
ON THE POWER OF SMALL-DEPTH

THRESHOLD CIRCUITS

Johan H�astad and Mikael Goldmann

Abstract. We investigate the power of threshold circuits of small depth.

In particular, we give functions that require exponential size unweighted

threshold circuits of depth 3 when we restrict the bottom fanin. We

also prove that there are monotone functions fk that can be computed

in depth k and linear size ^;_-circuits but require exponential size to
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1. Introduction

The study of circuit complexity has in one sense been successful and in
another not so successful. While there are still no non-linear lower bounds on
circuit-size for any function in NP , several interesting results have been shown
for restricted circuit classes e.g. monotone circuits [4, 16, 3, 13, 14, 15] and
circuits of bounded depth [1, 9, 10, 17, 19, 21].

The smallest natural circuit-class that is not known to be strictly contained
in NP is TC0, the set of functions computable by constant-depth polynomial-
size circuits containing threshold gates. Threshold gates are quite powerful and
many fairly complicated functions (like division, implicit in [6]) are in TC0.

It also seems like the techniques used for proving lower bounds for usual
constant depth circuits (with or without modular gates) are not su�cient to
prove lower bounds for threshold circuits. The best known results about small-
depth threshold circuits are those by Hajnal et al. [12] where, among other
results, it is established that depth 3 threshold circuits of polynomial size are
more powerful than corresponding circuits of depth 2.

To further understand the nature of threshold circuits Yao [22] studied
monotone threshold circuits. In particular, Yao was interested in the question
whether it is true for monotone circuits that depth k and polynomial size is
more powerful than depth k � 1 and polynomial size. He proved that this
is indeed the case by exhibiting a function f2k computable by ordinary ^;_-
circuits of depth 2k that requires exponential size when the depth is restricted
to k.

In this paper we generalize both the above results. First we give an explicit
function that cannot be computed by small depth 3 unweighted threshold cir-
cuits of small bottom fanin. The proof of this is based on a communication
game analyzed by Babai, Nisan and Szegedy [5]. In this communication game
s + 1 players (which we call Pj; j = 1; : : : ; s + 1) participate and share some
variables which are partitioned into s + 1 groups (the jth group being Gj).
The player Pj knows all variables except the variables in Gj and the cost of
evaluating a function is the number of bits the players have to exchange. In [5]
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result by allowing arbitrary positive weights in the circuit. Let us outline the
method of proof used. The function fk that we consider is de�ned by a depth
k tree with alternating levels of ^-gates and _-gates. We de�ne a probability
distribution pk on minterms with a minimal number of 1's and a distribution
qk on maxterms with a maximal number of 1's. The key point is to prove that
a threshold circuit of depth k � 2 that has a good probability of outputting 1
on a random input picked according to the distribution pk has a probability
very close to 1 of outputting 1 on a random input picked according to the
distribution qk. This is done in Lemma 9.

This main lemma is proved by induction over k and uses the fact that fk
and the distributions pk and qk have the same recursive structure. The base
case is an easy veri�cation and the crux of the proof is the induction step.
The induction uses in an essential way the monotonicity of the circuits as
follows. The distribution pk (qk) consists of many copies of pk�1 (qk�1) with
some extra zeroes (ones) added. The output of a threshold circuit of depth
k � 2 is a threshold of outputs of threshold circuits of depth k � 3. Applying
the induction hypothesis on each pair (pk�1; qk�1) of subdistributions inside pk
and qk plus the monotonicity of the circuit makes it possible to complete the
proof.

The general outline of the proof is exactly the same as that used by Yao.
We obtain sharper results by also arguing about the negation of fk, �fk and the
corresponding distributions �pk and �qk.

It is interesting to note that while the functions fk cannot be computed

by depth k � 1 monotone threshold circuits of size � 2n
1

2k , by a result of
Allender [2] (which is based on work by Toda [20]), they can be computed by
depth 3 general threshold circuits of size 2O((log n)k). This might be taken as
another piece of evidence that monotonicity is a severe restriction, and that new
techniques probably have to be developed to attack general threshold circuits
of small depth.

