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Abstract. We generalize the quantum algorithm for computing short
discrete logarithms previously introduced by Eker̊a [2] so as to allow for
various tradeoffs between the number of times that the algorithm need be
executed on the one hand, and the complexity of the algorithm and the
requirements it imposes on the quantum computer on the other hand.
Furthermore, we describe applications of algorithms for computing short
discrete logarithms. In particular, we show how other important prob-
lems such as those of factoring RSA integers and of finding the order of
groups under side information may be recast as short discrete logarithm
problems. This gives rise to an algorithm for factoring RSA integers that
is less complex than Shor’s general factoring algorithm in the sense that
it imposes smaller requirements on the quantum computer. In both our
algorithm and Shor’s algorithm, the main hurdle is to compute a modu-
lar exponentiation in superposition. When factoring an n bit integer, the
exponent is of length 2n bits in Shor’s algorithm, compared to slightly
more than n/2 bits in our algorithm.
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1 Introduction

In a groundbreaking paper [8] from 1994, subsequently extended and revised
in a later publication [9], Shor introduced polynomial time quantum computer
algorithms for factoring integers over Z and for computing discrete logarithms
in the multiplicative group F

∗
p of the finite field Fp.

Although Shor’s algorithm for computing discrete logarithms was originally
described for F

∗
p, it may be generalized to any finite cyclic group, provided the

group operation may be implemented efficiently using quantum circuits.

1.1 Recent Work

Eker̊a [2] has introduced a modified version of Shor’s algorithm for computing
short discrete logarithms in finite cyclic groups.
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Unlike Shor’s original algorithm, this modified algorithm does not require
the order of the group to be known. It only requires the logarithm to be short;
i.e. it requires the logarithm to be small in relation to the group order.

The modified algorithm is less complex than Shor’s general algorithm when
the logarithm is short. This is because the main hurdle in both algorithms is to
compute a modular exponentiation in superposition.

In the case where the group order is of length l bits and the logarithm sought
is of length m ≪ l bits, Eker̊a’s algorithm exponentiates two elements to expo-
nents of size 2m bits and m bits respectively. In Shor’s algorithm, both exponents
are instead of size l ≫ m bits.

This difference is important since it is seemingly hard to build and operate
large and complex quantum computers. If the complexity of a quantum algo-
rithm may be reduced, in terms of the requirements that it imposes on the
quantum computer, this could potentially mean the difference between being
able to execute the algorithm and not being able to execute the algorithm.

1.2 Our Contributions

In the first part of this paper, we generalize the algorithm of Eker̊a by considering
the setting where the quantum algorithm is executed multiple times to yield
multiple partial results. We then combine these partial results using lattice-based
techniques in a classical post-processing stage to yield the discrete logarithm.

This enables us to further reduce the size of the exponent to only slightly
more than m bits. Furthermore, this enables us to make tradeoffs between the
number of times that the quantum algorithm need be executed on the one hand,
and the complexity of the algorithm and the requirements that it imposes on
the quantum computer on the other hand.

In the second part of this paper, we describe applications for our algorithm for
computing short discrete logarithms. In particular, we show how the problems of
factoring RSA integers and of finding the order of groups under side information
may be recast as short discrete logarithm problems. By RSA integer we mean
an integer that is the product of two primes of similar size.

This immediately gives rise to an algorithm for factoring RSA integers that
is less complex than Shor’s original general factoring algorithm in terms of the
requirements that it imposes on the quantum computer. When factoring an n
bit integer using Shor’s order finding algorithm, an exponentiation is performed
to an exponent of length 2n bits. In our algorithm, the corresponding exponent
is instead of length (12 + 1

s )n bits where s ≥ 1 is a parameter that may assume
any small integer value. The exponent length is hence reduced from 2n bits to
slightly more than n/2 bits.

1.3 Related Work

In an earlier work, unknown to us at the time of developing these results, Seifert
[7] proposed to execute Shor’s order finding algorithm multiple times with a
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smaller range of exponents to obtain a set of partial results, and to compute the
order from this set using simultaneous Diophantine approximation techniques.
He gives an algorithm that uses an exponent of length slightly more than n bits
when factoring an n bit RSA integer.

Seifert does not give all details in his analysis of the algorithm but several
of his ideas parallel those of ours. In this work, however, we further reduce
the length of the exponent to slightly more than n/2 bits by casting the RSA
factoring problem as a short discrete logarithm problem and solving it using our
generalized algorithm. The fact that we do not have any modular reductions in
the exponent makes for a simpler and more transparent proof.

