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Abstract

We give a simple analysis of the PCP with low amortized query complexity of Samorodnitsky
and Trevisan [16]. The analysis also applies to the linearity testing over finite fields, giving a
better estimate of the acceptance probability in terms of the distance of the tested function to
the closest linear function.

Keywords: Linearity testing, PCP, graph test, iterated test, pseudorandomness.

1 Introduction

In the celebrated PCP-theorem [3, 2] it is proved that any arbitrary statement in NP can be checked
by a probabilistic verifier which uses O(log n) random coins and reads only a constant number of
bits. Such a proof that is checked by a probabilistic verifier is called a Probabilistically Checkable
Proof or simply a PCP.

Apart from being a striking theorem on its own this fact has far reaching consequences for the
approximability of NP-hard optimization problems. This connection, which was first established
in [11], has produced a large number of results. To obtain sharp inapproximability results it is
necessary to have very efficient PCPs.

One aspect that is important is the tradeoff between the number of bits read by the verifier
in the proof and the probability that the verifier accepts the proof. Recently, Samorodnitsky and
Trevisan [16] constructed a PCP in which the verifier uses logarithmic randomness, reads q bits
in the proof and accepts a proof of an incorrect statement with probability 2−q+O(

√
q). The main

purpose of this paper is to give a simpler proof of this result.
A related problem is Linearity Testing: given oracle access to a Boolean function f on n bits,

determine whether it is close to a linear function over GF [2]n. This too was analyzed in [16], who
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showed that the error in their test has the same dependence on the number of queries as above. We
show that our simple analysis carries over to this problem as well. Moreover, we obtain much better
error bounds in terms of the distance from f to the closest affine function. In [16] this distance was
a lower bound on the error of their test, independently of the number of queries, whereas we can
decrease it exponentially. Indeed, as a function of the number of queries our error bounds are near
optimal. Since the proof of the linearity test avoids some technicalities of the PCP construction
we present this analysis first in Section 3. It turns out to extend naturally from the known case of
linear functions over Z2, to any Zp for prime p.

Both linearity testing and the PCP proof in [16] use the notion of a “graph test” - each edge in the
graph specifies a “basic test”, and this set of (dependent!) basic tests is performed simultaneously.
We view our analysis of this result as simple since it gives a transparent and intuitive reduction
from analyzing the graph test to analyzing a small variant of a single basic test. While [16] also
give such a reduction, it is not as direct, and has an intermediate step which seems to miss an
intuitive explanation.

A more direct advantage of our analysis can be seen as follows. It is easy to see that the
performance of the graph test increases (i.e. the error of the test decreases) with the density of
the graph. Therefore [16] use a complete graph. Our analysis reveals another parameter which
improves the performance - the largest induced matching in a “typical” subgraph of our graph.
While high density and high induced matching seem contradictory, a remarkable construction of
[17] gives graphs of nearly quadratic density that are disjoint union of nearly linear size induced
matchings. The existence of such graphs is essential to our exponentially improved bounds on
linearity testing. For completeness we sketch the construction of [17] in the appendix.

For a more thorough discussion of PCPs and their properties we refer to the papers [7], [12]
and for a discussion of the history of the current problem we refer to [16].

2 Preliminaries

Here we recall the Fourier transform over a field of two elements, which will be needed both for
linearity testing over this field, as well as for PCPs.

All our Boolean functions map into ±1 where we let −1 correspond to true. The most commonly
used operation is exclusive-or which in our notation is multiplication. For x, y ∈ {−1, 1}n, let (xi)ni=1

denote the individual coordinates and let xy denote coordinate-wise multiplication. The boolean
operator ∧ is defined in the natural way and note that it is not multiplication.

Our essential tool is the discrete Fourier transform given by

f̂α = 2−n
∑

x∈{−1,1}n

f(x)χα(x)

where α ⊆ [n] and χα are the character functions defined by χα(x) =
∏
i∈α xi. We have the
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inversion formula
f(x) =

∑
α

f̂αχα(x)

and Parseval’s identity tells us that∑
α

f̂2
α = 2−n

∑
x

f2(x) = 1

where the last equality comes from the fact that f takes values ±1.

3 Linearity testing

In the first subsection we define the graph test and informally state our results. In the second we
give our simple proof of the bound of [16]. In the third we show that our analysis leads to a much
better bound, and demonstrate its near-optimality. All this is done over Z2. In the last subsection
we show that all the results extend naturally to Zp for every prime p.

3.1 Graph tests - old and new bounds

An n-variate Boolean function is called linear if it is the exclusive-or of some fixed subset of its
variables. A function is called affine if it is either linear or the complement of a linear function.

We are given oracle access to a function f and we are interested to test whether f is close to
a linear function. Note that in the current formalism the linear functions are given by the χα.
Moreover, f̂α gives the correlation of f with χα, and so the largest fraction of inputs in which f

agrees with any affine function is given by

1 + maxα |f̂α|
2

and thus it is natural to analyze the performance of a linearity test in terms of d(f) = maxα |f̂α|.
For the remainder of this section we state our results in terms of this distance d(f).

A natural test, first suggested and analyzed by [8] (and thus usually called the BLR test), is to
pick two independent random inputs x, y, and test if f(xy) = f(x)f(y). Clearly, if f is linear, it
passes this test with probability 1. The main problem is analyzing the acceptance probability if f
is “far” from any linear function. As mentioned, this is called the error (or soundness) of the test.
It was analyzed in [8], and then in [5], bounding it by 1/2 + d(f)/2.

