to find the factors but once they are found it is easy
to verify that indeed we have a correct solution. This gave birth to the
complexity class NP and the most famous problem of complexity theory is
whether all problems in NP also belong to P . This problem is still open and
is one of the seven million-dollar millennium problems of the Clay institute.
In spite of it’s importance both in theory and practice it is our belief that
this is the Clay problem with the fewest number of active attackers. It seems
like many people in the area are waiting for a new idea to surface before
it will be possible to fruitfully devote time to this problem. Hopefully that
new idea will come soon.

For most people, from an intuitive standpoint, it would seem obvious
that NP 6= P . If indeed any problem in NP also was in P , this would mean
that whenever it is “easy” to verify a found solution it is also “easy” to find
the solution. One can think of an NP -statement as a “theorem” and the
fact that it is easy to verify a solution would translate into having a short
proof. The conclusion would now be that it is also easy to find the proof
and for mathematicians spending their lives missing short proofs this would
seem especially surprising.

The feeling among almost all people working in computational complex-
ity is that the basic intuition is correct and indeed that NP 6= P . The state
of complexity theory is such, however, that we currently have no idea how
to prove this. The machinery to prove lower bounds is simply too primitive.
To prove that a problem does not lie in P we have to prove that any fast
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algorithm, no matter how crazy, makes a mistake on some input, and this
quantification over all algorithms is problematic.

The fact that we cannot handle this basic question of complexity theory is
a major stumbling block to the continued development of the theory as if we
cannot tell whether NP 6= P there are many question that we cannot answer.
One major technique is to relate other questions to the NP/P -question. One
prominent example of this is to prove that a given computational problem,
X, is NP -complete or NP -hard. In either case if X belongs to P then
NP = P . This is in many cases the best available evidence that a problem
cannot be solved efficiently.

The notion of NP -completeness was put forth in 1971 by Cook and soon
extended by Karp [20]. Somewhat surprisingly, we have since then seen that
very many problems are NP -complete. In fact, there are very few, a handful
some would argue, natural problems that are not known to lie either in P or
to be NP -hard. Some famous examples of such problems would be integer
factorization, discrete logarithms and graph isomorphism.

One of the most famous problems in NP is the Traveling Salesperson
Problem, TSP, in which we have n cities and are given distances between
the cities. The goal is to find a tour that visits all cities once and is of
minimal total length. This was one of the first problems showed to be NP -
hard in 1972 [20]. Thus if we believe that NP 6= P then we cannot solve
this efficiently and optimally for all instances of the problem. This does not
prevent us from looking for algorithms with interesting properties. We can
study algorithms that find the optimum on random instances, algorithms
that finds a reasonably good solution on all instances or even algorithms
that finds reasonably good solutions on random instances.

To study random instances one defines a probability distribution on the
inputs. If one puts no condition on the probability distribution this is not a
very interesting notion in that, in this case, one can make sure that random
instances behave like worst case instances. If, however, one demands that the
probability distribution is simple, this could possibly change the situation.
One definition of simple is that instances with the given distribution can be
generated by a probabilistic algorithm running in polynomial time. With
this notion Levin [25] proved that complete problems exist but they have
proved to be rare and rather special. On the other hand, even for difficult
problems, it is often easy to come up with some notion of random instances
that makes the problem is easy on the average. Whether such problems
capture some real property of the computational problem or are simply a
consequence of a “friendly” distribution is sometimes mostly a matter of
taste.

A mathematically more appealing notion is that of an approximation
algorithm with a guaranteed approximation ratio. Consider TSP discussed
above and suppose that we have the triangle-inequality. In this case there
is a very efficient algorithms that finds a tour that is at most twice as long
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as the optimal tour. There is also a less efficient, but still polynomial time,
algorithm by Christofides [10] that finds a tour that is at most a factor 1.5
longer than the optimum. This ratio of approximation is true for any input.
This raises the question whether this is the best achievable factor and what
can be said for other problems. Do all NP -hard optimization problems
allow some nontrivial approximation algorithms? We discuss some of the
most famous such results in the technical part of this paper.