1.4 Overview

In the next section, we introduce notation that is used throughout the paper,
and in Sect. 3 we describe our generalized algorithm for computing short discrete
logarithms, briefly discuss its applications, and describe its advantage.

We proceed to describe algorithms for factoring RSA integers in Sect. 4 and
for finding the order of group elements under side information in Sect. 5. Both of
these algorithms are based upon the generalized algorithm for computing short
discrete logarithms introduced in Sect. 3.

2 Notation

In this section, we introduce some notation used throughout this paper.

– u mod n denotes u reduced modulo n and constrained to 0 ≤ u mod n < n.
– {u}n denotes u reduced modulo n and constrained to −n/2 ≤ {u}n < n/2.
– �u� denotes u rounded to the closest integer.
– | a + ib | =

√
a2 + b2 where a, b ∈ R denotes the Euclidean norm of a + ib.

– |u | denotes the Euclidean norm of the vector u = (u0, . . . , un−1) ∈ R
n.

3 Computing Short Discrete Logarithms

In this section, we describe a generalization of the algorithm for computing short
discrete logarithms previously introduced by Eker̊a [2].

3.1 The Discrete Logarithm Problem

Let G under � be a group of order r generated by g, and let

x = [d] g = g � g � · · · � g � g
︸ ︷︷ ︸

d times

.

Given x, a generator g and a description of G and � the discrete logarithm
problem is to compute d = logg x.

The bracket notation that we have introduced above is commonly used in
the literature to denote repeated application of the group operation regardless
of whether the group is written multiplicatively or additively.
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3.2 Algorithm Overview

The generalized algorithm for computing short discrete logarithms consists of
two stages; an initial quantum stage and a classical post-processing stage.

The initial quantum stage is described in terms of a quantum algorithm, see
Sect. 3.3, that upon input of g and x = [d] g yields a pair (j, k). The classical
post-processing stage is described in terms of a classical algorithm, see Sect. 3.9,
that upon input of s ≥ 1 “good” pairs computes and returns d.

The parameter s determines the number of good pairs (j, k) required to
successfully compute d. It furthermore controls the sizes of the index registers
in the algorithm, and thereby the complexity of executing the algorithm on a
quantum computer and the sizes of and amount of information on d contained
in the two components j, k of each pair.

In the special case where s = 1 the generalized algorithm is identical to the
algorithm in [2]. A single good pair then suffices to compute d.

By allowing s to be increased, the generalized algorithm enables a tradeoff to
be made between the requirements imposed by the algorithm on the quantum
computer on the one hand, and the number of times it needs to be executed and
the complexity of the classical post-processing stage on the other hand.

We think of s as a small constant. Thus, when we analyze the complexity
of the algorithm, and in particular the parts of the algorithm that are executed
classically, we can neglect constants that depend on s.

3.3 The Quantum Algorithm

Let m be the smallest integer such that 0 < d < 2m and let � be an integer
close to m/s. Provided that the order r of g is at least 2�+m + 2�d, the quantum
algorithm described in this section will upon input of g and x = [d] g compute
and output a pair (j, k).

A set of such pairs is then input to the classical algorithm to recover d.

1. Let

| Ψ 〉 =
1√

22�+m

2�+m−1
∑

a=0

2�−1
∑

b=0

| a 〉 | b 〉 | 0 〉 .

2. Compute [a] g � [−b]x and store the result in the third register

| Ψ 〉 =
1√

22�+m

2�+m−1
∑

a=0

2�−1
∑

b=0

| a, b, [a − bd] g 〉 .

3. Compute a QFT of size 2�+m of the first register and a QFT of size 2� of the
second register to obtain

| Ψ 〉 =
1

22�+m

2�+m−1
∑

a, j =0

2�−1
∑

b, k =0

e 2πi (aj+2mbk)/2�+m | j, k, [a − bd] g 〉 .

4. Observe the system in a measurement to obtain (j, k) and [e] g.
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3.4 Analysis of the Probability Distribution

When the system above is observed, the state | j, k, [e] g 〉, where e = a − bd, is
obtained with probability

1
22(2�+m)

·
∣

∣

∣

∣

∣

∑

a

∑

b

exp
[

2πi

2�+m
(aj + 2m bk)

]
∣

∣

∣

∣

∣

2

(1)

where the sum is over all pairs (a, b) that produce this specific e. Note that the
assumption that the order r ≥ 2�+m + 2�d implies that no reduction modulo r
occurs when e is computed.

Since e = a− bd we have a = e+ bd. Substituting a for this expression in (1),
extracting the term containing e, and centering b around zero yields

1
22(2�+m)

·
∣

∣

∣

∣

∣

∑

b

exp
[

2πi

2�+m
(b − 2�−1) {dj + 2mk}2�+m

]
∣

∣

∣

∣

∣

2

(2)

where the sum is over all b in { 0 ≤ b < 2� | 0 ≤ a = e + bd < 2�+m }.
Note that a modular reduction by 2�+m has furthermore been introduced.