Clearly, repeating the BLR test independently many times reduces this error exponentially.
However, motivated from issues of saving randomness and reducing the number of queries it was
natural to try and analyze dependent tests. Such a family of tests, called graph tests, was suggested
by Samorodnitsky and Trevisan [16].

Graph Test We are given a graph G with k vertices and edge set E and the test proceeds as
follows.
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1. Pick points x(i) ∈ {−1, 1}n for i = 1, 2, . . . k independently with the uniform distribution.

2. For each (i, j) ∈ E, test if
f(x(i)x(j)) = f(x(i))f(x(j)).

and accept if this is true in all cases.

Note that the test makes k + |E| queries and that it performs the BLR linearity test for each
edge in the graph reusing old answers. The remarkable property of this test is that despite the fact
that these |E| tests are very dependent (being generated only from k points), their joint outcome
behaves almost as if they were |E| independent BLR tests. More precisely, denote the acceptance
probability of this test by e(G, f). The task is to get the best upper bound on e(G, f) as a function
G and d(f). The main result of [16] (stated as Theorem 3.2 below) is

e(G, f) ≤ 2−|E| + d(f).

We first present (in subsection 3.2) our simple analysis of this result, and then proceed (in subsec-
tion 3.3) to give some improvements. To explain them, observe that in terms of dependence of the
number of queries, the best choice of G is a complete graph. So let e(k, f) = e(Kk, f).

The [16] bound in this case is
e(k, f) ≤ 2−(

k
2) + d(f),

achieved with k +
(k
2

)
queries. Surprisingly, they show that no hypergraph test (extended in a

natural way) can do better on the first component of this bound, when f is the inner product
function.

Still, there seems plenty of room for improvement in the second component, but it is not clear
how to use their analysis to get it. Using our analysis (and the special graphs of [17] mentioned in
the introduction) we proceed to show that

e(k, f) ≤ 2−k
2−o(1)

+ d(f)k
1−o(1)

.

At the end of this section we note that up to the o(1) terms this bound is best possible in both
parameters, giving (for every d ≤ k) a function f with d(f) = 2−d and e(k, f) ≥ 2−dk = d(f)k.

3.2 Simple analysis of the graph test

To analyze the graph test note that the verifier accepts iff

∏
(i,j)∈E

1 + f(x(i)x(j))f(x(i))f(x(j))
2

equals 1. Since this expression takes only 0/1 values, the acceptance probability is its expectation.
Expanding the product we arrive at

2−|E| ∑
S⊆E

∏
(i,j)∈S

f(x(i)x(j))f(x(i))f(x(j)) (1)
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and we are interested in calculating the expected value of each term. The following lemma is
sufficient to establish old results.

Lemma 3.1 For any S �= ∅ we have

E


 ∏

(i,j)∈S
f(x(i)x(j))f(x(i))f(x(j))


 ≤ d(f).

Proof: Suppose, without loss of generality, that (1, 2) ∈ S. We focus on this edge, leaving the
variables x(1), x(2) alone, and fix all other variables to constants. This reduces the analysis of the
graph test to (almost) that of one BLR edge test.

Fix x(3), . . . x(k) to values x̄(3) . . . x̄(k) such that

E
x(1),x(2),x

(3)
3 =x̄(3),...x(k)=x̄(k)


 ∏

(i,j)∈S
f(x(i)x(j))f(x(i))f(x(j))


 ≥

Ex(1),x(2),x(3)...x(k)


 ∏

(i,j)∈S
f(x(i)x(j))f(x(i))f(x(j))


 .

With all the values except x(1) and x(2) given constant values we have that

∏
(i,j)∈S

f(x(i)x(j))f(x(i))f(x(j)) = f(x(1)x(2))g(x(1))h(x(2)),

where g and h are two Boolean functions. To be more specific

g(x(1)) = f(x(1))
∏

j≥3∧(1,j)∈S
f(x(1)x̄(j))f(x(1))

and a similar formula is true for h. Terms that do not depend on either x(1) or x(2) only contribute
a Boolean constant which can be incorporated into h.

Although we started out with one single function we are now in a situation where we are
checking a “linear consistency” property of three different, only somewhat related functions. This
situation, for three completely independent functions, was already analyzed by Aumann et al. [4]
(extending the analysis of [5]) and we use their analysis. The key is to replace each function by its
Fourier-expansion.

Ex(1),x(2) [f(x(1)x(2))g(x(1))h(x(2))] = Ex(1),x(2)


∑
α,β,γ

f̂αχα(x(1)x(2))ĝβχβ(x(1))ĥγχγ(x(2))


 =

=
∑
α,β,γ

f̂αĝβ ĥγEx(1),x(2)

[
χα(x(1)x(2))χβ(x(1))χγ(x(2))

]
. (2)
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It is not difficult to see that the inner expected value equals 0 unless α = β = γ in which case it
equals 1 and hence (2) equals

∑
α f̂αĝαĥα. Using Cauchy-Schwartz, we can bound it by∑

α

f̂αĝαĥα ≤ max
α

|f̂α|
∑
α

|ĝαĥα| ≤ max
α

|f̂α|(
∑
α

ĝ2
α)

1/2(
∑
α

ĥ2
α)

1/2 ≤ max
α

|f̂α| = d(f). (3)

Using (1), estimating the term when S = ∅ by 1, and applying Lemma 3.1 when S is not empty
we get.

Theorem 3.2 [16] The probability that the linearity test accepts is bounded by 2−|E| + d(f).