Positive results that prove that some problems can be solved within
specified factors are complemented by results that show, based on some
assumption usually that NP 6= P , there is no polynomial time algorithm
achieving a given factor. Many of these results are based on the very inter-
esting notion called probabilistically checkable proofs. To describe these let
us first describe NP as a proof system.

The most typical NP -complete problem is satisfiability of Boolean for-
mulas. We are given a formula ϕ with logical connectives ∧ (and), ∨ (or)
and negation and Boolean variables x1, x2, . . . , xn. The question is whether
there is an assignment that makes the formula evaluate to true. If there
is such an assignment, once it is found it can be checked quickly. We can
view this assignment as a proof that ϕ is satisfiable. It is checked by a
proof-checker, which in computer science traditionally is called a verifier
and denoted by V , that simply evaluates the formula on this assignment
and verifies that it evaluates to true.

This is an excellent proof-system, each true statement of the given type,
i.e. “ϕ is satisfiable” has a proof that is fairly short and can be checked
efficiently by V . The proof-system is perfectly sound in that V is never
convinced of an incorrect statement. It seems like there is little more we can
hope for but it turns out to be profitable to ask how much of the proof V
has to read. Naively one would think that V would have to read the entire
proof but this is in fact not true in general.

In a PCP we have a statement, still on the form “ϕ is satisfiable” and
a written proof. The verifier, V is, however, probabilistic and reads only a
very small portion of the proof. In fact, it might decide to look at as little
as three bits of the proof. Completeness is as before in that V accepts a
correct proof for a correct theorem with probability 1. Soundness has to be
relaxed and in fact all that can be achieved is that any proof for an incorrect
statement is found to be incorrect with a constant probability s < 1. It is
a remarkable theorem by Arora et al. [5], the PCP-theorem that this is in
fact possible.

We elaborate on the connection to approximability in the technical part
of the paper but let us at least give a hint.

Given a statement ϕ, which we do not know if it is satisfiable or not
we can consider the optimization problem of finding the “best” proof for
it. The quality of the proof is defined as the probability that V accepts it.
If ϕ is satisfiable we know that there is a proof that makes V accept with
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probability 1. On the other if ϕ is not satisfiable no proof makes V accept
with probability greater than s. This implies that if we could approximate
the optimum of the proof optimization problem within a factor better than
1/s we could in fact determine whether ϕ is satisfiable. Since the latter is
an NP -hard problem so is the former and thus “all” we have to do is to
construct the PCP in such a way that the proof optimization problem is in
fact the optimization problem we care about.

For the record let us note that there are other ways to use PCPs to get
inapproximability results but the proof optimization problem is the most
basic.

In the rest of this paper we essentially retell the story told in the in-
troduction but in a more technical way. We give essentially no proofs and
some of the definitions are not totally rigorous but the aim is to give the
interested reader enough detail to convey a feeling for the area.

2 Basic definitions

We are studying efficient algorithm for computational problems and thus we
should define “algorithm” and “computational problem”.

The standard formal definition of an algorithms goes through the notion
of a Turing machine which is a bit cumbersome and we choose not to do
this. It is also the case that almost any intuitive notion of an algorithm can
be formalized in a suitable manner leading to an equivalent notion.

Anybody that has written a computer program and is comfortable with
formal definitions should easily be able to abstract the notion. The only
crucial point is that we want the computer words to be bounded in size.
If we bound the size by a constant this makes the model slightly awkward
in that indirect addressing does not allow us to access all of memory in a
straightforward manner. If we allow ourselves words that are of a length
that is logarithmic in the amount of memory we use, indirect addressing
works without problems and we get a robust, simple and intuitive model of
computation. The number of operations is defined as the number of machine
steps performed.

Those who have not programmed have done calculation by hand. There
is no essential difference to machine calculation. The fact that the word size
of the computer is limited is reflected in the fact that we have a finite number
of symbols. Now you can simply count the number of symbols written and
erased. The details of the model does effect the number of operations but
not on the level of detail we discuss in this paper.