A preliminary version of this paper appeared in [11].

2. Preliminaries

Let us recall the relevant de�nitions. The basic element of a our circuits
will be a threshold gate. A threshold gate with inputs y1; y2 : : : ym, weights
w1; w2 : : : wm and threshold t will output 1 if

Pm
i=1 yiwi is at least t and 0

otherwise. We will say that a gate is monotone if wi > 0 for all i. A threshold
circuit is a directed acyclic graph where each node is a threshold gate or an input
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variable. The only nodes of indegree 0 of the circuit are the input variables
and there is only node of outdegree 0 is the output node and this output is
computed by evaluating the gates. The circuit is monotone if each gate in the
circuit is monotone and we have no negated variables. The depth of the circuit
is the longest path from any input to the output. The size is the number of
gates. Please note that this de�nition does not allow multiple edges between
pairs of nodes, and thus the fanin of a gate is bounded by the size of the circuit.

TC0 is the set of functions computable by constant depth polynomial size
threshold circuits. Monotone TC0 is the set of functions computable by by
constant depth polynomial size threshold circuits consisting of monotone gates
and having no negated variables on the input level.

A more restricted version of threshold circuits is obtained by having all
weights equal to 1 (but allowing negated variables at the input level). This
way we obtain unweighted threshold circuits. When we want to emphasize
that we speak about the more general model we call them weighted threshold

circuits. It is interesting to note that TC0 remains the same even if we restrict
the circuits to be unweighted [7].

3. Lower Bounds for Depth 3 Circuits

The function we will consider is the \generalized inner product function"
considered in [5]. We use doubly indexed variables xi;j where i ranges from 1
to n and j ranges from 1 to s + 1. Our function gips is de�ned by

gips(x) =
nX
i=1

s+1Y
j=1

xi;j

where the sum is calculated modulo 2. We will be interested in a communication
game among s + 1 players Pj, j = 1; : : : s+ 1 where Pj0 knows the value of all
variables xi;j except those with j0 = j. Collectively the players want to evaluate
gips(x) (or something close to it) and the measure of complexity is the number
of bits exchanged. We call this game the s-communication game and we will
say that a protocol �-evaluates a function f if the output agrees with f with
probability 1+�

2
. Here the probability is taken over a uniformly picked random

input (and not a probabilistic protocol). The following very powerful result is
proved by Babai, Nisan and Szegedy [5].

Lemma 1. (Theorem 2 in [5]) To �-evaluate gips in an s-communication
game requires 
(n2�2s + log �) bits communication.



4 H�astad & Goldmann

We will be interested in evaluating gips by a depth 3 threshold circuit. In
this section we assume that there are no weights in the circuit i.e. that each
gate C in the circuit just counts the number of inputs to it that takes the value
1 and outputs 1 i� this number is at least tC for a predetermined value tC . We
also assume that we have small bottom fanin i.e. that the number of inputs to
any gate next to the input variables is small. The main result of the section is:

Theorem 2. To evaluate gips by a depth 3 unweighted threshold circuit with
bottom fanin at most s requires size 2
(n=s4

s).

Proof. Assuming that such a circuit exists, we will eventually obtain a
contradiction to Lemma 1. We �rst need a lemma which is the same (although
we phrase it di�erently and use that gips is almost unbiased) as Lemma 3.3 of
Hajnal et al..

Lemma 3. (Lemma 3.3 in [12]) Let gips be computed by an unweighted thresh-
old circuit where the top gate has fanin R. Then one of the inputs to the top
gate 1

R
-evaluates gips.

In our case this input to the top gate will correspond to a depth 2 threshold
circuit with bottom fanin bounded by s. For these we have the following
interesting lemma.

Lemma 4. Suppose f is computed by a depth 2 unweighted threshold circuit
of size R and bottom fanin bounded by s. Then f can be evaluated in the
s-communication game with 1 + s logR communicated bits.