3.2.1 A (slightly) different proof for the basic test.

In this section we outline a different way to estimate the probability that a graph test accepts. It is
in the obvious senses worse than the analysis in the previous section. It is slightly more complicated
and gives worse bounds. It is, however, different and still rather simple and since one of the main
motivations for the current paper is to present alternative proof-techniques to be used in future
papers, we feel that it is useful to present it.

We analyze the graph test by induction. Order the |E| tests in any order. We want to prove
that the probability that the l first tests accept is bounded by

2−l(1 + 2k
2
d(f))l + l2−2k2

.

This is worse than the previous bound, but since in general k is a constant and d(f) is arbitrarily
small the difference is not as great as it might look at a first glance. We prove this by induction
over l and the base case l = 0 is clearly true.

Suppose for notational convenience that the l’th test corresponds to the edge (1, 2). Now
consider a fixed a value of x̄ = x(3), x(4) . . . x(k). Let us assume that none of the tests involving only
pairs of these fixed inputs reject. Then the event that the first l− 1 tests accept can be written as
Q1(x(1)) ∧Q2(x(2)) for two predicates Q1 and Q2. We say that a value of x̄ is low if

Prx(1),x(2) [Q1(x(1)) ∧Q2(x(2))] ≤ 2−2k2

and otherwise it is called high. Let us look at all executions of the first l tests of the protocol.
Those corresponding to low x̄ contributes at most 2−2k2

to the acceptance probability and thus it
is sufficient to prove that executions corresponding to high x̄ contributes at most

2−l(1 + 2k
2
d(f))l + (l − 1)2−2k2

. (4)

To establish this first note that, by induction, the probability that the first l − 1 tests accept and
x̄ is high is bounded by

21−l(1 + 2k
2
d(f))(l−1) + (l − 1)2−2k2

. (5)
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This follows since this estimate is true without the condition that x̄ is high. Now let us look at the
conditional probability that the l’th test accepts. This probability is easily seen to be

1 +E[f(x(1)x(2))f(x(1))f(x(2)) | Q1(x(1)) ∧Q2(x(2))]
2

. (6)

Now let f1 be a function that agrees with f when Q1 is true and is 0 otherwise and define f2

similarly by agreement with Q2. Let q1 the probability that Q1 is true on a random input and
define q2 similarly. Then the expected value in (6) equals

E[f(x(1)x(2))f1(x(1))f2(x(2))]
q1q2

This expected value in the numerator can be analyzed using the Fourier transform along the same
lines as equations (2) and (3) obtaining the bound

max
α

|f̂α|(
∑
α

f̂2
1,α)

1/2(
∑
α

f̂2
2,α)

1/2 ≤ (q1)1/2(q2)1/2 max
α

|f̂α|,

where the last inequality follows from the fact that the L2-norm of fi is (qi)1/2.
This implies (using the definition of the “high” case to bound q1q2) that

(1 + 2k
2
d(f))/2

is an upper bound of the probability that the l’th test accepts given that the previous tests accepted
and that x̄ was high. Multiplying this by the probability the the first l−1 tests accepts as given by
(5) we obtain the desired bound (4) for the contributions of the high x̄. The proof of the claimed
bound is complete.

3.3 Improved analysis of the graph test

The above bound is clearly optimal as a function of |E| since a random function passes the linearity
test defined by G with probability 2−|E|. We can hope to get a sharper bound as a function of
d(f). This is the aim of the present subsection. Towards this end we first give a definition

Definition 3.3 A graph G has an induced matching of size m if there are 2m vertices such that
there are exactly m edges supported on these vertices and these form a matching.

We have

Lemma 3.4 If the set S has an induced matching of size m then

E


 ∏

(i,j)∈S
f(x(i)x(j))f(x(i))f(x(j))


 ≤ d(f)m.
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Proof: In the previous proof we reduced the analysis of the graph test to that of one BLR test.
Here we reduce it to that of m independent BLR tests, in essentially the same way – fixing the values
of all sample points except the endpoints of an induced matching of size m. Suppose without loss
of generality that (2i− 1, 2i) ∈ S for i = 1, 2, . . . m and that there are no other edges in S between
any pair of these 2m vertices. Fix the values of x2m+1, . . . xk to constants without decreasing the
expected value. The induced function can be written as

m∏
i=1

f(x(2i−1)x(2i))gi(x(2i−1))hi(x(2i)).

The different factors are independent and the expected value of each term can be estimated as in
Lemma 3.1.

To use Lemma 3.4 we want to find a graph G so that most subgraphs of G have large induced
matchings. Note that for this purpose the complete graph Kk is quite bad, since a typical subgraph
will only have an induced matching of size aboutO(log k). We instead use a remarkable construction
from [17]. Let us first state formally what we need.

Definition 3.5 A bipartite graph G is a union of t matchings of size r if E = ∪ti=1Mi where Mi

is an induced matching of size r in G and Mi
⋂

Mj = ∅ for i �= 0.

We have the following lemma

Lemma 3.6 If G is the union of t matchings of size r then the probability that linearity test defined
by G accepts is bounded above by

e−tr/8 + d(f)r/4

Proof: We use the expansion (1). If S contains an induced matching of size r/4 then, by
Lemma 3.4, the corresponding term is bounded by d(f)r/4 and we need to count the number of S
for which there is no such matching. For each Mi this means that the S contains at most r/4− 1
edges from Mi. From Theorem A.1.1 of [1] it follows that the probability of this happening, for a
fixed i, is bounded by e−r/8. The event of this happening is independent for different i and hence
the lemma follows.

