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Abstract

We prove that the size of any read-once de Morgan formula reduces on average

by a factor of at least p��o(1) when all but a fraction p of the input variables are

randomly assigned to f0; 1g (here � *) 1= log2(
p
5� 1) � 3:27). This resolves in the

a�rmative a conjecture of Paterson and Zwick. The bound is shown to be tight up

to a polylogarithmic factor for all p � n�1=�.
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1. Introduction

Assume that we randomly assign all but a fraction p of variables in a de Morgan formula
of size s. What will be the expected formula size of the induced function? The obvious
answer of course is that this size will be at most ps.

Subbotovskaya [13] was the �rst to observe that actually formulae shrink more. Namely
she established an upper bound

O
�
p1:5s+ 1

�
(1)

on the expected formula size of the induced function. This result allowed her to derive an

 (n1:5) lower bound on the de Morgan formula size of the parity function.

This latter bound was superseded by Khrapchenko [14, 15] who, using a di�erent
method, proved a tight 
 (n2) lower bound for the parity function. His result implied
that the parity function shrinks by a factor � (p2), and provided an upper bound � � 2 on
the shrinkage exponent �, de�ned as the least upper bound of all  that can replace 1.5 in
(1).

The study of shrinking properties of constant depth circuits led in [5, 1, 11, 6] to good
lower bounds for such circuits.

The new impetus for research on the expected size of the reduced formula was given
by Andreev [12] who, based upon Subbotovskaya's result, derived an n2:5�o(1) lower bound
on the de Morgan formula size for a function in P . A close inspection of the proof reveals
that his method actually gives for the same function the bound n�+1�o(1).

New improvements of the lower bound on � followed. Nisan and Impagliazzo [8] proved

that � � 21�
p
73

8
� 1:55. Paterson and Zwick [9], complementing the technique from [8]

by very clear and natural arguments, pushed this bound further to � � 5�
p
3

2
� 1:63.

Combined with Andreev's work this gives the currently best known lower bound 
 (n2:63)
on the de Morgan formula size for functions in NP .

It is generally believed that � = 2 (see e.g. [8, 9]). A natural starting point to prove this
conjecture is to investigate the special case of read-once formulae. Note that Khrapchenko's
example of parity function does not provide a shrink-resistant instance in this case, and
the only upper bound known so far on the shrinkage exponent �� for read-once formulae
was proved by Paterson and Zwick in [9]. In that paper a sequence of read-once functions
in n variables was presented so that the expected size of the induced functions is at least


�
pn1=�

�
where � *) 1= log2(

p
5�1) � 3:27. With p = Cn�1=� this gives the upper bound

�� � �. Paterson and Zwick conjectured that this bound is tight, that is �� = �.
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The main purpose of this paper is to prove their conjecture. More precisely, we show
that the expected formula size of the function resulting from a read-once formula in n
variables after assigning in it all but a fraction p of the variables at random is at most

O
�
p�
�
log 1

p

���1
n + (logn)�1

�
(Theorem 2.1). If the original formula is balanced then

the factor
�
log 1

p

���1
can be omitted (Corollary 2.4). We also improve, in the range p =

p(n) � n�1=�, the upper bound of Paterson and Zwick by presenting an example of read-
once functions in n variables where the expected size of the induced functions is 
 (p�n)
(Theorem 2.5). This shows that our lower bounds are tight up to a polylogarithmic factor.

At the heart of our approach lie various links between the shrinkage properties of a
function and its behavior under random restrictions assigning all variables. These links
allow us to apply to our problem the strong machinery developed by Valiant [10] and
Boppana [2].

More generally, our proofs are assembled from several independent pieces. It seems
that many of these auxiliary statements have a scope of application much broader than
the original task they were designed for. We hope that at least some of them will be useful
for attacking the general case.

The paper is organized as follows. In Section 2 we introduce the necessary notations
and state our main results. In Section 3 we exhibit our collection of auxiliary lemmas. For
the reasons explained above we prefer to gather them in one place and formulate them in
reasonable generality. After that it is comparatively easy to prove our main result, which
we do in section 4. Section 5 contains a simpler proof of the slightly better lower bound for
the case of balanced formulae. In the last section 6 we present an example showing that
our bounds are tight up to a polylogarithmic factor.

2. Preliminaries

A de Morgan formula is a binary tree in which each leaf is labeled by a literal from the set
fx1; : : : ; xn; �x1; : : : ; �xng and each internal node v is labeled by an operation o(v) which is
either ^ or _. The size of a formula F is de�ned as the number of leaves and is denoted
by L(F ). The depth D(F ) is the depth of the underlying tree. The size and the depth

of a Boolean function f are, respectively, the minimal size and depth of any de Morgan
formula computing f in the natural sense. For convenience we de�ne the size and depth
of a constant function to be 0.

