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Abstract

We initiate the study of a new measure of approximation. This measure compares the
performance of an approximation algorithm to the random assignment algorithm. This is a
useful measure for optimization problems where the random assignment algorithm is known
to give essentially the best possible polynomial time approximation.

In this paper, we focus on this measure for the optimization problems Max-Lin-2 in which
we need to maximize the number of satisfied linear equations in a system of linear equations
modulo 2, and Max-k-Lin-2, a special case of the above problem in which each equation
has at most k variables. The main techniques we use, in our approximation algorithms and
inapproximability results for this measure, are from Fourier analysis and derandomization.

Keywords: Linear system of equations, inapproximability, PCP, approximation algorithms, sat-
isfiability.

1 Introduction

Given any optimization problem, one can ask if there is an efficient algorithm that finds the
optimal solution. The theory of NP-completeness allows us to prove that many explicit problems
do not allow for efficient algorithms assuming that NP contains difficult problems. In particular,
it has been known for a long time that many natural optimization problems are NP-hard. If
we assume that P �=NP, none of these problems have a worst case polynomial time algorithm
finding optimal solutions.

Given the evidence that it is probably hard to develop efficient algorithms that give optimal
solutions for these problems, it is natural to ask if it is possible to design efficient algorithms for
these problems that give reasonably good solutions for all instances. Usually, an algorithm is said
to be a c-approximation algorithm for a maximization problem if it, for each instance, produces
a solution whose objective value is at least OPT/c where OPT is the global optimum. A similar
definition can be given for minimization problems. The theory of approximability of NP-hard
problems has been an active area of research in the past decade. Many new approximation
algorithms have been designed for a variety of optimization problems. Many inapproximability
results have also been proved based on plausible complexity theory assumptions.

Consider any algorithm that is designed to solve a maximization problem. A general criterion
to evaluate its performance is:

OPT −X

ALG−X
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where OPT is the optimum, ALG is the objective value of the solution output by the algorithm
and X is a parameter to be chosen. In the usual definition, X is chosen to be zero since in
most optimization problems, all feasible solutions have non-negative values. However, there are
interesting variants that have been studied. For example, there are optimization problems like
quadratic programming where the value of the optimum solution could be negative. In such
cases, choosing X to be the minimum possible value of a feasible solution is an appropriate
choice. Such a definition was used by Bellare and Rogaway [8] in their inapproximability result
for quadratic programming.

Another possible variant is to fix a polynomial time algorithm A and let X be the value
of the solution obtained by A. If A is randomized, we can let X be the expected value of the
solution obtained by A. Such a definition compares the performance of any algorithm with a
fixed and known polynomial time algorithm A. This definition can particularly lead to useful
information for many optimization problems if A represents a broad class of algorithms that is
known to give the best approximation algorithm for a wide range of optimization problems.

In this paper, we focus on a class of optimization problems called constraint satisfaction
problems. A constraint satisfaction problem has an underlying Boolean predicate P. An instance
of this problem is given by a collection of constraints C and the goal is to find an assignment
to the variables that maximizes the number of satisfied constraints in C under the predicate P .
H̊astad [14] has shown that for many constraint satisfaction problems like Max-Lin-p, in which
we are required to maximize the number of satisfied equations in a system of linear equations
modulo a prime p, and Max-E3-Sat, in which we are required to maximize the number of
satisfied clauses in a 3-CNF formula, the random assignment algorithm essentially yields the
best possible approximation ratio. This makes the study of a new measure of approximation
that compares the performance of an algorithm for a constraint satisfaction problem with the
random assignment algorithm interesting. We study this measure specifically for Max-Lin-2 and
its special case Max-k-Lin-2 where each equation contains at most k variables. We also get
similar results for other problems and point out some connections to the question of learning
parity with noise. In a related work, Alon, Gutin and Krivelevich [2] recently studied a new
measure for approximation algorithms called the domination ratio. They obtain deterministic
polynomial time algorithms that achieve domination ratio 1 − o(1) for the partition problem
and domination ratio Ω(1) for the Max-Cut problem. Some of the techniques used by them are
similar to those in this paper.

1.1 Our Results

In this paper, we focus on the following optimization problem: we are given a system of m
linear equations modulo 2 in n variables, together with positive weights wi, 1 ≤ i ≤ m. To
avoid degenerate cases, we state our results for the case that m ≥ n. The goal is to output an
assignment to the variables that maximizes the total weight of the satisfied equations. We use
{+1,−1}-notation for Boolean values with −1 corresponding to true. In this notation, addition
modulo 2 is multiplication and we write equation i as∏

j∈αi

xj = bi.

where each αi is a subset of [n] and bi ∈ {+1,−1}.
We consider two cases: Max-k-Lin-2, in which each αi is of size at most k and Max-Lin-2,

the general case without any restrictions. If W is the total weight of all equations, that is,
W =

∑m
i=1 wi, our performance measure is given by

max
L

SAT [OPT (L)]−W/2
SAT [ALG(L)] −W/2

(1)
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where L is an instance, SAT[OPT(L)] denotes the total weight of equations satisfied by the
optimal solution and SAT[ALG(L)] denotes the total weight of equations satisfied by the solution
output by the algorithm ALG. We note that (1) compares the performance of an approximation
algorithm for Max-Lin-2 with the random assignment algorithm. It measures how much of
the gap between the optimal solution and the solution of the random assignment algorithm is
recovered by an approximation algorithm. Such a definition can be given for any constraint
satisfaction problem.

Throughout the discussion, we assume that each equation in our system is nontrivial. In
other words, we do not allow equations with α = ∅. We also assume that αi �= αi′ for i �= i′.
If this is not the case, it can be achieved as follows. If the left hand side of two equations are
equal, they can be merged to one equation with the appropriate weight. If the right hand sides
are the same, the new weight is the sum of the original weights and if they are different, then
the new weight is the difference of the original weights and the right hand side is that of the
equation with higher weight.

As a starting point, let us first indicate how we can obtain a nonnegative objective value.
We assign values to the variables sequentially and simplify the system of equations as we go
along. When we are about to give a value to xj , we consider all equations reduced to the form
xj = b for a constant b. We choose a value for xj satisfying at least half (in the weighted sense)
of these equations. It is easy to see that the total weight of the satisfied equations is at least
the total weight of the falsified equations. By being careful, a m-approximation algorithm can
be obtained as follows.

Pick the equation with largest weight. We construct a solution that satisfies this equation
and at least half (in the weight sense) of the rest of the equations. This is sufficient to ensure
that we have a m-approximation algorithm.

Let us assume, without loss of generality, that it is the first equation and that α1 contains
the variable x1. For any αi, i > 1, that contains x1, replace the ith equation∏

j∈αi

xj = bi

by ∏
j∈αi∆α1

xj = bib1,

where ∆ denotes the symmetric difference. The resulting m− 1 equations now do not contain
the variable x1. Now obtain, as described above, an assignment to the variables x2, . . . , xn such
that at least half (by weight) of the remaining m− 1 equations are satisfied and finally give x1

a value to satisfy the first equation.
Is it possible to improve the algorithm by picking another equation and repeating the variable

elimination step described above? The problem is that the first variable elimination step could
create pairs of equations with equal weights and with the same left hand side but with different
values on the right hand side. These equations would then, as discussed above, cancel each
other possibly resulting in an empty system of equations. If, however, the chosen equation is
satisfied by the optimal assignment, the situation is easy to control. This is the basis of one of
our approximation algorithms.

Previous results give some bounds for our current measure. In particular, using H̊astad’s
results [14], it can be shown, for k ≥ 3, that it is hard to approximate Max-k-Lin-2 (and hence
Max-Lin-2) within c for every c > 1 unless NP=P and within (logm)c for some constant c > 0
unless NP ⊆ DTIME

[
mO(log log m)

]
.
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1.1.1 Bounded size equations

We first consider the case when each equation has at most k variables for some small k. We
start with a randomized approximation scheme for our new measure.

Theorem 1.1 Consider Max-k-Lin-2. There exists a fixed constant c > 1 such that the fol-
lowing holds: for any k ∈ O(log n), there is a randomized polynomial time algorithm that, with
probability at least 3/4, outputs an assignment that gives an approximation ratio at most ck

√
m.

By running the algorithm several times and outputting the best assignment, the probability
3/4 of outputting an assignment of the desired quality can be made exponentially close to 1.

For small k, this algorithm does much better than the simple m-approximation algorithm.
The algorithm is simple and it just repeatedly tries random assignments. The proof of correctness
of this algorithm uses a result from Fourier analysis that relates the L4-norm of any function
that has all its Fourier support on sets of size at most k to its L2 norm.

We improve on the inapproximability results mentioned above by using a slightly stronger
assumption.

