
Relativized Perfect Zero Knowledge is not BPP .

William Aiello* Johan Hastad**

Applied Math Department and Laboratory of

Computer Science, MIT

Abstract: In this paper we further study the complexity of of zero-knowledge interactive

proofs. We prove that there is an oracle A such that there is a language L which is

recognizable by a two round, perfect zero-knowledge interactive proof relative to A, but

such that L 62 BPPA. This gives interesting implications for what can be demonstrated

about zero-knowledge interactive proofs using standard methods.

Warning: Essentially this paper has been published in Information and Com-

putation and is hence subject to copyright restrictions. It is for personal use

only.

1. Introduction

Interactive proofs were independently introduced by Babai [B] and Goldwasser, Mi-

cali, and Racko� [GMR], The class IP is de�ned through the computational model of an

interactive prover-veri�er pair. Both Turing machines in a pair receive a common input, w,

and exchange up to a polynomial in jwj number of messages, each of length a polynomial

in jwj. The veri�er's moves and its �nal determination of whether to accept or reject w

are the result of random polynomial time computations on w and all messages sent so

far. The prover has no resource bounds. A language, L, is in IP [f(n)] if there exists an

* Supported by an ONR fellowship and partially supported by NSF grant DCR-8509905.
** Supported by an IBM Post Doctoral Fellowship and partially supported by Air Force

Contract AFOSR-86-0078. Currently at the Royal Institute of Technology.

1

interactive prover-veri�er pair that on input w exchanges at most f(jwj) messages such

that: 1.) when w 2 L, the veri�er interacting with the prover accepts with probability at

least 1� 2�jwj and, 2.) when w 62 L, the veri�er interacting with any prover accepts with

probability at most 2�jwj. Such a prover-veri�er pair is called an interactive proof for L.

Let IP = [kIP [nk]. Just as in the case when L 2 NP , when L 2 IP , membership in L is

e�ciently veri�able since the veri�er runs in polynomial time and determines membership

correctly with probability very close to one. However, IP is thought to strictly contain

NP since it has recently been shown by Shamir [S] that IP = PSPACE.

In addition to de�ning interactive proofs, Goldwasser, Micali, and Racko� [GMR] fur-

ther de�ned zero-knowledge interactive proofs. The zero-knowledge de�nition was moti-

vated by cryptographic considerations (see for example, [GMR2], [O], [GMW]). Informally,

a prover is zero-knowledge for a language if the prover reveals no useful information (other

than language membership) when interacting with any veri�er. Slightly more formally, a

prover is zero-knowledge for L if for any veri�er there is a probabilistic polynomial time

simulator that, on inputs in L, produces conversations with the \same" probability dis-

tribution as the prover interacting with that veri�er. Actually, three interpretations of

\same" lead to three types of zero-knowledge, each more restrictive than the next. When

\same" is informally interpreted as: 1.) identical, 2.) almost identical, or 3.) equiva-

lent with respect to probabilistic polynomial time, then the prover is said to be perfect

zero-knowledge, statistical zero-knowledge, or computational zero-knowledge for L, respec-

tively. A language, L, is in PZK (SZK, CZK) if there is an interacting prover-veri�er

pair which is an interactive proof for L with the additional property that the prover is

perfect (statistical, computational) zero-knowledge for L.

In this paper we continue the investigation of the complexity-theoretic implications

of the zero-knowledge de�nitions. Requiring that, for inputs in the language, the conver-

sations between the prover and every veri�er be accurately reproducible by some random

2

polynomial time machine would seem to be a severe constraint on the power of the prover

and hence the power of the zero-knowledge model. Surprisingly, for computational zero-

knowledge this is probably not the case. Through the work of [GMW], [BGGHKMR], [IY]

it has been shown that, assuming secure encryption exists, any interactive proof can be

transformed into a computational zero-knowledge proof, i.e., CZK = IP .

However, the inuition that zero-knowledge is very restrictive seems to be correct for

statistical and perfect zero-knowledge. Fortnow [F] was the �rst to provide evidence that

the statistical zero-knowledge requirement may restrict the power of the prover. He proved

that if a language has a statistical zero-knowledge proof, then the complement of the

language has a bounded round interactive proof, i.e., SZK � co-IP [2]. From this theorem

we can deduce that it is unlikely that SZK contains all of NP since if NP � SZK then

co-NP � IP [2], which further implies that the polynomial time hierarchy collapses to

IP [2] by [BHZ].

While Fortnow's result did imply that SZK is probably weaker than IP it still left

open the possibility that SZK contained languages in IP which required a polynomial

number of interactions. Aiello and Hastad [AH] show that this cannot be the case. They

prove that any language which is recognized by an unbounded round statistical zero-

knowledge proof can also be recognized by a two round interactive proof, i.e., SZK �
IP [2]. We should note that that IP [2] � �2 [B]. Hence, under the assumption that

�2 6= PSPACE, SZK 6= IP , that is, perfect or statistical zero-knowledge is a strong

constraint on the power of interactive proofs with a polynomial number of rounds. Given

this, a natural question to investigate is, \How weak are PZK and SZK?"