This is possible since adding or subtracting multiples of 2�+m has no effect; it is
equivalent to shifting the phase angle by a multiple of 2π.

3.5 The Notion of Constructive Interference

The claim below summarizes the notion of constructive interference that we use
to lower-bound the success probability.

Claim 1. Let θj for 0 ≤ j < N be phase angles such that | θj | ≤ π
4 . Then

∣

∣

∣

∣

∣

∣

N−1
∑

j =0

eiθj

∣

∣

∣

∣

∣

∣

2

≥ N2

2
.

Proof.
∣

∣

∣

∣

∣

∣

N−1
∑

j =0

eiθj

∣

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∣

N−1
∑

j =0

(cos θj + i sin θj)

∣

∣

∣

∣

∣

∣

2

≥
∣

∣

∣

∣

∣

∣

N−1
∑

j =0

cos θj

∣

∣

∣

∣

∣

∣

2

≥ N2

2

since for j on the interval 0 ≤ j < N we have | θj | ≤ π
4 which implies that

1√
2

≤ cos θj ≤ 1 and so the claim follows. 
�

3.6 The Notion of a Good Pair (j, k)

By Claim 1 the sum in Eq. (2) is large when | {dj +2mk}2�+m | ≤ 2m−2 since this
condition implies that the angle is less than or equal to π/4.

This observation serves as our motivation for introducing the below notion
of a good pair, and for proceeding in the following sections to lower-bound the
number of good pairs and the probability of obtaining any specific good pair.
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Definition 1. A pair (j, k), where j and k are integers such that 0 ≤ j < 2�+m

and 0 ≤ k < 2�, is said to be good if | {dj + 2mk}2�+m | ≤ 2m−2.

Note that j uniquely defines k as k gives the � high order bits of dj modulo 2�+m

or more specifically as k = −�(dj mod 2�+m)/2m� mod 2�.

3.7 Lower-Bounding the Number of Good Pairs (j, k)

Lemma 1. There are at least 2�+m−1 different j such that there is a k such that
(j, k) is a good pair.

Proof. For a good pair

| {dj + 2mk}2�+m | = | {dj}2m | ≤ 2m−2 (3)

and for each j that satisfies (3) there is a unique k such that (j, k) is good.
Let 2κ be the greatest power of two that divides d. Since 0 < d < 2m it must

be that κ ≤ m − 1. As j runs through all integers 0 ≤ j < 2�+m, the function
dj mod 2m assumes the value of each multiple of 2κ exactly 2�+κ times.

Assume that κ = m − 1. Then the only possible values are 0 and 2m−1.
Only zero gives rise to a good pair. With multiplicity there are 2�+κ = 2�+m−1

integers j such that (j, k) is a good pair. Assume that κ < m − 1. Then only
the 2 · 2m−κ−2 + 1 values congruent to values on [−2m−2, 2m−2] are such that
| {dj}2m | ≤ 2m−2. With multiplicity 2�+κ there are 2�+κ · (2 · 2m−κ−2 + 1) ≥
2�+m−1 integers j such that (j, k) is a good pair. In both cases there are at least
2�+m−1 good pairs and so the lemma follows. 
�

3.8 Lower-Bounding the Probability of a Good Pair (j, k)

To lower-bound the probability of a good pair we first need to lower-bound the
number of pairs (a, b) that yield a certain e.

Definition 2. Let Te denote the number of pairs (a, b) such that e = a − bd
where a, b are integers on the intervals 0 ≤ a < 2�+m and 0 ≤ b < 2�.

Claim 2.

2�+m−1
∑

e=−2�+m

Te = 22�+m.

Proof. Since a, b may independently assume 2�+m and 2� values, there are 22�+m

distinct pairs (a, b). From this fact, and from the fact that | e = a − bd | < 2�+m

since 0 ≤ a < 2�+m, 0 ≤ b < 2� and 0 < d < 2m, the claim follows. 
�
Claim 3.

2�+m−1
∑

e=−2�+m

T 2
e ≥ 23�+m−1.
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Proof. This follows from the Cauchy–Schwarz inequality and Claim 2 since

22(2�+m) =

⎛

⎝

2�+m−1
∑

e=−2�+m

Te

⎞

⎠

2

≤
⎛

⎝

2�+m−1
∑

e=−2�+m

12

⎞

⎠

⎛

⎝

2�+m−1
∑

e=−2�+m

T 2
e

⎞

⎠ .