Theorem 1.2 Unless NP ⊆ DTIME
[
2(log m)O(1)

]
, for all k ≥ 3 and ε > 0, there is no algorithm

that approximates Max-k-Lin-2 within 2(log m)1−ε
and runs in time 2(log m)O(1)

.

The proof of Theorem 1.2 shows that the same result also applies to the special case of
Max-k-Lin-2 where each equation contains exactly k variables. The proof of this result is similar
to the proof of the result by H̊astad that shows that it is NP-hard to approximate (in the
old-fashioned sense, taking ratios of the number of satisfied equations) Max-E3-Lin-2 within
2 − ε for any ε > 0. It is based on the correspondence between approximation problems and
probabilistically checkable proofs. One important difference between the two proofs is that we
cannot use long codes in our result as they are too long. We make use of split codes defined
recently by Khot [12].

1.1.2 The general case

We now consider the general case in which there is no restriction on the number of variables in
each equation. We start with the inapproximability results.

Theorem 1.3 There exists a constant γ > 0 such that it is NP-hard to approximate Max-Lin-2
within mγ .

This proof uses an idea from derandomization and in particular it is based on the “walk on
expanders” construction. If we allow randomization, we can get a stronger inapproximability
result.

Theorem 1.4 For any ε > 0, unless NP ⊆ RP, there is no randomized polynomial time algo-
rithm that, with probability at least 1

2 , outputs an assignment for Max-Lin-2 with an approxima-
tion ratio at most m

1
2
−ε.

This result uses a straightforward sampling technique. It gives evidence that no approxi-
mation algorithm is likely to achieve an approximation ratio much better than m1/2 in general.
For equations with few unknowns, Theorem 1.1 shows that one can almost do this well on such
instances. Theorem 1.4 does not apply to the situation when each equation has only a constant
number of variables. However, it does not use the full power of the general case since each
equation in the proof of the theorem has only O(log n) variables.

The best upper bound we can show for the general case is rather poor.
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Theorem 1.5 For any c > 0, there is a randomized polynomial time algorithm that, with proba-
bility 3/4, outputs an assignment for Max-Lin-2 with approximation ratio at most m

c log m . There
is also, for any c > 0, a deterministic approximation algorithm that approximates Max-Lin-2
within m

c .

The main idea is to use randomization and extend the greedy algorithm described in the
beginning of Section 1.1.

1.2 Some algorithmic implications of our work

The measure we study for Max-Lin-2 has connections to some well studied algorithmic questions.

1.2.1 Approximation algorithms for Max-Lin-2

Consider the standard measure of approximation. It is known that for Max-k-Lin-2, the random
assignment algorithm achieves approximation ratio 2. H̊astad showed that it is NP-hard to get
an algorithm with approximation ratio 2− ε for any constant ε > 0. Thus the only question is
exactly how close to 2 we can get.

Theorem 1.6 For any c > 0, there is a randomized polynomial time algorithm for Max-Lin-2
that achieves approximation ratio 2−

√
c log m

m .

We view this result as a step towards a better understanding of the correct value of ε as a
function of m. Such results have been proved for problems like Max-Clique by Engebretsen and
Holmerin [11] and Khot [13].

1.2.2 Learning parity with noise

Recently, the problem of solving parity with noise has been studied [10]. In this model, a random
solvable system of linear equations in n variables is generated and then the right hand side of
each equation is changed with probability p where p < 1

2 . The task is to reconstruct the solution
to the original system. If the number of equations, m, is sufficiently large (m > cpn turns out to
be enough) the solution is, with high probability, unique and can be found in exponential time.
No algorithm, even for unboundedm, running faster than 2O(n/ log n) is known and a major open
problem is whether this can be improved.

In our performance measure, the best solution would get a value around (1−2p)m while the
second best solution would, with high probability, get a value that can be bounded by O(

√
nm).

Thus, an efficient approximation algorithm for Max-Lin-2 with an approximation ratio of m1/2−ε

for ε > 0 would imply that for m ∈ ω(n1/(2ε)) the optimal solution could be recovered efficiently.
However, Theorem 1.4 implies that such an efficient approximation algorithm for Max-Lin-2 is
unlikely unless NP ⊆ RP.

1.3 Organization of the paper

In the next section, we describe some background from proof-systems and some ideas from
Fourier analysis that are used in this paper. We then give proofs of the theorems mentioned in
the introduction in Section 3. We end with some conclusions in Section 4.
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2 Background

We start by recalling some definitions of proof-systems used in this paper. Since the concepts
are hopefully familiar to many readers of this paper, we keep the discussion brief and refer the
reader to [7, 14] for more details.

2.1 Proof systems

A central player in a proof system is a probabilistic Turing machine V called a verifier. The
goal of the verifier is to decide whether to accept or reject an input string x. The verifier takes
x as input and tosses random coins r. In addition, it has access to an oracle π.

Definition 2.1 An oracle is a function Σ∗ �→ {0, 1}∗.

The verifier specifies a string s ∈ Σ∗ and the oracle returns a number of bits as answer. For
us it is convenient to view the oracle as holding a proof and the verifier as specifying a location
for which oracle returns the corresponding bit(s) of the proof as the answer. At the end of the
computation, the verifier either accepts or rejects x. We say that the verifier accepts if it outputs
1 (written as V π(x, r) = 1) and that it rejects if it outputs 0.

Definition 2.2 Let c and s be real numbers such that 1 ≥ c > s ≥ 0. We say that a language
L has a Probabilistically Checkable Proof (PCP) with soundness s and completeness c iff there
exists a probabilistic polynomial time verifier V such that

• For x ∈ L, there exists an oracle π such that Prr[V π(x, r) = 1] ≥ c.

• For x �∈ L, for every oracle π Prr[V π(x, r) = 1] ≤ s.

We have the famous PCP-theorem that tells us that there are very efficient PCPs for any
language in NP.

Theorem 2.3 [4] There is a universal integer q such that any language in NP has a PCP with
soundness 1/2 and completeness 1 where V uses logarithmic number of random bits in the size
of the input and makes at most q non-adaptive accesses to the oracle, each answered by a single
bit.

The number of bits accessed by the verifier can be reduced to three but this pushes the
soundness towards one, although it remains a constant below one. Moreover, the three queries
to the oracle are non-adaptive. When the verifier reads three bits non-adaptively, the acceptance
condition on each fixed random string can be written as a CNF formula with at most three literals
in each clause. By adding dummy variables it is not difficult to ensure that each clause is of
length exactly three and we call such a formula an E3-CNF formula. This leads to the following
variant of the PCP theorem that is convenient for us.

Theorem 2.4 [4] Let L be a language in NP and x be a string. There is a universal constant
τ < 1 for which the following holds: For every language L in NP, there is an algorithm that,
given an input string x, runs for time polynomial in |x| and produces a E3-CNF formula ϕx,L

such that if x ∈ L then ϕx,L is satisfiable while if x �∈ L, no assignment to the variables of ϕx,L

satisfies more than a fraction τ of the clauses.
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We next describe a two-prover one-round interactive proof systems. The verifier in such a
proof system has access to two oracles but has the limitation that it can only ask one question
to each oracle and that both questions have to be produced before either of them is answered.
Though we do not limit the answer size of the oracles, the verifier will not read more than
polynomial number of bits since it runs in polynomial time. We call the two oracles P1 and P2

and the two questions q1 and q2. Since the oracles are only accessed through these questions we
refer to the fact that V accepts as V (x, r, P1(q1), P2(q2)) = 1.

Definition 2.5 Let c and s be real numbers such that 1 ≥ c > s ≥ 0. We say that a language
L has a two-prover one-round proof system with soundness s and completeness c if there exists
a probabilistic polynomial time verifier V with two oracles that, on input x produces, without
interacting with its oracles, two strings q1 and q2, such that

• For x ∈ L there are two oracles P1 and P2 such that Prr[V (x, r, P1(q1), P2(q2)) = 1] ≥ c.

• For x �∈ L, for any two oracles P1 and P2, Prr[V (x, r, P1(q1), P2(q2)) = 1] ≤ s.

Note that the questions q1 and q2 are in both cases the only questions V asks the oracles. P1(q1)
depends on x, but may not depend on q2 and similarly P2(q2) is independent of q1.

On many occasions, it is convenient to think of P1 and P2 as two actual dynamic provers
rather than oracles or proofs. They are infinitely powerful and are cooperating. They can make
any agreement before the interaction with V starts but then they cannot communicate during
the run of the protocol. Thus it makes sense to ask P1 and P2 for the same information in
different contexts.

Provers are, in general, allowed to be both history dependent and randomized. Since we only
consider one-round protocols, there is no history and hence the question whether the provers
are history dependent plays no role. As with randomization, it can1 be seen that for any x,
the provers P1 and P2 maximizing Prr[V (x, r, P1(q1), P2(q2)) = 1] can be made deterministic
without decreasing the acceptance probability. When proving the existence of good strategies
for the provers we will, however, allow ourselves to design probabilistic strategies, which then,
in principle, can be converted to deterministic strategies.