There is strong evidence that PZK 6= BPP since Graph Isomorphism (GI), and

Quadratic Residuosity (QR) are in PZK but have resisted all attempts to be place in

BPP . Furthermore, it is probably also true that PZK[4] 6= BPP since Quadratic Non-

Residuosity (QNR) and Graph Non-Isomorphism (GNI) are known to be in PZK[4] but

3

not in BPP .

However, there are no known candidate languages in SZK[3]� BPP . In this paper

we look for evidence that SZK[3] and languages lower in the zero-knowledge hierarchy are

not trivially BPP . Our two main results are two oracles A and B such that SZKA[2] 6=
BPPA and PZKB[2] 6= BPPB respectively. The proofs require diagonalization arguments

involving four types of computing devices: a prover, many veri�ers, a simulator for each

veri�er, and all BPP machines. It is the only known oracle separation involving a zero-

knowledge complexity class.

The �rst result is weaker than the second but the former oracle seems to have the

interesting property that SZK 6= PZK. Even though we cannot prove this last property

there is still an interesting observation to be made. All known statistical zero-knowledge

proofs have been converted to perfect zero-knowledge proofs by letting the simulator run

for a long time with exponentially small probability. This procedure is not possible for our

language.

Finally, our results in conjuction with a result of Oren [O] give evidence that the

original de�nition of zero-knowledge proposed in [GMR] is in fact less restrictive then the

auxilary input model proposed in sereral papers [O], [TW], [GMR2]. Oren showed that

in the auxillary input model CZK[2] = BPP . Our results hold in a model which is

only slightly less restrictive than the auxiliary input model (and more restrictive than the

original de�nition). We can conclude that any proof of equivalence between the various

models cannot relativize.

The content of the paper is organized as follows. In section 2 we give the necessary

de�nitions and notation. In section 3 we construct an oracle such that SZKA[2] 6= BPPA

and in section 4 we show how to modify this construction to make the protocol perfect

zero-knowledge.

2. Notation and De�nitions

4

In this section we give the formal de�nitions needed for the paper. Let P denote a

prover: any probabilistic Turing machine which has a \communication" tape (for a formal

de�nition of a \communication" tape see [GMR]). P has no resource bounds. Let V denote

a veri�er: any probabilistic polynomial time Turing machine with a communication tape.

Let P$V denote an interacting prover-veri�er pair: any prover and veri�er which share

the same input tape and communication tape (initially empty) and interact in rounds in

the following way.

(1) The veri�er, V , makes a probabilistic polynomial time computation based on the

input, the contents of its memory, and all messages thus far received over the commu-

nication tape from the prover, P .

(2) V transmits the result of the computation over the communication tape to P . We

will denote the message sent by V in round i by x2i�1.

(3) P performs a probabilistic computation based on the input, and all messages thus far

received over the communication tape from V .

(4) P transmits the result of the computation over the communication tape to V . We

will denote the message sent by P in round i by y2i.

The interaction is terminated by the veri�er accepting or rejecting after at most a polyno-

mial (in the input length) number of rounds.

Let P$V (w) denote a transcript of the interaction between the prover and the veri�er.

This is of course a stochastic variable depending on P 's and V 's random choices.

De�nition: A given P$V is �-complete for a language, L, if for all w 2 L the probability

that V accepts on w is at least �.

De�nition: A veri�er, V , is �-sound for a language, L, if for all P 0$V and all w =2 L the

probability that V rejects on w is at least �.

[GMR1] de�ned the class IP as follows. L is in IP [f(n)] if there exists an interacting

5

prover-veri�er pair, P$V , that exchanges at most f(n) messages (n being the length of

the input) such that:

1.) P$V is (1� 2�n)-complete for L, and

2.) V is (1� 2�n)-sound for L.

Call such a P$V an interactive proof for L. Note that membership in L is still e�-

ciently veri�able since V runs in polynomial time and veri�es membership correctly with

probability very close to one. De�ne IP as the union over k of IP [nk].

2.1 Zero-Knowledge

In this section we will give the formal de�nition of a zero-knowledge interactive proof

for a language. We will �rst need some properties of probability distributions on strings.

Let A(w) and B(w) be two parameterized discrete random variables. Let A[L] =

fA(w) j w 2 Lg and similarly de�ne B[L]. We say that A[L] is degree d bounded if

9d 8w 2 L 8y 2 A(w); jyj = jwjd:

We de�ne three types of equivalence between A[L] and B[L].