�
We are now ready to demonstrate a lower-bound on the probability of obtaining
a good pair using the above definition and claims.

Lemma 2. The probability of obtaining any specific good pair (j, k) from a single
execution of the algorithm in Sect. 3.3 is at least 2−m−�−2.

Proof. For a good pair
∣

∣

∣

∣

2π

2�+m
(b − 2�−1) {dj + 2mk}2�+m

∣

∣

∣

∣
≤ 2π

2�+2

∣

∣ b − 2�−1
∣

∣ ≤ π

4

for any integer b on the interval 0 ≤ b < 2�. It therefore follows from Claim 1
that the probability of observing (j, k) and [e] g is at least

1
22(2�+m)

·
∣

∣

∣

∣

∣

∑

b

exp
[

2πi

2�+m
(b − 2�−1) {dj + 2mk}2�+m

]
∣

∣

∣

∣

∣

2

≥ T 2
e

2 · 22(2�+m)

Summing this over all e and using Claim 3 yields

2�+m−1
∑

e=−2�+m

T 2
e

2 · 22(2�+m)
≥ 2−m−�−2

from which the lemma follows. 
�
We note that by Lemmas 1 and 2 the probability of the algorithm yielding a
good pair as a result of a single execution is at least 2−3.

3.9 Computing d from a Set of s Good Pairs

In this section, we specify a classical algorithm that upon input of a set of s
distinct good pairs {(j1, k1), . . . , (js, ks)}, that result from multiple executions
of the algorithm in Sect. 3.3, computes and outputs d.

Definition 3. Let L be the integer lattice generated by the row span of
⎡

⎢

⎢

⎢

⎢

⎢

⎣

j1 j2 · · · js 1
2�+m 0 · · · 0 0

0 2�+m · · · 0 0
...

...
. . .

...
...

0 0 · · · 2�+m 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.
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The algorithm proceeds as follows to recover d from {(j1, k1), . . . , (js, ks)}.

1. Let v = ( {−2mk1}2�+m , . . . , {−2mks}2�+m , 0) ∈ Z
s+1.

For all vectors u ∈ L such that

|u − v | <
√

s/24 + 1 · 2m

test if the last component of u is d by checking if x = [d] g. If so return d.
2. If d is not found in step 1 or the search is infeasible the algorithm fails.

As s is a small constant, all vectors close to v can be explored efficiently.
The most straightforward way to explore all vectors close to v is to first

compute a reduced basis for L using standard basis reduction techniques such as
Lenstra-Lenstra-Lovász (LLL) [4]. The reduced basis may then be used to find
the vector in L closest to v, and to explore the neighborhood of this vector in
L by adding and subtracting vectors from the basis. There are however more
efficient ways to enumerate the vectors in lattices, see for instance the work of
Micciancio and Walter [5].

One problem that remains to be addressed is that there may theoretically
exist many vectors in L that are close to v. In Lemma 3 in the next section we
demonstrate that this is not the case with high probability.

3.10 Rationale and Analysis

For any m1, . . . , ms ∈ Z the vector

u = ({dj1}2�+m + m12�+m, . . . , {djs}2�+m + ms2�+m, d) ∈ L.

The above algorithm performs an exhaustive search of all vectors in L at distance
at most

√

s/24 + 1 · 2m from v to find u for some m1, . . . , ms. It then recovers
d as the second component of u. The search will succeed in finding u since

|u − v | =

√

√

√

√ d2 +
s

∑

i=1

({dji}2�+m + mi 2�+m − {−2mki}2�+m)2

=

√

√

√

√ d2 +
s

∑

i=1

({dji + 2mki}2�+m)2 <
√

s/24 + 1 · 2m

since 0 < d < 2m and |{dj + 2mk}2�+m | ≤ 2m−2 by the definition of a good pair,
and since m1, . . . , ms may be freely selected to obtain equality.

Whether the search is computationally feasible depends on the number of
vectors in L that lie within distance

√

s/24 + 1 ·2m of v. This number is related
to the norm of the shortest vector in the lattice.

Note that the determinant of L is 2(�+m)s ≈ 2m(s+1). As the lattice is s + 1-
dimensional we would expect the shortest vector to be of length about 2m. This
is indeed true with high probability.
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Lemma 3. The probability that L contains a vector u = (u1, . . . us+1) with
|ui | < 2m−3 for 1 ≤ i ≤ s + 1 is bounded by 2−s−1.