Proof. Since the bottom fanin is at most s every such gate can be evaluated
by one of the players. Thus partition the gates between the players in such a
way that that each player can evaluate all the gates given to him. Now player
1 need only tell the other players how many of his gates evaluated to 1. This
he can do with logR bits. Players 2 through s do the same, and �nally player
s + 1 can evaluate the top gate and tell the one bit result to the others. The
total number of bits used is 1 + s logR. 2

To �nish the proof of the theorem we now just need to collect the pieces. By
Lemmas 3 and 4 we see that by the circuit assumed to exist there is a protocol
that 1

R
-evaluates gips with 1 + s logR bits of communication. Combining this

with Lemma 1 �nishes the proof. 2
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Remark: We have used very little of the properties of the threshold gates
in the proof. We have used that the top gate was a threshold gate only to
make sure that one of its inputs was correlated with gips. On the third level
we only needed that each gate depended on at most s variables. The type of
this dependence was unimportant. Thus only on level two did we use any real
properties of the threshold gates.

If we instead limit the fanin on the middle level the situation gets even
simpler.

Theorem 5. Suppose an unweighted depth 3 threshold circuit computes the
inner product (i.e. gip1) and that the fanin on the middle level is bounded by
s. Then the size of the circuit is 2
(n=s).

Proof. In this case we will use a two person communication game. Lemma 1
could be used also for this purpose but let us use an older more accurate result
by Chor and Goldreich [8].

Lemma 6. (Theorem 21 in [8]) To �-evaluate the inner product function
(gip1) in a two-person game requires at least at least n � 3 � 3 log ��1 bits
of communication.

Now suppose there is a circuit of size R with fanin s on the middle level
that computes the inner product. We conclude by Lemma 3 that there is a
depth 2 threshold circuit with top fanin bounded by s that 1

R
-evaluates the

inner product. Such a circuit can be evaluated by two players by one player
telling the other player how many of his inputs to each of the various gates
take the value 1. The total number of bits needed to specify this is bounded
by s logR. The other player then evaluates the top gate and tells the result
to the �rst player. By Lemma 6 we get 1 + s logR � n � 3 + 3 logR and the
theorem follows. 2

4. Monotone Threshold Circuits

Let us start by formally de�ning our functions fk. For technical reasons the
circuit de�ning fk will not be de�ned by a regular tree.
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Definition 7. The function fk is a function of N2k�2 variables. It is de�ned
by a depth k circuit that is a tree. At the leaves of the tree there are unnegated
variables. The ith level from the bottom consists of ^-gates if i is even and
otherwise it consists of _-gates. The fanin at the top and bottom levels is N
and at all other levels it is N2.

This function was used by Sipser in [18] who showed that it requires superpoly-
nomial size depth k � 1 circuits over the basis f^;_;:g.

It will be convenient to also consider the functions �fk, the negations of fk.
Clearly �fk is computed by a circuit very similar to the circuit computing fk.
The only di�erence being that ^ and _ change places and that the inputs are
negated variables. To make �fk formally a monotone function we set yi = �xi
and let these be the input variables of �fk.

There is a nice inductive de�nition of fk that will be very useful to us. By
de�nition f2 is a depth 2 circuit that is an ^ of size N where each input is an
_ of size N . Now for even k, fk is just f2 with each input variable changed to
an independent copy of fk�1. Similarly for odd k, fk is obtained from �f2 by
replacing each variable by an independent copy of fk�1.

Using this construction it is natural to label each variable of fk by a 2k� 2
tuple of numbers between 1 and N .

In this section we will be interested in monotone weighted threshold circuits
i.e. circuits containing gates that are weighted threshold gates with all weights
positive. We have:

Theorem 8. A monotone weighted threshold circuit computing fk that is of
depth k � 1 has size at least 2cN for some constant c > 0 and N > N0.