1.) A[L] �P B[L] or A[L] is perfectly equivalent to B[L] if for all y, and all w 2 L,

Pr[A(w) = y] = Pr[B(w) = y]:

2.) A[L] �S(k;N) B[L] or A[L] is (k;N)-statistically equivalent to B[L] if for all w 2 L,

jwj � N , X
y

jPr[A(w) = y]� Pr[B(w) = y]j � 1

jwjk :

3.) A[L] �C(k;N) B[L] or A[L] is (k;N)-computationally equivalent to B[L] if whenever

A[L] and B[L] are degree d bounded then for all circuit families, C, of size jwjk, and
all w 2 L, jwj � N ,

j Pr[Cjwjd(A(w)) = 1]� Pr[Cjwjd(B(w)) = 1] j � 1

jwjk

6

where Cn is the circuit of C which takes inputs of size n.

We have already seen what it means for an interacting prover-veri�er pair to be an

interactive proof for a language. In a cryptographic setting, however, we may require more

from our protocol than just completeness and soundness. We may want the prover to

give nothing to any veri�er (even those not following the protocol) that the veri�er could

not have computed itself. To formalize this [GMR1] introduced the important concept

of a simulator. A simulator, M , is a random Turing machine that produces strings, i.e.,

\conversations," in expected polynomial time.

LetM(w) be the random variable associated withM on input w. Recall that P$V (w)

is the random variable associated with the conversations produced by P$V on input w.

We will say that P is statistical zero-knowledge for L if 8k 9N such that 8V 0 9MV 0 such

that

MV 0 [L] �S(k;N) P$V 0[L]:

De�ne the class SZK to be those languages, L, for which there exists an interactive

prover-veri�er pair, P$V , such that:

1.) P$V is (1� 2�n)-complete on L,

2.) V is (1� 2�n)-sound on L, and

3.) P is statistical zero-knowledge for L.

Call such a P$V a statistical zero-knowledge proof for L.

By using the de�nitions for perfect equivalence and computational equivalence from

above we get similar de�nitions for perfect zero-knowledge (SZK), and computational

zero-knowledge (CZK).

Several papers have noted that the above de�nitions may not be restrictive enough.

For example, the prover cannot be sure that the veri�er's worktapes are empty when both

parties receive the input. For example, the worktapes may not have been cleared after the

7

veri�er completed a previous interaction with another prover. This was noted in [GMR2],

[O], and [TW]. The following de�nitions handle these cases.

Let P$V (w; u) denote the random variable for the output of the protocol on input w

when V runs in polynomial time in jwj but has additional input u that is unknown to P .

Let M(w; u) be the random variable for the output of the simulator on input w; u where

the simulator runs in polynomial time in jwj. P is statistical zero-knowledge0 on L if 8k
9N such that 8V 0 9MV 0 such that

MV 0 [L� ��] �S(k;N) P$V 0[L� ��]:

The requirements for P to be perfect zero-knowledge0 on L and computational zero-know-

ledge0 on L are similar.

Now we can de�ne the class SZK 0. The classes PZK 0 and CZK 0 are de�ned similarly.

A language, L, is in SZK 0 if there exists an interactive prover-veri�er pair such that:

1.) P$V is (1� 2�n)-complete on L,

2.) V is (1� 2�n)-sound on L, and

3.) P is statistical zero-knowledge0 on L.

Call such a P$V a statistical zero-knowledge0 proof for L.

The zero-knowledge0 de�nitions were designed so that zero-knowledge0 proofs would

be modular. Tompa and Woll [TW] demonstated that if a zero-knowledge0 protocol is

iterated sequentially then the resulting protocol is zero-knowledge0. Oren [O] showed more

generally that if a protocol is composed only of zero-knowledge0 subprotocols then the

protocol itself is zero-knowledge0.

In this paper we study relativized zero-knowledge proofs. In this case both the prover

and the veri�er have access to an oracle A. As far as we know this is the �rst attempt to

study relativized zero-knowledge protocols.

3. An oracle A such that SZKA[2] 6= BPPA.

8

In this section we will prove the following theorem.

Theorem 1: There exists an oracle, A, such that SZKA[2] 6= BPPA.

As is standard for relativized separation arguments, we �rst de�ne a map from an

arbitrary set of strings, A � ��, to a set of unary strings, LA. We then proceed to show

that there exists an A such that LA is in SZKA[2] but not in BPPA. Let an be the

characteristic vector of A \ �n. That is,

ani = 1() i 2 A \ �n:

Divide the �rst b2n=3nc of an into segments of length 3n. We will ignore the remaining

portions of an. Let sj denote the jth segment, i.e., the positions 1+ 3n(j� 1) to 3nj. For

each string, v, of length 3n de�ne Rv as the segments which have value v: R = fi jsi = vg.
We will say an is unique whenever jRvj � 1 for all strings v of length 3n. Below we will also

need the following de�nitions. Call an redundant whenever there are exactly bp2n=3nc
v with bp2n=3nc � jRvj � bp2n=3nc + 2 and jRvj = 0 for the remaining v. Call an

completely redundant if it is the zero vector of length 2n.