Proof. Take any integer u with all coordinates strictly bounded by 2m−3.
If 2κ is the largest power of two that divides us+1 then ui must also be

divisible by 2κ for u to belong to any lattice in the family. By family we mean
all lattices on the same form and degree as L, see Definition 3. If it this is true
for all i then u belongs to L for 2sκ different values of (ji)s

i=1.
There are 2(m−2−κ)(s+1) vectors u with all coordinates divisible by 2κ and

bounded in absolute value by 2m−3. We conclude that the total number of lattices
L that contain such a short vector is bounded by

∑

κ

2(m−2−κ)(s+1) · 2κs ≤ 21+(m−2)(s+1).

As the number of s-tuples of good j is at least 2s(�+m−1), the lemma follows. 
�
Lemma 3 shows that with good probability the number of lattice points such
that |u − v | <

√

s/24 + 1 · 2m is a constant that only depends on s and thus
we can efficiently find all such vectors.

3.11 Building a Set of s Good Pairs

The probability of a single execution of the quantum algorithm in Sect. 3.3 yield-
ing a good pair is at least 2−3 by Lemmas 1 and 2. Hence, if we execute the quan-
tum algorithm t = 8s times, we obtain a set of t pairs that we expect contains
at least s good pairs.

In theory, we may then recover d by executing the classical algorithm in
Sect. 3.9 with respect to all

(
t
s

)

subsets of s pairs selected from this set. Since s
is a constant, this approach implies a constant factor overhead in the classical
part of the algorithm. It does not affect the quantum part of the algorithm. We
summarize these ideas in Theorem 4 below.

In practice, however, we suspect that it may be easier to recover d. First of
all, we remark that we have only established a lower bound on the probability
that a good pair is yielded by the algorithm. This bound is not tight and we
expect the actual probability to be higher than is indicated by the bound.

Secondly, we have only analyzed the probability of the classical algorithm in
Sect. 3.9 recovering d under the assumption that all s pairs in the set input are
good. It might however well turn out to be true that the algorithm will succeed
in recovering d even if not all pairs in the input set are good.

3.12 Main Result

In this subsection we summarize the above discussion in a main theorem. Again,
we stress that the approach outlined in the theorem is conservative.



356 M. Eker̊a and J. H̊astad

Theorem 4. Let d be an integer on 0 < d < 2m, let s ≥ 1 be a fixed integer,
let � be an integer close to m/s and let g be a generator of a finite cyclic group
of order r ≥ 2�+m + 2�d. Then there exists a quantum algorithm that yields a
pair as output when executed with g and x = [d] g as input. The main operation
in this algorithm is an exponentiation of g in superposition to an exponent of
length � + m bits. If this algorithm is executed cs times for some small constant
c to yield a set of pairs S, then there exists a polynomial time classical algorithm
that computes d if executed with all unordered subsets of s pairs from S as input.

The proof of the quantum part of Theorem4 follows from the above discussion.
Again, we remind the reader that s is a small constant. The complexity of

the algorithm would otherwise be exponential in s. Furthermore, we note that
the order r of the group need not be explicitly known. It suffices that the above
requirement on r is met. Note furthermore that it must be possible to implement
the group operation efficiently on a quantum computer.

3.13 The Advantage of Our Algorithm

The advantage of using our algorithm to compute short discrete logarithms in
comparison to using Shor’s general algorithm is that our algorithm imposes
smaller requirements on the quantum computer.

To explain in which respects our algorithm imposes smaller requirements on
the quantum computer, we first note that in both our algorithm and Shor’s
algorithm the quantum stages consist of two modular exponentiations followed
by the computation of two QFTs, see Figs. 1 and 2 in the appendix.

Except for the reduction in the exponent lengths and in the sizes of the QFTs
in our algorithm compared to Shor’s algorithm, the quantum stages of the two
algorithms are identical. The advantage provided by our algorithm over Shor’s
algorithm when the logarithm is short stems from these reductions.

Second, we note that a QFT may be computed efficiently when the size is a
power of two as described by Shor [8,9]. In fact, the QFTs may be computed
on-the-fly using only a single control qubit as we will elaborate on in further
detail below. Hence, the main hurdle is the modular exponentiation. For a more
in-depth discussion, see for instance the work by Cleve and Watrous [1].

The standard quantum algorithm for exponentiating a fixed group element as
described by Shor [9] is to classically pre-compute consecutive powers of the two
elements, and to construct quantum circuits for combining these pre-computed
powers with generic group elements under the group operation. These circuits are
then executed in sequence controlled by one or more qubits in a separate index
register. The classical counterpart to this algorithm is the square-and-multiply
algorithm, or the double-and-add algorithm, if the group is written additively.