We will look at inputs chosen according to two di�erent probability distri-
butions, pk and qk, for inputs in f

�1
k (1) and inputs in f�1k (0) respectively. They

are the same distributions as those Yao constructed. Here pk picks a random
assignment to the variables that contains as many zeroes as possible under the
condition that fk(x) = 1, while qk picks a random assignment to the variables
that contains as many ones as possible under the condition that fk(x) = 0.

The distributions pk and qk are de�ned inductively starting with k = 2. To
get the feeling for the de�nition, please remember the inductive de�nition of
fk. Index the variables in f2 by two indices running from 1 to N and let xij
be the jth variable in the ith _ de�ning f2. An element from p2 is chosen as
follows: For each i, randomly and uniformly pick a j(i), set xij(i) = 1 and set
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all other variables to 0. An element from q2 is chosen by randomly choosing i0
and setting xi0j = 0 for all j, while all other variables are set to 1.

Clearly for each x chosen by p2, f2(x) = 1, while for each x chosen by q2,
f2(x) = 0. We will also need the corresponding distribution for �f2. A random
element from �p2 (�q2) is a random element from p2 (q2) which is changed by
setting yij = �xij for all i and j. Observe that the de�nition implies that if y
is chosen according to �p2 then �f2(y) = 0 and if it chosen according to �q2 then
�f2(y) = 1.

Now to chose an element from pk proceed as follows:

1. For k even, choose a random element from p2. Each variable now corre-
sponds to an independent copy of fk�1 and the value of that variable will
decide how to give values to the variables corresponding to that function.
If a variable is given the value 1, then set the corresponding variables ac-
cording to pk�1 and if the value is 0 then set all corresponding variables
to 0.

2. For k odd, choose a random element from �q2. If a variable is given the
value 1, then set the corresponding variables according to pk�1 and if the
value is 0 then set all corresponding variables to 0.

In a similar way an element from qk is picked as follows:

1. For k even, choose a random element from q2. If a variable is given the
value 1, then set the corresponding variables to 1 and if the value is 0
then set the corresponding variables according to qk�1.

2. For k odd, choose a random element from �p2. If a variable is given the
value 1, then set the corresponding variables to 1 and if the value is 0
then set the corresponding variables according to qk�1.

Again we de�ne �pk and �qk by negating variables.

To make formulas simple in the future, suppose that g is a Boolean function
and let p be a probability distribution. Then we let g(p) denote the probability
that g takes the value 1 on a random input from the distribution p. Using this
notation observe that the above de�nitions imply that:

fk(pk) = 1; fk(qk) = 0; �fk(�pk) = 0; �fk(�qk) = 1:
Now we are ready to state the main lemma. Let � = 0:01.
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Lemma 9. Let g be a function that is computed by a monotone weighted
threshold circuit of depth k � 2 and size � 2�N , then for N > N0,

1. g(pk) � 2�2�N ) g(qk) >
3
5
,

2. g(pk) �
2
5
) g(qk) > 1� 2�2�N .

We postpone the proof of the lemma to Section 5. Before we prove that
Theorem 8 follows from Lemma 9 let us just observe that this would have been
trivial if we would have wanted a weaker theorem with k � 2 instead of k � 1.
In fact a circuit g computing fk has g(pk) = 1 and g(qk) = 0 and thus either
part of Lemma 9 tells us that this circuit has to be large.

Let us see how the current Theorem 8 can be proved using Lemma 9. Sup-
pose fk was computed by a threshold circuit of size 2�N and depth k � 1.
Suppose that the top gate has fanin R, weights wi and threshold t. Let the
function computed by the ith input of the top gate be called gi. This function
is computed by a depth k � 2 threshold circuit of size at most 2�N and hence
we can use Lemma 9.

Let

S1 = fi j gi(pk) � 2�2�Ng;

S2 = fi j 2�2�N < gi(pk) � 2=5g;

S3 = fi j gi(pk) > 2=5g:

Consider the following distributions on inputs. Let p be the distribution
obtained by choosing an x according to pk while requiring that gi(x) = 0 for all
i 2 S1. Similarly, we get q by choosing x according to qk while requiring that
gi(x) = 1 for all i 2 S3.