We de�ne the unary language LA as follows:

1n 2 LA () an is unique:

We will show that there exists an oracle, A, such that LA 2 SZKA[2] but LA =2 BPPA.

As a �rst step let us show that there are many oracles for which LA 2 IPA[2].

Lemma 2: If A is such that for all n either an is unique, redundant, or completely

redundant then LA 2 IPA[2].

9

Proof: Consider the following interactive protocol. On input 1n:

1. V uniformly picks a number j between 1 and b2n=3nc. V asks 3n oracle queries to

discover segment sj of a
n. Call this 3n bit string c. V sends c to P .

2. If none of the segments of an are the string c then P responds \you cheat". If c occurs

as segment(s) si1 ; si2 ; : : : ; sil , P returns k 2 fi1; i2; : : : ; ilg.
3. If k = j then the veri�er accepts, otherwise it rejects.

We have to prove that P can win the game with high probability precisely when

1n 2 LA. If 1
n 2 LA then by de�nition an is unique and the prover will know that c is the

jth segment of an. Hence, the veri�er will accept with probability one. If 1n =2 LA then by

hypothesis an is redundant or completely redundant. Hence, there are at least bp2n=3nc
segments which are the same as c. So, the prover will only be able to guess j of the veri�er

with probability at most bp2n=3nc�1.

Henceforth, we will restrict our attention to oracles A such that an is either unique,

redundant, or completely redundant. We have to construct A to simultaneously acheive

LA 2 SZKA[2] and L 62 BPPA. We will �rst treat these two conditions separately and

then show how to combine the two requirements.

3.1 Diagonalization over BPP

We will use the standard technique of diagonalization. We will need an enumeration of

oracle-BPP machines: MA
1 , M

A
2 ,: : :. We will set A in rounds so that at round i, MA

i will

not BPP -recognize LA. We will say that a machine strong BPP -recognizes a language if

it erroneously accepts or rejects with probability at most 2�n. The following lemma will

10

establish that it is su�cient to set A in rounds so that at round i, MA
i will not strong

BPP -recognize LA.

Lemma 3: Any language, L, in BPPA can be recognized by a machine, MA, which

erroneously accepts or rejects with probability at most 2�n where n is the length of the

input.

Proof: As is standard, MA simulates the machine recognizing L a polynomial number of

times and accepts if a majority of the simulations accept.

Now back to the diagonalization. We assume without loss of generality that MA
i runs

in time at most ni on inputs of length n. Will will determine A in rounds by putting

strings in and out of the oracle set. A string which has not yet been put in or out of A

will be called undetermined.

The general idea of the construction is to ensure that at round i either 1ni 2 LA but

Pr[MA
i accepts 1ni] < 1� 2�ni or 1ni =2 LA but Pr[MA

i accepts 1
ni] > 2�ni . In both cases

we have ensured that MA
i does not strong BPP -recognize LA .

Let mi for i = 1; 2; : : : be de�ned by minm2N(m
2i+1=22�m=2 � 1=2). Let n1; n2; : : :

be a sequence of intergers de�ned by n1 = maxf20;m1g and ni = max(ni�1i�1 + 1; mi) for

i = 2; 3; : : :. For all x not of length ni for some i set x =2 A. Now we will set the strings of

length ni in rounds.

Round i: Run MA
i on input 1ni . Note that since Mi can run for time at most nii it cannot

ask about strings of length ni+1 or greater. So when M
A
i asks A about a string y we have

3 cases: jyj = nj for j < i, jyj 6= nj for 1 � j � i + 1, and jyij = ni. In the �rst case the

answer has already been determined in a previous round and in the second case the answer

11

was determined ahead of time. Thus the probability that MA
i accepts is only a function

of the answers to questions of the third type, i.e., of ani . Note that no strings of length ni

have been set in previus rounds since ni is greater than the running time of Mk on 1nk for

k < i. Let p(ani) = Prr[M
A
i accepts 1ni] where r is the random coins used by MA

i . We

have two case

1. There exists a redundant ani such that p(ani) > 2�ni . In this case we set A according

to this ani .

2. If no redundant ani exists with p(ani) > 2�ni �nd a unique ani with p(ani) � 1
2
and

set A accordingly.

Clearly if this construction is possible we can make any BPP machine make an error.

We need only check that part 2 of the construction is possible. Lemma 4 will establish

that this is indeed the case. Let U be the set of all ani which are unique and R be the set

of all ani which are redundant.

Lemma 4: If p(ani) � 2�ni for all ani 2 R then the fraction of U with p(ani) < 1=2 is

� 1� 22�ni .