The formal definition of a computational problem is simple but maybe
not very informative. We use the binary alphabet i.e. Σ = {0, 1} and inputs
and outputs of our algorithms are nonempty finite strings over Σ and this
is denoted by Σ∗. A computational problem is now simply a mapping from
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Σ∗ to Σ∗. To make informal sense of a computational problem we need a
more intuitive way of thinking of the input and the output. Most of the
time, this is easy; integers are specified by their representation in the binary
number system, text as the ASCII-value of their characters, etc. Sometimes
the situation is more complicated and in particular if we want an algorithm
to deal with more or less arbitrary real numbers we have to be careful but
this goes beyond the scope of this paper.

For each computational problem we have a parameter n which nicely
measures the size of the instance.

Let us take an example. Consider the problem of adding and multiplying
two integers each with n bits. It is not difficult to convince oneself that the
standard grade-school algorithm for adding two numbers runs in O(n) time
and this is optimal since any algorithm must read its input. The grade-
school algorithm for multiplying two numbers multiplies each digit of one
number with each digit of the other resulting in an O(n2) time algorithm.
There are many ways to improve this and the fastest algorithm designed by
Schönhage and Strassen already in 1971 [28] runs in time O(n log n log log n).

A fundamental question that now arises is whether this is optimal and
the honest answer to this question is that we have no idea. There is in fact no
lower bound for the complexity of multiplication that goes essentially beyond
the fact that we have to read the input and write the output. In particular
it is possible, but in many peoples eyes unlikely, that multiplication can be
done in time O(n). Thus in one sense, complexity theory has not left first
grade as we do not understand multiplication. Note, however, that it is not
obvious that resolving this question is simpler than deciding the NP/P -
question. Proving a lower bound larger than cn for multiplication for any
constant c is a fairly subtle issue when we know that the true bound is a
most O(n log n log log n). To prove that NP 6= P we need to prove the lower
bound nk for any k on the number of operations to solve Satisfiability and
as we believe the true bound is more like 2n the margins here appears larger
and more crude methods might apply. To paraphrase, the lower bound for
multiplication will probably need something like a very sharp knife while
proving NP 6= P might need something closer to a nuclear bomb.

3 NP and P

Let us give a formal definition of NP , or at least what would have been
a formal definition, had we defined our computational model and running
time of an algorithm formally.

To make formal sense of NP we focus on decision problems. A decision
problem is a computational problem where we limit the output to a single
bit. The standard terminology in this case would be that inputs that map
to 1 are “accepted” and inputs that map to 0 are “rejected”. Many times
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one calls the elements of NP “languages” where a language is the subset of
Σ∗ given by the accepted inputs.

Definition 1 Let L ⊆ Σ∗. L ∈ NP iff there is a Turing machine M that
runs in time polynomial in the length of its first input such that x ∈ L iff
there exists y such that M(x, y) = 1.

We could require that the length of y is polynomial in the length of x
but this is assured by the fact that M can only read a polynomial number
of bits in polynomial time.

Satisfiability is the standard NP -problem. It is the language of (codings
of) satisfiable Boolean formulas. The input y is an assignment to the variable
occurring in the formula coded by x and M checks whether this assignment
satisfies the formula.

Note further that TSP as described in the introduction does not belong
to NP as it is not a decision problem. To make it a decision problem we
can introduce a parameter K, and ask whether there exists a tour of length
at most K. The problem now belongs to NP . It is not always important
to make the distinction between the optimization problem and the decision
problem but on the formal level this might cause some confusion.

As we want to make P ⊆ NP we define also P as a set of decision
problems.

Definition 2 Let L ⊆ Σ∗. L ∈ P iff there is a Turing machine M that runs
in time polynomial in the length of its input such that x ∈ L iff M(x) = 1.

We proceed to make a formal definition of the property of being NP -
complete. We want to capture the idea of having a subroutine that decides
a language L. Such a machine, traditionally denoted by ML, is given the
ability to ask questions of the type “x ∈ L?” which are answered correctly
in one elementary step. Such machines are called “oracle Turing machines”
and L is the called the “oracle language”.

Definition 3 Let L ⊆ Σ∗. L is NP -complete iff L ∈ NP and for any
language L′ ∈ NP there is an oracle Turing machine ML that runs in time
polynomial in the length of its input such that x ∈ L′ iff ML(x) = 1.