The probabilities gi(p) and gi(q) are close to gi(pk) and gi(qk) respectively.
We have for any function h:

h(p) = Prpk [h(x) = 1 j 8i2S1gi(x) = 0] �

h(pk)

Prpk [8i2S1gi(x) = 0]
� h(pk) + 21��N (1)

and

h(q) = Prqk [h(x) = 1 j 8i2S3gi(x) = 1] �

h(qk)� Prqk [9i2S3gi(x) = 0] � h(qk)� 2��N : (2)
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Let P be the expected weight to the top gate when the input is chosen
according to p and let Q be the corresponding weight when the input is chosen
according to q. Then by the assumption that the circuit computes fk we have
P � t and Q � t � 1. Now each input to the top gate is a function gi that
satis�es the hypothesis of Lemma 9. Then using (1) and (2) we get

P �
�
2

5
+ 21��N

� X
i2S2

wi +
X
i2S3

wi

Q �
�
3

5
� 2��N

� X
i2S2

wi +
X
i2S3

wi

which implies

P �Q �
�
3 � 2��N �

1

5

� X
i2S2

wi � 0

since all wi � 0 and we have reached a contradiction.

5. Proof of Lemma 9

Consider the following lemma:

Lemma 10. Let g be a function that is computed by a monotone weighted
threshold circuit of depth k � 2 and size � 2�N , then for N > N0,

1. g(�qk) � 2�2�N ) g(�pk) >
3
5
,

2. g(�qk) �
2
5
) g(�pk) > 1� 2�2�N .

Let us prove that this lemma is equivalent to Lemma 9. Suppose g is
computed by a threshold circuit as described by the lemmas. We claim that
its negation is computed by a circuit that is identical except that the inputs
are negated and if a certain gate in the circuit computing g has fanin R, total
weight w =

PR
1 wi and threshold t then the corresponding gate in the circuit

computing �g also has the same weights wi but threshold w+1� t. We leave it
to the reader to verify this. The equivalence of the two lemmas is now obvious.
In particular, we see that the �rst part of Lemma 9 is equivalent to the second
part of Lemma 10 and the other way around.

Let us now prove the lemmas. We proceed by induction and since the four
statements in the two lemmas are pairwise equivalent, we need only prove the
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�rst part of each lemma for each k. On the other hand clearly we can use both
parts of the induction hypothesis.

We start by proving Lemma 9 for the base case, k = 2. A threshold circuit
of depth 0 is just a variable and thus we need only compute the probability that
a variable is 1 in the two distributions. The distribution p2 gives the value 1 to
a variable with probability 1

N
while the distribution q2 gives it with probability

1� 1
N
. Thus Lemma 9 is true for k = 2 and su�ciently large N .

Now for the induction case assume that k is even (we will later see that odd
k is almost the same, but we postpone this point) and that g(pk) � 2�2�N . We
want to prove that g(qk) �

3
5
. Consider the depth k�2 circuit that computes g

and look at its top gate. Assume that it has R inputs and threshold t. The ith

input of the circuit corresponds to a function gi that is computed by a depth
k � 3 threshold circuit of size � 2�N .

First observe that we can erase all inputs corresponding to an i such that
gi(pk) � 2�4�N without decreasing the value of g(pk) by more than 2�3�N . For
notational convenience we ignore this tiny error term.

Now de�ne distributions plk, l = 1; 2 : : : n which look like pk on the variables
corresponding to the lth input node to the top node of fk but assigns ones to
all other variables. Using that each variable is labelled by a 2k � 2 tuple of
numbers between 1 and N , then a random setting of the variables according to
the distribution plk can be described as follows.

Any variable whose label does not start with l is set to 1. A random value
m0 between 1 and N is picked. The variables xl;m0;� (we use this notation for
set of variables whose �rst two labels are l and m0) are set according to pk�1
while xl;m;� are set to 0 for m 6= m0.

We have a very fruitful relationship between gi(pk) and gi(p
l
k). Since this only

depends on the fact that gi is monotone we state a general fact.