Assuming the standard algorithm is used to implement the exponentiation,
the number of such group operations that need be implemented in the quantum
circuit is reduced by a constant factor directly proportional to the reduction
in the exponent length. The reduction in the number of group operations that
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need be implemented in the circuit implies a corresponding reduction both in the
circuit depth and in the time required to execute the circuit, which translates
into a reduction in the time that the quantum system need be kept coherent.

As for the register of qubits used to control the group operations, its size is
reduced by a constant factor in implementations where a distinct qubit is used
to control each group operation. However, it is possible to use a single control
qubit to control all group operations, as described by Mosca and Ekert [6]. In
such implementations, the number of qubits required to implement our algorithm
compared to Shor’s algorithm is not reduced.

As is evident from the above discussion, the advantage of using our algorithm
to compute short discrete logarithms compared to using Shor’s general algorithm
depends on how the algorithms are implemented, but it always stems from the
reduction in the length of the exponents and in the sizes of the QFTs.

3.14 Implementation Remarks

It should be explicitly stated that we describe our algorithm mathematically in
this paper in terms of it using two index registers, and in terms of the quantum
system being initialized, of a circuit then being executed, and of the system then
being observed in a measurement.

This algorithm description, whilst being useful when seeking to understand
and analyze the algorithm, is not necessarily representative of the manner in
which the algorithm would be implemented in practice. To base comparisons
solely upon this description without taking implementation details into account
may prove misleading. This was demonstrated in the previous section.

Furthermore, it should be stated that there are various papers on how Shor’s
algorithm may be implemented in the literature. Many of these ideas carry over
to our algorithm since the quantum stages are very similar.

3.15 Applications

Quantum algorithms for computing short discrete logarithms have cryptanalytic
applications with respect to cryptanalysis of schemes in which the security relies
on the intractability of the short discrete logarithm problem.

A concrete example of such an application is to attack Diffie-Hellman over
finite fields when safe prime groups are used in conjunction with short exponents.

The existence of efficient specialized algorithms for computing short discrete
logarithms on quantum computers should be taken into account when selecting
and comparing domain parameters for asymmetric cryptographic schemes that
rely on the computational intractability of the discrete logarithm problem.

For further details, the reader is referred to the extended rationale in [2] and
to the references to the literature provided in that paper.
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4 Factoring RSA Integers

In this section we describe how the RSA integer factoring problem may be recast
as a short discrete logarithm problem by using ideas from H̊astad et al. [3], and
the fact that our algorithm does not require the group order to be known.

This immediately gives rise to an algorithm for factoring RSA integers that
imposes smaller requirements on the quantum computer than Shor’s general
factoring algorithm.

4.1 The RSA Integer Factoring Problem

Let p, q 
= p be two random odd primes such that 2n−1 < p, q < 2n. The RSA
integer factoring problem is then to factor N = pq into p and q.

4.2 The Factoring Algorithm

Consider the multiplicative group Z
∗
N to the ring of integers modulo N . This

group has order φ(N) = (p − 1)(q − 1). Let G be some cyclic subgroup to Z
∗
N .

Then G has order φ(N)/t for some t | φ(N) such that t ≥ gcd(p − 1, q − 1).
In what follows below, we assume that φ(N)/t > (p + q − 2)/2.

1. Let g be a generator of G. Compute x = g(N−1)/2. Then x ≡ g(p+q−2)/2.
2. Compute the short discrete logarithm d = (p + q − 2)/2 from g and x.
3. Compute p and q by solving the quadratic equation

N = (2d − q + 2)q = 2(d + 1)q − q2

where we use that 2d + 2 = p + q. This yields

p, q = c ±
√

c2 − N where c = d + 1.

We obtain p or q depending on the choice of sign.

To understand why we obtain a short logarithm, note that

N − 1 = pq − 1 = (p − 1) + (q − 1) + (p − 1)(q − 1)

from which it follows that (N − 1)/2 ≡ (p + q − 2)/2 mod φ(N)/t provided that
the above assumption that φ(N)/t > (p + q − 2)/2 is met.

The only remaining difficulties are the selection of the generator in step 1
and the computation of the short discrete logarithm in step 2.

In step 1 we may pick any cyclic subgroup G to Z
∗
N for as long as its order

φ(N)/t is sufficiently large. It suffices that φ(N)/t > (p + q − 2)/2 and that the
discrete logarithm can be computed, see Sect. 4.2 below for more information.

This implies that we may simply select an element g uniformly at random
on the interval 1 < g < N − 1 and use it as the generator.
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To compute the short discrete logarithm in step 2, we use the algorithm in
Sect. 3. This algorithm requires that the order

φ(N)/t ≥ 2�+m + 2�d ⇒ φ(N)/t ≥ 2�+m+1

where we have used that 0 < d < 2m. We note that

2n ≤ d = (p + q − 2)/2 < 2n+1 ⇒ m = n + 1.