Improving the soundness of a two-prover proof system can be done by parallel repetition
where V repeats his random choices to choose u independent pairs of questions (q(i)

1 , q
(i)
2 )ui=1 and

sends (q(i)
1 )ui=1 to P1 and (q

(i)
2 )ui=1 to P2, all at once. V then receives u answers from each prover

and accepts if it would have accepted in all u protocols given each individual answer. One could
naively hope that the soundness of this parallel protocol would be su but this is not true in
general and we have to rely on the parallel repetition theorem of Raz [16].

Theorem 2.6 [16] For all integers d and s < 1, there exists cd,s < 1 such that given a two-
prover one-round proof system with soundness s and answer sizes bounded by d, then for all
integers u, the soundness of u protocols run in parallel is bounded by cud,s.

Since we do not limit the answer size of the provers they can of course misbehave by sending
long answers which always cause V to reject. Thus, by answer size, we mean the maximal answer
size in any interaction where V accepts.

1Fix an optimal strategy, which might be randomized, of P1. Now, for each q2, P2 can consider all possible
coin tosses r of V producing q2, compute q1 and then, since the strategy of P1 is fixed, exactly calculate the
probability that V would accept for each possible answer. P2 then answers with the lexicographically first string
achieving the maximum. This gives an optimal deterministic strategy for P2. We can then proceed to make P1

deterministic by the symmetric approach.
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2.2 Important tool; Fourier transforms

We study functions f : {−1, 1}n → � mapping {−1, 1}n into the set of real numbers. A key
tool for us is the discrete Fourier transform. For any α ⊆ [n], we have the corresponding basis
function

χα(x) =
∏
i∈α

xi.

A general function can be expanded as

f(x) =
∑
α

f̂αχα(x),

where f̂α are the Fourier coefficients defined by

f̂α = 2−n
∑
x

f(x)χα(x).

Parseval’s equality tells us that ∑
α

f̂2
α = 2−n

∑
x

f(x)2

and for a Boolean function, whose range is {1,−1} , this sum is one.

2.3 Max-Lin-2

Fourier transforms have been, and are also in this paper, important for the reason that they
are useful in the analysis of certain probabilistically checkable proofs. In the present paper,
Fourier transforms play an even more central role because the very problem we study is stated
very naturally in terms of the Fourier transform. In order to see this let us define the linear
system formally. Remember that we are in {−1, 1}-notation and hence exclusive-or is in fact
multiplication.

Definition 2.7 A linear system L with m equations in n variables is given by subsets of [n]
(αi)mi=1, bits (bi)

m
i=1 and positive weights (wi)mi=1. The i’th equation is∏

j∈αi

xj = (−1)bi .

For an assignment x0 = (x0
j )

n
j=1 to the variables, let PL(x0) be the total weight of all satis-

fied equations and let NL(x0) be the total weight of all falsified equations. The objective value
W (L, x0) is defined as PL(x0)−NL(x0). In the problem Max-Lin-2 we are given L and we need
to find an x0 that maximizes W (L, x0).

The measure we used in the introduction subtracted instead of NL(x0) half the total weight
but it is easy to check that the new measure is exactly twice the measure used in the introduction.
Since we are interested in ratios of objective values this change of scale is immaterial. We have
the following lemma.

Lemma 2.8 W (L, x0) =
∑m

i=1(−1)biχαi(x
0)wi.

Proof: Note that, by definition,

(−1)bi
∏
j∈αi

x0
j = (−1)biχαi(x

0)

and this is 1 if the i’th equation is satisfied and −1 otherwise. The lemma follows.

8



In other words we are given the Fourier coefficients of a function and we want to find the
maximum of the function.

The only reason we do not have a general function mapping {−1, 1}n to the real numbers is
that we require the number of (non-zero) Fourier coefficients to be bounded by a parameter m
which is usually much smaller than the maximal value 2n.

A particular case that we are interested in the case where each equation depends on at most
k variables.

Definition 2.9 An instance of Max-Lin-2 is said to belong to Max-k-Lin-2 if |αi| ≤ k for
1 ≤ i ≤ m.

It turns out that functions that have the support of the Fourier transform on small sets have
special properties and to capture one of these let us study the Lp-norm denoted by ‖f‖p and
defined by

‖f‖p =
(
2−n

∑
|f(x)|p

)1/p
.

It is not difficult to see that ‖f‖p is an increasing function in p. The key result we use is that
for functions whose Fourier transform is supported on small sets, we have a reverse inequality
proved in several contexts but the following is Theorem 6 from [9]. A similar result can also be
obtained using Theorem 5 from [6].

Theorem 2.10 (Bonami [9]) For any integer k and p ≥ 2, let f be a function which has its
Fourier support on sets of size at most k, then ‖f‖p ≤ (p − 1)k/2‖f‖2.

2.4 The long code and the split code

In PCP theory, many results use the long code defined by Bellare, Goldreich and Sudan [7]. Let
Gt be the set of all functions mapping {−1, 1}t to {−1, 1}.

Definition 2.11 Let x ∈ {−1, 1}t. Its long code is a vector of length 22t
with its entries

corresponding to elements in Gt and the value corresponding to f ∈ Gt is f(x).

The set {−1, 1}t has no special significance and the long code can be defined for any range
M of x with the set of all Boolean functions on M , denoted GM , taking the place of Gt.

It is obvious from the definition that the long code is indeed very long. The previous results
have made good use of the huge amount of information contained in these codes. In some
situations, like the one in this paper, a much shorter but closely related code turns out to be a
good alternative and these are the split codes defined by Khot [12]. Split codes are defined for
product spaces.

Definition 2.12 Let
M =M1 ×M2 × . . .×Mt.

The split code of an element x = (x1, x2, . . . xt) ∈ M is indexed by all tuples g = (g1, g2, . . . , gt)
where gi ∈ GMi and the corresponding value is

t∏
i=1

gi(xi).
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Thus, split codes belong to the vector space of all real-valued functions on G = GM1×. . .×GMt.
We can define an inner product on this space by

〈B1, B2〉 = 1
|G|

∑
g∈G

B1(g)B2(g).

Definition 2.13 Let β = (β1, . . . , βt), βi ⊆ Mi. We define a character χβ as:

χβ(g) =
t∏

i=1

∏
x∈βi

gi(x).

Under the inner product defined above, the set of all characters χβ form an orthonormal
basis for the product space. For an arbitrary function B, we can write

B(g) =
∑
β

B̂βχβ(g) (2)

where

B̂β = 2−
∑t

i=1
|Mi|∑

g

B(g)χβ(g). (3)

Folding was designed in [7] as a mechanism forcing a table that is supposed to be a long code
to at least respect negation. In particular this mechanism prevents a table from being biased.
The mechanism nicely extends to split codes.

Definition 2.14 A split code B is folded over true if:

B(g1, . . . , gt) = (−1)s1+...+stB((−1)s1g1, . . . , (−1)stgt) (4)

for all g1, . . . , gt and for all s1, . . . , st ∈ {0, 1}.

Folding is implemented by choosing, for each set of 2t inputs,

B((−1)s1g1, . . . , (−1)stgt), si ∈ {0, 1}t

only one representative to be stored in the table. Suppose for concreteness that B(g1, . . . , gt)
is chosen. Whenever the value of any other input in the set is needed B(g1, . . . , gt) is read and
then possibly negated to satisfy (4).

The following lemma states a useful property of folded tables.

Lemma 2.15 If a table B is folded over true, then B̂β = 0 for all β = (β1, . . . , βt) such that
|βi| is even for some i.

Proof: If |βi| is even then any term in (3) is canceled by the term obtained by changing gi to
−gi while keeping the other gj unchanged.

Split codes are crucial to our PCP construction as they offer a less lengthy alternative to
long codes. The split code on M is only of length 2|M1|+|M2|+...+|Mt| while a long code on M
would be of length 2|M1|×|M2|×...×|Mt|.

2.5 Notation

All logarithms in this paper are to the base 2. We use |.| both to denote the cardinality of any
set and the absolute value of real numbers. The meaning would be clear from the context.
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3 Proofs of Theorems

3.1 Proof of Theorem 1.1

We are given an instance L of Max-k-Lin-2 and for brevity let f(x) = W (L, x). Our task is to
find a value x0 such that f(x0) ≥ c−km−1/2maxx f(x) with high probability. This is done by
repeatedly picking uniformly random values for x0 and this is formalized in Algorithm 1.

Algorithm 1: Let N = 16 · 3km. Pick N assignments x(i), 1 ≤ i ≤ N , independently and
uniformly at random. Output the assignment x(�) with the property f(x(�)) = maxj f(x(j)) for
1 ≤ j ≤ N .

