
A Pseudorandom Generator

from any

One-way Function

Johan H�astad� Russell Impagliazzoy Leonid A. Levinz Michael Lubyx

Abstract

Pseudorandom generators are fundamental to many theoretical and applied aspects

of computing. We show how to construct a pseudorandom generator from any one-

way function. Since it is easy to construct a one-way function from a pseudorandom

generator, this result shows that there is a pseudorandom generator i� there is a

one-way function.

Warning: Essentially this paper has been published in SIAM Journal on Com-

puting and is hence subject to copyright restrictions. It is for personal use
only.

1 Introduction

One of the basic primitives in the study of the interaction between randomness and feasible
computation is a pseudorandom generator. Intuitively, a pseudorandom generator is a

�Department of Numerical Analysis and Computing Science, Royal Institute of Technology, Stockholm,

Sweden, email Johanh@nada.kth.se. Research supported by the Swedish National Board for Technical

Development.
yDepartment of Computer Science, University of California at San Diego. Research partially done while

at U.C.Berkeley, email Russell@cs.ucsd.edu. Research supported by NSF grant CCR 88-13632
zComputer Science Department, Boston University, 111 Cummington St, Boston, MA 02215, email

Lnd@cs.bu.edu. Research supported by NSF grant CCR-9015276.
xInternational Computer Science Institute, Berkeley, California, and Computer Science Division, Uni-

versity of California at Berkeley, email Luby@icsi.berkeley.edu. Research partially done while on leave of

absence from the University of Toronto. Research supported by NSERC operating grant A8092, National

Science Foundation operating grant CCR-9016468, National Science Foundation operating grant CCR-

9304722, United States-Israel Binational Science Foundation grant No. 89-00312, United States-Israel

Binational Science Foundation grant No. 92-00226, and ESPRIT BR Grant EC-US 030.

1

polynomial time computable function g that stretches a short random string x into a
long string g(x) that \looks" random to any feasible algorithm, called an adversary. The
adversary tries to distinguish the string g(x) from a random string the same length as
g(x). The two strings \look" the same to the adversary if the acceptance probability
for both strings is essentially the same. Thus, a pseudorandom generator can be used
to e�ciently convert a small amount of true randomness into a much larger number of
e�ectively random bits.

The notion of randomness tests for a string evolved over time: from set-theoretic tests to
enumerable [Kol : 65], recursive and �nally limited time tests. Motivated by cryptographic
applications, the seminal paper [BM : 82] introduces the idea of a generator which produces
its output in polynomial time such that its output passes a general polynomial time test.
The fundamental paper [Yao : 82] introduced the de�nition of a pseudorandom generator
most commonly used today, and proves that this de�nition and the original of [BM : 82]
are equivalent.

The robust notion of a pseudorandom generator, due to [BM : 82], [Yao : 82], should be
contrasted with the classical methods of generating random looking bits as described in,
e.g., [Knuth : 81]. In studies of classical methods, the output of the generator is considered
good if it passes a particular set of standard statistical tests. The linear congruential
generator is an example of a classical method for generating random looking bits that
pass a variety of standard statistical tests. However, [Boyar : 89] and [Kraw : 92] show
that there is a polynomial time statistical test which the output from this generator does
not pass.

The distinction between the weaker requirement that the output pass some particular
statistical tests and the stronger requirement that it pass all feasible tests is particularly
important in the context of many applications. As pointed out by [BM : 82], in crypto-
graphic applications the adversary must be assumed to be as malicious as possible, with
the only restriction on tests being computation time. A pseudorandom generator can be
directly used to design a private key cryptosystem secure against all such adversaries.

In the context of Monte Carlo simulation applications, a typical algorithm uses long ran-
dom strings, and a typical analysis shows that the algorithm produces a correct answer
with high probability if the string it uses is chosen uniformly. In practice, the long ran-
dom string is not chosen uniformly, as this would require more random bits than it is
typically reasonable to produce (and store). Instead, a short random string is stretched
into a long string using a simple generator such as a linear congruential generator, and
this long string is used by the simulation algorithm. In general, it is hard to directly
analyze the simulation algorithm to prove that it produces the correct answer with high
probability when the string it uses is produced using such a method. A pseudorandom
generator provides a generic solution to this problem. For example, [Yao : 82] shows how
pseudorandom generators can be used to reduce the number of random bits needed for any

2

probabilistic polynomial time algorithm, and thus shows how to perform a deterministic
simulation of any polynomial time probabilistic algorithm in subexponential time based
on a pseudorandom generator. The results on deterministic simulation were subsequently
generalized in [BH : 89], [BFNW : 96].

Since the conditions are rather stringent, it is not easy to come up with a natural candidate
for a pseudorandom generator. On the other hand, there seem to be a variety of natural
examples of another basic primitive; the one-way function. Informally, f is one-way if
it is easy to compute but hard on average to invert. If P=NP then there are no one-
way functions, and it is not even known if P 6= NP implies there are one-way functions.
However, there are many examples of functions that seem to be one-way in practice and
that are conjectured to be one-way. Some examples of conjectured one-way functions
are the discrete logarithm problem modulo a large randomly chosen prime (see, e.g.,
[DH : 76]), factoring a number that is the product of two large randomly chosen primes
(see, e.g., [RSA : 78]), problems from coding theory (see, e.g., [McEl : 78], [GKL : 93]), and
the subset sum problem for appropriately chosen parameters (see, e.g., [IN : 96]).

The paper [BM : 82] is the �rst to construct a pseudorandom generator based on a one-way
function. They introduce an elegant construction that shows how to construct a pseudo-
random generator based on the presumed di�culty of the discrete logarithm problem.
The paper [Yao : 82] substantially generalizes this result by showing how to to construct a
pseudorandom generator from any one-way permutation. (Some of the arguments needed
in the proof were missing in [Yao : 82] and were later completed by [Levin : 87]. Also,
[Levin : 87] conjectured that a much simpler construction would work for the case of one-
way permutations, and this was eventually shown in [GL : 89].)

There are several important works that have contributed to the expansion of the condi-
tions on one-way functions under which a pseudorandom generator can be constructed.
[GMT : 82] and [Yao : 82] show how to construct a pseudorandom generator based on the
di�culty of factoring, and this was substantially simpli�ed in [ACGS : 88]. When f is a
one-way permutation, the task of inverting f(x) is to �nd x. In the case when f is not
a permutation, the natural extension of successful inversion to �nding any x0 such that
f(x0) = f(x). The paper [Levin : 87] introduces one-way functions which remain one-way
after several iterations and shows them to be necessary and su�cient for the construction
of a pseudorandom generator. The paper [GKL : 93] shows how to construct a pseudoran-
dom generator from any one-way function with the property that each value in the range
of the function has roughly the same number of preimages. This expanded the list of
conjectured one-way functions from which pseudorandom generators can be constructed
to a variety of non-number theoretic functions, including coding theory problems.

However, the general question of how to construct a pseudorandom generator from a one-
way function with no structural properties was left open. This paper resolves this question.
We give several successively more intricate constructions, starting with constructions for

3

one-way functions with a lot of structure and �nishing with the constructions for one-way
functions with no required structural properties.

The current paper is a combination of the results announced in the conference papers
[ILL : 89] and [H�as : 90].

1.1 Concepts and tools

Previous methods, following [BM : 82], rely on constructing a function that has an out-
put bit that is computationally unpredictable given the other bits of the output, but is
nevertheless statistically correlated with these other bits. [GL : 89] provide a simple and
natural input bit which is hidden from (a padded version of) any one-way function. Their
result radically simpli�es the previous constructions of pseudorandom generator from one-
way permutations, and in addition makes all previous constructions substantially more
e�cient. We use their result in a fundamental way.

Our overall approach is di�erent in spirit from previous constructions of pseudorandom
generators based on one-way functions with special structure. Previous methods rely on
iterating the one-way function many times, and from each iteration they extract a compu-
tationally unpredictable bit. The approach is to make sure that after many iterations the
function is still one-way. In contrast, as explained below in more detail, our approach con-
centrates on extracting and smoothing entropy in parallel from many independent copies
of the one-way function. Our overall construction combines this parallel approach with a
standard method for iteratively stretching the output of a pseudorandom generator.

The notion of computational indistinguishability provides one of the main conceptual tools
in our paper. Following [GM : 84] and [Yao : 82], we say that two probability distributions
D and E are computationally indistinguishable if no feasible adversary can distinguish D
from E . In these terms, a pseudorandom generator is intuitively the following: Let g be
a polynomial time computable function that maps string of length n to longer strings
of length `n > n. Let X be a random variable that is uniformly distributed on strings
of length n and let Y be a random variable that is uniformly distributed on strings of
length `n. Then, g is a pseudorandom generator if g(X) and Y are computationally
indistinguishable.

The Shannon entropy of a distribution is a good measure of its information content.
A fundamental law of information theory is that the application of a function cannot
increase entropy. For example, because X has n bits of entropy, g(X) can also have
at most n bits of entropy (see Proposition 2.2.4). The work presented in this paper
focuses on a computational analog of Shannon entropy, namely computational entropy.
We say the computational entropy of g(X) is at least the Shannon entropy of Y if g(X)
and Y are computationally indistinguishable. If g(X) is a pseudorandom generator, the

4

computational entropy of g(X) is greater than the Shannon entropy of its input X, and
in this sense g ampli�es entropy.

We introduce the following generalizations of a pseudorandom generator based on com-
putational entropy. We say that g(X) is a pseudoentropy generator if the computational
entropy of g(X) is signi�cantly more than the Shannon entropy of X. We say that g(X) is
a false entropy generator if the computational entropy of g(X) is signi�cantly more than
the Shannon entropy of g(X).

We show how to construct a false entropy generator from any one-way function, a pseu-
doentropy generator from any false entropy generator and �nally a pseudorandom gener-
ator from any pseudoentropy generator. (The presentation of these results in the paper is
in reverse order.)

We use hash functions and their analysis in a fundamental way in our constructions. This
approach has its roots in [GKL : 93]. In [GL : 89], it turns out that the easily computable
bit that is hidden is the parity of a random subset of the input bits, i.e., the inner product
of the input and a random string. This random inner product can be viewed as a hash
function from many bits to one bit.

Due to its importance in such basic algorithms as primality testing, randomness has be-
come an interesting computational resource in its own right. Recently, various studies
for extracting good random bits from biased \slightly-random" sources that nevertheless
possess a certain amount of entropy have been made; these sources model the imperfect
physical sources of randomness, such as Geiger counter noise and Zener diodes, that would
have to actually be utilized in real life. (See [Blum : 84], [SV : 86], [Vaz : 87], [VV : 85],
[CG : 88], and [McIn : 87].) One of our main technical lemmas, (Lemma 4.5.1), can be
viewed as a hashing lemma which is used to manipulate entropy in various ways: it can
be viewed as a method for extracting close to uniform random bits from a slightly-random
source using random bits as a catalyst.

1.2 Outline

An outline of the paper is as follows:

In Section 2 we give notation, especially related to probability distributions and ensembles.
In Section 3, we de�ne the basic primitives used in the paper and a general notion of
reduction between primitives. We spend a little more time on this than is conventional in
papers on cryptography, since we want to discuss the e�ects of reductions on security in
quantitative terms.

Section 4 introduces the basic mechanisms for �nding hidden bits and manipulating en-

5

tropy with hash functions. The main result of the section is a reduction from a false
entropy generator to a pseudorandom generator via a pseudoentropy generator.

In Section 5, we present a construction of a pseudorandom generator from a one-way
function where pre-image sizes can be estimated. Although such one-way functions are
very common, and so this is an important special case, the main reason for including this
is to develop intuition for general one-way functions.

Section 6 presents the most technically challenging construction, that of a false entropy
generator from any one-way function. Combined with Section 4, this yields the main result
of the paper, the construction of a pseudorandom generator from any one-way function.

In Section 7, we present a somewhat more direct and e�cient construction of a pseudo-
random generator from any one-way function. It uses the ideas from Sections 4, 5, and
6, but avoids some redundancy involved in combining three generic reductions. Section 8
concludes by placing our results in the context of modern cryptographic complexity.

2 Basic notation

N is the set of natural numbers. If S is a set then]S is the number of elements in S. If
S and T are sets then S n T is the set consisting of all elements in S that are not in T . If
a is a number, then jaj is the absolute value of a, dae is the smallest integer greater than
or equal to a, and log(a) is the logarithm base two of a.

Let x and y be bit strings. We let hx; yi denote the sequence x followed by y, and when
appropriate we also view this as the concatenation of x and y. If x 2 f0; 1gn then xi is
the ith bit of x, xfi;:::;jg is hxi; : : : ; xji, and x� y is hx1 � y1; : : : ; xn � yni.

An m� n bit matrix x is indicated by x 2 f0; 1gm�n. We write xi;j to refer to the (i; j)-
entry in x. We can also view x as a sequence x = hx1; : : : ; xmi of m strings, each of length
n, where in this case xi is the i

th row of the matrix, or we can view x as a bit string of
length mn, which is the concatenation of the rows of the matrix.

The � operation indicates matrix multiplication over GF[2]. If x 2 f0; 1gn appears to
the left of � then it is considered to be a row vector, and if it appears to the right of
� it is considered to be a column vector. Thus, if x 2 f0; 1gn and y 2 f0; 1gn then
x� y =

Pn
i=1 xi � yi mod 2. More generally, if x 2 f0; 1g`�m and y 2 f0; 1gm�n then x� y

is the `� n bit matrix, where the (i; j)-entry is r � c, where r is the ith row of x and c is
the jth column of y.

6

2.1 Probability Notation

In general, we use capital and Greek letters to denote random variables and random
events. Unless otherwise stated, all random variables are independent of all other random
variables.