A de Morgan formula is read-once if for each input variable xi there exists exactly one
leaf labeled by xi or �xi. We will always assume that leaves of a read-once formula are
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numbered in such a way that the l-th leaf is labeled by xl or �xl. A Boolean function is
read-once if it can be computed by a read-once formula. For a read-once function f , L(f)
equals the number of variables f essentially depends on.

A de Morgan formula is balanced if the underlying tree is balanced that is all branches
have the same length. A Boolean function is read-once balanced if it can be computed by
a de Morgan formula which is both read-once and balanced. Clearly,1 D(f) = logL(f) for
read-once balanced functions f .

A de Morgan formula is monotone if it contains no negated literals from f�x1; : : : ; �xng.
Monotone formulae compute monotone (in the natural sense) Boolean functions.

A restriction is an element of f0; 1; �gn. For p 2 [0; 1] let �p be the random restriction,
in which we set randomly and independently each variable to � with probability p and to
0; 1 with equal probabilities 1�p

2
. A restriction � naturally takes a function f of n variables

into a function of the variables given the value � by �. We will denote this function by
�(f). A probability distribution on restrictions together with a �xed function f gives a
probability distribution on functions, and we denote �p(f) by f p. Let

Ef (p)*) E
h
L(f p)

i
;

Nf (p)*) P
h
f p 6� const

i
;

C�
f (p)*) P

h
fp � �

i
(� 2 f0; 1g):

Clearly,
Nf (p) + C0

f (p) + C1
f (p) = 1: (2)

The shrinkage exponent �� for read-once formulae [9] is de�ned as the least upper
bound for those constants  for which the bound Ef (p) � O (pL(f) + 1) holds uniformly
for all read-once functions f . Let � *) 1= log(

p
5 � 1) � 3:27. Paterson and Zwick [9,

Theorem 6.5] came up with an example of read-once functions f(x1; : : : ; xn) such that

Ef (p) � 

�
pn1=�

�
. This showed �� � �. We have the following:

Theorem 2.1. For any read-once function f(x1; : : : ; xn),

Ef(p) � O

0
@p�

 
log

1

p

!��1
n+ (logn)�1

1
A :

Hence �� = �.

1All logarithms and exponents in this paper are to base 2
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Remark 2.2. For the case when p�n is small, we have the better bound matching the
lower bound of Paterson and Zwick. It will be explicitly stated in Theorem 4.1.

If f is computed by a balanced read-once formula we can do slightly better in that we
can eliminate the logarithmic factor.

Theorem 2.3. For read-once functions f ,

Ef (p) � O
�
p�2D(f) + 1

�
:

Corollary 2.4. For read-once balanced functions f(x1; : : : ; xn),

Ef (p) � O (p�n+ 1) :

We also have the following lower bound.

Theorem 2.5. For each real-valued function p(d) with 2�d=� � p(d) � 1 there exists a

sequence of read-once functions fd such that D(fd) � d and

Efd(p(d)) � 

�
p�2d

�
:

This shows that the bound of Theorem 2.3 is tight (in the interval p�2D(f) � 1) and the
bound of Theorem 2.1 is tight up to a polylogarithmic factor.

3. Lemmas

Let �q be the random restriction which assigns independently each variable to 1 with
probability q and to 0 with probability (1� q). It may be helpful for the reader to think
of p as being small and q as being around 1=2. We will denote �q(f) by f q. Note that,
unlike f p, f

q is always a constant. Let

Af (q)*) P [f q � 1] :

The following remarkable result of Boppana [2] lies at the heart of our approach:

Proposition 3.1. (Boppana) If f is a read-once monotone function and q 2 (0; 1) then

A0
f(q) � L(f)1=� � H(Af(q))

H(q)
;

where H(q) = �q log q � (1� q) log(1� q).
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Our �rst lemma is an easy exercise in mathematical calculus:

Lemma 3.2. Let f be as in Proposition 3.1, p 2 (0; 1) and

x � exp
�
�1

2
p�1L(f)�1=�

�
: (3)

Then

Af

�
1 + p

2

�
� Af (1=2)

�
1 + pL(f)1=� log

1

x

�
+O(x): (4)

Proof. Because of the term O(x) in (4) we may assume that

Af

�
1 + p

2

�
� x (5)

and x is arbitrarily small. By (3) we may assume now that p is also arbitrarily small.
By the mean value theorem and Proposition 3.1,

�*) Af

�
1 + p

2

�
� Af (1=2) =

p

2
� A0

f (q) �
p

2
� L(f)1=� � H(Af(q))

H(q)
; q 2

�
1

2
;
1 + p

2

�
: (6)

We are going to prove that

� � 2

3
pL(f)1=�Af

�
1 + p

2

�
log

1

x
: (7)

Consider two cases.
Case 1. Af

�
1+p
2

�
� 0:01. Since p and x are arbitrarily small,

� � (by (6)) p � L(f)1=� � 2

3
pL(f)1=� � 0:01 � log 1

x

which proves (7) in this case.