To show that Algorithm 1 achieves an approximation ratio as claimed, define X to be the
random variable f(x) when x is chosen randomly. We claim that X has the following properties.

1. E(X) = 0.

2. E(X2) =
∑m

i=1 w
2
i

def= σ2.

3. |X| ≤ √
mσ.

4. E(X4) ≤ 32k(E(X2))2 = 32kσ4.

The first two properties are straightforward. The third property is shown by using Cauchy-
Schwartz inequality as follows:

|X| ≤
m∑

i=1

wi ≤
(

m∑
i=1

1

)1/2 ( m∑
i=1

w2
i

)1/2

= m1/2σ.

The fourth property follows from Theorem 2.10 with p = 4.
We now have the following lemma.

Lemma 3.1 Consider any random variable X which takes values between −m1/2σ and m1/2σ
and has the following properties: (1) E(X) = 0 (2) E(X2) = σ2 and (3) E(X4) ≤ 32kσ4. Then,

Pr
[
X ≥ σ

8 · 3k

]
≥ 1
8 · 3km

.

Proof: Suppose not. Let us assume that

Pr
[
X ≥ σ

8 · 3k

]
<

1
8 · 3km

.

Let Xp = max(0,X) and Xn = −min(0,X). From Hölder’s inequality, we have that

E(X2
n) ≤ E(X4

n)
1/3E(Xn)2/3. (5)

We now make the following claims using the assumptions of the lemma.

1. E(X4
n)1/3 ≤ 32k/3σ4/3.

2. E(Xn)2/3 ≤ 2−13−2k/3σ2/3.

3. E(X2
n) > σ2/2.

11



These claims clearly contradict (5) and thus we only have to establish these claims.
The first is simply an assumption in the lemma.
The second claim is established as follows

E(Xn) = E(Xp) ≤ σ8−13−k +m1/2σ
1

8 · 3km
≤ 4−13−kσ.

and the third follows from E(X2) = E(X2
p ) +E(X2

n) and

E(X2
p ) ≤ σ28−13−k +mσ2 1

8 · 3km
< σ2/2.

From Lemma 3.1, it follows that when an assignment x′ is picked uniformly at random, then
with probability at least 1

8·3km
, the approximation ratio is bounded from above by

maxx f(x)
f(x′)

≤
∑m

i=1wi

σ/8 · 3k
≤

√
mσ

σ/8 · 3k
≤ 8 · 3k√m

Algorithm 1 increases the probability of success to 3/4 by picking assignments independently
and uniformly at random and outputting the best. Hence, Theorem 1.1 follows.

We believe that Theorem 1.1 is not too far from the true behavior of Algorithm 1 and an
example where it does poorly can be constructed using the discussion in Section 1.2.2. To be more
precise, start with a target solution x0 and m random parities each of size k. Probabilistically
choose the right hand sides so that x0 satisfies each equation with probability 1 − p. Clearly,
f(x(0)) ≥ Ω(m) with high probability.

Now look at any random assignment x(i) generated by Algorithm 1. With high probability
x(i) agrees with x0 in at most (n+O(

√
n log n)/2 coordinates. This implies that when generating

an equation the probability that x(i) and x0 want the same right hand side is at most (1 +
O((log n)/n))k/2)/2. Now for m ≤ ns, s < k it is not difficult to see that with high probability
we have maxi f(x(i)) ≤ O(

√
m log n) while f(x(0)) ≥ Ω(m).

3.2 Proof of Theorem 1.2

A well known approach to prove an inapproximability result for an optimization problem is to
start with a language L in NP and design a PCP for L in which the acceptance criteria of
the verifier closely mimics the optimization problem and this is also the approach used here.
The construction of this PCP goes through three stages: In the first stage, using Theorem 2.4,
checking membership in L is converted into solving a version of a GAP-SAT problem. Next,
a two-prover protocol is designed for GAP-SAT. Finally, a PCP is obtained starting from the
two-prover protocol. We describe each stage of the reduction in detail below.

Start with a language L in NP and a string x. Apply the efficient algorithm stated in
Theorem 2.4 to get a 3-CNF formula ϕx,L which is satisfiable if x ∈ L but has the property that
no assignment satisfies more than a fraction τ of the clauses if x �∈ L. Note that this reduction
converts checking membership in L to solving a GAP-SAT problem of deciding if a formula is
satisfiable or far from being satisfiable. Now consider the following two-prover protocol.

The 2-prover protocol: The protocol uses parameters t and u that will be fixed later.

Step 1: The verifier chooses tu random clauses from ϕx,L and tu variables at random, one
from each of the tu clauses chosen.

12



Step 2: The verifier asks prover P1 for the assignment to each clause chosen. It asks prover
P2 for the assignment to each variable chosen.

Step 3: The verifier accepts if all the clauses are satisfied and the two assignments are consis-
tent.

The two-prover protocol has completeness one. If ϕx,L is satisfiable P1 and P2 can agree
on one satisfying assignment and answer accordingly. These answers are always consistent and
satisfy any clauses picked.

The basic protocol with t = u = 1 has soundness (2 + τ)/3 and hence, by Theorem 2.6, the
soundness of this two-prover protocol is upper bounded by ctu1 for some c1 < 1. Thus, we have
shown that L has a two-prover protocol with completeness 1 and soundness at most ctu1 . We
state these properties for future reference.

Lemma 3.2 If ϕx,L is constructed according to Theorem 2.4 then if x ∈ L there are strategies
for P1 and P2 in the two-prover protocol to make the verifier always accept. If x �∈ L, then for
some absolute constant c1 < 1, no strategies for P1 and P2 can make the verifier accept with
probability larger than ctu1 .

The next step of the reduction is to convert the two-prover protocol for L described above
into a PCP.

From 2-prover protocol to PCP: We first describe the oracle (or the proof) that is expected
by the verifier in the PCP. In other words, we describe the proof used to convince the verifier
that a satisfiable ϕL,x is indeed satisfiable.

The verifier expects two proofs A and B. Both of them correspond to split codes folded over
true as described in Section 2.4. B is indexed by every possible question asked by the verifier to
P1 in the two-prover protocol. Each such question is grouped into t groups of u clauses and the
split code of dimension t for the answer to this question is stored in B. Similarly, A is indexed
by every possible question asked by the verifier to P2 in the two-prover protocol. Each such
question is grouped into t groups of u variables and a split code of dimension t for the answer
to this question is stored in A.

For the answers of prover P1, the set Mi, in the definition of the split code, is the set of
satisfying assignments of the clauses of group i. It is of cardinality at most 7u. For the answers of
prover P2, we denote by Ni, an assignment to the chosen variables in group i. It is of cardinality
at most 2u. We have

M =M1 ×M2 × . . .×Mt

and
N = N1 ×N2 × . . .×Nt.

Using the projection operator from Mi to Ni which maps an assignment to the subassignment,
we obtain a natural compound projection operator π :M → N .

The PCP construction: We now describe the PCP that is used to derive the inapproxima-
bility result for Max-k-Lin-2. The verifier of this PCP uses a parameter ε < 1

2 .

Step 1: The verifier picks t groups each containing u clauses chosen at random resulting in ut
clauses (C1, C2, . . . , Cut). For each clause Ci, it chooses a variable xi ∈ Ci at random which are
then similarly divided into t groups. This defines M and N . Let B be the supposed split code
on M and A the supposed split code on N , both folded over true.

13



Step 2: The verifier then chooses random functions fi : Ni → {+1,−1} and gi : Mi →
{+1,−1} for 1 ≤ i ≤ t.

Step 3: The verifier also chooses µi :Mi → {+1,−1} for 1 ≤ i ≤ t by setting for every x ∈ Mi,

µi(x) =

{
1 with probability 1− ε
−1 with probability ε

Step 4: Define hi :Mi → {+1,−1} for 1 ≤ i ≤ t by hi(x) = fi(π(x))gi(x)µi(x).

Step 5: Let g = (g1, . . . , gt), f = (f1, . . . , ft) and h = (h1, . . . , ht). The verifier reads A(f),
B(g) and B(h). The verifier accepts if and only if A(f)B(g)B(h) = 1.

We now do the completeness and the soundness analysis of our PCP construction. Computing
the completeness is straightforward as shown below. To show that soundness of the PCP is small,
our strategy is to prove that if, on the contrary, it is high, then we can extract strategies for
the two provers in the two-prover protocol to convince the verifier in that protocol to accept
with high probability. Using the very good soundness of the two-prover protocol stated above,
we can conclude that the formula is satisfiable. This helps us obtain an upper bound on the
soundness of the PCP. We now present the details.

Lemma 3.3 The completeness of the PCP is at least 1+(1−2ε)t

2 .