Note that if L is NP-complete and L belongs to P then so does any
language in NP as we can replace calls to the oracle with a polynomial time
machine deciding L. A language is NP -hard if we drop the requirement
that it belongs to NP .

Definition 4 Let L ⊆ Σ∗. L is NP -hard iff for any language L′ ∈ NP
there is an oracle Turing machine ML that runs in time polynomial in the
length of its input such that x ∈ L′ iff ML(x) = 1.
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We extend the above notion to non-decision problems by saying that
giving a subroutine that solves the given problem we can decide an arbitrary
language in NP in polynomial time.

There are thousands of known NP -hard and NP -complete problems.
Satisfiability is NP -complete and TSP in its decision form is NP -complete
and in its optimization form it is NP -hard. Thus we expect that none of
these problems can be solved in polynomial time.

Problems in NP can now be classified to be of three types. They can
be NP -complete, belong to P or neither. Surprisingly the third category
is very rare for natural problems and with few exceptions, already by early
1980’s most problems were known to be either NP -complete or to belong
to P . The main progress on this set of problems in the last decade has been
on a more refined measure of hardness.

4 Approximation algorithms

Given an NP -hard optimization problem we can study polynomial time
heuristics that return good but possibly not optimal solutions. For our
model problem TSP, a large number of heuristics are known and many are
discussed by Johnsson and McGeoch in [18]. Many heuristics are hard to
analyze and best evaluated experimentally but for some strong and precise
statements can be made. Let O be an optimization problem with instances
x and solutions y where the objective value is V al(x, y). For TSP x is thus
a set of distances, y is a proposed order in which to visit the cities and
V al(x, y) is the total length of the tour given by y with distances x. The
optimal value for a minimization problem is defined as

Opt(x) = min
y

V al(x, y).

Definition 5 An algorithm A is a C-approximation for an minimization
problem O if it for each instance x, V al(x,A(x)) ≤ C ·Opt(x).

The approximation ratio for maximization problems is defined in an
analogous. We let

Opt(x) = max
y

V al(x, y).

Definition 6 An algorithm A is a C-approximation for an maximization
problem O if it for each instance x, V al(x,A(x)) ≥ Opt(x)/C.

Sometimes one requires an approximation algorithm not to output a
solution but only an estimate for the optimal value. It is interesting that
almost all lower bounds apply to this weaker model while the almost all
known upper bounds are given by an algorithm in the stronger model.
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Sometimes we allow A to be a randomized algorithm. We then study
E[V al(x,A(x))] where the expectation is taken only over the random choices
of A and we emphasize that there is no randomization over the input and
the bound is true for worst-case inputs. We now turn to our main example
which is of both practical and theoretical interest.

5 Linear systems of equations

Systems of linear equations over different fields appear in many situations.
We are given a set of equations

n∑
i=1

aijxi = bj , 1 ≤ j ≤ m

and we want to find values of xi to satisfy these equations in an as good way
as possible. If way can satisfy all equations then such an assignment can
be found in polynomial time by Gaussian elimination, or even more efficient
algorithms in some situations. The most interesting situation for us now is
the case when the system is inconsistent.

If we cannot satisfy all equation there are sometimes several possible
definitions of “best solution”. If the field in question is the rational numbers
one common definition of best is the least squares approximation i.e. to
minimize

m∑
j=1

(
n∑

i=1

aijxi − bj

)2

and also in this case it is possible to find the best solution in polynomial
time. Another extreme is when the field is the field with two elements,
GF [2], where the two elements are 0 and 1 and addition is performed modulo
2. In this situation the only possible measure is to maximize the number of
satisfied equations and this is the measure we adopt for any field.

Definition 7 For a field F let Max-Lin-F be the optimization problem that
given a set of linear equations to simultaneously satisfy the maximal number
of equations. If F is the field of p elements we call the problem Max-Lin-p.

It is not difficult to classify these problems on the NP -hardness scale
and the following theorem is a possible exercise in a basic complexity class.