Let us start by giving the intuition behind the proof. Oracle BPP machines behave

similarly on both unique and redundant oracle vectors. In essence this is due to the fact

that it is di�cult for oracle BPP machines to distinguish between unique and redundant

oracle vectors. In a redundant vector there are exponentially many di�erent values in

the segments. It is very unlikely that a BPP machine sampling a polynomial number of

segments will �nd a pair of segments with identitical value. To make this formal we will �x

the random coins of MA
i and now look at the probability that MA

i accepts as a function

of random ani . We have

12

Lemma 5: For �xed random coins r,

Pr
ani2U

[MA
i accepts] � Prani2R[M

A
i accepts]

1� n
2i+1=2
i 2�ni=2

Proof: Once we �x the random coins ofMA
i it becomes deterministic and its computation

depends only on ani . Consider an accepting computation during which MA
i examines k

segments. Let mR be the number of redundant ani on which MA
i would produce this

computation (i.e., which have the same values at those k segments) and let mU be the

number of unique ani on which MA
i would produce this same computation. Assume for

now that the values of these k segments are unique. We have

mU

jU j =
k�1Y
i=0

(23n � i)�1

and

mR

jRj =
k�1Y
i=0

(23n � i)�1 � Pr
ani2R

[k speci�ed segments have unique values]

We have to estimate the last probability. The probability that any two segments are equal

is

� bp2n=3nc+ 1

b2n=3nc �
p
2n=3n+ 1

2n=3n� 1
=

1q
2n

3n � 1
�
r

4n

2n

for n � 20. Since we have
�
k
2

� � k2=2 di�erent pairs that could be equal we have

Prani2R[k chosen segments are unique] � 1� k2
p
ni2

�ni=2. Since k � ni we have

mR

jRj �
mU

jU j
�
1� n

2i+1=2
i 2�ni=2

�
:

The inequality is obvious in the case when the values of the k segments are not all unique.

Now Lemma 5 follows by summing over all possible accepting computations.

13

Let us now prove Lemma 4. By the hypothesis p(ani) � 2�ni for all ani 2 R. It

follows that

Pr
r;ani2R

[MA
i accepts 1ni] < 2�ni

By Lemma 5 and the choice of ni

Pr
r;ani2U

[MA
i accepts 1

ni] � 2 Pr
r;ani2R

[MA
i accepts 1ni] < 21�ni

which in its turn implies

Pr
ani2U

�
p(ani) � 1

2

�
= Pr

ani2U

�
Pr
r
[MA

i accepts 1ni] � 1

2

�
� 22�ni :

3.2 Statistical Zero Knowledge

We have seen how to diagonalize over all oracle BPP machines. Now we will show

that for many A the two round protocol for recognizing LA described earlier is in fact a

statistical zero knowledge protocol.

We will show that for any veri�er, V 0, there is a polynomial time coin
ipping simula-

tor, MA
V 0 , which for all 1n 2 LA produces conversations with close to the same distribution

as the PA $ V 0A protocol. To make precise what is meant by close de�ne SV 0(an) as the

di�erence between the distributions of conversations on input 1n.

SV 0(an) =
X
x;y

��Pr[PA $ V 0 A(1n) = x; y]� Pr[MA
V 0(1n) = x; y]

��

where x denotes the veri�er's move and y denotes the prover's move. Strictly speaking the

value of SV 0(an) does not only depend on an since V 0 might ask questions of lengths other

14

than n. However, we assume any �xed set of answers for stings shorter than n and that

any string the veri�er asks for of length greater than n gets a negative answer. Observe

that this agrees with the situation in the diagonalization over BPP -machines.

To prove that the protocol is SZK we have to prove that SV 0(an) < 1=nc for all c and

su�ciently large n.

The intuition for the proof is quite clear. If we are dealing with an honest veri�er

which behaves according to the protocol then for unique an the veri�er does not learn

anything when the prover reveals the location of the segment that the veri�er itself chose.

It is easy to simulate the honest veri�er. The simulator simply runs V to get j and c = sj

and reports that the prover responds with j. On the other hand, consider a veri�er which

produces c without looking at the oracle. In this case the veri�er could learn the position

of c in an from the prover even though it would be di�cult for the veri�er to discover this

for itself. However, with overwhelming probability c will not be a segment in an since there

are 23n strings of length 3n but only b2n=3nc segments of an. Thus the simulator could

report \you cheat" as the prover's mover and be correct almost always. Let us describe

the simulator in more detail.

De�nition of simulator : On input 1n, the simulator runs V 0A which produces a string

c. Next the simulator queries the oracle to obtain all segments of an in which V 0A has

asked at least one question. If one of these segments is equal to c, MV 0 returns its index

as the provers answer and otherwise it returns \you cheat".