A distribution D on a �nite set S assigns a probability D(x) � 0 to each x 2 S, and thusP
x2S D(x) = 1. We say a random variable X is distributed according to D on S if for

all x 2 S, Pr[X = x] = D(x), and we indicate this by X 2D S. We write D : f0; 1g`n to
indicate that D is supported on strings of length `n. We sometimes, for convenience, blur
the distinction between a random variable and its distribution. If X1 and X2 are random
variables (that are not necessarily independent), then (X1jX2 = x2) denotes the random
variable that takes on value x1 with the conditional probability Pr[X1 = x1jX2 = x2] =
Pr[X1 = x1 ^X2 = x2]=Pr[X2 = x2].

If f is a function mapping S to a set T , then f(X) is a random variable that de�nes a
distribution E , where for all y 2 T , E(y) =

P
x2S;f(x)=yD(x). We let f(D) indicate the

distribution E .

We let X 2U S indicate that X is uniformly distributed in S, i.e., for all x 2 S, Pr[X =
x] = 1=]S. We let Un indicate the uniform distribution on f0; 1gn, i.e., X is distributed
according to Un if X 2U f0; 1gn.

We sometimes want to indicate a random sample chosen from a distribution, and we do
this by using the same notation as presented above for random variables except that we
use lower case letters, i.e., x 2D S indicates that x is a �xed element of S chosen according
to distribution D.

If X is a real-valued random variable, then E[X] denotes the expected value X. If E is a
probabilistic event, then Pr[E] denotes the probability that event E occurs.

De�nition 2.1.1 (statistical distance) Let D and E be distributions on a set S. The
statistical distance between D and E is

L1(D; E) =
X
x2S

jPr[D(x)]� Pr[E(x)]j =2:

Proposition 2.1.2 For any function f with domain S and for any pair of distributions
D and E on S, L1(f(D); f(E)) � L1(D; E).

2.2 Entropy

The following de�nition of entropy is from [Shan : 48].

7

De�nition 2.2.1 (information and entropy) Let D be a distribution on a set S. For
each x 2 S, de�ne the information of x with respect to D to be ID(x) = � log(D(x)): Let
X 2D S. The (Shannon) entropy of D isH(D) = E[ID(X)]: Let D1 and D2 be distributions
on S that are not necessarily independent, and let X1 2D1 S and X2 2D2 S. Then, the
conditional entropy of D1 with respect to D2, H(D1jD2), is Ex22D2

S [H(X1jX2 = x2)].

We sometimes refer to the entropy H(X) of random variable X, which is equal to H(D).
We sometimes refer to the conditional entropy H(X1jX2) of X1 conditioned on X2, which
is equal to H(D1jD2).

The following variant de�nition of entropy is due to [Renyi : 70].

De�nition 2.2.2 (Renyi entropy) Let D be a distribution on a set S. The Renyi en-
tropy of D is HRen(D) = � log(Pr[X = Y]); where X 2D S and Y 2D S are independent.

There are distributions that have arbitrarily large entropy but have only a couple of bits
of Renyi entropy.

Proposition 2.2.3 For any distribution D, HRen(D) � H(D):

We sometimes use the following proposition implicitly. This proposition shows that a
function cannot increase entropy in a statistical sense.

Proposition 2.2.4 Let f be a function and let D be a distribution on the domain of f .
Then, H(f(D)) � H(D).

The following de�nition characterizes how much entropy is lost by the application of a
function f to the uniform distribution.

De�nition 2.2.5 (degeneracy of f) Let f : f0; 1gn ! f0; 1g`n and let X 2U f0; 1gn.
The degeneracy of f is Dn(f) = H(Xjf(X)) = H(X)�H(f(X)):

2.3 Ensembles

We present all of our de�nitions and results in asymptotic form. Ensembles are used to
make the asymptotic de�nitions, e.g., to de�ne primitives such as one-way functions and
pseudorandom generators, and to de�ne the adversaries that try to break the primitives.

8

In all cases, we use n 2 N as the index of the ensemble and implicitly the de�nition and/or
result holds for all values of n 2 N .

In our de�nitions of ensembles, the input and output lengths are all polynomially related.
To specify this, we use the following.

De�nition 2.3.1 (polynomial parameter) We say parameter kn is a polynomial pa-
rameter if there is a constant c > 0 such that for all n 2 N ,

1

cnc
� kn � cnc:

We say kn is P-time polynomial parameter if in addition there is a constant c0 > 0 such
that, for all n, kn is computable in time at most c0nc

0
.

In many uses of a polynomial parameter kn, kn is integer-valued, but it is sometimes the
case that kn is real-valued.

De�nition 2.3.2 (function ensemble) We let f : f0; 1gtn ! f0; 1g`n denote a function
ensemble, where tn and `n are integer-valued P-time polynomial parameters and where f
with respect to n is a function mapping f0; 1gtn to f0; 1g`n . If f is injective then it is
a one-to-one function ensemble. If f is injective and `n = tn then it is a permutation
ensemble. We let f : f0; 1gtn � f0; 1g`n ! f0; 1gmn denote a function ensemble with two
inputs. In this case, we sometimes consider f as being a function of the second input for
a �xed value of the �rst input, in which case we write fx(y) in place of f(x; y).

De�nition 2.3.3 (P-time function ensemble) We say f : f0; 1gtn�f0; 1g`n ! f0; 1gmn

is a Tn-time function ensemble if f is a function ensemble such that, for all x 2 f0; 1gtn ,
for all y 2 f0; 1g`n , f(x; y) is computable in time Tn. We say f is a P-time function
ensemble if there is a constant c such that, for all n, Tn � cnc. We say f is a mildly non-
uniform P-time function ensemble if it is a P-time function ensemble except that it has
an additional input an called the advice, that is an integer-valued polynomial parameter
that is not necessarily P-time computable.

These de�nitions generalize in a natural way to functions with more than two inputs.
Sometimes we describe functions that have a variable length inputs or outputs; in these
cases we implicitly assume that the string is padded out with a special blank symbol to
the appropriate length.

In some of our intermediate reductions, we use certain statistical quantities in order to
construct our new primitive. For example, we might use an approximation of the entropy

9

of a distribution in our construction of pseudoentropy generator. Although in many cases
these quantities are not easy to approximate, the number of di�erent approximation values
they can take on is small. This is the reason for the de�nition of a mildly non-uniform P-
time function ensemble in the above de�nition. In all the de�nitions we give below, e.g., of
one-way functions, false entropy generators, pseudoentropy generators, and pseudorandom
generators, there is also an analogous mildly non-uniform version. In Proposition 4.8.1,
we show how to remove mild non-uniformity in the �nal construction of a pseudorandom
generator.

De�nition 2.3.4 (range and preimages of a function) Let f : f0; 1gn ! f0; 1g`n be
a function ensemble. With respect to n, de�ne

rangef = ff(x) : x 2 f0; 1gng:

For each y 2 rangef , de�ne

pref (y) = fx 2 f0; 1gn : f(x) = yg:

De�nition 2.3.5 (regular function ensemble) We say function ensemble f : f0; 1gn !
f0; 1g`n is �n-regular if]pref (y) = �n for all y 2 rangef .

De�nition 2.3.6 (~Df) Let f : f0; 1gn ! f0; 1g`n be a P-time function ensemble. For
z 2 rangef , de�ne the approximate degeneracy of z as

~Df (z) =
l
log(]pref (z))

m
:

Notice that ~Df (z) is an approximation to within an additive factor of 1 of the quantity
n�If(X)(z). Furthermore, E[~Df (f(X))] is within an additive factor of 1 of the degeneracy

of f . If f is a �n-regular function then, for each z 2 rangef , ~Df (z) is within an additive
factor of 1 of log(�n), which is the degeneracy of f .

De�nition 2.3.7 (probability ensemble) We let D : f0; 1g`n denote a probability en-
semble, where `n is an integer-valued P-time polynomial parameter and where D with
respect to n is a probability distribution on f0; 1g`n .

De�nition 2.3.8 (P-samplable probability ensemble) We let D : f0; 1g`n denote a
probability ensemble that, with respect to n, is a distribution on f0; 1g`n that can be gen-
erated from a random string of length rn for some rn, i.e., there is a function ensemble
f : f0; 1grn ! f0; 1g`n such that if X 2U f0; 1grn then f(X) has the distribution D. We
say D is Tn-samplable probability ensemble if, for all x 2 f0; 1grn , f(x) is computable in
time Tn. We say D is P-samplable if f is a P-time function ensemble, and D is mildly
non-uniformly P-samplable if f is a mildly non-uniform P-time function ensemble.

10

De�nition 2.3.9 (copies of functions and ensembles) Let kn be integer-valued P-
time polynomial parameter. If D : f0; 1g`n is a probability ensemble then Dkn : f0; 1g`nkn

is the probability ensemble where, with respect to parameter n, Dkn consists of the con-
catenation of kn independent copies of D. Similarly, if f : f0; 1gmn ! f0; 1g`n is a
function ensemble then fkn : f0; 1gmnkn ! f0; 1g`nkn is the function ensemble where, for
y 2 f0; 1gkn�mn ,

fkn(y) = hf(y1); : : : ; f(ykn)i;

3 De�nitions of primitives and reductions

Primitives described in this paper include one-way functions and pseudorandom genera-
tors. The primitives we describe can be used in cryptographic applications, but are also
useful as described in the introduction in other applications. In the de�nition of the prim-
itives, we need to describe what it means for the primitive to be secure against an attack
by an adversary. We �rst introduce adversaries and security, and then describe the basic
primitives that we use thereafter.

3.1 Adversaries and security

An adversary is, for example, trying to invert a one-way function or trying to distinguish
the output of a pseudorandom generator from a truly random string. The time-suc-
cess ratio of a particular adversary is a measure of its ability to break the cryptographic
primitive. (Hereafter, we use \primitive" in place of the more cumbersome and sometimes
misleading phrase \cryptographic primitive".) The security of a primitive is a lower bound
on the time-success ratio of any adversary to break the primitive.

In the constructions of some primitives, we allow both private and public inputs. A public
input is part of the output of the primitive and is known to the adversary at the time
it tries to break the primitive. When we construct one primitive based on another, the
constructed primitive often has public inputs. At �rst glance it could seem that these
public inputs are not useful because an adversary knows them at the time it tries to break
the constructed primitive. On the contrary, public inputs turn out to be quite useful.
Intuitively, this is because their value is randomly chosen, and the adversary cannot a
priori build into its breaking strategy a strategy for all possible values.

The private input to a primitive is not directly accessible to the adversary. The security
parameter of a primitive is the length of its private input. This is because the private
input to the primitive is what is kept secret from the adversary, and thus it makes sense
to measure the success of the adversary in terms of this.

11

De�nition 3.1.1 (breaking adversary and security) An adversary A is a function
ensemble. The time-success ratio of A for an instance f of a primitive is de�ned as
Rtn = Tn=spn(A), where tn is the length of the private input to f , and where Tn is the
worst case expected running time of A over all instances parameterized by n, and spn(A) is
the success probability of A for breaking f . In this case, we say A is R-breaking adversary
for f . We say f is R-secure if there is no R-breaking adversary for f .

A mildly non-uniform adversary for a mildly non-uniform P-time function ensemble f
that has advice an is a function ensemble A which is given an as an additional input. The
success probability and time-success ratio for a mildly non-uniform adversary is the same
as for uniform adversaries.

The de�nition of the success probability spn(A) for f depends on the primitive in question,
i.e., this probability is de�ned when the primitive is de�ned. Intuitively, the smaller the
time-success ratio of an adversary for a primitive, the better the adversary is able to break
the primitive, i.e., it uses less time and/or has a larger success probability.

The above de�nitions are a re�nement of de�nitions that appear in the literature. Pre-
viously, an adversary was considered to be breaking if it ran in polynomial time and had
inverse polynomial success probability. The advantage of the de�nition introduced here is
that it is a more precise characterization of the security of a primitive. This is important
because di�erent applications require di�erent levels of security. For some applications
polynomial security is enough (e.g., Rtn = tn

10) and for other applications better security

is crucial (e.g., Rtn = 2log
2(tn), or even better Rtn = 2

p
tn).

3.2 One-way function

De�nition 3.2.1 (one-way function) Let f : f0; 1gtn ! f0; 1g`n be a P-time function
ensemble and let X 2U f0; 1gtn . The success probability of adversary A for inverting f is

spn(A) = Pr[f(A(f(X))) = f(X)]:

Then, f is a R-secure one-way function if there is no R-breaking adversary for f .

A function cannot be considered to be \one-way" in any reasonable sense in case the time
to invert it is smaller than the time to evaluate it in the forward direction. Thus, for
example, if there is an O(tn)-breaking adversary for f then it is not secure at all. On
the other hand, an exhaustive adversary that tries all possible inputs to �nd an inverse is

t
O(1)
n � 2tn -breaking. Thus, the range of securities that can be hoped for fall between these
two extremes.

12

3.3 Pseudorandom generator

The following de�nition can be thought of as the computationally restricted adversary
de�nition of statistical distance. The original idea is from [GM : 84] and [Yao : 82].

De�nition 3.3.1 (computationally indistinguishable) Let D : f0; 1g`n and E : f0; 1g`n

be probability ensembles. The success probability of adversary A for distinguishing D and
E is

spn(A) = jPr[A(X) = 1]� Pr[A(Y) = 1]j

where X has distribution D and Y has distribution E. D and E are R-secure compu-
tationally indistinguishable if there is no R-breaking adversary for distinguishing D and
E.