Furthermore, we note that φ(N) = (p − 1)(q − 1) ≥ 22(n−1) which implies

φ(N)/t ≥ 22(n−1)/t ≥ 2�+m+1 = 2�+n+2 ⇒ t < 22(n−1)−(n+�+2) = 2n−�−4.

Recall that � = m/s = (n + 1)/s where s ≥ 1. For random p and q, and a
randomly selected cyclic subgroup to Z

∗
N , the requirement t < 2n−�−4 is hence

met with overwhelming probability for any s > 1.
We remark that further optimizations are possible. For instance the size of

the logarithm may be reduced by computing x = g(N−1)/2−2n

since p, q > 2n−1.

4.3 Generalizations

We note that the algorithm proposed in this section can be generalized.
In particular, we note that we need not assume that the two factors are of

the same length in bits. It suffices that the difference in length between the two
factors is not too great for a short discrete logarithm problem to arise.

4.4 The Advantage of Our Algorithm

The advantage of using our algorithm to factor RSA integers in comparison to
using Shor’s general integer factoring algorithm is that our algorithm imposes
smaller requirements on the quantum computer.

To compute two exponentiations with respect to different base elements and
two QFTs, as in the discrete logarithm algorithms previously described, is not
significantly different from computing a single larger exponentiation followed
by a single QFT of large size, as in Shor’s order finding algorithm that is the
quantum part of Shor’s factoring algorithm. For more information, see [8,9] and
the quantum circuits in Figs. 1, 2 and 3 in the appendix.

In analogy with the situation in Sect. 3.13, the advantage of our algorithm
over Shor’s algorithm is again obtained by the total exponent length and the
total size of the QFT being reduced by a constant factor.

5 Order Finding Under Side Information

In this section, we briefly consider the problem of computing the order of a cyclic
group G when a generator g for the group is available and when side information
is available in the form of an estimate of the group order.
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Let G be a cyclic group of order r. Let r0 be a known approximation of the
order such that 0 ≤ r − r0 < 2m. The problem of computing the order r under
the side information r0 may then be recast as a short discrete logarithm problem:

1. Let g be a generator of G. Compute x = g−r0 . Then x ≡ gr−r0 .
2. Compute the short discrete logarithm d = r − r0 from g and x.
3. Compute the order r = d + r0.

6 Summary and Conclusion

We have generalized the quantum algorithm for computing short discrete log-
arithms previously introduced by Eker̊a [2] so as to allow for various tradeoffs
between the number of times that the algorithm need be executed on the one
hand, and the complexity of the algorithm and the requirements it imposes on
the quantum computer on the other hand.

In the case where the group order is of length l bits and the logarithm sought
is of length m ≪ l bits, Eker̊a’s algorithm exponentiates two elements to expo-
nents of size 2m bits and m bits respectively. In Shor’s algorithm for computing
discrete logarithms, both exponents are instead of size l bits. Our generalized
algorithm reduces this to � + m and � bits where � ≈ m/s and s ≥ 1 is a small
integer constant. For s = 1 our algorithm is identical to Eker̊a’s algorithm.

These algorithms have immediate cryptanalytic applications with respect to
cryptanalysis of schemes in which the security rests on the intractability of the
short discrete logarithm problem. Furthermore, we have described additional
applications for algorithms for computing short discrete logarithms.

In particular, we have shown how other important problems such as those of
factoring RSA integers and of finding the order of groups under side information
may be recast as short discrete logarithm problems. This immediately gives rise
to an algorithm for factoring RSA integers that is less complex than Shor’s
general factoring algorithm in the sense that it imposes smaller requirements on
the quantum computer.

In both our algorithm and Shor’s algorithm, the main hurdle is to compute
a modular exponentiation in superposition. When factoring an n bit integer, the
exponent is of length 2n bits in Shor’s algorithm, compared to slightly more than
n/2 bits in our algorithm. We have made essentially two optimizations that give
rise to this improvement:

First, we gain a factor of two by re-writing the factoring problem as a short
discrete logarithm problem and solving it using our algorithm for computing
short discrete logarithms. One way to see this is that we know an approximation
N of the order φ(N). This gives us a short discrete logarithm problem and our
algorithm for solving it does not require the order to be known beforehand.

Second, we gain a factor of two by executing the quantum algorithm multiple
times to yield a set of partial results. We then recover the discrete logarithm d
from this set in a classical post-processing step. The classical algorithm uses
lattice-based techniques.
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A Appendix

In this appendix we provide graphical visualizations of some of the quantum
circuits described earlier so as to facilitate the reader’s comprehension.