We have the following elegant result of Rusza and Szemeredi (which for completeness we prove
in the appendix)

Theorem 3.7 [17] There exist a bipartite graph on 2k vertices which is the union of k/3 matchings
each of size k1−o(1).

Combining Lemma 3.6 and Theorem 3.7 we get the below theorem.
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Theorem 3.8 The probability to accept in the linearity test of the complete graph on k vertices is
bounded by

min( 2−(
k
2) + d(f), 2−k

2−o(1)
+ d(f)k

1−o(1)
).

We conclude by demonstrating the near-optimality of the last bound.

Theorem 3.9 The graph test accepts a random function with probability 2−|E|. Furthermore, for
any d ≤ n/2 there is a function with d(f) = 2−d such that the acceptance probability of the complete
graph test is at least

2−dk = d(f)k.

Proof: To verify the first claim fix any choice of (x(i))ki=1. The condition that the test accepts
f can be written as |E| homogeneous linear equations in the values of f . The probability that a
random function satisfies these equations is at least 2−|E|.

For the second claim define

f(x) =
d∏
i=1

(xi ∧ xi+d).

It is not difficult to see that for any α ⊆ [2d] we have |f̂α| = 2−d while for other α we have f̂α = 0.
Now if x(j)

i = 1 for 1 ≤ j ≤ k and 1 ≤ i ≤ d then f is equal to 1 for all queried points and hence
the test accepts. Thus the test accepts with probability at least 2−dk.

3.4 Larger finite fields

In this subsection we extend the results of this section to the groups Zp for prime p > 2. This
extension, for a test similar to the basic BLR test has been analyzed earlier [13] and we obtain similar
results for this basic case. The extension to graph tests appears to be new but is straightforward.

As before with Z2, we write Zp multiplicatively, namely as the group of p’th roots of unity,
which we call G. The linear functions on n variables are identified in this multiplicative notation
with the characters xα =

∏
i x
αi
i , with x ∈ Gn and α ∈ [p]n.

Given access to an oracle for a function f : Gn → G, we want a test whose acceptance probability
is related to the distance of f from the closest linear function. As before, we plan to analyze it
using the Fourier transform of f , given by the unique expansion of f as a linear combination of
characters

f(x) =
∑
α

f̂αx
α.

The main difference from the case p = 2 is that now the coefficients f̂α may be complex, and
the agreement between f and xα is not as immediate and we need some notation.

Let ζ be a p’th root of unity. All our complex number will be of the form
∑p−1

i=0 riζ
i for rational

numbers ri and this is the field extension Q[ζ]. For 1 ≤ a ≤ p−1 let σa be a homomorphism of Q[ζ]
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that sends ζ to ζa. Note that if x is a p’th root of unity σa(x) = xa and the mapping is extended
by linearity. The main reason this is useful for us is the following standard lemma which we state
without a proof.

Lemma 3.10 If x is a p’th root of unity then
∑p−1

i=0 xi = 0 unless x = 1 in which case the sum
equals p.

We next establish.

Lemma 3.11 Let f be a function mapping into the p’th roots of unity, then the fraction of inputs
on which f agrees with the linear function xα is

1
p
(1 +

p−1∑
a=1

σa(f̂α)).

Proof: By the previous lemma the probability in question is

p−n
∑
x

p−1
p−1∑
a=0

(f(x)x−α)a.

The terms corresponding to a = 0 contributes 1
p . For the other terms we switch the order of

summation and replace f by its Fourier-expansion giving for a fixed a∑
x

(f(x)x−α)a =
∑
x

σa(f(x)x−α) =
∑
x

σa(
∑
β

f̂βx
βx−α) =

∑
β

σa(f̂β)
∑
x

σa(xβ−α).

The inner sum is 0 unless β = α in which case it is pn. The lemma now follows.

It is straightforward to extend the analysis of the case p = 2 to obtain the bound maxα |f̂α| but
this does not immediately imply agreement with a linear function. There are two ways to ways to
get this direct correspondence for the basic BLR test. The first is to change the basic BLR test to
testing

f(x)af(y)b = f(xayb)

for random x, y and a, b ∈ {1, 2 . . . p − 1}. The second possibility is to stay with the original test
and access f in a way to make the random exponents unnecessary. Since the latter alternative
works nicely for the graph test this is the path we take.

Definition 3.12 f respects exponentiation if for any x and any a, 1 ≤ a ≤ p − 1 we have
f(x)a = f(xa).

Any linear function respects exponentiation and we can make sure that an unknown function
given to us by a table has this property by the following access rule. From every class of p−1 inputs
of the type {xa : 1 ≤ a ≤ p− 1}, pick (arbitrarily) a unique representative, and access it whenever
the value of f on any of these inputs is needed (answering in a way that respects exponentiation).
We now have the following lemma.
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Lemma 3.13 Assume that f respects exponentiation, then f̂α is real for any α.

Proof: We have for any a �= 0

pnσa(f̂α) = σa(
∑
x

f(x)xα) =
∑
x

f(x)axaα =

=
∑
x

f(xa)xaα =
∑
x

f(x)xα = pnf̂α

and hence this number is real.

It is now natural to define, as before d(f) = maxαf̂α. Now the basic test is identical to the old
test. Pick random x, y ∈ Gn and test that f(x)f(y) = f(xy).

Lemma 3.14 The acceptance probability of the BLR test extended to Zp and applied to a function
that respects exponentiation is

1
p

(
1 + (p− 1)

∑
α

f̂3
α

)
≤ 1

p

(
1 + (p− 1)maxα|f̂α|

)
.