Case 2. Af

�
1+p
2

�
� 0:01. Since f is monotone, Af (q) � Af

�
1+p
2

�
. Along with the

assumption of Case 2, this gives H(Af(q)) � H
�
Af

�
1+p
2

��
� 1:3 �Af

�
1+p
2

�
log

�
1

Af( 1+p
2 )

�
and allows us to continue the chain of inequalities (6) as follows:

� � 2

3
p �L(f)1=� �Af

�
1 + p

2

�
log

0
@ 1

Af

�
1+p
2

�
1
A � (by (5))

2

3
p �L(f)1=� �Af

�
1 + p

2

�
log

1

x
:
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So, (7) is proved. It implies Af(1=2) �
�
1� 2p

3
L(f)1=� log 1

x

�
Af

�
1+p
2

�
and then

Af

�
1 + p

2

�
� Af(1=2)

�
1 + pL(f)1=� log

1

x

�

since pL(f)1=� log 1
x
� 1=2 by (3).

Our main tool is the following lemma which for monotone f allows us to express
Ef (p); C

�
f(p); Nf(p) in terms of Af (p):

Lemma 3.3. If f is monotone then:

a) C1
f (p) = Af

�
1�p
2

�
,

b) C0
f (p) = 1� Af

�
1+p
2

�
,

c) Nf(p) = Af

�
1+p
2

�
� Af

�
1�p
2

�
.

Proof. a) First note that a monotone function is identically 1 i� it takes the value 1
on the all zero input. Let � be the restriction which assigns to 0 all variables set to � by
�p. Clearly ��p has the same distribution as �(

1�p
2 ) and hence by the above observation

we have C1
f (p) = P

h
fp � 1

i
= (since f and hence f p are monotone) P

h
�(fp) � 1

i
=

P
�
�(

1�p
2 )(f) � 1

�
= Af

�
1�p
2

�
:

b) is dual to a) and is proved in the same way.
c) immediately follows from a), b) and (2).

Assume now that F is a formula, l is a leaf and v1; v2; : : : ; vd(l) = l is the path leading
from the root (= v1) to this leaf. For 1 � i � d(l) � 1 consider the subtree rooted at the
brother node of vi+1. Let fi(l) be the function computed at the root of this subtree,

K^;l(F )*)
^

1�i�d(l)�1
o(vi)=^

fi(l);

K_;l(F )*)
_

1�i�d(l)�1
o(vi)=_

fi(l);

Kl(F )*)K^;l(F ) ^ (:K_;l(F )) :

If F is a de Morgan formula computing a function f , we say that a restriction � kills a

variable xl in F if and only if �(f) does not depend on xl. Our next lemma describes in
terms of the function Kl(F ) the killing relation for the case when F is read-once:
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Lemma 3.4. Let F be a read-once formula, l be a leaf and � be a restriction. Then � kills

xl in F if and only if �(xl) 6= � or �(Kl(F )) � 0.

Proof. Obvious from the construction of Kl(F ).

We derive now from Lemma 3.4 two extremely useful formulas.

Lemma 3.5. If f is the function computed by a read-once formula F , then

Ef (p) = p �
nX
l=1

�
1� C0

Kl(F )(p)
�
:

Proof. L(f p) equals the number of leaves not killed by �p. Therefore

Ef (p) =
nX
l=1

P
h
�p does not kill xl

i
= (by Lemma 3.4)

nX
l=1

P
h
�p(xl) = �;�p(Kl(F )) 6� 0

i
= p �

nX
l=1

�
1� C0

Kl(F )(p)
�

since xl does not occur in Kl(F ) and hence the events �p(xl) = � and �p(Kl(F )) � 0 are
independent.

Lemma 3.6. If f is the function computed by a monotone read-once formula F , then

A0
f(q) =

nX
l=1

AKl(F )(q):

Proof. Let �q1;:::;qn be the random restriction which independently assigns xl to 1 with
probability ql and to 0 with probability 1� ql and let

Af(q1; : : : ; qn)*) P [�q1;:::;qn(f) � 1] :

Since Af(q) = Af(q; : : : ; q), we have

A0
f (q) =

nX
l=1

@Af

@ql

�����
(q;:::;q)

:
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So we only have to show that for each �xed leaf l,

@Af

@ql

�����
(q;:::;q)

= AKl(F )(q): (8)

To do this, denote by � the restriction which assigns xl to � and independently assigns
all remaining variables to 0 with probability 1� q and to 1 with probability q. By Lemma
3.4,

P [� does not kill xl] = P [�(Kl(F )) � 1] = AKl(F )(q): (9)

On the other hand,

Af (q; : : : ; ql; : : : ; q) = P [�ql�(f) = 1] = P [�(f) � 1] + ql �P [� does not kill xl]

since f is monotone. Hence

@Af

@ql

�����
(q;:::;q)

= P [� does not kill xl] : (10)

(9) and (10) together imply the desired equality (8).