Lemma 11. For any monotone function h we have h(pk) �
QN

l=1 h(p
l
k).

Proof. An instance of pk corresponds to an instance of each of plk since p
l
k

only really lives on variables with �rst label l. If any of these instance of plk
forces h to 0 so does pk. The lemma now follows. 2

Observe that from this lemma and the assumption that gi(pk) � 2�4�N it
follows that there are at most 4�N

log 5�1
< 4�N di�erent l such that gi(p

l
k) �

2
5
.

Let qlk be the distribution that is similar to qk but where we �x the random
choice of where to put the copies of qk�1 to be the l

th branch out of the top ^.
We have the following immediate observation:
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Lemma 12. For any function h we have h(qk) =
1
N

PN
l=1 h(q

l
k).

Proof. This just follows from the fact that choosing an instance from qk can
be viewed as choosing a random l and then choosing a random instance from
qlk. 2

Let us next see the relation between gi(p
l
k) and gi(q

l
k).

Lemma 13. We have

1. gi(p
l
k) � 2�2�N ) gi(q

l
k) >

3
5
,

2. gi(p
l
k) �

2
5
) gi(q

l
k) > 1� 2�2�N .

Proof. Clearly we want to establish this by the induction hypothesis. First
observe that gi is computed by a depth k�3 threshold circuit of size � 2�N and
thus the only problem to apply the induction hypothesis is that the probability
distributions are not quite correct.

Observe �rst that both plk and qlk give the value 1 to all variables whose
�rst index is not l and thus we can disregard those variables. Now let m0 be
the random choice in the de�nition of plk that maximizes gi(p

l
k). De�ne two

distributions pl;m0

k and ql;m0

k where the �rst distribution is the part of plk where
the random choice is actually m0 and the second distribution is obtained from
qlk by setting xl;m;� to 0 for all m 6= m0. Since gi is monotone we get

gi(q
l
k) � gi(q

l;m0

k ):

Now clearly the induction hypothesis applies to the pair of distributions pl;m0

k

and ql;m0

k (since they are just pk�1 and qk�1 on the variables with two �rst
indices are l and m0 respectively, and all other variables are constants) and
�nally by the choice of m0 we have

gi(p
l
k) � gi(p

l;m0

k ):

Adding these facts together we have proved the lemma. 2

Next, call i small for l if gi(p
l
k) <

2
5
. Otherwise call i large for l. By the

previous lemma we know that when i is large for l then gi(q
l
k) > 1� 2�2�N . Let
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N0 be some absolute constant and remember that the top gate of the circuit
computing g has R inputs, weights wi and threshold t.

We call l strong if X
i large
for l

wi � t

otherwise l is weak .

Lemma 14. If at least 2N=3 di�erent l are strong, then g(qk) >
3
5
for N � N0.

Proof. Take any strong l. We claim that g(qlk) � 1�R � 2�2�N � 1� 2��N .
The reason is that if for all i large for l, the value of gi is 1, then also g is 1 (since
the large i have combined weight at least t for a strong l). The probability that
an individual gi is not 1 is bounded by 2

�2�N for a large i, and the claim follows.
The lemma now follows by Lemma 12 applied to g. 2

To complement the above lemma we have:

Lemma 15. If at leastN=3 di�erent l are weak then g(pk) < 2�2�N forN � N0.

Proof. We use Lemma 11 (mainly its proof). Let w =
PR

1 wi. By the
remark after the lemma, for each i there are at most 4�N di�erent l such that
i is small for l.

We again use the characterization that an instance x(k) of pk can be viewed
as choosing independent copies x(k);l of plk for l = 1; 2 : : :N and if one of the
instances x(k);l forces gi to 0, then so does x(k). We choose the pieces x(k);l in a
speci�c order to facilitate the analysis of how many gi are forced to 0. Say that
an i is alive if gi is not forced to 0 by the x(k);l chosen this far (otherwise it is
dead). Let an l be unused if x(k);l is not chosen yet. Now consider the following
procedure:

For j = 1; 2 : : :N=4
Let lj be the unused l with maximum combined weight on its small i that

are alive. Choose x(k);lj .