Proof: If ϕx,L is satisfiable, fix a satisfying assignment giving strategies for P1 and P2. As
indicated above the written proof for the PCP is the split-codes of the answers by P1 and P2.
We have

A(f)B(g)B(h) = 1⇔
t∏

i=1

µi(xi) = 1,

where xi is the i’th component of the answer by P1. It is not difficult to see that

Pr

[
t∏

i=1

µi(xi) = 1

]
=
1 + (1− 2ε)t

2

and the lemma follows.

The key lemma for establishing the soundness is given below:

Lemma 3.4 Let ε be the parameter of the PCP and let δ be such that the probability that the
verifier of the PCP accepts is (1+δt)/2. Then there is a strategy for P1 and P2 in the two-prover
protocol that makes the verifier of that protocol accept with probability at least (4εδ2)t.

Remark 3.5 As we know, by Lemma 3.2, the soundness of the two-prover protocol is bounded
by ctu1 and hence we can, by a suitable choice of u, get soundness (1 + δt)/2 for any desired
constant δ for the PCP.

Proof: Fix a choice of N and M . From the assumption in the lemma,

E
N,M,f,g,µ

[
1 +A(f)B(g)B(h)

2

]
=
1 + δt

2
.
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This implies that
E

N,M,f,g,µ
[A(f)B(g)B(h)] = δt.

We would now like to use this fact to extract a successful two-prover strategy. To this end,
we evaluate the expression

E
f,g,µ

[A(f)B(g)B(h)].

We need the following definition.

Definition 3.6 For γ = (γ1, . . . , γt), γi ⊆ Mi, define

π2(γ) = (π2(γ1), . . . , π2(γt))

where π2(γi) is the set of points in Ni with odd number of preimage points in γi under projection
π.

Replacing each function by its Fourier expansion, we get

E
f,g,µ

[A(f)B(g)B(h)] = E
f,g,µ


 ∑

α,β1β2

Âαχα(f)B̂β1χβ1(g)B̂β2χβ2(h)


 =

∑
α,β1β2

ÂαB̂β1B̂β2 E
f,g,µ

[χα(f)χβ1(g)χβ2(fgµ)].

Since χβ2(fgµ) = χβ2(f)χβ2(g)χβ2(µ), it is not difficult to see that the inner expectation equals
0 unless β1 = β2 = β and α = π2(β). Finally

E[χβ(µ)] = (1− 2ε)|β1|+...+|βt|

giving the total result ∑
β

Âπ2(β)B̂
2
β(1− 2ε)|β1|+...+|βt|. (6)

Since B is folded over true, each nonzero term in this sum has |βi|, and hence |π2(βi)|, odd for
every i. In particular each βi is nonempty. By Cauchy-Schwartz inequality, we have

∑
β

Âπ2(β)B̂
2
β(1− 2ε)|β1|+...+|βt|




2

≤
∑
β

B̂2
β

∑
β

Â2
π2(β)B̂

2
β(1− 2ε)2(|β1|+...+|βt|)

and since
∑

β B̂
2
β = 1, we can conclude that

E
N,M


∑

β

Â2
π2(β)B̂

2
β(1− 2ε)2(|β1|+...+|βt|)


 ≥ E

N,M




∑

β

Âπ2(β)B̂
2
β(1− 2ε)|β1|+...+|βt|




2



≥ E
N,M




∑

β

Âπ2(β)B̂
2
β(1− 2ε)|β1|+...+|βt|






2

≥ δ2t. (7)

Let us now define a strategy for the two provers in the two-prover protocol as follows.
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• P1, upon receiving a set of clauses, finds the corresponding table B and selects a random
β with probability B̂2

β. It returns yi ∈ βi, 1 ≤ i ≤ t, chosen at random as the answer.

• P2, upon receiving a set of variables, finds the corresponding table A and selects a random
α with probability Â2

α. It returns xi ∈ αi, 1 ≤ i ≤ t, chosen at random.

The probability of the provers convincing the verifier is at least

E
N,M


∑

β

Â2
π2(β)B̂

2
β

t∏
i=1

1
|βi|


 .

For any x > 0, we have x−1 > e−x. Applying this to x = (4ε|βi|), we have
1
|βi| ≥ 4εe−4ε|βi| ≥ 4ε(1− 2ε)2|βi|

and by now using the lower bound from (7), the lemma follows.

Thus, we have shown that L has a PCP with completeness at least (1 + (1 − 2ε)t)/2 and
soundness at most (1 + δt)/2. To complete the proof of Theorem 1.2, we first broadly describe
the relationship between PCPs and proving inapproximability results and then focus on the
implications of the PCP designed above.

Let us define the following proof optimization problem based on the constructed PCP. For
every possible location l of the proof we have a boolean variable yl. The goal is to find an
assignment to the variables yl such that the corresponding proof makes the verifier of the PCP
accept x with the highest possible probability. If the PCP has completeness c and soundness s,
then the value of the proof optimization problem, when x belongs to L, is at least c while it is at
most s when x does not belong to L. This implies that if we can approximate the optimal value
of the proof optimization problem within a factor better than c/s then we can solve membership
in L which is NP-hard in general.

Now consider the PCP that we have constructed. By doing some internal calculation, the
verifier V finally reads three bits of the proof non-adaptively and checks that the product of
these three bits has a given value. One might be tempted to think that this value is always 1
(in the {+1,−1} notation) but it is not so due to the mechanism of folding that has the affect
that sometimes the bit read in the proof should be negated before it is used.

Suppose that with probability p, V reads positions l1, l2, and l3 and checks that the product
of these three bits is −1. Let us write this as an equation

yl1yl2yl3 = −1

and give it weight p. Continuing this way with all possible choices of positions for V , we get
a system of weighted linear equations and the total weight of satisfied equations is exactly the
probability that the verifier accepts a given proof. Thus, the proof optimization problem is
exactly the problem of maximizing the total weight of satisfied equation and this is the problem
for which we are trying to prove an inapproximability result.

Note that it is crucial that the verifier does not use too many random coins as the size of
the resulting system of linear equations depends on the number of coin tosses. In fact, the size
of the produced instance of equations is 2r where r is the number of coins used. Hence, we
conclude that it is hard to approximate Max-3Lin-2, in our performance measure, better than
(c− 1/2)/(s − 1/2) on instances of size 2r. We will now fix the various parameters ε, δ, u and t
so as to get a strong separation.
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Fix ε = δ = 1/4. Fix u to be a large enough constant so that cu1 < 4δ3 where c1 is the
constant specified in Theorem 2.6. If m is the number of clauses in the 3-CNF formula given as
input to the PCP, the number of equations produced by the transformation described above is
N = mO(t) with total weight 1 (as we are dealing with probabilities). As seen by the analysis
above

c− 1/2 ≥ (1− 2ε)t

and
s− 1/2 ≤ δt.

Therefore,
c− 1/2
s− 1/2

≥ (1− 2ε)t

δt
= 2t.

Choose l = γ−1 and set t = (logm)l. The number of equations is N = mO(t) = 2O((log m)l+1)

and the ratio c−1/2
s−1/2 = 2t = 2(log m)l

. It follows that an approximation algorithm with a perfor-
mance ratio of

2c(log N)1−γ

for a suitable constant c would be sufficient to decide membership in L. As the size of the
instance is only quasi-polynomial if an approximation algorithm with the given ratio existed
and ran in quasi-polynomial time this would imply NP ⊆ DTIME[2(log m)O(1)

]. This completes
the proof of Theorem 1.2 for the case k = 3.

The extension to larger k is not difficult and can be done along the lines used for the similar
extension in [14]. We omit the details.

3.3 Proof of Theorem 1.4

The proofs of Theorem 1.4 and Theorem 1.3 are quite similar. Since the proof of Theorem 1.4
is simpler, we present it first.

The basic idea is to start with any 3SAT formula ψ and produce a system of linear equations
Lψ such that the following holds: If ψ is satisfiable, then there is an assignment to the variables
of Lψ which achieves a high objective value. If ψ is not satisfiable, then every assignment to the
variables of Lψ only achieves a low objective value. We do this by taking t-wise products (sums
in {0,1} notation) of sets of equations obtained from a 3SAT formula. We now give the details.
In H̊astad’s paper [14], for any δ > 0, a reduction is shown that takes 3SAT formulas with l
clauses to Max-3-Lin-2 systems with m = lO(1) linear equations on n variables, n < m, such
that

1. If ψ is satisfiable, then there is an assignment x0 to the variables of the resulting system
of linear equations Lψ such that

W
(
Lψ, x

0
)
≥ (1− 2δ)m.

2. If ψ is not satisfiable, then for every assignment x0 to the variables to Lψ,

W
(
Lψ, x

0
)
≤ δm.

Let us introduce some notation.