Proof: The probability that the basic test accepts is the expectation of

1
p

(
p−1∑
a=0

(f(x)f(y)f(xy)−1)a
)

.

The term corresponding to a = 0 is 1 and to estimate any other term we use the fact the f respects
exponentiation and replace each term by the Fourier-expansion to obtain

f(xa)f(ya)f(x−ay−a) =
∑
α,β,γ

f̂αx
aαf̂βy

aβ f̂γx
−aγy−aγ .

The expectation, over a random x and y of a term is 0 unless α = β = γ and the lemma follows.

Also the graph test is identical to the one described earlier - we pick the k points corresponding
to the vertices at random, and on every edge perform the basic test. The graph test accepts iff all
basic tests succeed. The analog of the main theorem of the previous subsection is

Theorem 3.15 The probability to accept in the linearity test over Zp of the complete graph on k

vertices on function f that respects exponentiation is bounded by

min( p−(
k
2) + d(f), p−k

2−o(1)
+ d(f)k

1−o(1)
).

Proof: The proof is completely analogous to the case p = 2 and let us only give the highlights.
The test accepts iff

∏
(i,j)∈E

(
1
p

p−1∑
a=0

(f(x(i)x(j))f(x(i))f(x(j)))a
)

(7)
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equals 1 and otherwise this expression equals 0. Expanding the product and manipulating as before
this leads that we need to estimate expressions of the form

f(x(i)x(j))ag(x(i))h(x(j))

where g and h take values that a p’th roots of unity and a is nonzero. Replacing each term by the
Fourier transform and using Plancherel’s equality this can be estimated by maxα |f̂α| and the first
bound follows.

The extension to get the second bound is exactly the same as in the p = 2 case.

4 Analyzing PCPs

In this section we show that the same idea employed for the analysis of the graph test for linearity
testing extends to provide a simple analysis of the graph test used by [16] for PCPs. This is done in
subsection 4.2. We then try to obtain an improved bound in the same sense we did in the previous
section. We point why it seems impossible, and content ourselves with a minor improvement in the
same spirit (given in subsection 4.3). But first we define the PCP and its graph test.

4.1 The PCP and its graph test

Many efficient PCPs, such as the one given in [16] are conveniently analyzed using the formalism
of an outer and inner verifier. This could also be done here, but to help the reader not familiar
with this formalism we give a more explicit analysis. Using the results of [2] (as explicitly done in
[10]) one can prove that there is a constant c < 1 such that it is NP-hard to distinguish satisfiable
3-SAT formulas from those where only a fraction c of the clauses can be satisfied by any assignment.
This formula furthermore has the property than any clause is of length exactly 3 and any variable
appears in exactly 5 clauses.

Given a 3-SAT formula ϕ = C1 ∧ C2 . . . Cm which is either satisfiable or where one can only
satisfy a fraction c of the clauses one can design a two-prover interactive with verifier V as follows.

The two-prover protocol

1. V chooses a clause Ck uniformly at random and a variable xj , again uniformly at random,
appearing in Ck. V sends k to prover P1 and j to prover P2.

2. V receives a value for xj from P2 and values for all variables appearing in Ck from P1. V

accepts if the two values for xj agree and the clause Ck is satisfied.

It is not difficult to see that if a fraction c of the clauses can be satisfied simultaneously then
the optimal strategy of P1 and P2 convinces V with probability (2 + c)/3. Thus it is NP-hard to
distinguish the case when this probability is 1 and when it is some constant strictly smaller than 1.

12



To make the gap larger one runs this protocol u times in parallel and in this protocol u random
clauses are sent to P1, u variables (one from each clause) are sent to P2. The verifier accepts in this
protocol if the assignments returned by the provers satisfy all the picked clauses and are consistent.
By the fundamental result by Raz [15], the probability that the verifier accepts when only a constant
fraction c < 1 of the clauses are satisfied is bounded by duc for some absolute constant dc < 1.

This two-prover protocol is now turned into a PCP by, for each question to either P1 or P2

writing down the answer in coded form. As many other papers we use the marvelous long code
introduced by Bellare et al [7].

Definition 4.1 The long code of an assignment x ∈ {−1, 1}t is obtained by for each function
f : {−1, 1}t �→ {−1, 1} writing down the value f(x).

Thus the long code of a string of length t is a string of length 22t
. Note that even though a

prover is supposed to write down a long code for an assignment we have no way to guarantee that
a cheating prover does not write down a string which is not the correct long code of anything. We
analyze such arbitrary tables by the Fourier-expansion and in the current situation this is given by∑

α⊆{−1,1}t

Âαχα(f),

where
χα(f) =

∏
x∈α

f(x).

If A is indeed a correct long code of a string x(0) then Â{x(0)} = 1 while all the other Fourier
coefficients are 0.

We can, to a limited extent, put some restrictions on the tables produced by the prover.

Definition 4.2 A table A is folded over true if A(f) = −A(−f) for any f .

Definition 4.3 A table A is conditioned upon h if A(f) = A(f ∧ h) for any f .

To make sure that an arbitrary long code is folded we access the table as follows. For each pair
(f,−f) we choose (in some arbitrary but fixed way) one representative. If f is chosen, then if the
value of the table is required at f it is accessed the normal way by reading A(f). If the value at
−f is required then also in this case A(f) is read but the result is negated. If −f is chosen from
the pair the procedures are reversed.

Similarly we can make sure that a given table is properly conditioned by always reading A(f∧h)
when the value for f is needed. Folding over true and conditioning can be done at the same time.