Given this de�nition of MA
V 0 let's evaluate SV 0(an). Note that V 0A and MA

V 0 produce

c with the same distribution. If c is not one of the segments of an then both the real

prover and the simulator prover respond \you cheat". So, the sum over those c which are

not segments of an contributes zero to SV 0(an). Say c is the jth segment of an and the

jth segment was examined by V 0A during the production of c. This happens with the

15

same probability for both V 0A and MA
V 0 and in both cases the prover's response is j. So

again, the sum over such c's contributes zero to SV 0(an). Say, c is the jth segment of an

but the jth segment was not examined during the production of c. Again this occurs with

the same probability for both V 0A and MA
V 0 but in the former case the real prover will

respond with j and the simulator prover will respond \you cheat". This is the only case

the simulator will not be able to simulate.

Let D(r; an; c) be the event that the veri�er with coins r and oracle vector an produces

c which is a segment of an but the veri�er makes no queries to that segment. By the above

argument SV 0(an) reduces to

SV 0(an) = 2
X
b

Pr
r
[D(r; an; b)]:

Lemma 6: For any V 0 and any n

Pr
an2U

[SV 0(an) >
2

2n3n
] <

1

2n

Proof: We'll show that the expected value of SV 0(an) taken over an 2 U is at most

2=22n3n and this implies the lemma. The expectation of SV 0(an) over an 2 U is

2

jU j
X
an

X
b

Pr
r
[D(r; an; b)]

Treat the probability over r as a sum over r weighted by 2�p where p is the number of

coins used by the veri�er. Change the order of summation to sum over r �rst and c last.

Then note that once r and an are �xed c is determined. So ignore the sum over c. We get

E (SV 0(an)) =
2

2p

X
r

Pr
an2U

[D(r; an)]

16

Fix r, clearly if the machine looks at k segments and then produces a string c which

is not equal to one of these segments then the probability that c is a segment of a random

unique an is
b 2

n

3n
c�k

23n�k
� (3n22n)�1. Thus E(SV 0(an)) � 2(3n22n)�1 and the lemma follows.

3.3 Interleaving the two conditions

Let us see how to choose our oracle to ensure that our language is statistical zero-

knowledge while diagonalizing over oracle BPP machines. We only need a slight modi-

�cation to the procedure in section 3.1: let V1; V2; : : : be an enumeration of probabilistic

polynomial time turing machines and replace condition 2 by 20.

20. If no redundant ani exists with p(ani) > 2�ni �nd a unique ani with p(ani) � 1
2 and

such that SVj (a
ni) � 2

2ni3ni
for j = 1; 2 : : : i. Set A according to this ani .

Observe that by Lemmas 4 and 6 a random ani satis�es the two conditions with

probability � 1� (4 + i)2�ni > 0 and thus there is such an ani .

Finally, to conclude that the construction is correct we need to verify the following

conditions.

1. A is well de�ned.

2. For any n, an is unique, redundant or completely redundant.

3. No BPPA machine recognizes LA.

4. Every Vi can be simulated.

Let us verify these conditions one at the time.

(1) We need only observe that no strings of length � ni are set under the �rst i�1 rounds.

This is true since ni > nkk for k < i and thus no MA
k can ask about any string of length ni

during its computation.

17

(2) If n = ni for some i, an is either redundant or unique according to the rules 1 and 2 in

the construction. For all other n, an is completely redundant.

(3) By the construction MA
i makes an error on input 1ni .

(4) Observe that this is only a condition when 1n 2 L. We know by condition 20 in the

construction that the distance between the distribution generated by P and Vi on input

1n and the distribution generated by MVi on 1n is � 2
2n3n

for n � ni.

This �nishes the proof of Theorem 1.

4. An oracle such that PZK[2]B 6= BPPB.

Using an idea of Oded Goldreich we show how to modify the language and the oracle

to prove the following theorem.

Theorem 2: There exists an oracle, B, such that PZKB[2] 6� BPPB.

We will de�ne a new language L0B which is very similar to the previous language. This

time we let bn denote the characteristic vector of elements of B with leading 0 and length

n+ 1. That is,

bni = 1() 0i 2 B \ �n+1:

Now we de�ne a unary language L0B by

bn unique() 1n 2 L0B :

Again we will make sure that bn is either unique, redundant, or completely redundant.

The key di�erence is that we will use strings in the oracle starting with 1 as a dictio-

nary. We let 1x 2 B i� jxj = 3n and x is a segment of bn. We will call the characteristic

18

vector of this \dictionary" part dn: for jij = 3n

dni = 1() 1i 2 B () i is a segment of bn.

The proof of Theorem 2 will be very similar to the proof of Theorem 1 and hence we will

omit some details.

4.1 Diagonalization over BPP

As before we start with an enumeration of oracle-BPP machines: MB
1 , M

B
2 ,: : :. Let

mi and ni be de�ned as before. For all x not of length ni for some i set 0x =2 B. Also for

all x not of length 3ni for some i set 1x =2 B. Again we will determine the remainder of

the oracle in rounds.