Theorem 5.1 For any prime p, Max-Lin-p in its decision form is NP -hard
and this is also true for Max-Lin-Q, where Q is the field of rational numbers.

Let us turn to the approximability of Max-Lin-p. Suppose we have m
equations. If we pick an assignment to the variables uniformly at ran-
dom then we satisfy each equation with probability 1/p and thus we ex-
pect to satisfy, on the average, m/p equations. This leads to a randomized
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p-approximation algorithm but it is not difficult to make a deterministic al-
gorithm that finds a solution that satisfies at least m/p equations. We have
the following theorem:

Theorem 5.2 For any prime p one can, in deterministic polynomial time,
approximate Max-Lin-p within a factor of p.

This is complemented by the following theorem by H̊astad [16].

Theorem 5.3 For any prime p and any ε > 0, it is NP -hard to approxi-
mate Max-Lin-p within p− ε.

Thus in particular, even if we know that there is an assignment that
satisfies almost all equations there is no efficient way to find an assignment
that does significantly better than a random assignment.

The result applies as long as we allow three variables in each equation
and has been extended by Engebretsen et al. [12] to apply to any group. On
the other hand, if we only allow two variables in each equation we do get
non-trivial approximation for any p [14, 3].

Over the rational numbers our knowledge is not quite as complete. We
can pick a maximal set of linearly independent equations and satisfy these
equations disregarding the remaining equations. This does not yield a very
good approximation ratio but we should not hope for too much in view of
the following lower bound by Amaldi and Kann [2]:

Theorem 5.4 There is a δ > 0 such that it is NP -hard to to approximate
Max-Lin-Q within nδ.

The proof is Theorem 5.3 is, in principle, simple. We start with a Boolean
formula ϕ and any δ > 0. We construct, in polynomial time, a linear system
L of m equations. The make sure that if ϕ is satisfiable then there is
an assignment that satisfies (1 − δ)m of the equations of L while if ϕ is
not satisfiable, no assignment satisfies more than a fraction (1

p + δ)m of
the equations. It follows that any algorithm that determines the maximal
number of simultaneously satisfiable solution within a factor smaller than

1− δ
1
p + δ

can be used to determine whether ϕ is satisfiable or not and hence it must be
an NP -hard task to achieve this approximation ratio. Choosing δ a suitable
function of ε now establishes the result.

This reduction of creating L from ϕ is just a computational procedure
and could be described by a combinatorial algorithm. It has, however, been
profitable to think in terms of proof systems and we turn to probabilistically
checkable proof.
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6 Probabilistically Checkable Proofs

First let us phrase NP as a proof system.

Definition 8 A Turing machine V running in polynomial time in the length
of its first input is a verifier in an NP - proof system for a language L iff

• For x ∈ L there exists a π such that V (x, π) = 1.

• For x 6∈ L, for all π, V (x, π) = 0.

The machine V is called the verifier and it is the same as the machine
M in Definition 1. We are interested in discussing verifiers that read a very
small portion of the proof. It is most convenient to use the concept of an
oracle Turing machine as already used in Definition 3. This time we let V
access the proof by asking questions “i?” which is answered by πi, the i’th
bit of the proof. We also assume that V is probabilistic and this is achieved
by having a source of “random coins” which are bits each taking the value
0 with probability 1

2 independently of each other and the input. We denote
the random string by r.

Definition 9 Let c and s be real numbers such that 1 ≥ c > s ≥ 0. A proba-
bilistic polynomial time Turing machine V is a verifier in a Probabilistically
Checkable Proof (PCP) with soundness s and completeness c for a language
L iff

• For x ∈ L there exists an oracle π such that Prr[V π(x, r) = 1] ≥ c.

• For x 6∈ L, for all π Prr[V π(x, r) = 1] ≤ s.

In many circumstances one would expect a good verifier to always accept
a correct proof of a correct statement and c = 1 is also the most common
value but values slightly below 1 for c are also useful.

The famous PCP-theorem [5] can now be stated as follows:

Theorem 6.1 Any L ∈ NP allows a PCP with perfect completeness (c =
1), constant soundness s < 1, where V only accesses three bits of π and uses
O(log n) random coins on inputs of length n. The size of π is polynomial in
n.