Definition 3.7 A system, L, with m equations is said to be δ-satisfiable if W (L, x) ≤ δm for
every possible assignment x to its variables.
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Definition 3.8 Let L denote a system of N linear equations. Its t-wise product, Lt, is a system
of (2N)t linear equations defined as follows: Choose t equations from L. For every such choice
of t equations, output 2t linear equations obtained by taking products of every possible subset of
these t equations.

The following lemma says that taking t-wise products help in boosting the separation between
the two cases: ψ is satisfiable or not.

Lemma 3.9 The t-wise product of a δ-satisfiable system is a
(

1+δ
2

)t
-satisfiable system.

Proof: An assignment that satisfies all the t chosen equations satisfies all the 2t constructed
equations. An assignment that falsifies some equation satisfies exactly half of the equations
constructed. It follows that a t-wise product is (1+δ

2 )t-satisfiable.

The lemma implies that in the case when ψ is satisfiable then the system Lt
ψ is (1 − δ)t-

satisfiable while when ψ is not satisfiable then Lt
ψ is at most (1+δ

2 )t-satisfiable.
We have one small detail to address. Taking the t-wise product produces equations of the

form 1 = 1 and 1 = −1. These trivial equations have to be dropped as they are not allowed in
our systems. This affects the number of equations as well as the obtained objective value. It
turns out that if L has at least as many equations of the form 1 = 1 as 1 = −1 this process is
only to our advantage and hence we like such systems.

Definition 3.10 A system of linear equations L is said to be good if, in L, the number of
equations of the form 1 = 1 is greater than or equal to the number of equations of the form
1 = −1.

The t-wise products are in fact good.

Lemma 3.11 A t-wise product, Lt, of any system of linear equations L is good.

Proof: Fix a choice of t equations and consider the set S of 2t equations produced by taking
all possible subsets. Using the characteristic vector notation, view S as a vector space F t over
F = {0, 1} under the usual operations. Let C be the subcollection of all subsets that result in
an equation of the form 1 = 1 and 1 = −1. Then, C is a subspace of S since C is closed under
symmetric difference. Choose a basis B for C. If every equation in B is of the form 1 = 1, then,
every equation in C is of the form 1 = 1. If there are equations in B of the form 1 = −1, then
there are equally many equations of the form 1 = 1 and 1 = −1 in C.

Let us consider the effect on Lt
ψ of dropping these trivial equations. The objective value is,

before dropping trivial equations, of the form δ′m′ where m′ is the number of equations and
either δ′ ≥ (1−δ)t or δ′ ≤ (1+δ

2 )t. If the system is good the erasing decreases the objective value
to δ′m′ − C for some C ≥ 0. We only need to bound the ratio between the objective values
in the two cases and this is minimized when C = 0. It follows that we can ignore these trivial
equations as long as we make sure that the systems we study are good.

Though taking t-wise products helps us get an improved separation, the number of linear
equations produced would be too many (for our choice of t) for a good inapproximability result.
We decrease the number of equations using randomization.
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For a 3SAT formula ψ, obtain Lψ as described above. For a suitable choice of
parameters s and t to be fixed later, choose N = ms random sets of equations
from Lψ each of size t. For every such choice R, construct 2t equations as in the
definition of Lt

ψ and choose one of these equations at random. Let the resulting
system of linear equations by denoted by Lt

ψ,R. If L
t
ψ,R is not good, repeat the

construction. If after n such repetitions, a good system of equations is not
produced, halt. Otherwise, erase all the trivial equations from Lt

ψ,R and halt.

Since the probability that the system of linear equations produced in an iteration is not good
is at most 1/2, the probability that the construction above fails to produce a good system of
linear equations is upper bounded by 1/2n.

We would now like to compute the probability that a good system of linear equations has the
separation property discussed above. We do it in two steps. First, we estimate this probability
for a random system of N equations produced by an iteration of the algorithm above. Then,
we show that this probability continues to be high conditioned on the fact that the system of
linear equations is good.

Suppose ψ is satisfiable. Then, there is an assignment x0 to the variables of Lψ that satisfies
(1− δ)m of the equations in Lψ. Over the various random choices,

E
[
W
(
Lt

ψ,R, x
0
)]

≥ (1− δ)t N.

We need the following result from Alon and Spencer [3].

Theorem 3.12 ([3], Theorem A.1.13) Let Xi, 1 ≤ i ≤ k, k arbitrary, be independent ran-
dom variables such that

Xi =

{
1 with probability 1+p

2
−1 otherwise

and let X =
∑k

i=1Xi. Then,

Pr [X < (1− ε) pk] < e−
ε2

8
pk.

Let Xi denote the random variable that is 1 if the ith equation is satisfied by x0 and −1
otherwise. Then, Xi is 1 with probability (1 + p)/2 where p = (1− δ)t and

N∑
i=1

Xi =W
(
Lt

ψ,R, x
0
)
.

Therefore, using Theorem 3.12, with ε = 1/2, p = (1− δ)t and k = N , over the different choices
of random equations,

Pr
[
W
(
Lt

ψ,R, x
0
)
≥ (1− δ)t N/2

]
≥ 1− e−(1−δ)tN/32. (8)

Now suppose that ψ is not satisfiable. Then no assignment satisfies more than (1+δ
2 )m of

the equations in Lψ. We need the following result from Alon and Spencer [3].

Theorem 3.13 ([3], Theorem A.1.4) Let Xi, 1 ≤ i ≤ k, k arbitrary, be independent random
variables such that

Xi =

{
1 with probability 1

2 +
p
2

−1 otherwise

and let X =
∑k

i=1Xi. Then, for any a > 0,

Pr [X > kp + a] < e−
a2

2k .
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For a fixed assignment x0, let Xi be the random variable that is 1 if the ith equation is
satisfied by x0 and −1 otherwise. Then, Xi is 1 with probability (1+p)/2 where p ≤ ((1+δ)/2)t

and
N∑

i=1

Xi =W
(
Lt

ψ,R, x
0
)
.

Therefore, using Theorem 3.13, we get

Pr

[
W
(
Lt

ψ,R, x
0
)
> N

(
1 + δ

2

)t

+ 2
√
nN

]
< 2−2n,

and hence

Pr

[
max

x0
W
(
Lt

ψ,R, x
0
)
≤ N

(
1 + δ

2

)t

+ 2
√
nN

]
≥ 1− 2−n. (9)

Start with any ε < 1/4. Fix δ = ε/8, s = 2/ε and t = logN . Then, with probability at least
1 − 21−n over random choices in the construction above, both (8) and (9) hold simultaneously
and hence the resulting system of linear equations has a separation property we are looking for.
Since a random choice is good with probability at least 1/2, it follows that a good system of
linear equations has the same separation property with probability at least 1− 22−n. Thus the
probability that the system of linear equations produced by the construction above is good and
has the separation property is at least (1− 22−n)(1 − 2−n) ≥ 1− 23−n.

Also for the choice of δ, s and t above,

N

(
1 + δ

2

)t

+ 2
√
nN ≤ 3

√
nN

(1− δ)tN/2 ≥ N1−2δ .

Since 3SAT is NP-complete, any algorithm that gives an approximate value of the optimum
within

N1−2δ

3
√
nN

≥ N1/2−ε

can be used to solve an arbitrary problem in NP. This proves the theorem.
Since the random sampling step involves two-sided error, it seems like we need the assumption

NP �⊆ BPP. It is not difficult to see that using the self-reducibility of SAT, one can prove that
if NP ⊆ BPP, then in fact NP ⊆ RP. Hence, the assumption NP �⊆ RP is sufficient.

3.4 Proof of Theorem 1.3

We use a construction very similar to the one in Theorem 1.4. In the first stage, as in Theo-
rem 1.4, we transform the 3SAT formula into a system of linear equations with the separation
property. In the second stage, we replace random sampling by deterministic sampling obtained
using walks on expanders. We now give the details of our construction.

Definition 3.14 Let G be a d-regular graph on n vertices and let d = λ0 ≥ λ1 ≥ . . . ≥ λn−1 be
the eigenvalues of the adjacency matrix of G. G is said to be a Ramanujan graph if λ1,−λn−1 ≤
2
√
d− 1.

Explicit construction of such graphs were first shown by Lubotzky, Philips and Sarnak [15].
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Theorem 3.15 ([15]) Pick a prime p congruent to 1 modulo 4. Then, for every prime q con-
gruent to 1 modulo 4 different from p and such that the Legendre symbol

(
p
q

)
= 1, there is an

explicitly constructible Ramanujan graph Gp,q on n = q(q2 − 1)/2 vertices which is d = p + 1-
regular.

Theorem 3.16 ([3], page 142) Given any integer m and a prime p congruent to 1 modulo 4,
using Theorem 3.15, we can construct explicitly a Ramanujan graph on (1+o(1))m vertices that
is p+ 1-regular.