The following alternative de�nition of computationally indistinguishable more accurately
re
ects the tradeo� between the running time of the adversary and its success probability.
In the alternative de�nition, success probability is de�ned as sp0n(A) = (spn(A))

2. This
is because it takes 1=sp0n(A) trials in order to approximate spn(A) to within a constant
factor.

De�nition 3.3.2 (computationally indistinguishable (alternative)) Exactly the same
as the original de�nition, except the success probability of adversary A is sp0n(A) =
(spn(A))

2.

In all cases except where noted, the strength of the reduction is the same under either
de�nition of computationally indistinguishable, and we �nd it easier to work with the
�rst de�nition. However, there are a few places where we explicitly use the alternative
de�nition to be able to claim the reduction is linear-preserving.

Strictly speaking, there are no private inputs in the above de�nition, and thus by default
we use n as the security parameter. However, in a typical use of this de�nition, D is
the distribution de�ned by the output of a P-time function ensemble (and thus D is P-
samplable), in which case the length of the private input to this function ensemble is
the security parameter. In some circumstances, it is important that both D and E are
P-samplable, e.g., this is the case for Proposition 4.6.2.

The paper [Yao : 82] originally gave the de�nition of a pseudorandom generator as below,
except that we parameterize security more precisely.

De�nition 3.3.3 (pseudorandom generator) Let g : f0; 1gtn ! f0; 1g`n be a P-time
function ensemble where `n > tn. Then, g is a R-secure pseudorandom generator if the
probability ensembles g(Utn) and U`n are R-secure computationally indistinguishable.

13

The de�nition of a pseudorandom generator only requires the generator to stretch the
input by at least one bit. The following proposition provides a general way to produce
a pseudorandom generator that stretches by many bits from a pseudorandom generator
that stretches by at least one bit. This proposition appears in [BH : 89] and is due to O.
Goldreich and S. Micali.

Proposition 3.3.4 Suppose g : f0; 1gn ! f0; 1gn+1 is a pseudorandom generator that
stretches by one bit. De�ne g(1)(x) = g(x), and inductively, for all i � 1,

g(i+1)(x) = hg(g(i)(x)f1;:::;ng); g(i)(x)fn+1;:::;n+igi:

Let kn be an integer-valued P-time polynomial parameter. Then, g(kn) is a pseudorandom
generator. The reduction is linear-preserving.

On page 16 we give a formal de�nition of reduction and what it means to be linear-preser-
ving, but intuitively it means that g(kn) as a pseudorandom generator is almost as secure
as pseudorandom generator g.

3.4 Pseudoentropy and false-entropy generators

The de�nitions in this subsection introduce new notions (interesting in their own right)
which we use as intermediate steps in our constructions.

The di�erence between a pseudorandom generator and a pseudoentropy generator is that
the output of a pseudoentropy generator doesn't have to be computationally indistinguish-
able from the uniform distribution, instead it must be computationally indistinguishable
from some probability ensemble D that has more entropy than the input to the generator.
Thus, a pseudoentropy generator still ampli�es randomness so that the output random-
ness is more computationally than the input randomness, but the output randomness is
no longer necessarily uniform.

De�nition 3.4.1 (computational entropy) Let f : f0; 1gtn ! f0; 1g`n be a P-time
function ensemble and let sn be a polynomial parameter. Then, f has R-secure computa-
tional entropy sn if there is a P-time function ensemble f 0 : f0; 1gmn ! f0; 1g`n such that
f(Utn) and f

0(Umn) are R-secure computationally indistinguishable and H(f 0(Umn)) � sn.

De�nition 3.4.2 (pseudoentropy generator) Let f : f0; 1gtn ! f0; 1g`n be a P-time
function ensemble and let sn be a polynomial parameter. Then, f is a R-secure pseu-
doentropy generator with pseudoentropy sn if f(Utn) has R-secure computational entropy
tn + sn.

14

If f is a pseudorandom generator then it is easy to see that it is also a pseudoentropy
generator. This is because f(Utn) and U`n are computationally indistinguishable and by
de�nition of a pseudorandom generator, `n > tn. Consequently, H(U`n) = `n � tn + 1,
i.e., f is a pseudoentropy generator with pseudoentropy at least 1.

A false entropy generator is a further generalization of pseudoentropy generator. A false
entropy generator doesn't necessarily amplify the input randomness, it just has the prop-
erty that the output randomness is computationally more than it is statistically.

De�nition 3.4.3 (false entropy generator) Let f : f0; 1gtn ! f0; 1g`n be a P-time
function ensemble and let sn be a polynomial parameter. Then, f is a R-secure false
entropy generator with false-entropy sn if f(Utn) has R-secure computational entropy
H(f(Utn)) + sn.

Note that, in the de�nition of computational entropy, the function ensemble f 0 that is
computationally indistinguishable from f is required to be P-time computable. This is
consistent with the de�nition of a pseudorandom generator, where the distribution that
the pseudorandom generator is indistinguishable from is the uniform distribution. There
is also a non-uniform version of computational entropy where f 0 is not necessarily P-time
computable, and corresponding non-uniform versions of a pseudoentropy generator and
false entropy generator. It turns out to be easier to construct a false entropy generator
f where f 0 is not necessarily P-time computable from a one-way function than it is to
construct a false entropy generator f where f 0 is P-time samplable. Using this approach
and a non-uniform version of Proposition 4.6.2, [ILL : 89] describe a non-uniform reduction
from a one-way function to a pseudorandom generator. However, a uniform reduction
using Proposition 4.6.2 requires that f 0 be P-time computable. Thus, one of the main
di�culties in our constructions below is to build a false entropy generator f where f 0 is
P-time computable.

3.5 Hidden bits

In the construction of a pseudorandom generator from a one-way function, one of the key
ideas is to construct from the one-way function another function which has an output bit
that is computationally unpredictable from the other output bits (it is \hidden") and yet
statistically somewhat predictable from the other output bits. This idea is used in the
original construction of a pseudorandom generator from the discrete logarithm problem
[BM : 82] and has been central to all such constructions since that time.

De�nition 3.5.1 (hidden bit) Let f : f0; 1gtn ! f0; 1g`n and b : f0; 1gtn ! f0; 1g
be P-time function ensembles. Let D : f0; 1gtn be a P-samplable probability ensemble,

15

let X 2D f0; 1gtn , and let � 2U f0; 1g. Then, b(X) is R-secure hidden given f(X) if
hf(X); b(X)i and hf(X); �i are R-secure computationally indistinguishable.

3.6 Reductions

All of the results presented in this paper involve a reduction from one type of primitive to
another.

We make the following de�nitions to quantify the strength of reductions. The particu-
lar parameterization of security and the di�erent quantitative measures of the security
preserving properties of a reduction are derived from [Luby : 96], [HL : 92].

Intuitively, a reduction constructs from a �rst primitive f on inputs of length tn a second
primitive g(f) on inputs of length t0n. The reduction also speci�es an oracle TM M (�) such
that if there is an adversary A for breaking g(f) then M (A) is an adversary for breaking
f . How much security is preserved by the reduction is parameterized by S.

De�nition 3.6.1 (reduction) Let tn and t0n be polynomial parameters and let S : N �
<+ ! <+. An S- reduction from primitive 1 to primitive 2 is a pair of oracle TMs g(�)

and M (�) so that,

� For each P-time function ensemble f : f0; 1gtn ! f0; 1g`n that instantiates primitive
1, g(f) : f0; 1gt

0
n ! f0; 1g`

0
n instantiates primitive 2.

� g(f) is a P-time function ensemble, and on inputs of length t0n, only makes calls to
f on inputs of length tn.

� Suppose A is an adversary with time-success ratio R0
t0n

for g(f) on inputs of length

t0n. De�ne Rtn = S(n;R0
t0n
). Then, M (A) is an adversary with time-success ratio

Rtn for f on inputs of length tn.

To discuss the security preserving properties of the reduction, we compare how well A
breaks g(f) to how well M (A) breaks f on inputs of similar size. We say the reduction is

� linear-preserving if: RN = NO(1) � O(R0
N).

� poly-preserving if: RN = NO(1) �R0
O(N)

O(1).

� weak-preserving if: RN = NO(1) �R0
NO(1)

O(1).

16

A mildly non-uniform reduction has the same properties except that g(�) and M (�) are both
allowed access to an integer-valued polynomial parameter an that depends on f . The same
notions of security preservation apply to mildly non-uniform reductions.

f can always be broken in time exponential in tn. Therefore, if R0
t0n

� 2tn , or even

R0
t0n
� 2t

(1)
n = 2n

(1)
in the case of a weak-preserving reduction, M (A) can ignore the

oracle and break f by brute force. Therefore, we can assume without loss of generality
that R0

t0n
� 2tn .

Obvious from the de�nition of reduction are the following propositions, that say that
security is preserved by reductions, and that reductions can be composed:

Proposition 3.6.2 If (g(�);M (�)) is a (mildly non-uniform) S-reduction from primitive 1
to primitive 2 and f is a (mildly non-uniform) P-time function ensemble that instanti-
ates primitive 1 with security Rtn , then g(f) is a (mildly non-uniform) P-time function
ensemblethat instantiates primitive 2 with security R0

t0n
.

Proposition 3.6.3 If (g
(�)
1 ;M

(�)
1) is a (mildly non-uniform) S1-reduction from primitive

1 to primitive 2, and if (g
(�)
2 ;M

(�)
2) is a (mildly non-uniform) S2-reduction from primitive 2

to primitive 3, then (g
(g

(�)
2)

1 ;M
(M

(�)
2)

1), is a (mildly non-uniform) S-reduction from primitive
1 to primitive 3, where S(N;R) = S2(N;S1(N;R)).

Although we phrase our de�nitions in terms of asymptotic complexity, one can easily
interpret them for �xed length inputs in the context of an actual implementation, just as
one does for algorithm analysis.

Clearly, in standard situations, t0n � tn and Rtn � R0
t0n
, and the closer these two inequali-

ties are to equalities the more the security of f is transferred to g. We now describe how
the slack in these inequalities a�ects the security preserving properties of the reduction.

The number of calls M (A) makes to A is invariably either a constant or depends polyno-
mially on the time-success ratio of A, and thus Rtn is at most polynomial in R0

t0n
. The

slackness in this inequality turns out not to be the major reason for a loss in security in
the reduction, instead it primarily depends on how much larger t0n is than tn. If t0n is much
larger than tn then Rtn is much larger as a function of tn than R0

t0n
is as a function of t0n.

We can formalize this as follows.

Proposition 3.6.4

17

� If t0n = tn, M
(A) runs in time polynomial in n (not counting the running time of A),

and spn(M
(A)) = spn(A)=n

O(1), then the reduction is linear-preserving.

� If t0n = O(tn),M
(A) runs in time polynomial in R0

t0n
, and spn(M

(A)) = sp
O(1)
n (A)=nO(1),

then the reduction is poly-preserving.

� If t0n = t
O(1)
n ,M (A) runs in time polynomial inR0

t0n
, and spn(M

(A)) = sp
O(1)
n (A)=nO(1),

then the reduction is weak-preserving.

It is important to design the strongest reduction possible. The techniques described in
this paper can be directly used to yield poly-preserving reductions from regular or nearly
regular (with polynomial time computable degree of regularity) one-way functions to pseu-
dorandom generators [Luby : 96], and this covers almost all of the conjectured one-way
functions. However, the reduction for general one-way functions is only weak-preserving.

4 Hidden bits, hash functions, and computational entropy

4.1 Constructing a hidden bit

How do we go about constructing a function such that one of its output bits is computa-
tionally unpredictable yet statistically correlated with its other output bits? The following
fundamental proposition of [GL : 89] (strengthened in [Levin : 93]) provides the answer.

Proposition 4.1.1 Let f : f0; 1gn ! f0; 1g`n be a one-way function. Then, X � R is
hidden given hf(X); Ri, where X;R 2U f0; 1gn. The reduction is linear-preserving with
respect to the alternative de�nition of computationally indistinguishable.

Proposition 4.1.1 presents an elegant, simple and general method of obtaining a hidden
bit from a one-way function. We need the following stronger proposition of [GL : 89] (see
also [Levin : 93]) in some of our proofs.

Proposition 4.1.2 There is an oracle TM M with the following properties. Let A be
any adversary that accepts as input n bits and outputs a single bit. Then, M (A) on input
parameter �n > 0 outputs a list L of n-bit strings with the following property: for any �xed
x 2 f0; 1gn, if it is the case that

jPr[A(R) = x�R]� Pr[A(R) 6= x�R]j � �n;

where R 2U f0; 1gn, then, with probability at least 1=2, it is the case that x 2 L. (The
probability here only depends on the values of the random bits used by M (A).) The running

18

time of M (A) is polynomial in n, 1=�n and the running time of A. Also, the number of
n-bit strings in L is bounded by O(1=�2n).

The following proposition is an immediate consequence of Propositions 4.1.1 and De�ni-
tion 3.5.1.

Proposition 4.1.3 Let f : f0; 1gn ! f0; 1g`n be a one-way function. Then, hf(X); R;X�
Ri and hf(X); R; �i are computationally indistinguishable, where X;R 2U f0; 1gn and
� 2U f0; 1g. The reduction is linear-preserving with respect to the alternative de�nition of
computationally indistinguishable.

4.2 One-way permutation to a pseudorandom generator

We describe a way to construct a pseudorandom generator from any one-way permutation
which is substantially simpler (and has stronger security preserving properties) than the
original construction of [Yao : 82]. The construction and proof described here is due to
[GL : 89].

Proposition 4.2.1 Let f : f0; 1gn ! f0; 1gn be a one-way permutation. Let x; r 2 f0; 1gn

and de�ne P-time function ensemble g(x; r) = hf(x); r; x�ri. Then, g is a pseudorandom
generator. The reduction is linear-preserving with respect to the alternative de�nition of
computationally indistinguishable.