All circuits below use the standard algorithm for exponentiation and one
control qubit for each group operation as described in Sect. 3.13. Recall that a
single qubit may be used to control all operations as described by Mosca and
Ekert [6]. This reduces the topmost registers in the figures to a single qubit.

We assume below that t qubits is sufficient to represent group elements and to
perform the required group operations. Furthermore, we introduce the controlled
operator Uv that upon input of | u 〉 where u, v ∈ G outputs | u � v 〉 if the control
qubit is | 1 〉 and | u 〉 otherwise.
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Fig. 1. A quantum circuit for the quantum stage in the algorithm for computing short
discrete logarithms described in Sect. 3.
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Fig. 2. A quantum circuit for the quantum stage in Shor’s algorithm for computing
general discrete logarithms [2,8,9]. It is identical to the circuit in Fig. 1, except that
the exponent lengths and register sizes are larger. In this figure, l denotes the length
in bits of the order of G. The circuit in Fig. 1 has an advantage when l ≫ � + m/2.

H

H

|0
〉

H |j
〉

2
n

q
u
b
it

s
t

q
u
b
it

s

Q
F
T

| 1
〉

|x
a

m
o
d

N
〉

U
x
2
0

U
x
2

i

U
x
2
2

n
−

1

2n operations

Fig. 3. A quantum circuit for the quantum stage in the order finding algorithm that is
part of Shor’s factoring algorithm [8,9]. In this figure, x is a random integer, n denotes
the length in bits of the integer N to be factored and we assume G ⊆ Z

∗
N .



Computing Short Discrete Logarithms and Factoring RSA Integers 363

References

1. Cleve, R., Watrous, J.: Fast parallel circuits for the quantum Fourier transform. In:
Proceedings of the 41st Annual Symposium on Foundations of Computer Science,
pp. 526–536 (2000)

2. Eker̊a, M.: Modifying Shor’s algorithm to compute short discrete logarithms. Cryp-
tology ePrint Archive, Report 2016/1128 (2016)

3. H̊astad, J., Schrift, A., Shamir, A.: The discrete logarithm modulo a composite hides
O(n) bits. J. Comput. Syst. Sci. 47(3), 376–404 (1993)

4. Lenstra, H.W., Lenstra, A.K., Lovász, L.: Factoring polynomials with rational coef-
ficients. Math. Ann. 261, 515–534 (1982)

5. Micciancio, D., Walter, M.: Fast lattice point enumeration with minimal overhead.
In: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 276–294 (2015)

6. Mosca, M., Ekert, A.: The hidden subgroup problem and eigenvalue estimation on
a quantum computer. In: Williams, C.P. (ed.) QCQC 1998. LNCS, vol. 1509, pp.
174–188. Springer, Heidelberg (1999). doi:10.1007/3-540-49208-9 15

7. Seifert, J.-P.: Using fewer qubits in Shor’s factorization algorithm via simultaneous
diophantine approximation. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020,
pp. 319–327. Springer, Heidelberg (2001). doi:10.1007/3-540-45353-9 24

8. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings of the 35th Annual Symposium on Foundations of Computer
Science, pp. 124–134 (1994)

9. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

http://dx.doi.org/10.1007/3-540-49208-9_15
http://dx.doi.org/10.1007/3-540-45353-9_24

	Quantum Algorithms for Computing Short Discrete Logarithms and Factoring RSA Integers
	1 Introduction
	1.1 Recent Work
	1.2 Our Contributions
	1.3 Related Work
	1.4 Overview

	2 Notation
	3 Computing Short Discrete Logarithms
	3.1 The Discrete Logarithm Problem
	3.2 Algorithm Overview
	3.3 The Quantum Algorithm
	3.4 Analysis of the Probability Distribution
	3.5 The Notion of Constructive Interference
	3.6 The Notion of a Good Pair (j, k)
	3.7 Lower-Bounding the Number of Good Pairs (j, k)
	3.8 Lower-Bounding the Probability of a Good Pair (j, k)
	3.9 Computing d from a Set of s Good Pairs
	3.10 Rationale and Analysis
	3.11 Building a Set of s Good Pairs
	3.12 Main Result
	3.13 The Advantage of Our Algorithm
	3.14 Implementation Remarks
	3.15 Applications

	4 Factoring RSA Integers
	4.1 The RSA Integer Factoring Problem
	4.2 The Factoring Algorithm
	4.3 Generalizations
	4.4 The Advantage of Our Algorithm

	5 Order Finding Under Side Information
	6 Summary and Conclusion
	A  Appendix
	References