Even a sketch of the proof of this theorem would take us too far. One
key idea is to code the satisfying assignment as the outputs of a low degree
polynomial over a finite field, a second is to use proof-composition, a type
of recursive proof technique. Both were introduced prior to [5] and we refer
to that paper for a discussion of the history.

To see the connection to inapproximability we consider the proof opti-
mization problem.
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Definition 10 Let V be a verifier in a PCP for a language L. The proof
optimization problem is that given an input x to determine the maximal
probability with which V accepts x.

We have the following trivial observation.

Theorem 6.2 If the verifier V has soundness s and completeness c then if
we can determine the optimum of the proof optimization problem within a
factor smaller than c/s then we can decide membership in L with the same
amount of resources.

Proof: Suppose that we have an algorithm A that determines the value of
the proof optimization problem within a factor k < c

s . Then, on input x,
run A and if the value of the obtained solution is greater than s accept the
output and otherwise reject.

By the soundness condition of the proof-system whenever we accept the
input this is the correct decision. The fact that we always accept elements of
L is implied by the completeness condition and the assumed approximation
ratio.

The key now to getting interesting in-approximability results is to de-
sign a PCP for an NP -complete problem with the property that the proof
optimization problem is in fact equivalent to an optimization problem we
care about. Let us describe the properties of the PCP that underlies the
proof of Theorem 5.3 in the case of p = 2.

Given a parameter δ, the proof consists of a polynomial number of bits
(πj)nk

j=1 and is verified as follows. V flips O(log n) random coins to determine
three addresses j1, j2 and j3 and a bit b. The verifier now accepts if the
exclusive-or of πj1 , πj2 and πj3 equals b. The completeness is 1− δ and the
soundness is 1

2 + δ.
Now we can see that proof optimization problem is just Max-Lin-2 in

disguise. Optimizing over the proof is the same as thinking of the i’th bit of
the proof as a variable xi and then to optimize over these variables. Suppose
that V flips R coins. Each possible outcome of the random coins leads to a
linear equation which determines whether V accepts on this particular set
of coin flips. We end up with 2R equations and the maximum fraction of
simultaneously satisfiable equations is exactly the maximum probability to
convince the verifier.

Note that it is important that the verifier does not use too many random
coins as the number of different sets of coinflips is the number of resulting
equations. Also it is important that the proof is small in that each bit of the
proof directly corresponds to a variable in the linear system of equations.

To describe in detail how to construct this PCP is not feasible in these
notes and we refer to the original paper [16]. On the very high level, the
proof utilizes Theorem 6.1 as a black box and then improves the parameters.
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This is done by repeating the proof in parallel and then condensing the
answers using an interesting binary code called the long code and proposed
by Bellare et al. [6]. The long code of input v ∈ {0, 1}t is indexed by
functions f : {0, 1}t 7→ {0, 1} and the value at position f is f(v). Thus 22t

bits are used to code t bits and it is the longest binary code, disallowing
coordinates that are equal for each pair of inputs. This code is extremely
long but as it is used for constant size inputs it length does not affect the
results except in that the implicit constants are rather weak.

Let us now consider some other problems.

7 Independent set and Coloring

Given a graph G, the independent set problem is to find the largest number
of nodes of which no two are connected. A related problem is “clique” where
we ask for the largest number of nodes all of which are pairwise connected.
These two problems are clearly equivalent as can be seen from changing
edges to non-edges.

Independent set initially sounds like an innocent problem and for a while
it was somewhat surprising that, for graphs with n nodes, the best approx-
imation ratio achieved by any polynomial time algorithm was as poor as
O( n

(log n)2
) [8]. This implies that even for a graph which has an independent

set of size linear in the number of nodes the algorithm can guarantee only
that we find an independent set of size Ω((log n)2). For graphs with an
independent set as large O(n/(log n)2) the algorithm gives no guarantee.