PROOF: Let X;R 2U f0; 1gn, and � 2U f0; 1g. Because f is a permutation, hf(X); R; �i
is the uniform distribution on f0; 1g2n+1. By Proposition 4.1.3, g(X;R) and hf(X); R; �i
are computationally indistinguishable, where the reduction is linear-preserving with re-
spect to the alternative de�nition of computationally indistinguishable.

The reason Proposition 4.2.1 works when f is a permutation is because:

(1) f(X) is uniformly distributed and hence already looks random.

(2) For any x 2 f0; 1gn, f(x) uniquely determines x. So no entropy is lost by the appli-
cation of f ,

For a general one-way function neither (1) nor (2) necessarily holds. Intuitively, the rest
of the paper constructs a one-way function with properties (1) and (2) from a general
one-way function. This is done by using hash functions to smooth the entropy of f(X) to
make it more uniform, and to recapture the entropy of X lost by the application of f(X).

19

Proposition 4.2.1 produces a pseudorandom generator that only stretches the input by one
bit. To construct a pseudorandom generator that stretches by many bits, combine this
with the construction described previously in Proposition 3.3.4.

4.3 One-to-one one-way function to a pseudoentropy generator

We now describe a construction of a pseudoentropy generator from any one-to-one one-way
function. This construction, together with Theorem 4.6.4, yields a pseudorandom gener-
ator from any one-to-one one-way function. The overall construction is di�erent in spirit
than the original construction of [GKL : 93]: it illustrates how to construct a pseudoen-
tropy generator in a particularly simple way using [GL : 89]. Although the assumptions
and the consequences are somewhat di�erent, the construction is the same as described in
Proposition 4.2.1.

Proposition 4.3.1 Let f : f0; 1gn ! f0; 1g`n be a one-to-one one-way function. Let
x; r 2 f0; 1gn and de�ne P-time function ensemble g(x; r) = hf(x); r; x � ri: Then, g is
a pseudoentropy generator with pseudoentropy 1. The reduction is linear-preserving with
respect to the alternative de�nition of computationally indistinguishable.

PROOF: Let X;R 2U f0; 1gn and � 2U f0; 1g. Proposition 4.1.3 shows that g(X;R)
and hf(X); R; �i are computationally indistinguishable, where the reduction is linear-pre-
serving with respect to the alternative de�nition of computationally indistinguishable.
Because f is a one-to-one function and � is a random bit, H(f(X); R; �) = 2n + 1, and
thus g(X;R) has pseudoentropy 1.

Note that it is not possible to argue that g is a pseudorandom generator. For example,
let f(x) = h0; f 0(x)i where f 0 is a one-way permutation. Then, f is a one-to-one one-way
function and yet g(X;R) = hf(X); R;X � Ri is not a pseudorandom generator, because
the �rst output bit of g is zero independent of its inputs, and thus its output can easily
be distinguished from a uniformly chosen random string.

4.4 Universal hash functions

The concept of a universal hash function, introduced in [CW : 79], has proved to have far
reaching and a broad spectrum of applications in the theory of computation.

De�nition 4.4.1 (universal hash functions) Let h : f0; 1g`n � f0; 1gn ! f0; 1gmn be
a P-time function ensemble. Recall from de�nition 2.3.2 that for �xed y 2 f0; 1g`n , we

20

view y as describing a function hy(�) that maps n bits to mn bits. Then, h is a (pairwise
independent) universal hash function if, for all x 2 f0; 1gn, x0 2 f0; 1gn n fxg, for all
a; a0 2 f0; 1gmn ,

Pr[(hY (x) = a) and (hY (x
0) = a0)] = 1=22mn ;

where Y 2U f0; 1g`n .

Intuitively, a universal hash function has the property that every distinct pair x and x0

are mapped randomly and independently with respect to Y .

In all of our constructions of function ensembles using universal hash functions, the de-
scription of the hash function y is viewed as a public input to the function ensemble, and
thus is also part of the output. The following construction is a universal hash function is
due to [CW : 79].

De�nition 4.4.2 (matrix construction) Let

h : f0; 1g(n+1)mn � f0; 1gn ! f0; 1gmn

be the following P-time function ensemble. For x 2 f0; 1gn and y 2 f0; 1g(n+1)�mn ,
hy(x) = hx; 1i � y.

We concatenate a 1 to x in the above de�nition to cover the case when x = 0n. Hereafter,
whenever we refer to universal hash functions, one can think of the construction given
above. However, any universal hash function that satis�es the required properties may be
used. We note that there are more e�cient hash functions in terms of number of bits used
in speci�cation. One such example is using Toeplitz matrices (see for example [GL : 89] or
[Levin : 93]). A Toeplitz matrix is a matrix which is constant on any diagonal, and thus
to specify an n �m Toeplitz matrix we can specify values for the m + n � 1 diagonals,
This is the simplest bit-e�cient construction of a universal hash function, so we adopt it
as the default for the remaining paper.

4.5 Smoothing distributions with hashing

The following lemma is a key component in most of the subsequent reductions we describe.

Lemma 4.5.1 Let D : f0; 1gn be a probability ensemble that has Renyi entropy at least
mn. Let en be a positive integer valued parameter. Let h : f0; 1g`n�f0; 1gn ! f0; 1gmn�2en

be a universal hash function. Let X 2D f0; 1gn, Y 2U f0; 1g`n , and Z 2U f0; 1gmn�2en .
Then

L1(hhY (X); Y i; hZ; Y i) � 2�(en+1):

21

This lemma is a generalization of a lemma that appears in [Sip : 83]. There, D is the
uniform distribution on a set S � f0; 1gn with]S = 2mn . The papers [McIn : 87] and
[BBR : 88] also proved similar lemmas. For the special case of linear hash functions, this
lemma can be derived from [GL : 89] by considering unlimited adversaries. A generaliza-
tion to a broader class of hash functions appears in [IZ : 89].

The lemma can be interpreted as follows: The universal hash function smooths out the
Renyi entropy of X to the almost uniform distribution on bit strings of length almost mn.
The integer parameter en controls the tradeo� between the uniformity of the output bits
of the universal hash function and the amount of entropy lost in the smoothing process.
Thus, we have managed to convert almost all the Renyi entropy of X into uniform random
bits while maintaining our original supply of random bits Y .

PROOF: Let ` = `n, e = en and m = mn and s = m� 2e. For all y 2 f0; 1g`, a 2 f0; 1gs

and x 2 f0; 1gn, de�ne �(hy(x) = a) = 1 if hy(x) = a and 0 otherwise. We want to show
that

EY [
X

a2f0;1gs
jEX [�(hY (X) = a)]� 2�sj]=2 � 2�(e+1):

We show below that for all a 2 f0; 1gs,

EY
���EX [�(hY (X) = a)]� 2�s

��� � 2�(s+e);

and from this the proof follows.

For any random variable Z, E[jZj2] � E[jZj]2 by Jensen's Inequality. Letting Z =
E[�(hY (X) = a)]� 2�s, we see that it is su�cient to show for all a 2 f0; 1gs,

EY [(EX [�(hY (X) = a)]� 2�s)2] � 2�2(s+e):

Let X 0 2D f0; 1gn. Using some elementary expansion of terms, and rearrangements of
summation, we can write the above as

EX;X0 [EY [(�(hY (X) = a)� 2�s)(�(hY (X 0) = a)� 2�s)]]:

For each �xed value of X to x and X 0 to x0, where x 6= x0, the expectation with respect to
Y is zero because of the pairwise independence property of universal hash functions. For
each �xed value of X to x and X 0 to x0, where x = x0,

E[(�(hY (x) = a)� 2�s)2] = 2�s(1� 2�s) � 2�s:

Because the Renyi entropy of D is at least m, it follows that Pr[X = X 0] � 2�m. Thus,
the entire sum is at most 2�(m+s) which is equal to 2�2(s+e) by the de�nition of s.

In this lemma, D is required to have Renyi entropy at least mn. In many of our appli-
cations, the distribution in question has at least Renyi entropy mn, and thus the lemma

22

applies because of Proposition 2.2.3. For other applications, we need to work with Shannon
entropy. The following technical result due to [Shan : 48] allows us to convert Shannon
entropy to Renyi entropy by looking at product distributions.

Proposition 4.5.2 Let kn be an integer-valued polynomial parameter.

� Let D : f0; 1gn be a probability ensemble. There is a probability ensemble E : f0; 1gnkn

satisfying:

{ HRen(E) � knH(D)� nk
2=3
n .

{ L1(E ;Dkn) � 2�k
1=3
n .

� Let D1 : f0; 1gn and D2 : f0; 1gn be not necessarily independent probability ensembles,
let let D = hD1;D2i. There is a probability ensemble E : f0; 1g2nkn , with E = hE1; E2i,
satisfying:

{ For every value E1 2 f0; 1gnkn such that PrE1 [E1] > 0, HRen(E2jE1 = E1) �

knH(D2jD1)� nk
2=3
n .

{ L1(E ;Dkn) � 2�k
1=3
n .

Corollary 4.5.3 Let kn be an integer-valued P-time polynomial parameter.

� Let D : f0; 1gn be a probability ensemble, let mn = knH(D) � 2nk
2=3
n , and let h :

f0; 1gpn�f0; 1gnkn ! f0; 1gmn be a universal hash function. Let X 0 2Dkn f0; 1gkn�n

and let Y 2U f0; 1gpn . Then, L1(hhY (X 0); Y i;Umn+pn) � 21�k
1=3
n .

� Let D1 : f0; 1gn and D2 : f0; 1gn be not necessarily independent probability ensembles,

and let D = hD1;D2i. Let mn = knH(D2jD1)�2nk
2=3
n . Let h : f0; 1gpn�f0; 1gnkn !

f0; 1gmn be a universal hash function. Let hX 0
1;X

0
2i 2Dkn f0; 1gkn�2n and let Y 2U

f0; 1gpn . Then, L1(hhY (X 0
2); Y;X

0
1i; hUmn+pn ;X

0
1i) � 21�k

1=3
n .

PROOF: Combine Proposition 4.5.2, Lemma 4.5.1, Proposition 2.1.2, and Proposi-
tion 2.2.3.

4.6 Pseudoentropy generator to a pseudorandom generator

Let f : f0; 1gn ! f0; 1g`n be a pseudoentropy generator with pseudoentropy sn. In
this subsection, we construct a pseudorandom generator based on f . We �rst start with
two preliminary propositions. The following proposition is the computational analog of
Proposition 2.1.2.

23

Proposition 4.6.1 Let D : f0; 1gn and E : f0; 1gn be two probability ensembles and let
f : f0; 1gn ! f0; 1g`n be a P-time function ensemble. Let D and E be computation-
ally indistinguishable. Then, f(D) and f(E) are computationally indistinguishable. The
reduction is linear-preserving.

The following proposition �rst appears in [GM : 84].

Proposition 4.6.2 Let kn be an integer-valued P-time polynomial parameter. Let D :
f0; 1g`n and E : f0; 1g`n be P-samplable probability ensembles. Let D and E be computa-
tionally indistinguishable. Then, Dkn and Ekn are computationally indistinguishable. The
reduction is weak-preserving.

More precisely, there is a probabilistic oracle TM M with the following properties: if A
is a R0

nkn
-breaking adversary for distinguishing Dkn and Ekn then M (A) is a Rn-breaking

adversary for distinguishing D and E , where Rn is essentially equal to knR
0
nkn

. It is
crucial that D and E are P-samplable because the sampling algorithms are used by M .
The reduction is only weak-preserving because distinguishing Dkn and Ekn with respect to
private inputs of length nkn only translates into distinguishing D and E on private inputs
of length n.

We now give the construction of a pseudorandom generator g from a pseudoentropy gen-
erator f .

Construction 4.6.3 Let f : f0; 1gn ! f0; 1gmn be a P-time function ensemble and let sn

be a P-time polynomial parameter. Let kn = (d(2mn + 1)=sne)3 and jn =
j
kn(n+ sn)� 2mnk

2=3
n

k
.

Let h : f0; 1gpn � f0; 1gknmn ! f0; 1gjn be a universal hash function. Let u 2 f0; 1gkn�n,
y 2 f0; 1gpn , and de�ne P-time function ensemble g(u; y) = hhy(fkn(u)); yi:

Theorem 4.6.4 Let f and g be as described in Construction 4.6.3. Let f be a pseu-
doentropy generator with pseudoentropy sn. Then, g is a pseudorandom generator. The
reduction is weak-preserving.

PROOF: Let f 0 : f0; 1gn
0
n ! f0; 1gmn be the P-time function ensemble that wit-

nesses the pseudoentropy generator of f as guaranteed in De�nition 3.4.1 of computa-
tional entropy, i.e., f 0(X 0) and f(X) are R-secure computationally indistinguishable and
H(f 0(X 0)) � n + sn, where X 2U f0; 1gn and X 0 2U f0; 1gn

0
n . Let U 2U f0; 1gkn�n,

W 2U f0; 1gkn�n
0
n , and Y 2U f0; 1gpn . By Proposition 4.6.2, fkn(U) and f 0kn(W) are

computationally indistinguishable. From Proposition 4.6.1 it follows that g(U; Y) =
hhY (fkn(U)); Y i and hhY (f 0

kn(W)); Y i are computationally indistinguishable. Because

24

H(f 0(X 0)) � n + sn, by choice of kn and jn, using Corollary 4.5.3, it follows that

L1(hhY (f
0kn(W)); Y i;Ujn+pn) � 2�k

1=3
n . Thus, it follows that g(U; Y) and Ujn+pn are

computationally indistinguishable. Note that by choice of kn, the output length jn + pn
of g is longer than its input length nkn + pn.