Thus, form large enough, using the Theorem above, we can construct explicitly an 30-regular
Ramanujan graph G on m′ nodes for m ≤ m′ ≤ 2m. Given a 3SAT formula ψ, we label vertex
i ≤ m of G by equation i from Lψ and every vertex i > m by the trivial equation 1 = 1 and call
the new graph obtained as Gψ.

For a 3SAT formula ψ, obtain Lψ as described in Theorem 1.4. For a suitable
choice of parameters d and t to be fixed later, choose m′dt−1 sets of equations
from Lψ each of size t. These sets correspond to all paths of length t starting
from every vertex in Gψ. For every such choice, construct 2t equations as in
the definition of Lt

ψ and include all. Erase all the trivial equations.

For a 3SAT formula ψ, let us denote by Wx0, the set of vertices in Gψ such that the corre-
sponding equations are satisfied by an assignment x0. Note that the all the vertices corresponding
to the trivial equations are included in this set. Given the size of such a subset Wx0, we need to
calculate the fraction of all the sets of equations of size t obtained by walks on expander that
are completely contained in Wx0.

The following proposition (slightly reworded) from [1] gives the required bounds.

Proposition 3.17 (Proposition 2.4 [1]) Let H be regular graph of degree d on m vertices and
let d = λ0 ≥ λ1 ≥ . . . ≥ λm−1 be the eigenvalues of the adjacency matrix of H. Let W be a set
of w vertices in H and put µ = w/m. Let P = P (W, t) be the total number of walks on t vertices
that stay in W . Assume (for the lower bound only) that t is odd and that µ+λm−1(1−µ)/d ≥ 0.
Then the following inequalities hold:

wdt−1 (µ+ λm−1 (1− µ) /d)t−1 ≤ P ≤ wdt−1 (µ+ λ1 (1− µ) /d)t−1 .

By Lemma 3.11, the resulting system is always good and hence we can ignore the step of
erasing trivial equations. Let Lt

ψ,G denote the new system of linear equations in the above
construction before the erasure step. It has N = m′dt−1 · 2t equations. We know that if ψ is
satisfiable, then there is an assignment x0 such that

|Wx0 | ≥ (1− δ)m+
(
m′ −m

) ≥ (1− δ)m′.

Using the proposition above,

W (Lt
ψ,G, x

0) ≥ (1− δ) [(1− δ) + λm′−1δ/d]
t−1 N

≥ (1− δ)
[
(1− δ)− 2

√
29δ/30

]t−1
N

≥ (1− δ)
[
1− 3δ

2

]t−1

N
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On the other hand, if ψ is not satisfiable, then for every assignment x0,

|Wx0 | ≤
(
1 + δ

2

)
m+ (m′ −m) ≤

(
3 + δ

4

)
m′.

From the proposition above, for every assignment x0,

W
(
Lt

ψ,G, x
0
)

≤
(
3 + δ

4

)[(
3 + δ

4

)
+ λ1

(
1− δ

4

)
/d

]t−1

N

≤
(
3 + δ

4

)[(
3 + δ

4

)
+ 2

√
29
(
1− δ

120

)]t−1

N

≤
(
3 + δ

4

)[
6
7
+
δ

4

]t−1

N

Since 3SAT is NP-complete, any algorithm that gives an approximate value of the optimum
within

(1− δ)
[
1− 3δ

2

]t−1

(
3+δ
4

) [
6
7 +

δ
4

]t−1

can be used to solve an arbitrary problem in NP. Choosing δ = 1/20 and t = logm, the ratio is
mc for some constant c > 0 while the number of equations N is at most 26tm = m7. Thus the
ratio between the two cases is Nγ , for some constant γ > 0. This proves the theorem.

3.5 Proof of Theorem 1.5

Recall the greedy algorithm giving performance ratio m described in Section 1.1. We now
analyze what happens if we keep picking equations that we commit ourselves to satisfying. By
using randomness we are able to improve the approximation ratio from m to m/ logm.

We are given a system of m linear equations L in n variables as in Definition 2.7. While
describing the algorithm we assume that equations in L are updated dynamically and in partic-
ular although wi are the weights defining the system initially, the weights are updated after each
iteration as described in Section 1.1. If the left hand side of the two equations are equal, they
are merged to one equation with the appropriate weight. If the right hand sides are the same,
the new weight is the sum of the original weights and if they are different, the new weight is
the difference of the original weights and the right hand side is that of the equation with higher
weight. However, for simplicity, we use wi to denote the weight of equation i at any intermediate
stage.

Algorithm 2, basic run

Step 1: Pick equation i with probability proportional to its weight wi. Suppose that i0 is
picked and j is an element occurring in αi0 . For all i �= i0 such that αi contains j, replace αi by
αi∆αi0 , and bi by bi · bi0 . Erase equation i0.

Step 2: If several equations result with the same left hand side, combine these by adjusting
the weights as discussed above. If nontrivial equations remain, go to Step 1 and repeat.
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Step 3: Output an assignment x0 to the variables that satisfies all the equations picked in
Step 1.

As each equation picked in Step 1 contains a variable that is eliminated from all the remaining
equations it is straightforward to find an assignment x0 as required in Step 3. It is not difficult
to see that the objective value of the obtained solution, W (L, x0), is exactly the sum of the
weights of all equations picked in Step 1. Now consider the following algorithm that repeats the
basic run a polynomial number of times and outputs the assignment with the highest objective
value.

Algorithm 2: Fix constants c > 0 and d > c + 2. Repeat the basic run described above md

times. Let xj denote the assignment chosen during the jth iteration. Output the assignment xl

with the property that W (L, xl) = maxj W (L, xj), 1 ≤ j ≤ md.

Our goal is now to show that Algorithm 2 achieves approximation ratio 4m
c log m . To do so, we

start by defining the notion of a successful basic run. Let us say that a basic run is t-successful
if the algorithm makes at least t repetitions of Step 1 during this run and if it picks an equation
that is satisfied by the optimal assignment in each of the first t iterations.

Lemma 3.18 A run is t-successful with probability at least 2−t unless the optimal assignment
is found within less than t iterations.

Proof: Conditioning on the fact that the equations chosen up to a given iteration are satisfied
by the optimal assignment, it is easy to see that the probability that the next chosen equation is
satisfied by the optimal assignment is at least 1/2. This follows from the fact that the optimal
assignment satisfies more of the remaining equations than the equations it falsifies. Hence, a run
is t-successful with probability at least 2−t unless the optimal assignment is already obtained in
less than t iterations.

By Lemma 3.18, unless the optimal assignment is found before c logm iterations, a single
run is c logm-successful with probability at least m−c. Let R denote the random variable that
counts the number of c logm-successful runs in Algorithm 2. Then, the expected number of
c logm-successful runs in Algorithm 2, E[R], is at least md−c. Using Chernoff bounds [5],

Pr

[
R <

md−c

2

]
< e−md−c/8. (10)

For the rest of the analysis, let us focus on the case when Algorithm 2 has at least md−c/2
c logm-successful runs. In this situation, we are interested in comparing the objective value of
the optimal assignment W ′ with the objective value of the assignment output by Algorithm 2.
We start by first looking at the objective value of the output of a basic run of Algorithm 2
conditioned on the run being c logm-successful.

Let us analyze the expected value of the weight of the equation picked in iteration i. We
have two cases, either we have already picked equations of total weight W ′/2 or we have at least
weight W ′/2 remaining among equations that can be picked at this iteration. In the first case
we already have a 2-approximation and this is much better than what we are trying to prove so
we only have to consider the second case.

Suppose that m′ ≤ m equations remain and the total weight of equations remaining that are
satisfied by the optimal assignment is W ′′ ≥ W ′/2. In addition, let the equations satisfied by
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the optimal assignment have weights {wij}j∈J for some index set J . Then the expected weight
of the equation picked in this iteration is

∑
j∈J

w2
ij

W ′′ ≥
1

mW ′′


∑

j∈J

wij




2

=
W ′′

m
≥ W ′

2m
,

where the first inequality is a consequence of the Cauchy-Schwartz inequality. We conclude that
the expectation of the objective value obtained by a c logm-successful run is at least

cW ′ logm
2m

.

Now the maximum that can ever be obtained isW ′ and hence, by a standard averaging argument,
the probability that we get value at least

cW ′ logm
2m

− W ′

m
>

cW ′ logm
4m

(11)

is at least 1
m . Let us denote by S, the event that Algorithm 2 outputs an assignment that

satisfies (11). Then,

Pr
[
S occurs|R ≥ md−c/2

]
≥ 1−

(
1− 1

m

)md−c/2

.