This poor performance was explained by subsequent lower bounds. Based
on the assumption that NP cannot be solved in probabilistic polynomial
time H̊astad [15] proved that for any ε > 0 one cannot approximate indepen-
dent set within a factor n1−ε. Making stronger, but still almost universally
believed assumptions Khot [22] showed that it is possible make ε decrease
as (log n)−γ for some γ > 0. Thus what seemed to be trivial upper bounds
pointed very much in the correct direction namely that independent set is
indeed a very difficult problem.

To get this inapproximability results, very strong PCPs are needed and
the required properties have very natural parameters also when formulated
as proof systems. Suppose we restrict V to use O(log n) random coins and
to read q bits of the proof, require (almost) perfect completeness and we are
looking to minimize the soundness. It was established by Samorodnitsky and
Trevisan [27] that if we allow non-perfect completeness one could achieve
soundness 2−q+O

√
q. This was later extended to perfect completeness by

H̊astad and Khot [17]. It is amazing that the probability of being cheated
essentially decreases by a factor of 2 for each bit read. Through a sequence
of reductions this gives the desired bound for independent set.

A very related problem is graph coloring. In this case we want to color
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the nodes in a graph in order that any two adjacent nodes are of different
colors. The objective function to be minimized is given by the number of
colors. Note that each color class is an independent set and using this it
is possible to prove that a good approximation algorithm for independent
set would have yielded an almost as good approximation algorithm for col-
oring, but no direct reduction is known in the other direction. Feige and
Kilian [30] showed, however, that it is possible to extend the lower bounds
of independent set to coloring and thus also this problem is very difficult to
approximate.

Of special interest are graph which can be colored with very few colors,
the first interesting case being three-colorable graphs. This is one of the
major open problems of the area of approximability. By a result of Blum
and Karger [7] it is known how to color such a graph in polynomial time
with roughly O(n3/14) colors while the best lower bound by Khanna et el.
[21] is that unless P = NP it cannot be done with 4 colors. Most people in
the area seem to expect the true answer to be of the form O(nδ) for some
positive δ but this conjecture must be considered highly uncertain.

8 Maximum cut

Maximum cut is the following problem. Given a graph, divide the nodes
into two groups V1 and V2 in order that the maximum number of edges that
are cut, i.e. go between the two parts.

For a long time, the best approximation algorithm for this problem was
a random assignment, giving an approximation ratio of 2 as a random as-
signment cuts half the edges on the average.

A leap forward was made by Goemans and Williamson [14] when semi-
definite programming was introduced as a tool to achieve good provable
approximation ratios. Linear programming had long been used as a tool
for designing heuristics and semi-definite programming is an extension. In
a semi-definite program, we have a set of variables organized in a matrix.
Apart from linear conditions on the variables we also have the constraint
that the matrix is positive semi-definite. Assuming a linear objective func-
tion, the optimum can, by a result of Alizadeh [1], be found to any desired
accuracy. One reason one could hoped for semi-definite programming to be
solved efficiently is that the set of semi-definite matrices form a convex set
and hence there is no problem with local extrema.

Using this method for maximum cut, Goemans and Williamson [14]
found a polynomial time approximation algorithm with approximation ratio

max
θ

π

2
· 1− cos θ

θ
≈ 1.138. (1)

This algorithm remains the champion while the lower bound on approx-
imability is 17/16 − ε for any ε > 0 [16]. There has recently been work by
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Khot et al. [23] indicating the the upper bound might be the correct answer.
Given two strong, but not unrealistic conjectures, one can prove upto an
arbitrary ε > 0 matching lower bounds.

9 Set cover

In set cover we are given a sequence of subsets (Si)m
i=1 of a universe X of

cardinality n. The goal is to find a minimal size sub-collection that covers
X.

There is a straightforward greedy algorithm for this problem. Keep
picking the set that covers the maximal number of uncovered elements. If
the optimal covering contains k elements then it is not difficult to see that
at each iteration we cover at least a fraction 1

k of the uncovered elements.
The number of remaining uncovered elements after t sets have been picked
is thus at most

(1− 1
k
)tn

and it follows that after at most k lnn sets have been picked, all elements are
covered. We conclude that we get an lnn approximation algorithm which
was first described by Johnson [19]. This is complemented by a lower bound
that says that if NP is not contained in deterministic time nO(log log n) then
no polynomial time algorithm can approximate set cover within a factor
(1 − o(1) lnn. Slightly weaker results are known if we are only willing to
assume NP 6= P .