4.7 False entropy generator to a pseudoentropy generator

Let f : f0; 1gn ! f0; 1g`n be a false entropy generator with false entropy sn. In this
subsection, we construct a mildly non-uniform pseudoentropy generator based on f . An
idea is to extract ~Df (f(X)) bits of entropy out of X without compromising the false
entropy. (See page 10 for the de�nition of ~Df .) Let X 2U f0; 1gn. The major obstacles
are that ~Df is not necessarily a P-time function ensemble and that f could be a very
non-regular function, and thus the variance of ~Df (f(X)) could be quite high as a function
of X, and we cannot guess its value consistently with accuracy.

Let kn be an integer-valued P-time polynomial parameter and let U 2U f0; 1gkn�n. The
intuition behind the following construction is that the false entropy of fkn is kn times that
of f and that the degeneracy of fkn is kn times that of f . Furthermore, if kn is large enough
then, with high probability with respect to U , ~Dfkn (f

kn(U)) is close to the degeneracy

of fkn. Thus, we use a universal hash function h to extract roughly the degeneracy of
fkn(U) bits of entropy out of U without compromising the false entropy of fkn(U).

Construction 4.7.1 Let f : f0; 1gn ! f0; 1g`n be a P-time function ensemble. Let sn
be a P-time polynomial parameter and assume for simplicity that sn � 1. Let en be an
approximation of H(f(X)) to within an additive factor of sn=8, where X 2U f0; 1gn. Fix
kn =

�
(4n=sn)

3
�
and jn =

l
kn(n� en)� 2nk

2=3
n

m
. Let h : f0; 1gpn � f0; 1gnkn ! f0; 1gjn

be a universal hash function. For u 2 f0; 1gkn�n and r 2 f0; 1gpn , de�ne P-time function
ensemble

g(en; u; r) = hfkn(u); hr(u); ri:

Lemma 4.7.2 Let f and g be as described in Construction 4.7.1. Let f be a false entropy
generator with false entropy sn. Then, g is a mildly non-uniform pseudoentropy generator
with pseudoentropy 1. The reduction is weak-preserving.

PROOF: Let Z 2U f0; 1gjn . First, note that H(Xjf(X)) = n � H(f(X)) = n � en.
>From this and Corollary 4.5.3 (letting X1 = f(X), X2 = X in the corollary), it follows

that L1(g(en; U;R;); hfkn(U); Z;Ri) � 2�k
1=3
n .

25

We now prove that g(en; U;R) has computational entropy at least pn + nkn + 1. Let
D : f0; 1g`n be the P-samplable probability ensemble such that D and f(X) are compu-
tationally indistinguishable and such that

H(D) �H(f(X)) + sn:

Since D and f(X) are computationally indistinguishable, hfkn(U); Z;Ri and hDkn ; Z;Ri
are computationally indistinguishable by Proposition 4.6.2, which together with the �rst
claim implies that g(en; U;R) and hD

kn ; Z;Ri are computationally indistinguishable. Now,

H(Dkn ; Z;R) � kn � (H(f(X)) + sn) + jn + pn � kn(en + 7sn=8) + jn + pn;

and because by choice of kn and jn this is at least pn+nkn+1. Thus, g has computational
entropy at least pn + nkn + 1, and the lemma follows.

4.8 Mildly non-uniform to a uniform pseudorandom generator

Proposition 4.8.1 Let an be any value in f0; : : : ; kng, where kn is an integer-valued
P-time polynomial parameter. Let g : f0; 1gdlog(kn)e � f0; 1gn ! f0; 1g`n be a P-time
function ensemble, where `n > nkn. Let x0 2 f0; 1gkn�n and de�ne P-time function
ensemble g0(x0) = �kn

i=1g(i; x
0
i): Let g be a mildly non-uniform pseudorandom generator

when the �rst input is set to an. Then, g
0 is a pseudorandom generator. The reduction is

weak-preserving.

PROOF: Let X 2U f0; 1gn, X 0 2U f0; 1gkn�n and Z 2U f0; 1g`n . Suppose there is an
adversary A that has distinguishing probability

spn(A) =
��Pr[A(g0(X 0)) = 1]� Pr[A(Z) = 1]

�� :
We describe an oracle TM M such that, for all i = 1; : : : ; kn, M

(A)(i) has spn(A) dis-
tinguishing probability for g(i;X) and Z. For all i, the running time for M (A)(i) is the
running time for A plus the time to run compute the output of g on kn � 1 inputs. Since
this works with respect to all i, in particular it works when i = an, from which the result
follows.

For each i = 1; : : : ; kn, M
(A)(i) works as follows. On input u (and i), M (A)(i) randomly

generates x01; : : : ; x0i�1; x
0
i+1; : : : ; x

0
kn
2U f0; 1gn and computes v = �j 6=ig(j; x0j) � u: Then

M (A)(i) runs A on input v and outputs A(v). By the nature of �, if u is chosen randomly
according to Z then M (A)(i) = 1 with probability Pr[A(Z) = 1], whereas if u is chosen
randomly according to g(i;X) thenM (A)(i) = 1 with probability Pr[A(g0(X 0)) = 1]. Thus,
for each value of i, M (A)(i) has distinguishing probability spn(A) for g(i;X) and Z.

26

Note that it may be the case that, for most �xed values of i 2 f1; : : : ; kng, g(i;X) is
completely predictable. On the other hand, even if there is a value an for each n such that
g(an;X) is pseudorandom, the value of an may not be P-time computable. This is exactly
the case when the lemma is useful, i.e., it is useful to transform the mildly non-uniform
pseudorandom generator g into a pseudorandom generator g0.

Note in the given construction, the length of the output of g0 on inputs of length nkn is
`n > nkn, and thus g0 stretches the input to a string of strictly greater length.

This reduction is only weak-preserving, and the reason is the usual one, i.e., the breaking
adversary for g0(X 0) on inputs of length nkn is transferred into a breaking adversary for
g(i;X) on inputs of length only n.

If g in Proposition 4.8.1 does not satisfy the property that `n > nkn, then for each �xed
i we can use Proposition 3.3.4 to stretch the output of g(i; x) (viewed as a function of
x) into a string of length longer than nkn and then exclusive-or together the stretched
outputs.

4.9 Summary

Putting together the results in this section, we have:

� A reduction from a one-way permutation to a pseudorandom generator. (From
Subsection 4.2.)

� A reduction from a one-to-one one-way function to a pseudorandom generator.
(Combining Subsections 4.3 and 4.6.)

� A reduction from a pseudoentropy generator to a pseudorandom generator. (From
Subsection 4.6.)

� A reduction from a false entropy generator to a pseudorandom generator. (Combin-
ing Subsections 4.7, 4.6, and 4.8.)

5 Extracting entropy from one-way functions

In this ection we show how to construct a pseudoentropy generator from any one-way
function f with the additional property that the number of inverses of f can be computed
in polynomial time, i.e., the function ~Df is a P-time function ensemble. Combined with
the results summarized in Subsection 4.9, this gives a construction of a pseudorandom
generator from a one-way function with this property.

27

One of the reasons for giving the �rst construction is because it illustrates some of the
additional ideas needed for our construction of a false entropy generator from any one-
way function. A general one-way function f does not necessarily have the property that
~Df is a P-time function ensemble, and considerably more e�ort is needed to construct a
pseudorandom generator from it. In the subsequent section, we describe how to construct a
false entropy generator from any one-way function. Combined with the results summarized
in Subsection 4.9, this gives a construction of a pseudorandom generator from any one-way
function.

5.1 One-way function with approximable pre-image sizes to a pseudoen-

tropy generator

To see where we get into trouble with the construction given in Proposition 4.3.1, suppose
f : f0; 1gn ! f0; 1g`n is a 2n=4-regular one-way function, and let X;R 2U f0; 1gn and
� 2U f0; 1g. Then, although hf(X); R;X � Ri and hf(X); R; �i are computationally
indistinguishable,H(f(X); R;X �R) is only about 7n=4+1, and thus we have lost about
n=4 bits of the input entropy through the application of f . Similarly, although X � R is
hidden given hf(X); Ri, it is also almost completely statistically uncorrelated.

The idea to overcome these problems is to create a new function which is the original
one-way function concatenated with the degeneracy of the function number of bits hashed
out of its input to regain the lost entropy. Then, Proposition 4.3.1 can be applied to
the new function to obtain a pseudoentropy generator. We �rst show how to construct a
pseudoentropy generator in the case when ~Df is a P-time function ensemble.

Construction 5.1.1 Let f : f0; 1gn ! f0; 1g`n be a P-time function ensemble and sup-
pose that ~Df is a P-time function ensemble. Let h : f0; 1gpn � f0; 1gn ! f0; 1gn+2 be a
universal hash function. For x 2 f0; 1gn and y 2 f0; 1gpn , de�ne P-time function ensemble

f 0(x; y) = hf(x); hy(x)f1;:::;~Df (f(x))+2g; yi:

Lemma 5.1.2 Let f and f 0 be as described in Construction 5.1.1.

(1) Let f be a one-way function. Then, f 0 is a one-way function. The reduction is
poly-preserving.

(2) Let X 2U f0; 1gn and Y 2U f0; 1gpn . Then, H(f 0(X;Y)) � n+ pn � 1=2.

PROOF of (1) : Suppose adversary A inverts f 0(X;Y) with probability �n in time Tn.
We prove that the following oracle TM M using A on input z = f(x) �nds x0 2 pref (z)
with probability at least �3n=128 when x 2U f0; 1gn.

28

Description of M (A)(z) :

Compute ~Df (z).

Choose � 2U f0; 1g
~Df (z)+2.

Choose y 2U f0; 1gpn .
If A(z; �; y) outputs x0 with f(x0) = z then output x0.

Let jn = 2 dlog(2=�n)e. For all z 2 rangef , for all y 2 f0; 1g
pn , de�ne random variable

�z;y = hy(W)f1;:::;~Df (z)�jng;

where W 2U pref (z). Then, the probability there is a
 2 f0; 1g2+jn such that A inverts
f on input hf(X); h�f(X);Y ;
i; Y i is at least �n.

Fix z 2 rangef , and let �0z 2U f0; 1g
~Df (z)�jn . By Lemma 4.5.1,

L1(h�z;Y ; Y i; h�
0
z ; Y i) � �n=2:

Therefore, the probability there is a
 2 f0; 1g2+jn such that A inverts f on input
hf(X); h�0f(X);
i; Y i is at least �n=2. If we choose
 2U f0; 1g2+jn , we have the prob-

ability that A inverts f(X) on input hf(X); h�0f(X);
i; Y i is at least

2�(2+jn) �
�n
2
�

�3n
128

:

Note that this is the input distribution in the call to A within M (A). Note also that the
run time of M (A) is dominated by the time to run A. Thus, the time-success ratio of M (A)

for inverting f 0 is about 128Tn=�3n.

PROOF of (2) : Fix z 2 rangef and let x; x0 2 pref (z) such that x 6= x0. From the
properties of a universal hash function,

Pr[hY (x)f1;:::;~Df (z)+2g = hY (x
0)f1;:::;~Df (z)+2g] = 2�(~Df (z)+2) �

1

4 �]pref (z)
:

By calculating the Renyi entropy it follows that

H(f 0(X;Y)) � � log

�
5

4
� 2�n+pn

�
= n+ pn + 2� log(5):

The result follows since log(5) � 5=2.

29

Corollary 5.1.3 Let f , h and f 0 be as described in Construction 5.1.1. Let r 2 f0; 1gn

and de�ne P-time function ensemble g(x; y; r) = hf 0(x; y); r; x � ri: Let f be a one-way
function. Then, g is a pseudoentropy generator with pseudoentropy 1=2. The reduction is
poly-preserving.

PROOF: The proof is the same as the proof of Proposition 4.3.1. Let X;R 2U f0; 1gn,
Y 2U f0; 1gpn , and � 2U f0; 1g. From Lemma 5.1.2, part (1) and Proposition 4.1.3 it fol-
lows that g(X;Y;R) and hf 0(X;Y); R; �i are computationally indistinguishable, where the
reduction is poly-preserving. From Lemma 5.1.2, part (2) it follows thatH(f 0(X;Y); R; �) �
2n+ pn+1=2. On the other hand, the input entropy to g(X;Y;R) is 2n+ pn, and thus it
follows that g has pseudoentropy 1=2.

Theorem 5.1.4 A pseudorandom generator can be constructed from a one-way function
f where ~Df is a P-time function ensemble. The reduction is weak-preserving.

PROOF: Combine Construction 5.1.1 with Construction 4.6.3, and use Corollary 5.1.3
and Theorem 4.6.4.

The following theorem, an easy corollary of Theorem 5.1.4, was previously obtained by
[GKL : 93] using a di�erent construction and proof techniques.

Theorem 5.1.5 Let f : f0; 1gn ! f0; 1g`n be a �n-regular one-way function, where �n
is a P-time polynomial parameter. Then, a pseudorandom generator can be constructed
from f . The reduction is weak-preserving.

PROOF: Note that in this case ~Df (f(x)) = dlog(�n)e for all x 2 f0; 1gn. Further-
more, dlog(�n)e 2 f0; : : : ; ng. Using this, and combining Construction 5.1.1 with Con-
struction 4.6.3, and using Corollary 5.1.3 and Theorem 4.6.4 yields a mildly non-uniform
pseudorandom generator. Then, Theorem 4.8 shows how to construct a pseudorandom
generator from this.

Based on the ideas presented above, [Luby : 96] (Theorem 10.1 and Theorem 9.3) gives
versions of Theorem 5.1.4 and Theorem 5.1.5 where the reduction is poly-preserving when
the security parameter is P-time computable.