Round i: Run MB
i on input 1ni . As when setting oracle A, the limitation on the running

times of Mj for 1 � j � i and the values of nj for 1 � j � i ensure that the probability

that MB
i accepts is only a function of questions of the form 0x where x is of length ni or

1x where x is of length 3ni. De�ne p(b
ni) = Prr[M

B
i accepts 1ni] and as before we have

two cases.

1. There exists a redundant bni such that p(bni) > 2�ni . In this case we set B according

to this bni . That is, 1ni is not in L0B but MB
i fails to strong BPP reject it.

2. If no redundant bni exists with p(bni) > 2�ni �nd a unique bni with p(bni) � 1
2 and

set B accordingly. That is, 1ni is in L0B but MB
i fails to strong BPP accept it.

To verify the construction we need the following equivalent of Lemma 4.

Lemma 7: If p(bni) � 2�ni for all bni 2 R then the fraction of U with p(bni) < 1=2 is

� 1� 6 � 2�ni .

19

The proof of Lemma 7 is, of course, very similar to the proof of Lemma 4. However,

there are some additional complications due to the dictionary. To take care of these

problems we need the following de�nition.

De�nition A machine M makes a discovery if on input 1n it asks B about a string

1x; jxj = 3n; 1x 2 B and it has not asked any oracle question(s) about a segment of bn

with value x.

We get the following lemma.

Lemma 8 The probability that a probabilistic polynomial time machine M , which runs

in time ni makes a discovery is � ni�1=3 � 22n. The probability is taken over the coin
ips

of the machine and over a random bn from either R or U .

Proof: Fix r, consider any question \1x 2 B" with jxj = 3n. The probability that x will

be a segment of bn which the machine has not yet seen is � 1=3n22n. Since M asks at

most ni questions the lemma follows.

Let us use this lemma to prove Lemma 7. Consider the set of bni ; r which makes MB
i

accept. This set is divided into equivalence classes with pairs giving the same computation

of MB
i in the same equivalence class. We know that when bni is given probabilities ac-

cording to R the total mass of accepting conversations is at most 2�ni . When bni is given

proabilities according to U we have accepting conversations of two types: Computations

where MB
i makes a discovery and computations where it does not. By Lemma 8 the mass

corresponding to the �rst case is bounded by ni�1i =3 � 22ni � 2�ni . Modifying the analysis

of Lemma 5 slightly we see that the mass of the second type of conversations contributes

20

at most twice the mass of the corresponding conversations with bni 2 R. Thus

Pr
r;bn2U

[MB
i accepts 1ni] � 2�ni + 2 � 2�ni � 3 � 2�ni

which implies that

Pr
bn2U

�
Pr
r
[MB

i accepts 1ni] � 1

2

�
� 6 � 2�ni :

21

4.2 Perfect Zero-Knowledge

To take care of the perfect zero-knowledge requirement we have to change the simu-

lator.

De�nition of simulator : On input 1n, the simulator runs V 0 and produces a question

c. Next the simulator checks if 1c 2 B. If not it returns \you cheat". If 1c 2 B the

simulator asks the oracle questions to obtain all segments of bn in which V 0 has asked at

least one question. If one of these segments is equal to c, MV 0 returns its index as the

provers answer. If not MV 0 asks the 2n oracle questions 0x 2 B to locate the segment of

bn with value c and returns the position of the segment.

We need to check that this simulator runs in expected polynomial time for any veri�er.

Assume that the running time of Vj is n
j. The crucial lemma is:

Lemma 9: The probability thatMVj runs in time � 3nj+2 is � nj�1=3�22n. Furthermore,

MVj never runs for longer than n2
n+3nj+2 steps. The proability here is taken over random

bn 2 U and r, the random coins of the machine.

Proof: We need only analyze how longMVj runs in the di�erent cases. If 1c 62 B thenMVj

runs in time nj +n. If c occurs as one of the segments that Vj looked at, the running time

is at most nj+2 + nj + n � 3nj+2. In the last case we get the bound n2n + nj+2 + nj + n.

To �nish the proof we need only observe that to get into the last case the veri�er has to

make a discovery and hence we can use Lemma 8.

However we are more interested in probabilities over r for a �xed choice of bn and this

is taken care of by our last lemma.

22

Lemma 10: For a fraction 1� 2�n of U the expected running time of MVj is bounded by

4nj+2 for all j.