10 Vertex cover

Vertex cover is the special case of set cover where each element only appears
in two sets. This is mostly easily visualized as a graph. The edges of the
graph corresponds to the elements while each node gives a set defined by the
edges incident to that node. The task now is to find the minimal number of
nodes such that each edge has at least one endpoint in the picked set.

There are many ways to approximate this problem within a factor 2 and
one is to relax it to linear programming. Introduce a variable xi for each
node and minimize

n∑
i=1

xi

given the constraint
xi + xj ≥ 1

for any edge (i, j) as well as xi ≥ 0 for any i. Clearly any legitimate solution
to the vertex cover gives a solution to the linear program by making xi = 1
when i is included in the solution and setting xi = 0 otherwise.
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Thus we know that the optimum to the linear program is at most the
value of the optimal solution to vertex cover. The optimal solution to any
linear program can be found in polynomial time but the optimal solution
probably takes values outside {0, 1} and hence do correspond directly to a
vertex cover. To recover a correct solution to vertex from a general solution
to the linear program one can proceed as follows.

For any i with xi ≥ 1/2 increase xi to 1 while otherwise set xi = 0. It is
not difficult to see that the cost increases by at most a factor 2 and we get
a solution for vertex cover giving an efficient 2-approximation algorithm.

The strongest known lower bound on approximability for vertex cover by
Dinur and Safra [11], is that it is NP -hard to approximate within 10

√
5 −

21 − ε ≈ 1.36 for any ε > 0. Khot and Regev [24] have proved that, again
subject to an unproven and slightly speculative conjecture, that the upper
bound is the correct value.

11 Traveling salesperson problem

Let us finally return to TSP. In most reasonable circumstances, instances
obey the triangle inequality so let us concentrate on this case.

If we only assume the triangle inequality the algorithm by Christofides
[10] with the best approximation ratio has been known for over 20 years
and it gives a factor 1.5. Here we have a lower bound but much weaker
than for other problems. The best lower bound with a fully published proof
is 3813/3812 by Böckenhauer and Seibert [9], but stronger results are in
the process of being verified. It seems, however, that a ratio of 1.01 is not
achievable by the current methods.

One interesting subcase is that the cities are points in the two-dimensional
plane and the distances are Euclidean distances. To find the optimal solu-
tion is this case was early on proved to be NP -hard by Papadimitriou [26].
For a long time, the algorithm of Christofides remained the best also in
this case but eventually a celebrated result by Arora [4] showed that the
Euclidean structure can be used and if fact for any ε > 0 it is possible to
find an approximation within a factor (1 + ε) in polynomial time. Thus the
Euclidean case is provably simpler than the general case with the triangle
inequality.

An interesting extension is that of non-symmetric TSP, i.e. where it
is possible that d(i, j) 6= d(j, i) which is quite possible in many models of
reality, even for a modern salesperson with prevailing western winds playing
a factor at long distance flights.

Clearly any lower bound for the symmetric model also applies to asym-
metric case and in fact the bounds can be strengthened slightly but no
bound beyond 1.01 is currently claimed. More interestingly all approxi-
mation algorithms that give a constant approximation factor relies on the
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distance-function being symmetric and the smallest achievable approxima-
tion ratio in polynomial time is currently O(log n), the first such algorithm
was given by Frieze et al. [13]. It is difficult to guess what the true bound
might be and we end with this totally open question.

12 Final words

If most problems were classified as either in P or as NP -hard by the 1980’ies
we are now closing in on knowing approximability of most NP -hard opti-
mization problems. Clearly many problems do remain but progress since
the beginning 1990’ies when this research started has been spectacular. One
cannot help to be amazed that it keeps being the case that either problems
are solvable in polynomial time or turn out to be NP -hard. The in-between
case, that one can prove must occur by constructing artificial problems,
continues to be rare for natural problems. What this is so, we can only
speculate.
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