30

6 Any one-way function to a false entropy generator

6.1 Finding determined hidden bits

The �nal step in the general construction of a pseudorandom generator from a one-way
function is to construct a false entropy generator from any one-way function. This is the
technically most di�cult part of this paper. This construction uses some of the ideas from
Construction 5.1.1. Let

f : f0; 1gn ! f0; 1g`n (1)

be a one-way function and let

h : f0; 1gpn � f0; 1gn ! f0; 1gn+dlog(2n)e (2)

be a universal hash function. Similar to Construction 5.1.1, for x 2 f0; 1gn, i 2 f0; : : : ; n� 1g
and r 2 f0; 1gpn , de�ne P-time function ensemble

f 0(x; i; r) = hf(x); hr(x)f1;:::;i+dlog(2n)eg; i; ri: (3)

Note that from Lemma 5.1.2, the restricted function f 0(x; ~Df (f(x)); r) is an almost one-
to-one one-way function, except that this is not necessarily a P-time function ensemble
since ~Df may not be a P-time function ensemble, and this is the main di�culty we must
overcome.

Let X 2U f0; 1gn, R 2U f0; 1gp(n), Y 2U f0; 1gn and � 2U f0; 1g. From the proof of
Lemma 5.1.2 and Corollary 5.1.3, we claim and formalize below that if i � ~Df (f(X))
then a time limited adversary cannot distinguish X � Y from � given Y and f 0(X; i;R).

Let

T = fhx; iijx 2 f0; 1gn; i 2 f0; : : : ; ~Df (f(x))gg

T = fhx; iijx 2 f0; 1gn; i 2 f~Df (f(x)) + 1; : : : ; n� 1gg

Lemma 6.1.1 Let W = h ~X; ~Ii 2U T , R 2U f0; 1gp(n), Y 2U f0; 1gn, and � 2U f0; 1g.
Let f be a one-way function. Then,

hf 0(W;R); ~X � Y; Y i and hf 0(W;R); �; Y i

are computationally indistinguishable. The reduction is poly-preserving.

PROOF: Let A be aR0-breaking adversary for distinguishing the two distributions. Then,
A is also a R0-breaking adversary for hidden bit ~X � Y given hf 0(W;R); Y i. Then, from

31

Proposition 4.1.2, there is an oracle TM M 0 such that M 0(A) is a R00-breaking adversary
for inverting f 0(W;R), where R00(n) = nO(1) � R0(n)O(1). Finally, we use the same idea
as in Lemma 5.1.2, i.e., the success probability of M 0(A) on input hf(x); �; i; Ri for � 2U
f0; 1gi+dlog(2n)e is at least inverse polynomial in the success probability of M 0(A) on input
f 0(x; i; R) for each �xed hx; ii 2 T . Consider the following oracle TM N : NA on input
f(x) chooses i 2U f0; : : : ; n� 1g, � 2U f0; 1gi+dlog(2n)e, and r 2U f0; 1gpn and runs M 0(A)

on input hf(x); �; i; ri. Since Pr[hx; ii 2 T] � 1=n when i 2U f0; : : : ; n� 1g, it follows
that NA(f(X)) produces an inverse with probability at least 1=n times the probability
M 0(A)(f 0(W;R)) produces an inverse.

If i � ~Df (f(X)) then X is almost completely determined by f 0(X; i;R), and thus X � Y
is almost completely determined by f 0(X; i;R) and Y .

The interesting case is when i = ~Df (f(X)), in which case, from Lemma 6.1.1, the adver-
sary is unable to distinguish X � Y from � given Y and f 0(X; i;R), and yet from part (2)
of Lemma 5.1.2, X � Y is almost completely determined by f 0(X; i;R) and Y . It is from
this case that we can extract a little bit of false entropy.

6.2 Construction and Main Theorem

We now describe the construction of a false entropy generator g based on f 0. Let

kn � 125n3: (4)

Part of the construction is to independently and randomly choose kn sets of inputs to f 0,
and concatenate the outputs, In particular, let X 0 2U f0; 1gkn�n, I 0 2U f0; 1gkn�dlog(n)e,
R0 2U f0; 1gkn�pn . Part of the construction is then f 0kn(X 0; I 0; R0).

Let I 2U f0; : : : ; n� 1g, let
pn = Pr[I � ~Df (f(X))]; (5)

and let
mn = knpn � 2k2=3n : (6)

We show later that it is su�cient to have an approximation of pn to within an additive
factor of 1=n for the entire construction to work. We need this to be able to claim that
g described below is mildly non-uniform. For now we assume we have the exact value of
pn. Let Y

0 2U f0; 1gkn�n. The value of kn is chosen to be large enough so that with high
probability it is the case that I 0j � ~Df (f(X

0
j)) for at least mn of the kn possible values of

j, and in this case, from Lemma 6.1.1, X 0
j � Y 0

j looks like a random bit to a time limited
adversary given Y 0

j and f 0(X 0
j ; I

0
j ; R

0
j).

The problem is that we don't know for which set of mn values of j the bit X 0
j � Y 0

j looks
random to a time limited adversary. Instead, the idea is to hash mn bits out of all kn

32

such bits and release the hashed bits. The intuition is that these mn hashed bits will look
random to a time limited adversary, even though there are really at most (pn � 1=n)kn
bits of randomness left in these kn bits after seeing Y 0 and f 0kn(X 0; I 0; R0), and thus there
are approximately mn � (pn � 1=n)kn � n2 bits of false entropy. Let

h0 : f0; 1gp0n � f0; 1gkn ! f0; 1gmn (7)

be a universal hash function, let U 2U f0; 1gp
0
n and de�ne P-time function ensemble

g(pn;X
0; Y 0; I 0; R0; U) = hh0U (hX 0

1 � Y 0
1 ; : : : ;X

0
kn � Y 0

kni); f
0kn(X 0; I 0; R0); U; Y 0i: (8)

Theorem 6.2.1 Let f be a one-way function and g be as described above in equations (1)
through (8). Then g is a mildly non-uniform false entropy generator with false entropy
10n2. The reduction is weak-preserving.

PROOF: Let Z 2U f0; 1gmn , and let

D = hh0U (hX 0
1 � Y 0

1 ; : : : ;X
0
kn � Y 0

kni); f
0kn(X 0; I 0; R0); U; Y 0i:

E = hZ; f 0kn(X 0; I 0; R0); U; Y 0i:

Note that D is the distribution of the output of g, and E is the same except that the mn

output bits of h0 have been replaced by random bits. Lemma 6.3.1 shows that H(E) �
H(D) + 10n2. Corollary 6.3.3 shows that if f is a one-way function then D and E are
computationally indistinguishable, where the overall reduction is weak-preserving.

What remains to prove Theorem 6.2.1 are the proofs of Lemma 6.3.1 and Lemma 6.3.2
of the next subsection. (Corollary 6.3.3 follows immediately from Lemma 6.3.2 and
Lemma 6.1.1). Before we turn to this, we state the main result of this paper based
on Theorem 6.2.1.

Theorem 6.2.2 There are one-way functions i� there are pseudorandom generators.

PROOF: That pseudorandom generators imply one-way functions follows from [Levin : 87].
The converse now follows from Theorem 6.2.1 and the results summarized in Subsec-
tion 4.9.

6.3 The Main Lemmas

Lemma 6.3.1 H(E) � H(D) + 10n2.

33

PROOF: The entropy of D and E excluding the �rst mn bits is exactly the same.
The additional entropy in the �rst mn bits of E is equal to mn. An upper bound on the
additional entropy in the �rstmn bits of D is the additional entropy in hX 0

1�Y
0
1 ; : : : ;X

0
kn
�

Y 0
kn
i: For each j 2 f1; : : : ; kng where I 0j < ~Df (f(X

0
j)), the amount of entropy added by

X 0
j � Y 0

j is at most 1. On the other hand, under the condition that I 0j � ~Df (f(X
0
j)),

X 0
j � Y 0

j is determined by hf 0(X 0
j ; I

0
j ; R

0
j); Y

0
j i with probability at least 1� 1=2n, and thus

the additional entropy under this condition is at most 1=2n. Since I 0j < ~Df (f(X
0
j))

with probability pn � 1=n, it follows that the additional entropy added by X 0
j � Y 0

j is at
most pn � 1=2n. Therefore, the additional entropy in the �rst mn bits of D is at most

kn(pn � 1=2n) = mn + 2k
2=3
n � kn=2n < mn � 10n2 by choice of kn.

Lemma 6.3.2 Let A be an adversary with distinguishing probability

�n = Pr[A(D) = 1]� Pr[A(E) = 1]

for D and E. (We assume without loss of generality that Pr[A(D) = 1] > Pr[A(E) = 1].)
Let W = h ~X; ~Ii 2U T , R 2U f0; 1gp(n), Y 2U f0; 1gn, and � 2U f0; 1g. There is an oracle
TM M such that M (A) distinguishes between

hf 0(W;R); ~X � Y; Y i and hf 0(W;R); �; Y i

with probability at least �n=(16kn). The running time of M (A) is polynomial in the running
time of A.

The proof of Lemma 6.3.2 is the most technically involved in this paper. Before proving
this lemma, we give the main corollary to this lemma, and then give some motivation for
the proof of the lemma.

Corollary 6.3.3 Let f be a one-way function. Then, D and E are computationally indis-
tinguishable. The reduction is weak-preserving.

PROOF: Combine Lemma 6.1.1 with Lemma 6.3.2.

We now give some intuition to the proof of Lemma 6.3.2. The oracle TM M (A) will
use a non-straightforward hybrid of distributions argument to be able to distinguish the
two distributions in the statement of the lemma. To give some intuition about this non-
straightforward hybrid, we �rst describe a related straightforward hybrid argument that
we do not know how to implement e�ciently.

Consider the following distribution. For j 2 f1; : : : ; kng, let Cj = 1 with probability pn
and Cj = 0 with probability 1 � pn. For all j, if Cj = 1 then let h ~X 0

j ;
~I 0ji 2U T , and if

34

Cj = 0 then let h ~X 0
j ;
~I 0ji 2U T . Let R

0; Y 0 and U be as de�ned previously. If these random
variables are used to de�ne a distribution using the same construction as used to de�ne
D, with h ~X 0

j ;
~I 0ji replacing hX

0
j ; I

0
ji, then the distribution is D, except that it is described

in a slightly di�erent way. Now, suppose this distribution is altered as follows: if Cj = 1
then change the jth input bit of hU from ~X 0

j � Y 0
j to Bj 2U f0; 1g. Call this distribution

D0.

From Lemma 6.1.1 intuitively it should be the case that a time limited adversary should
not be able to distinguish D from D0. On the other hand, it is not hard to see using
Lemma 4.5.1 that the statistical distance between D0 and E is exponentially small in n.
Thus, if adversary A can distinguish between D and E , we should be able to use this to
distinguish hf 0(W;R); ~X �Y; Y i and hf 0(W;R); �; Y i as in the statement of Lemma 6.3.2.

The question is whether we can really prove that D0 is computationally indistinguishable
from D. Towards resolving this question, consider the following family of hybrid distri-
butions. For all j 2 f0; : : : ; kng, let F (j) be the hybrid distribution between D and E
which is the same as D0 up to position j and the same as D thereafter, i.e., it is the
same as D except that for all i � j, if Ci = 1 then change the ith input bit of hU from
~X 0
i � Y 0

i to Bi 2U f0; 1g. Then, F (0) = D and F (kn) � E . Let J 2U f1; : : : ; kng. Then,
EJ [A(F (J�1))�A(F (J))] = �n=kn.

An ine�cient oracle TM could work as follows on input hf 0(w; r); b; yi: The �rst phase
chooses j 2U f1; : : : ; kng, and chooses a sample from F (j). If cj = 0 then the oracle TM
produces a random bit and stops. In the more interesting case, where cj = 1, it replaces
the inputs corresponding to the jth position in the sample according to f 0(w; r) and y, and
the jth input bit of hu is set to b 2U f0; 1g. Then, the second phase runs the adversary
A on this input and outputs the bit produced by A. The distinguishing probability for
this oracle TM is �n=kn. The problem is that this is not an e�cient oracle TM, because it
may not be possible to e�ciently uniformly sample from T and T as required. However,
it is possible to sample uniformly from f0; 1gn � f0; : : : ; n� 1g, and a pn fraction of the
samples will be randomly distributed in T and a 1 � pn fraction of the samples will be
randomly distributed in T , and this simple idea is used to construct the e�cient adversary
described below.

The e�cient adversary M (A) described in detail in the proof of Lemma 6.3.2 proceeds in
two phases similar to the ine�cient oracle TM described above. The �rst phase of M (A)

consists of kn stages, where stage j produces a coupled pair of distributions, D(j) and
E(j), both of which are polynomially samplable. Each stage consists of using adversary A
and sampling from the distributions produced in the previous stage to produce the pair
of output distributions for the current stage. Initially, D(0) = D and E(0) = E , and it will
turn out that D(kn) � E(kn).

The �rst j � 1 positions in both D(j) and E(j) are already �xed in essentially the same

35

way in D(j�1) and E(j�1), and these positions will be �xed the same way in D(j) and E(j).
To �ll in position j in D(j) and E(j), many samples of hxj; iji are drawn uniformly from
f0; 1gn � f0; : : : ; n� 1g, and then with high probability many of them will be in T and
many will be in T . We cannot directly tell for each sample whether it is in T or T . Thus,
we must use another criteria to decide which of the samples to keep to �ll in position
j. The criteria used is to use the sample for which the distinguishing probability of A
between D(j) and E(j) is highest when the jth position is �xed according to the sample.