Clearly g(pk) is bounded by the probability that the combined weight of the
dead i is at most w� t after the above procedure. We analyze this probability.

Claim: If the weight of the dead i is at most w� t at stage j then the weight
of live i that are small for lj is at least (w � t)=2.
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Just consider the unused part of the set of at least N=3 di�erent l that
initially were weak. Of these l, at least N=3 � j are still unused and on these
unused l we initially had weight at least (N=3� j)(w � t). We know that the
weight of the dead i is at most w� t and since each i is small for at most 4�N
di�erent l, at most weight 4�N(w� t) is lost by these casualties. Hence one of
the unused l has weight at least

N=3� j � 4�N

N=3� j
(w � t) �

w � t

2

on its small i:s since � < 1
96
. This establishes the claim.

Let sj =
X

i live and
small for lj

wi:

Consider the weight on the live i that are small for lj and that are killed by
x(k);lj . The expected weight killed is at least 3sj=5 and the maximum is sj.
Thus by standard reasoning, with probability at least 1=2, at least sj=10 are
killed. By the claim this means that for the weight of killed i to remain below
w� t an event that happens with probability 1=2 must happen at most 9 times
in N=4 trials. The probability of this is 2�cN for some c > :02 = 2� and
su�ciently large N . This completes the proof of Lemma 15. 2

Obviously Lemmas 14 and 15 imply statement 1 of Lemma 9. Next we
complete the proof when k is even by establishing 1 of Lemma 10. We need
to prove that if g(�qk) � 2�2�N then g(�pk) >

3
5
. Remember that �qk is de�ned

by �rst picking an element from �q2 and then changing each 0 to all zeroes and
each 1 to a copy of �qk�1. The �q2 distribution is chosen by �rst choosing an
input, l, to the top _ gate and then letting each input to that gate take the
value 1 while all other inputs are given the value 0. If we �x the �rst choice in
�qk to a given l we get a distribution which we call �qlk. Choose l to maximize
g(�qlk) and call it l0. Now let �pl0k be the distribution that looks like �pk except
that all variables with �rst index 6= l0 are set to 0. Since g is monotone we
have g(�pk) � g(�pl0k ) and by the choice of l0 we have g(�qk) � g(�ql0k ) and we thus
only need to establish the desired relation between g(�pl0k ) and g(�ql0k ), and from
now on we only look at variables with �rst index l0.

Let �ql0;mk be the distribution that looks like �ql0k except that all variable with
second index not equal to m are given the value 1. Now we are basically in the
same situation as before. First we have

Lemma 16. For any monotone function h we have h(�ql0k ) �
Qn

m=1 h(�q
l0;m
k ).
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Proof. As Lemma 11. 2

Now let �pl0;mk be the distribution �pl0k where the random choice on the second
level is replaced by the special choice m. Corresponding to Lemma 12 we have

Lemma 17. For any function h we have h(�pl0k ) =
1
N

PN
m=1 h(�p

l0;m
k ).

As before, we have by induction

1. gi(�q
l0;m
k ) � 2�2�N ) gi(�p

l0;m
k ) > 3

5
,

2. gi(�q
l0;m
k ) � 2

5
) gi(�p

l0;m
k ) > 1� 2�2�N .

Using a proof with the same outlines as those for Lemmas 14 and 15, we
get

Lemma 18.

g(�ql0k ) � 2�2�N ) g(�pl0k ) >
3

5
:

Now, by the choice of l0 part 1 of Lemma 10 follows. This completes the
proof for k even.

The proof when k is odd is now easy. We just need to observe that when
k is odd the two cases just switch (i.e. the proof of 1 of Lemma 9 is now the
proof of 1 of Lemma 10 and the other way around). The reason being that fk
now has a top _-gate and �fk has a top ^-gate while the recursive structure is
the same. We have completed the proof of Lemma 9.
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