Proof: By Lemma 9 the fraction of U for which MVj has probability � 2j2nj�1=3 � 2n of

running in time � 3nj+2 is � 2�n(2j2)�1. Thus the fraction of U where this condition is

violated for any j is bounded by 2�n
P1

i=j
1
2j2 � 2�n. If the condition is not violated, the

expected running time is bounded by

3nj+2 +
2j2nj�1

3 � 2n n2n � 4nj+2:

4.3 Interleaving the two conditions

Now combining section 4.1 and 4.2 to prove Theorem 2 is easy. We change condition

20 in the BPP construction to:

200. If no redundant bni with p(bni) > 2�ni exists �nd a unique bni with p(bni) � 1
2 and

such that MVj runs in expected time 4nj+2i for all j. Set B according to this bni .

We just need to observe that, by Lemmas 7 and 10, a random bni satis�es the two

conditions with probability � 1 � 7 � 2�ni > 0. A simple veri�cation similar to that in

section 3.3 �nishes the proof of Theorem 2.

5. Remarks

We would like to remark here about the relative strength of PZK and SZK. Recall

our relativized PZK language L0. Occassionally, the simulator was required to make an

23

exponential search of 0x (jxj = 2n) because the veri�er produced a segment of bn without

making queries in the segment. Importantly, the simulator knew when it was necessary

to make such a search (by looking in the dictionary) and the search was rarely necessary.

This is precisely the same way in which all know SZK languages also have perfect zero-

knowledge simulators (as noted in [GMR2]) The perfect simulator can determine when it is

necessary to make an expontial time computation and the computation is rarely necessary.

However, our SZK language does not seem to have this property. When the veri�er

has produced a string but has not made queries in a segment of the oracle which looks

like the string, the simulator has no way of knowing whether the string is a segment of

bn, i.e., whether to make an exponential search. It seems that in order for a simulation

to be perfect it must make the exponential search whenever the above occurs but such a

simulation certainly will not run in expected polynomial time.

Acknowledgments: We would like to thank Oded Goldreich for allowing us to use his

idea of how to construct a relativized perfect zero-knowledge protocol.

References

[AGH] Aiello, W., S. Goldwasser, and J. Hastad, \On the Power of Interaction," to appear

in Combinatorica. A preliminary version appeared in Proc. of 27th Symposium on

Foundations of Computer Science, pp 368{379, Toronto, 1986.

[AH] Aiello, W. and J. Hastad. \Statistical Zero-Knowledge Languages Can Be Recognized

in Two Rounds", to appear in JCSS. A preliminary version appeared in Proc. of 28th

Symposium on Foundations of Computer Science, pp 439{448, Los Angeles, 1987.

[Ba] Babai, L., \Trading Group Theory for Randomness," Proc. of 17th Symposium on

Theory of Computing, pp 421{429, Providence, 1985.

[BGGHKMR] Ben Or, M., O. Goldreich , S. Goldwasser, J. Hastad, J. Kilian, S. Micali, and P.

Rogaway, \Everything Provable is Provable in Zero-Knowledge", Proc. of Crypto '88,

24

Santa Barbara, l988.

[BHZ] Boppana, R. B., J. Hastad, and S. Zachos, \Does co-NP Have Short Interactive

Proofs?" Information Processing Letters, 25 (1987), pp 127{132.

[F] Fortnow L., \The Complexity of Perfect Zero-Knowledge," Proc. of 19th Symposium

on Theory of Computing, pp 204{209, New York, 1987.

[GMR1] Goldwasser, S., S. Micali, and C. Racko�, \The Knowledge Complexity of Interactive

Proofs," Proc. of 17th Symposium on Theory of Computing, pp 291{305, Providence,

1985.

[GMR2] Goldwasser, S., S. Micali, and C. Racko�, \Proofs, Knowledge, and Computation,"

18 (1989), No. 1, pp 186{208.

[GMW] Goldreich, O., S. Micali, and A. Wigderson, \Prooof that Yield Nothing but their

Validity and a Methodology of Cryptographic Protocol Design," Proc. of 27th Sym-

posium on Foundations of Computer Science, pp 174{187, Toronto, 1986.

[GS] Goldwasser, S., and M. Sipser, \Private Coins Versus Public Coins in Interactive Proof

Systems," Proc. of 18th Symposium on Theory of Computing, pp 59{68, Berkeley,

1986.

[IY] Impagliazzo, R., and Moti Yung, \Direct Minimum-Knowledge Computations," Proc.

of CRYPTO `87, pp 40{51, Santa Barbara, 1987.

[O] Oren, Y. \On the Cunning Powers of Cheating Veri�ers: Some Observations about

Zero-Knowledge Proofs", Proc. of 28th Symposium on Foundations of Computer Sci-

ence, pp 462{471, Los Angeles, 1987.

[S] Shamir, Adi, \IP = PSPACE," manuscript.

[TW] Tompa, M., and H. Woll, \Random Self-Reducibility and Zero-Knowledge Interactive

Proofs of Possession of Information," Proc. of 28th Symposium on Foundations of

25

Computer Science, pp. 472{482, Los Angeles, 1987.

26