Since we chose d such that d > c+ 2, then

Pr [S occurs] ≥ Pr
[
S occurs|R ≥ md−c/2

]
∗ Pr[R ≥ md−c/2]

≥
(
1− e−m/2

)(
1− e−m2/8

)

using (10). Thus, except with exponentially small probability, Algorithm 2 outputs an assign-
ment that satisfies (11). Since c was any arbitrary constant, we have obtained the randomized
algorithm as required in Theorem 1.5.

To get a deterministic algorithm, we try all possible choices for the c first iterations of
Algorithm 2 and backtrack. This can be done in time O(mc). Many of these runs are c-
successful and it is not difficult to see that one of them gives an approximation ratio of at most
m/c.

It is not unlikely that we can get a deterministic approximation algorithm with approximation
ratio Θ( m

log m) by derandomizing the randomized algorithm. We invite the reader to try to prove
this.

3.6 Proof of Theorem 1.6

Recall that, in this result, we are interested in designing a randomized approximation algorithm
that does well for the standard measure of approximation. Therefore, the objective value of a
solution is given by the total weight of all equations satisfied by it. The algorithm is very similar
to Algorithm 2. In the rest of the proof, we shall use constants d and c′. We will explain later
how to fix these two constants in terms of c.
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Algorithm 3: Repeat the basic run of Algorithm 2 md times. Output the assignment that
maximizes the total weight of satisfied equations.

We would like obtain a bound on the approximation ratio achieved by Algorithm 3. Recall
that W denotes the sum of the weights of all the equations in the system. If the total weight of
the equations satisfied by the optimal assignment is at mostW (1−

√
c′ log m

m ) then any assignment
for which the total weight of the satisfied equations is at least W/2 gives an approximation ratio

2− 2
√

c′ log m
m and the output of any basic run of Algorithm 2 can be used to get this ratio. For

an appropriate choice of c′ in terms of c, this gives the desired approximation ratio.
Hence, we now consider the case when the total weight of the equations satisfied by the

optimal assignment is at least W (1−
√

c′ log m
m ).

Lemma 3.19 A run is
√
c′m logm-successful with probability at least m−O(c′) unless it finds an

assignment that satisfies equations of total weight 3W/4.

Proof: Let us analyze the probability that the next equation picked during a run is satisfied
by the optimal assignment conditioned on the run being successful until this iteration and that
the total weight of all equations picked so far in Step 1 is at most W/2.

Consider the remaining system of linear equations. Among the equations satisfied by the
optimal assignment, at most

√
c′ log m

m by weight could have been eliminated till now due to the
updating done in Step 2 of the basic run. Therefore, in the remaining system of equations,
we have equations of total weight at least W (1

2 − 2
√

c′ log m
m ) that are satisfied by the optimal

assignment and equations of total weight at most W
√

c′ log m
m that are falsified by the optimal

assignment. The probability of picking an equation that is satisfied by the optimal assignment
is hence at least

1− 3

√
c′ logm

m

and we can conclude that we have an m−O(c′) probability of having a
√
c′m logm-successful

run.

Now the total weight of the equations picked in Step 1 of such a run can be analyzed in a way
similar to what was done in Section 3.5. We do not repeat the calculations in this section. It
can be shown that with probability at least 1/m, the total weight of equations picked in Step 1
of a

√
c′m logm-successful run is at least

Ω


W

√
c′ logm

m


 .

Now using the fact that Algorithm 3 chooses the best assignment output by md repetitions of a
basic run, it can be shown that, for an appropriate choice of d in terms of c′, the objective value
of the assignment output by Algorithm 3 is at least

W


1
2
+ Ω



√
c′ logm

m






with high probability. Finally we can choose c′ in terms of c so that Theorem 1.6 follows. We
omit the details.
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3.7 Other constraint satisfaction problems

Some of our results and methods extend in a straightforward way to other constraint satisfaction
problems using reductions.

Our framework applies to those problems for which it is known that they cannot be approx-
imated much better than by picking an assignment at random and a number of such problems
can be found in [14], the most central problem among them being satisfiability. Let Max-Ek-Sat
be the problem of satisfying the maximum number of clauses of a CNF-formula where each
clause contains exactly k literals.

Since each clause is satisfied with probability 1− 2−k, the relevant measure is

max
L

SAT [OPT (L)]−W (1− 2−k)
SAT [ALG(L)]−W (1− 2−k)

. (12)

Theorem 3.20 Consider Max-Ek-Sat. There exists a fixed constant c > 1 such that the fol-
lowing holds: for any k ∈ O(log n), there is a randomized polynomial time algorithm that, with
probability at least 1/2, outputs an assignment that gives an approximation ratio at most ck

√
m.

Proof: Given a clause with k literals, we can write a system of 2k−1 linear equations in the same
variables with the property that if the clause is satisfied, 2k−1 of the linear equations are satisfied
while if it is not, none of the equations is satisfied. For example, if the clause is (x1 ∨ x2 ∨ x3),
then the seven equations are x1 = −1, x2 = −1, x3 = −1, x1x2 = −1, x1x3 = −1, x2x3 = −1 and
x1x2x3 = −1.

Thus if we start with m clauses of total weight W we get, replacing each clause by 2k − 1
linear constraints of equal weight, a system of total weight (2k − 1)W = W ′ and (2k − 1)m
equations.

Now an assignment that satisfies clauses of weight W (1− 2−k)+X satisfies linear equations
of weight

2k−1(W (1− 2−k) +X) =W ′/2 + 2k−1X

and thus ratios of the advantage over a random assignment is preserved by this reduction.
Therefore, using the approximation algorithm for Max-k-Lin-2 described in Theorem 1.1, the
theorem follows.

The above theorem can be generalized to obtain a similar result on the new approximation
ratio for any constraint satisfaction problem where each constraint only depends on at most k
variables. Let us argue this informally.

Take any constraint on k variables C(x) = C(x1, x2, . . . xk) and think of this as function
mapping {−1, 1}k to the real numbers. We can expand it using the Fourier transform

C(x) =
∑
α

Ĉαχα(x).

But this implies that the single constraint C(x) can be replaced by constraints

χα(x) = sign(Ĉα)

each with weight |Ĉα|. As we noted in Lemma 2.8 this is just a system of linear equations and
we can apply our approximation algorithm.

As a special case we note that in the above discussion on Max-Ek-Sat there was no need to
assume that each clause was of length exactly k and we could have treated the general case by
introducing some more notation.

Let us now turn to inapproximability results and also in this case we can get results for
Max-Ek-Sat.
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Theorem 3.21 Unless NP ⊆ DTIME
[
2(log m)O(1)

]
, for all k ≥ 3 and ε > 0, there is no algorithm

that approximates Max-Ek-Sat within 2(log m)1−ε
and runs in time 2(log m)O(1)

.

Proof: The proof is again using a gadget. We use the observation that Theorem 1.2 holds
even for systems of linear equations in which each equation contains exactly k variables. We
can replace each such equation by 2k−1 clauses such that if the linear equation is satisfied, then
all clauses are satisfied while if it is falsified, one of the clauses is falsified. For example, the
equation x1x2x3 = 1 can be replaced by the clauses (x̄1 ∨ x2 ∨ x3), (x1 ∨ x̄2 ∨ x3), (x1 ∨ x2 ∨ x̄3)
and (x̄1 ∨ x̄2 ∨ x̄3). If the system of linear equations had m equations of total weight W , we
get 2k−1m clauses of total weight 2k−1W = W ′. A solution that satisfied equations of weight
W/2 +X satisfies clauses of weight W ′(1− 2−k) +X and thus our measure is preserved by the
reduction.

It is not clear how to generalize the inapproximability results. In particular, to get any
strong inapproximability result in our measure it must be the case that the random assignment
algorithm gives the optimal approximation constant in the old, standard, approximation mea-
sure. There is no good characterization of which predicates have this property and hence we
cannot hope for a general reduction preserving our new measure.

4 Conclusions

.
We present our results for the new approximation measure in tabular form below. The

number δ has the meaning “a fixed positive constant” while ε can be replaced by “any positive
constant”.

problem upper bound lower bound
Max-Lin-2 εm

log m m
1
2
−ε assuming NP �⊆ BPP

mδ assuming P �= NP
Max-k-Lin-2 (δ)−k√m 2(log m)1−ε

assuming NP �⊆ DTIME(2(log m)O(1)
)

(logm)δ assuming NP �⊆ DTIME(2O(log m log log m))
1/ε assuming P �= NP

It is an open question to check if Algorithm 1 achieves an approximation ratio of O(
√
m)

on every instance. It is easy to construct instances where the found assignment has objective
value O(1) but we have been unable to construct such examples where it is also the case that
the optimum is large.

We also note that all upper bounds obtained are larger than
√
m while all lower bounds are

smaller than
√
m and thus a tempting but not very well supported guess might be that

√
m is

the correct answer for many of the problems.
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