Let us now give the consequences of folding and conditioning for the Fourier coefficients. The
proofs are easy and left to the reader but they can also be found in [12].

Lemma 4.4 If A is folded over true and Âα �= 0 then |α| is odd and in particular α is non-empty.
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Lemma 4.5 If A is conditioned upon h and Âα �= 0 then for every x ∈ α, h(x) is true.

Concluding, the written proof used in our PCP is the following. For every subset U of size u we
have the Boolean string of length 22u

. Also, for every subset W of size w ≤ 3u we have a Boolean
string of length 22w

. In a correct proof for a satisfiable formula all these strings are long codes of
the restriction of the same satisfying assignment to the relevant subsets.

The test of this written proof is now performed as follows.
The PCP graph test

1. The verifier V chooses u variables, each picked uniformly and independently from the others.
Let the chosen set be U .

2. V chooses k random functions fi, i = 1, 2 . . . k on U . These are chosen randomly and in-
dependently. Let A be the string (hopefully long code) corresponding to the set U in the
written proof.

3. Repeat the following steps independently for j = 1, 2, . . . k. For each variable in U choose
a random clause containing it. Let hj be the conjunction of the chosen clauses and let Wj

be the set of variables appearing in the chosen clauses. Choose gj to be a random function
with uniform probability on Wj . Let Bj be the string (hopefully long code) corresponding to
the set Wj in the written proof, folded over true and conditioned upon hj . Note that U is a
subset of Wj for all j.

4. For 1 ≤ i, j ≤ k choose a function µij on Wj which, independently at each point takes the
value 1 with probability 1− ε and the value −1 with probability ε. Set gij = gjfiµij, i.e. for
each y ∈ {−1, 1}Wj set gij(y) = gj(y)fi(π(y))µij(y) where π is the projection from Wj to U .
Test whether

Bj(gij) = Bj(gj)A(fi).

5. If all tests accept, V accepts and otherwise it rejects.

The test above is performed for all possible pairs (i, j). Note however that unlike the linearity
test we have questions of two different types (as the fi and gj live on different domains) and thus
G must in this case be a bipartite graph.

4.2 Simple analysis of the PCP graph test

It is easy to see that the completeness of the test is at least (1 − ε)|E| and we need to analyze the
soundness.
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Similarly to the linearity test the verifier accepts if

∏
(i,j)∈E

1 +A(fi)Bj(gj)Bj(gij)
2

equals one. We expand this product getting

2−|E| ∑
S⊆E

∏
(i,j)∈S

A(fi)Bj(gj)Bj(gij). (8)

The main lemma of this section shows that for any S, a positive expectation of the above
expression yields a strategy for the two prover game of related success probability. As we know the
later must be small, we are able to upper bound the soundness.

Lemma 4.6 Suppose S is nonempty and

E


 ∏

(i,j)∈S
A(fi)Bj(gj)Bj(gij)


 = δ

where the expectation is taken over all coin tosses of the PCP verifier. Then there is a strategy for
the two provers in the two-prover game that convinces the its verifier with probability at least 4εδ2.

Proof: Suppose without loss of generality that (1, 1) ∈ S. Now for a fixed U fix values of
(Wj , gj , fi, µij), i, j ≥ 2 and µ1j , j > 1 µi1, i > 1 which does not decrease the expectation (taken
over f1, W1, g1, µ11) of the considered expression. This product can now be written as

A′(f1)B1(g11)C(g1) (9)

where A′ and C are Boolean functions and B1 is the original long code on W1. The function A′

is a function that depends on the constants chosen above. However note that these constants only
depend on the value of U and hence A′ is a fixed function on U . In particular A′ does not depend
on W1 (or g1 or µ11). The function C is a Boolean function on W1 which is defined by a product
that contains terms of the form B1(gi1). It is difficult to control but we only need that it is a
Boolean function. For reasons of typography let us for the remainder of this proof rename B1 to
B and W1 to W .

Let us fix U and W for the moment, and substitute the Fourier expansion of each function in
(9), taking the expected values over f1, g1 and µ11. We get

Ef1,g1,µ11


 ∑
α,β1,β2

Â′
αB̂β1Ĉβ2χα(f1)χβ1(f1g1µ11)χβ2(g1)


 =

∑
α,β1,β2

Â′
αB̂β1Ĉβ2Ef1,g1,µ11 [χα(f1)χβ1(f1g1µ11)χβ2(g1)] .
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Now, unless β1 = β2 = β the inner expected value is 0. Taking the expected value over f1 we see
that unless π2(β) = α the value is also 0. Here π2 is the mod 2 projection i.e. π2(β) contains x

iff there is an odd number of y ∈ β such that π(y) = x. Finally E[χβ(µ11)] = (1 − 2ε)|β| and we
obtain the overall result ∑

β

Â′
π2(β)B̂βĈβ(1− 2ε)|β|.

By Cauchy-Schwartz inequality this is bounded by


∑

β

Ĉ2
β




1/2
∑

β

(Â′
π2(β)B̂β(1− 2ε)|β|)2




1/2

=


∑

β

Â′2
π2(β)B̂

2
β(1− 2ε)2|β|




1/2

.

So, under the hypothesis of the lemma, taking expectations over U and W we get

EU,W




∑

β

Â′2
π2(β)B̂

2
β(1− 2ε)2|β|




1/2

 ≥ δ.