Let �(j) = Pr[A(D(j)) = 1] � Pr[A(E(j)) = 1]. Because �(0) = �n and �(kn) � 0, it follows
that

Ej2Uf1;:::;kng[�
(j�1) � �(j)] � �n=kn:

It is because of this discrepancy between the value of �(j) and �(j�1) that f 0 can be inverted
in the second phase.

Intuitively, stage j of the �rst phase works as follows. A bit cj is chosen randomly to be
one with probability pn and to be zero with probability 1� pn. In the distribution D(j),
the jth input hx0j ; i

0
j ; r

0
ji to f 0kn is chosen randomly, y0j is chosen randomly, u is chosen

randomly, and then the jth input bit of h0u is set to a random bit bj if cj = 1 and to the

correct inner product bit if cj = 0. In the distribution E(j), the jth input of f 0kn is set the
same way it is set in D(j), and thus the two distributions D(j) and E(j) are correlated. The
choice of the jth inputs is done several times (cj is chosen only once at the beginning, i.e.,
it is not rechosen for each of the times) and each time the distinguishing probability of A
for D(j) and the corresponding E(j) is approximated, and the choice that maximizes the
di�erence between these accepting probabilities determines how D(j) and E(j) are �nally
set.

The second phase of M (A) chooses j 2U f1; : : : ; kng and then uses the pair of distributions
D(j) and E(j) produced in the �rst stage. The idea is to choose a random sample from
both D(j) and E(j), modify portions of the D(j) part according to the input to M (A), and
run A on both the modi�ed D(j) sample and the E(j) sample and based on the outputs
produce a one bit output. The intuition is that the distinguishing probability will be �(j),
which on average over all j is at least �n=kn.

We now turn to the formal proof of Lemma 6.3.2.

PROOF: (Of Lemma 6.3.2)

The oracle TM M (A) works as follows on input hf 0(w; r); b; yi:

Phase 1 : De�ne D(0) = D and E(0) = E . Let B 2U f0; 1gkn . Let � = �n=(16kn) and

36

� = 64n2=�: Stage j = 1; : : : ; kn works as follows: Randomly choose cj 2 f0; 1g so that
cj = 1 with probability pn. Choose x̂1; : : : ; x̂� 2U f0; 1gn and î1; : : : ; î� 2U f0; : : : ; n� 1g.

For each m 2 f1; : : : ; �g, de�ne wm = hx̂m; îmi and let D
(j�1)
cj (wm) be the same as D(j�1)

except that hX 0
j ; I

0
ji is �xed to wm and the jth input bit of h0 is set to

(
x̂m � Y 0

j if cj = 0

Bj if cj = 1:

Similarly, de�ne E(j�1)(wm) to be the same as E(j�1) except that hX 0
j ; I

0
ji is �xed to wm.

Let
�(j�1)
cj (wm) = Pr[A(D(j�1)

cj (wm)) = 1]� Pr[A(E(j�1)(wm)) = 1]:

Using A and sampling O(n=�2) times from D
(j�1)
cj (wm) and E(j�1)(wm), produce an esti-

mate �
(j�1)
cj (wm) so that

Pr[j�(j�1)
cj (wm)� �(j�1)

cj (wm)j > �] � 2�n:

Let m0 2 f1; : : : ; �g be the index for which �
(j�1)
cj (wm0) is maximized. Set hx0j ; i

0
ji = wm0 ,

D(j) = D
(j�1)
cj (wm0), E

(j) = E(j�1)(wm0) and go to the next stage.

Phase 2 : Pick j 2U f0; : : : ; kn � 1g. Let D(j)(w; r; b; y) be the distribution D(j) except
that f 0(X 0

j+1; I
0
j+1; R

0
j+1) is set to f 0(w; r) and the j + 1rst input bit of h0 is set to b and

and Y 0
j+1 is set to y. Let E

(j)(w; r; y) be the same as E(j) except that f 0(X 0
j+1; I

0
j+1; R

0
j+1)

is set to f 0(w; r) and Y 0
j+1 is set to y. Let � 2U f0; 1g, let D be a sample of D(j)(w; r; b; y)

and let E be a sample of E(j)(w; r; y). If A(D) = A(E) then output � else output A(D).

We now prove that the oracle adversary M (A) as just described distinguishes as claimed
in the lemma. Let w = hx; ii, d(j)(w; r; b; y) = E[A(D(j)(w; r; b; y))] and e(j)(w; r; y) =
E[A(E(j)(w; r; y))]. Then,

Pr[M (A)(f 0(w; r); b; y) = 1] = 1=2 + (d(j)(w; r; b; y) � e(j)(w; r; y))=2:

Also, it follows directly from the de�nitions that,

E[d(j)(w;R; x� Y; Y)� e(j)(w;R; Y)] = �
(j)
0 (w);

and
E[d(j)(w;R; �; Y)� e(j)(w;R; Y)] = �

(j)
1 (w):

37

Let �(j) = E[�
(j)
0 (W)� �

(j)
1 (W)]: Thus, the distinguishing probability of M (A) is

E[M (A)(f 0(W;R); ~X�Y; Y)]�E[M (A)(f 0(W;R); �; Y)] = Ej[�
(j)
0 (W)��

(j)
1 (W)]=2 = Ej[�

(j)]=2;

where j 2U f0; : : : ; kn � 1g in the last two expectations. To prove the lemma, it is su�cient
to show that Ej[�

(j)]=2 � �, or equivalently,

E[
X

j2f0;:::;kn�1g
�(j)] � 2�kn = �n=8: (9)

The expectation here is over the random choices of M (A) in the �rst phase. Let �(j) =
Pr[A(D(j)) = 1]� Pr[A(E(j)) = 1]: We prove (9) by showing below that

(a) E[�(kn)] � 2�n. The expectation is over the random choices ofM (A) in the �rst phase.

(b) E[�(j) � �(j+1)] � �(j) + 4�. The expectation is over random choices in the j + 1rst

stage of phase 1 conditional on any set of choices in the previous stages.

From (a) and (b), and because �(0) = �n, it follows that

�n=2 < �n � E[�(kn)]

=
X

j2f0;:::;kn�1g
E[�(j) � �(j+1)]

� 4kn�+ E[
X

j2f0;:::;kn�1g
�(j)]

= �n=4 + E[
X

j2f0;:::;kn�1g
�(j)];

and this proves the bound in Equation 9. Thus, it su�ces to prove (a) and (b) above.

PROOF of (a) : Since Pr[cj = 1] = pn, applying Cherno� bounds (e.g., see [MR : 95]),
we get that, with probability at least 1� 2�n,X

j2f0;:::;kn�1g
cj � knpn � k2=3n = mn + kn

2=3:

The entropy of the input to h0 conditional on the rest of the bits of D(kn) is at leastP
j2f0;:::;kn�1g cj . So, if this sum is at leastmn+kn

2=3, applying Lemma 4.5.1, L1(D(kn); E(kn)) �

2�n. Thus, �(kn) = E[A(D(kn))]� E[A(E(kn))] � 2�n.

38

PROOF of (b) : Let �W 2U T , and recall that W 2U T . Then, since the j + 1'st input
of h0 is always X 0

j+1 � Y 0
j+1 in D

(j),

�(j) = pnE[�
(j)
0 (W)] + (1� pn)E[�

(j)
0 (�W)]

= pnE[�
(j)
1 (W)] + pn(E[�

(j)
0 (W)]� E[�

(j)
1 (W)]) + (1� pn)(E[�

(j)
0 (�W)])

= pnE[�
(j)
1 (W)] + pn�

(j) + (1� pn)(E[�
(j)
0 (�W)])

< �(j) + pnE[�
(j)
1 (W)] + (1� pn)(E[�

(j)
0 (�W)])

We now show that E[�(j+1)] � pnE[�
(j)
1 (W)]+(1�pn)(E[�

(j)
0 (�W)])�4�, and this concludes

the proof. Let c 2 f0; 1g and consider stage j in phase 1. From our choice of � and the
fact that 1=n � pn � 1 � 1=n, it follows that, with probability at least 1 � 2�n, at least
n=� of the wm's are in T , and at least n=� of the wm's are in T . It then follows using
Cherno� bounds that

Pr[max
1�m��

f�(j)c (wm)g � maxfE[�(j)c (W)];E[�(j)c (�W)]g � �]

is at least 1 � 2�n: Also, with probability at least 1 � 2�n, �(j)
c (wm) is within � of the

corresponding �
(j)
c (wm), and thus (recalling how wm0 is chosen above in stage j)

�(j)c (wm0) � �(j)
c (wm0)� �

= max
m2f1;:::;�g

f�(j)
c (wm)g � �

� max
m2f1;:::;�g

f�(j)c (wm)g � 2�

� maxfE[�(j)c (W)];E[�(j)c (�W)]g � 3�

with probability at least 1 � 3 � 2�n. Let �
(j+1)
c be the value of �(j+1) conditional on

cj+1 = c. From this we can conclude that

E[�(j+1)
c] � maxfE[�(j)c (W)];E[�(j)c (�W)]g � 4�:

Since cj+1 = 1 with probability pn,

E[�(j+1)] = pnE[�
(j+1)
1] + (1� pn)E[�

(j+1)
0]

� pnE[�
(j)
1 (W)] + (1� pn)(E[�

(j)
0 (�W)])� 4�:

39

Before we continue let us just check that a good approximation of pn is su�cient. Sup-
pose that pn � ~pn � pn +

1
n and we do the entire construction with ~pn replacing pn.

Enlarge T to density ~pn by making it contain some elements hx; ii with i = ~Df (f(x))+1.
Lemma 6.1.1 is easily seen to remain valid and Lemma 6.3.1 just becomes more true in
that the entropy of D decreases. This implies that it is su�cient to try O(n) di�erent
values of pn.

7 A Direct Construction

We have shown how to construct a false entropy generator from an arbitrary one-way
function, a pseudoentropy generator from a false entropy generator and �nally a pseudo-
random generator from pseudoentropy generator. The combinations of these constructions
gives a pseudorandom generator from an arbitrary one-way function as stated in Theo-
rem 6.2.2. By literally composing the reductions given in the preceding parts of this paper,
we construct a pseudorandom generator with inputs of length n34 from a one-way function
with inputs of length n. This is obviously not a suitable reduction for practical applica-
tions. In this subsection, we use the concepts developed in the rest of this paper, but
provide a more direct and e�cient construction. However, this construction still produces
a pseudorandom generator with inputs of length n10, which is clearly still not suitable for
practical applications. (A sharper analysis can reduce this to n8, which is the best we
could �nd using the ideas developed in this paper.) The result could only be considered
practical if the pseudorandom generator had inputs of length n2, or perhaps even close to
n. (However, in many special cases of one-way functions, the ideas from this paper are
practical, see e.g., [Luby : 96].)

The improvement in the direct construction given here comes from the observation that
more than one of the reductions involves a product distribution, whereas only one product
distribution is needed for the overall proof.

We start with a one-way function f : f0; 1gn ! f0; 1g`n . We construct f 0 as in equation (3),
and let pn be the probability that I � ~Df (f(X)) as in the previous section. Let X =
hX; I;Ri represent the input distribution to f 0, and let cn be the length of X and c0n the
length of f 0(X). Let en = H(f 0(X)). Let b(�; y) = x� y. Set kn = 2000n6.

Intuitively, we generate pseudo-random bits as follows: Let X 0 = X kn and Y 0 = Y kn . We
�rst compute f 0kn(X 0) and bkn(X 0; Y 0). Intuitively, we are entitled to recapture

kncn �Hhf 0kn(X 0); bkn(X 0; Y 0)i

bits from X 0, because this is the conditional entropy left after we have computed f 0kn and

40

bkn . We are entitled to recapture knpn bits from the bkn(X 0; Y 0) (since we get a hidden bit
out of each copy whenever I � ~Df (f(X))). Finally, we should be able to extract enkn bits

from f 0kn(X 0), since en is the entropy of f 0(X). Since b(n) is almost totally predictable
for almost all inputs where I � ~Df (f(X)),

Hhf 0(X); b(X ; Y)i � en + pn � 1=n+ 1=(2n):

(See the proof of Lemma 6.3.1.) Thus, if we add up all the output bits, we are entitled
to kn(cn + 1=(2n)), or kn=(2n) more bits than the input to f 0kn . However, our methods
of extracting entropy are not perfect, so we need to sacri�ce some bits at each stage; to

use Corollary 4.5.3, we need to sacri�ce 2nk
2=3
n at each stage, so we chose kn to satisfy

kn=(2n) > 6nkn
2=3

Formally, let mn = kn(cn � en � pn + 1=(2n)) � 2nkn
2=3, m0

n = knpn � 2nkn
2=3, and

m00
n = knen � 2nkn

2=3. Let R1, R2, and R3 be indices of hash functions so that hR1 maps
kncn bits to mn bits, hR2 maps kn bits to m0

n bits and hR3 maps knc
0
n bits to m00

n bits.
Our construction is as follows:

Construction 7.0.4

g(X 0; Y 0; R1; R2; R3) = hhR1(X
0); hR2(b

kn(X 0; Y 0)); hR3 (f
0kn(X 0)); Y 0; R1; R2; R3i:

Theorem 7.0.5 If f is a one-way function and g is as in Construction 7.0.4, then g is
a mildly non-uniform pseudorandom generator. The reduction is weak-preserving.

PROOF: It is easy to check that g outputs more bits than it inputs.