Since E[X2] ≥ E[X]2 for any random variable X we obtain

EU,W


∑

β

Â′2
π2(β)B̂

2
β(1− 2ε)2|β|


 ≥ δ2. (10)

Now consider the following strategy for the provers in the two-prover game. Prover P1, on receiving
W , picks a random β with probability B̂2

β and then a random y ∈ β. Prover P2, on receiving U ,
picks a random α with probability Â′2

α and then returns a random x in α. By Lemma 4.5, the
answer returned by P1 always satisfies the chosen clauses. Also note that by Lemma 4.4, β is of
odd size and hence neither it nor π2(β) is empty. Since A′ is not folded over true α might be empty
and in such a case P2 sends some default string. The probability of convincing V in the two prover
game is now exactly the probability that α = π(β), which is at least

∑
β

B̂2
βÂ

′2
π2(β)|β|−1. (11)

We have the inequality x−1 ≥ e−x valid for any x > 0 and applying this we see that

(4ε|β|)−1 ≥ e−4ε|β| ≥ (1− 2ε)−2|β|

and thus we see that (11) is at least 4ε times the value of (10) and hence has expected value at
least 4εδ2.

Since the soundness of the two prover protocol is duc , Lemma 4.6 is sufficient to get the following
result (which is already a bit stronger than what is stated by Samorodnitsky and Trevisan [16]).
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Theorem 4.7 The soundness of the above described PCP with G the complete bipartite graph is
at most

2−k
2
+
(
duc
4ε

)1/2

4.3 Improved analysis

In the linearity testing we succeeded in improving the obtained bound by raising the second term
of the upper bound to a high power. We explain where and why this idea fails here, and give the
best bound it implies, sightly improving the theorem above (essentially squaring the second term).

We first note that as long as U remains fixed, the same improvement obtained in the case of
linearity testing is possible.

Lemma 4.8 Fix the value U , suppose S has and induced matching of size m and

E


 ∏

(i,j)∈S
Bj(gij)Bj(gj)A(fi)


 = δU ,

where the expected value is taken over all other random choices of the verifier. Then there is a
strategy for the two provers in the two-prover game that given that U is chosen, convinces the
verifier with probability at least 4εδ2/m

U .

Proof: We proceed as in the proof of Lemma 3.4. Suppose (i, i) ∈ S for 1 ≤ i ≤ m and that there
are no other edges on these vertices. We fix values of (Wj , gj , fi, µij), i, j > m and µij with i ≤ m

and j > m or i > m and j ≤ m to values that do not decrease the expected value. Reasoning
as in the proof of Lemma 4.6 we get, under the hypothesis of the lemma that there are Boolean
functions A′

i and Ci such that

E

[
m∏
i=1

A′
i(fi)Bi(gii)Ci(gi)

]
≥ δU

where this expectations is over the surviving random variables excluding U . Since the factors are
independent there is one i such that

E
[
A′
i(fi)Bi(gii)Ci(gi)

] ≥ δ
1/m
U .

The rest of the proof is now essentially identical to the corresponding part of Lemma 4.6.

Unfortunately the corresponding strengthening does not carry over to the full analysis of the
PCP. The problem being that from EU [δU ] = δ the best lower bound for m ≥ 2 that can be obtained
for EU [δ

2/m
U ] is δ. Thus it is only useful to have m = 2 giving a moderate improvement over the

results of [16].
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Since we know that the soundness of the two-prover game is duc we get that terms corresponding
to an S which contains an induced matching of size m for m = 1 and m = 2 can be at most

(
duc
4ε

)m/2

in absolute value. The empty graph is the only graph that does not contain a matching of size 1
and we need to estimate the number of graphs that do not contain a matching of size 2. We have
the following lemma.

Lemma 4.9 The number of bipartite graphs with k vertices in each part that do not contain a
matching of size 2 is bounded by (k!)2

(2k−1
k

)
.

Proof: Suppose the two parts of the vertices are V1 and V2. For i = 1, 2, . . . k let Si be the subset
of V2 connected to i’th vertex of V1. If there is no matching of size 2 then for any pair (i, j) we
either have Si ⊆ Sj or Sj ⊆ Si. We conclude that if there is no matching of size 2 then there is a
permutation π such that

Sπ(1) ⊆ Sπ(2) ⊆ . . . ⊆ Sπ(k).

Such a chain is uniquely described by the order in which elements are added and how many elements
are added at each point in time. The order is given by a permutation σ and the number of ways
to partition k elements into k pieces is, by a standard argument at most

(2k−1
k

)
. Since there are at

most k! choices for each of the permutations π and σ, the lemma follows.

Note that we do not get a 1-1 correspondence since often neither π nor σ is uniquely determined.
The overestimate is not too bad since when |Sπ(i)| = i, both π and σ are uniquely determined and
hence the number of such graphs is at least (k!)2 and thus the lemma is not too far from the truth.

Using the expansion (8), the bound 1 when S is empty, the bound
(
du

c
4ε

)1/2
when the maximal

size of an induced matching is 1 and du
c

4ε in the remaining cases, we get a final estimate for the
acceptance probability. The result is only moderately stronger than the corresponding theorem of
Samorodnitsky and Trevisan [16], and the main contribution is that our proof is simpler.

Theorem 4.10 The soundness of the above described PCP with G the complete graph is at most

2−k
2
+ 2−k

2
(k!)222k

(
duc
4ε

)1/2

+
(
duc
4ε

)
.

4.4 PCPs in larger fields

The results by Samorodnitsky and Trevisan have been extended to the case where each symbol is
in Zp by Engebretsen [9]. The current analysis also applies to that case. Let us briefly recall the
setup and state the result.
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In this case each symbol in the proof is an element from Zp which we again write multiplicatively
as the p’th roots of unity. We have the same underlying 2-prover protocol but in the PCP we change
the ordinary long code to long-p-code in which a table is indexed by all functions f mapping into
Zp. In a correct long-p-code for x the value at f should be f(x). For Boolean h define f ∧ h(x) as
f(x) if h(x) is true and as 1 if h(x) is false. Long-p-codes can be folded and conditioned.

Definition 4.11 A table A is p-folded if A(zf) = zA(f) for any f and any z ∈ Zp.

Definition 4.12 A table A is conditioned upon h if A(f) = A(f ∧ h) for any f .

The extension of Fourier transforms to the case of Zp has already been described in Section 3.4
and we only state the consequences of folding and conditioning. Note that in the present case a
linear function is written fα where α is a function mapping into 0, 1, 2 . . . p− 1 and

fα =
∏
x

f(x)α(x).

Proofs of the below two lemmas can be found in [12].

Lemma 4.13 If A is a p-folded and Âα �= 0 then
∑

x α(x) ≡ 1 mod p and in particular α is
non-zero.

Lemma 4.14 If A is conditioned upon h and Âα �= 0 then for every x with α(x) �= 0, h(x) is true.

We could have, as in the linearity test, asked for the tables to respect exponentiation, but this
is not needed and hence we do not.

The definition of the graph test is verbally the same except that the error functions µij which
takes the value 1 with probability 1− ε and with probability ε a random value in Zp.

The analysis is adding the same small modifications that we needed in the linearity testing in
larger fields to the analysis of the PCP for p = 2. We start with an expansion similar to (7) and
expand the product. We analyze each individual term using the Fourier expansion (as is done in
the simple case of one test in [12]). The successful strategies of the provers are given by the Fourier
coefficients of the tables and we simply state the theorem (which was originally proved in [9]).

Theorem 4.15 [9] For any k and any ε > 0 any language in NP admits a polynomial size PCP
that reads 2k + k2 symbols from Zp, has completeness 1− ε and soundness p−k2

(1 + ε).

5 Conclusion

We have given a very simple analysis of the test given by Samorodnitsky and Trevisan for linearity
testing and for PCPs with optimal query complexity. Our hope is that this will help in analyzing
more complicated tests that might be useful to obtain stronger results.
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The second author also wishes to convey the following intuition (not fully shared by the first
author), relating our analysis of the graph test to the analysis of pseudorandom generators. In-
deed, the graph test generates from a small random sample many (dependent) tests, which behave
as though they were independent, and therefore can be viewed as some kind of pseudorandom
generator.

Those familiar with the set-up of the NW-generator [14] will recognize in Section 3 a more
detailed correspondence.

• The seed of the generator is the k query points of the graph test.

• The output of the generator are the results of individual linearity test on one edge (pair of
seed points) of the graph. Moreover, the intersection of any two such sets is “small”, namely
one test point (this is a trivial “design”).

• The output of the generator has to “fool” (i.e. look uniform to) all linear tests (as expressed
by equation (2)).

• This is proved by fixing all but two of the seed points, and reducing the “pseudo-randomness”
of the output to the “hardness” of one edge test, conveniently provided by the [4] linearity
test.

Needless to say, some of the complications that arise in following precisely the NW analysis in this
context are confusing and unnecessary in this simple context, and indeed the resulting analysis we
described here need not refer to it at all. But perhaps there are other problems where this analogy
and viewpoint may help, as it was here.
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A The construction of the graphs

We now explain the construction, due to Rusza and Szemeredi [17], of dense graphs whose edge set
can be partitioned to a linear number of induced matchings of nearly linear size.

Let [n] denote the set of the first n integers. We will construct bipartite graphs on two sets of
vertices labeled by [3n] as follows. Fix a subset A ⊆ [n]. For any element i ∈ [n], we let Mi to be
the matching consisting of all edges {(a + i, a + 2i) : a ∈ A} (all these integers are in [3n]. Now
define G(A) to be the union of these Mi over all i ∈ [n].
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Theorem A.1 Assume that A has no three-term arithmetic progression. Then all Mi are induced
in G(A).

Proof: Assume to the contrary that one of the matching is not induced. This means that for
some i, j ∈ [n] and a, b ∈ A we have (a+ i, a+2i), (b+ i, b+ 2i) ∈ Mi but also (a+ i, b+ 2i) ∈ Mj .
This means that for some c ∈ A we have the system of equations

a+ i = c+ j b+ 2i = c+ 2j

from which we conclude that 2a = b+ c, a contradiction.

It remains to give a large set A ⊂ [n] without a three-term arithmetic progression. The best
known construction is by Behrend [6] which we describe below. The proof is not difficult given the
construction, and we only provide a sketch.

Pick integers d, s, and let t be the smallest integer so that (2d+ 1)t ≥ n. Let Ad,s be the set of
all integers of the form

∑t
i=0 ai(2d+ 1)i with the integers ai satisfying

1. For all i, 0 ≤ ai ≤ d

2.
∑t

i=0 a
2
i = s

Theorem A.2 1. For every d, s the set Ad,s has no three-term arithmetic progression.

2. For d = �2
√

logn� and some choice of s, |Ad,s| ≥ n/2O(
√

logn) = n1−o(1)

Proof: (Sketch)
For (1), note that the condition 0 ≤ ai ≤ d implies that any three-term arithmetic progression
must give three colinear vectors (ai)ti=0 and there can be no three colinear vectors of the same L2

norm. For (2), take the value of s which maximizes the size of Ad,s. The right hand side is simply
the average size.
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