As noted above, the conditional entropy of X given f 0(X) and b(X ; Y) is at least cn�en�
pn+(1=2n). Thus, from Corollary 4.5.3, we have that hhR1(X

0); R1i is statistically indistin-

guishable from random bits given hf 0kn(X 0); bkn(X 0; Y 0); Y 0i. Hence, g(X 0; Y 0; R1; R2; R3)
is statistically indistinguishable from hZ1; hR2(b

kn(X 0; Y 0)); hR3(f
0kn(X 0)); Y 0; R1; R2; R3i,

where Z1 2U f0; 1gmn . Now, from Lemmas 6.3.2 and 6.1.1, it follows that hR2(b
kn(X 0; Y 0))

is computationally indistinguishable from random bits given hf 0kn(X 0); R2; Y
0i. Thus,

g(X 0; Y 0; R1; R2; R3) is computationally indistinguishable from

hZ1; Z2; hR3(f
0kn(X 0)); Y 0; R1; R2; R3i;

where Z2 2U f0; 1gm
0
n . Finally, from Corollary 4.5.3, hhR3(f

0kn(X 0)); R3i is statistically
indistinguishable from hZ3; R3i, where Z3 2U f0; 1gm

00
n . Thus, the output of g is compu-

tationally indistinguishable from a truly random output of the same length.

If we use hash functions constructed as Toeplitz matrices then O(m) bits is su�cient to
construct a hash function on m bits and the inputs needed for the hash function is just a
constant fraction of all inputs. Then, the input length to g is O(nkn) = O(n7).

41

We still need to use Proposition 4.8.1 to get rid of the mild non-uniformity. From the
arguments above, it is clear that an approximation of both en and pn that is within 1=(8n)
of their true values is su�cient. Since 0 � en � n, and 0 � pn < 1, there are at most
O(n3) cases of pairs to consider. This means that we get a total of O(n3) generators,
each needing an input of length O(n7). Thus the total input size to the pseudorandom
generator is O(n10), as claimed.

8 Conclusions

A general problem is to characterize the conditions under which cryptographic applica-
tions are possible. By conditions we mean complexity theoretic conditions, e.g., P 6= NP,
the existence of one-way functions, etc. Examples of cryptographic applications are pri-
vate key cryptography, identi�cation/authentication, digital signatures, bit commitment,
exchanging secrets, coin
ipping over the telephone, etc.

For a variety of cryptographic applications it is known that a secure protocol can be
constructed from a pseudorandom generator, e.g., the work of [GGM : 86], [LR : 88],
[GMR : 89], [Naor : 88], [GMW : 91], show that applications ranging from private key en-
cryption to zero-knowledge proofs can be based on a pseudorandom generator. The results
presented in this paper show that these same protocols can be based on any one-way func-
tion. The paper [NY : 89] gives a signature scheme that can be based on any one-way
permutation, and [Rom : 90], substantially improves this by basing such a scheme on any
one-way function.

Using the notion of a false entropy generator, [G : 89] shows that the existence of pseu-
dorandom generators is equivalent to the existence of a pair of P-samplable distributions
which are computationally indistinguishable but statistically very di�erent.

The paper [IL : 89] provides complementary results; a one-way function can be constructed
from a secure protocol for any one of a variety of cryptographic applications, including
private key encryption, identi�cation/authentication, bit commitment and coin
ipping by
telephone. The paper [OW : 93] shows that a one-way function can be constructed from
any non-trivial zero-knowledge proof protocol. Thus, secure protocols for any of these
applications is equivalent to the existence of one-way functions.

The results described in this paper and the previous three paragraphs show that the
existence of a one-way function is central to modern complexity based cryptography.

Some applications seem unlikely to be shown possible based on any one-way function,
e.g., [IR : 89] give strong evidence that exchanging secrets over a public channel is an
application of this kind.

42

A fundamental issue is that of e�ciency, both in size and time; the general construction
we give for a pseudorandom generator based on any one-way function increases the size
of the input by a large polynomial amount and thus is only weak-preserving. This is not
good news for practical applications; it would be nice to have a general poly-preserving or
a linear-preserving reduction.

9 Acknowledgements

This research evolved over a long period of time and was greatly in
uenced by many people.
We thank Amos Fiat, Moni Naor, Ronitt Rubinfeld, Manuel Blum, Steven Rudich, Noam
Nisan, Lance Fortnow, Umesh Vazirani, Charlie Racko�, Oded Goldreich, Hugo Krawczyk,
and Silvio Micali for their insights and contributions to this work. We in particular thank
Charlie, Umesh and Manuel for their advice and enthusiasm, and Oded and Hugo for
exposing the fourth author to their wealth of insights on this problem. Finally, Oded's
insightful comments on every aspect of earlier versions of this paper has improved the
presentation in many ways.

References

[ACGS : 88] Alexi, W., Chor, B., Goldreich, O., Schnorr, C.P., \RSA Rabin Functions:
Certain Parts Are As Hard As the Whole", SIAM J. on Computing, Vol. 17,
1988, pp. 194{209.

[BFNW : 96] L. Babai, L. Fortnow, N. Nisan, A. Wigderson, \BPP has Subexponential
Time Simulations unless EXPTIME has Publishable Proofs", Complexity
Theory, Vol 3, 1993, pp. 307{318.

[BBR : 88] Bennett, C., Brassard, G., Robert, J., \Privacy Ampli�cation by Public Dis-
cussion", Siam J. on Computing, Vol. 17, No. 2, 1988, pp. 210{229.

[Blum : 84] Blum, M., \Independent Unbiased Coin Flips From a Correlated Biased
Source: A Finite State Markov Chain", 25th IEEE Symposium on Foun-
dations of Computer Science, 1984, pp. 425{433.

[BM : 82] Blum, M., and Micali, S., \How to Generate Cryptographically Strong Se-
quences of Pseudo-Random Bits", SIAM J. on Computing, Vol. 13, 1984, pp.
850{864.

[BH : 89] Boppana, R., Hirschfeld, R., \Pseudo-random generators and complexity
classes", S. Micali, ed., Advances in Computer Research, vol. 5, pp. 1{26,
JAI Press, 1989.

43

[Boyar : 89] Boyar, J. \Inferring Sequences Produced by Pseudo-Random Number Gen-
erators", Jour. of ACM, Vol. 36, No. 1, 1989, pp.129{141.

[CW : 79] Carter, L., and M. Wegman, \Universal Classes of Hash Functions", JCSS,
1979, Vol. 18, pp. 143{154.

[CG : 88] Chor, B., and O. Goldreich, \Unbiased Bits from Sources of Weak Random-
ness and Probabilistic Communication Complexity", SIAM J. on Computing,
Vol. 17, 1988, pp. 230{261.

[DH : 76] Di�e, D., and Hellman, M., \New directions in cryptography", IEEE Trans.
Inform. Theory, Vol. 22, 1976, pp. 644{654.

[G : 89] Goldreich, O., \A Note on Computational Indistinguishability", ICSI Tech
Report TR-89-051, July 1989.

[GGM : 86] Goldreich, O., S. Goldwasser, and S. Micali, \How to Construct Random
Functions", J. of ACM, Vol. 33, No. 4, 1986, pp. 792{807.

[GKL : 93] Goldreich, O., Krawczyk, H. and Luby, M., \On the Existence of Pseudoran-
dom Generators", SIAM J. on Computing, Vol. 22, No. 6, December, 1993,
pp. 1163{1175.

[GL : 89] Goldreich, O., and L.A. Levin, \A Hard-Core Predicate for any One-way
Function", 21rst ACM Symposium on Theory of Computing, 1989, pp. 25{
32.

[GMW : 91] Goldreich, O., Micali, S., and Wigderson, A., \Proofs that Yield Nothing
But their Validity or All Languages in NP have Zero-Knowledge Proofs", J.
of the ACM, Vol. 38, No. 3, July 1991, pp. 691{729.

[GM : 84] Goldwasser, S. and Micali, S., \Probabilistic Encryption," JCSS, Vol. 28, No.
2, April 1984, pp. 270{299.

[GMR : 89] Goldwasser, S., Micali, S. and Racko�, C., \The Knowledge Complexity of
Interactive Proof Systems," SIAM J. on Computing, Vol. 18, No. 1, 1989,
pp. 186{208.

[GMT : 82] Goldwasser, S., Micali, S. and Tong, P., \Why and how to establish a pri-
vate code on a public network," 23rd IEEE Symposium on Foundations of
Computer Science, 1982, pp. 134{144.

[H�as : 90] H�astad, J. \Pseudo-Random Generators under Uniform Assumptions", 22nd

ACM Symposium on Theory of Computing, 1990, pp. 395{404.

[HL : 92] Herzberg, A., Luby, M., \Public Randomness in Cryptography", proceedings
of CRYPTO 1992, ICSI technical report TR-92-068, October, 1992.

44

[IL : 89] Impagliazzo, R. and Luby, M., \One-way functions are essential for informa-
tion based cryptography," 30th IEEE Symposium on Foundations of Com-
puter Science, 1989, pp. 230{235.

[ILL : 89] Impagliazzo, R., Levin, L. and Luby, M, \Pseudo-random number generation
from one-way functions", 21rst ACM Symposium on Theory of Computing,
1989, pp. 12{24.

[IN : 96] Impagliazzo, R., Naor, M., \E�cient Cryptographic Schemes Provably as
Secure as Subset Sum", J. of Cryptology, Vol. 9, No. 4, pp. 192-216, 1996.

[IR : 89] Impagliazzo, R. and Rudich, S., \Limits on the Provable Consequences of
One-way Functions", 21rst ACM Symposium on Theory of Computing, 1989,
pp. 44{56.

[IZ : 89] Impagliazzo, R., and Zuckerman, D. \How to recycle random bits", 30th

IEEE Symposium on Foundations of Computer Science, 1989, pp. 248{253.

[Knuth : 81] Knuth, D., Semi-Numerical Algorithm, The Art of Computer Programming,
Addison-Wesley, Second Edition, Vol. 2, Chapter 3, 1981. (Third Edition,
expected 1997).

[Kol : 65] Kolmogorov, A. N., \Three Approaches to the Concept of the Amount of
Information", Probl. Inf. Transm., Vol 1, (1), 1965, pp. 1{7.

[Kraw : 92] Krawczyk, H., \How to Predict Congruential Generators", Journal of Algo-
rithms, Vol. 13, 1992. pp. 527{545.

[Levin : 87] Levin, L.A., \One-way Function and Pseudorandom Generators", Combina-
torica, Vol. 7, No. 4, 1987, pp. 357{363.

[Levin : 93] Levin, L.A., \Randomness and Non-determinism", \One-way Function and
Pseudorandom Generators", J. of Symb. Logic, Vol. 58, No. 3, 1993, pp.1102{
1103.

[Luby : 96] Luby, M., Pseudorandomness and Cryptographic Applications,
Princeton Computer Science Notes, Princeton University Press, 1996.

[LR : 88] Luby M., and Racko�, C., \How to Construct Pseudorandom Permutations
From Pseudorandom Functions", SIAM J. on Computing, Vol. 17, No. 2,
1988, pp. 373{386.

[McEl : 78] McEliece, R. J., \A public key cryptosystem based on algebraic coding the-
ory", DSN progress report, Jan.-Feb., 1978, Jet Propulsion Laboratory, Cal-
ifornia Institute of Technology.

45

[McIn : 87] McInnes, J., \Cryptography Using Weak Sources of Randomness," Tech.
Report 194/87, U. of Toronto, 1987.

[MR : 95] Motwani, R. and Raghavan, P., Randomized Algorithms, Cambridge Uni-
versity Press, 1995.

[Naor : 88] Naor, M., \Bit Commitment using Pseudorandom Generators", J. of Cryp-
tology, Vol. 4, pp. 151{158, 1991. Preliminary version appears in Crypto 89,
pp. 123{132, 1990.

[NY : 89] Naor, M. and Yung, M., \Universal One-way Hash Functions and Their Ap-
plications", 21rst ACM Symposium on Theory of Computing, 1989, pp. 33{43.

[OW : 93] Ostrovsky, R and Wigderson, A., \One-way Functions are Essential for Non-
Trivial Zero-Knowledge", 2nd Israel Symposium on the Theory of Computing
and Systems, 1993, pp. 3{17.

[Renyi : 70] Renyi, A., Probability Theory, North-Holland, Amsterdam, 1970.

[RSA : 78] Rivest, R., Shamir, A., and Adleman, L., \A method for obtaining digital
signatures and public-key cryptosystems", Comm. of the ACM, Vol. 21, 1978,
pp. 120{126.

[Rom : 90] Rompel, J., \One-way Functions are Necessary and Su�cient for Secure Sig-
natures", 22nd ACM Symposium on Theory of Computing, 1990, pp. 387{394.

[SV : 86] Santha, M. and Vazirani, U., \Generating Quasi-random Sequences from
Slightly-random Sources", JCSS, Vol. 33, No. 1, 1986, pp. 75{87.

[Shan : 48] Shannon, C., \A Mathematical Theory of Communication", Bell Systems
Technical Journal, 27, 1948, pp. 379{423 and pp. 623{656.

[Sip : 83] Sipser, M., \A Complexity Theoretic Approach to Randomness", 15th ACM
Symposium on Theory of Computing, 1983, pp. 330{335.

[Vaz : 87] Vazirani, U., \Towards a Strong Communication Complexity Theory or Gen-
erating Quasi-random Sequences from Two Communicating Slightly-random
Sources", Combinatorica, Vol. 7, No.4, 1987, pp. 375{392.

[VV : 85] Vazirani, U. and Vazirani, V., \Random Polynomial Time is Equal to
Slightly-random Polynomial Time", 26th IEEE Symposium on Foundations
of Computer Science, 1985, pp. 417{428.

[Yao : 82] Yao, A.C., \Theory and Applications of Trapdoor Functions", 23rd IEEE
Symposium on Foundations of Computer Science, 1982, pp. 80{91.

46