Our last lemma is a tool to handle unbalanced formulae.

Lemma 3.7. Let F be a formula of size at least s where s � 1 is an integer. Then there

exists a subformula H of F such that L(H) � L(F )� s+ 1 and for the representation

F � G(x1; : : : ; xr; H) (11)

with

L(F ) = L(G) + L(H)� 1 (12)

we have either L(G) > s=2 or H � H1 �H2 where L(H1); L(H2) � s=2.

Proof. F contains subformulae H of size at least L(F ) � s + 1; for example H � F .
Let us choose a minimal subformula H with this property and consider the corresponding
representation (11). If L(G) > s=2 we are done. Otherwise L(H) � L(F ) � s=2 + 1 by
(12) which along with assumption L(F ) � s implies that H can not be a single variable.
Hence H � H1 � H2, where � 2 f^;_g. If, say, L(H1) < s=2 then we would have
L(H2) � L(F ) � s + 1 which would contradict the choice of H. Hence L(H1) � s=2 and
similarly we prove L(H2) � s=2.
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4. Proof of Theorem 2.1

We will denote L(f) by n throughout the section. We divide the analysis according to
whether pn1=� � 1

2 log n
or not.

4.1. p
�
n is small

In the case pn1=� � 1
2 log n

the claim of Theorem 2.1 is clearly implied by the following
statement:

Theorem 4.1. For any read-once function f(x1; : : : ; xn) and any p such that

pn1=� � 1

2 logn
(13)

we have the bound Ef (p) � O
�
pn1=�

�
.

Proof. Let F be a read-once formula computing f . Replacing all occurrences of �xl in F
by xl, we may assume w.l.o.g. that F is monotone. Let l be a leaf. Since K^;l(F ) and
K_;l(F ) have disjoint sets of variables,

1� C0
Kl(F )(p) =

�
1� C0

K^;l(F )(p)
�
�
�
1� C1

K_;l(F )(p)
�

and similarly
AKl(F )(1=2) = AK^;l(F )(1=2) �

�
1� AK_;l(F )(1=2)

�
: (14)

Since K^;l(F ) and K_;l(F ) are monotone we may apply Lemma 3.3 to conclude

1� C0
Kl(F )(p) = AK^;l(F )

�
1 + p

2

�
�
�
1� AK_;l(F )

�
1� p

2

��
:

Substituting this to Lemma 3.5 we get

Ef (p) = p �
nX
l=1

AK^;l(F )

�
1 + p

2

�
�
�
1� AK_;l(F )

�
1� p

2

��
(15)

and similarly from (14) and Lemma 3.6 we have

A0
f(1=2) =

nX
l=1

AK^;l(F )(1=2) �
�
1� AK_;l(F )(1=2)

�
: (16)
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Apply now Lemma 3.2 with f � K^;l(F ) and x = n�1 (note that (3) follows from

(13)). We derive AK^;l(F )

�
1+p
2

�
� O

�
AK^;l(F )(1=2) + n�1

�
and, by dual arguments, 1 �

AK_;l(F )

�
1�p
2

�
� O

�h
1� AK_;l(F )(1=2)

i
+ n�1

�
. Substituting these two bounds into (15)

we have

Ef (p) � p �O
 

nX
l=1

AK^;l(F )(1=2) �
�
1� AK_;l(F )(1=2)

�
+ 1

!
= (by (16))

p �O
�
A0
f (1=2) + 1

�
� (by Proposition 3.1) O

�
pn1=�

�
:

4.2. p
�
n is large

Without loss of generality, we can assume that 0 < p < 10�2. Let s = sp be the maximum
integer n satisfying (13). Clearly, s � 12 and (13) holds for all n � s. By Theorem 4.1 we
have

Ef(p) � C

log s
(17)

for an arbitrary read-once f(x1; : : : ; xn) with n � s where C is an absolute constant. Since
s = �((p log(1=p))��), in order to complete the proof of Theorem 2.1 it su�ces to establish
the following bound:

Lemma 4.2. Let f(x1; : : : ; xn) be a read-once function, n � s=4. Then

Ef(p) � C(12n� 2s)

s log s
:

Proof. Induction on n.
Base s=4 � n � s follows from (17).
Inductive step. Let n > s and F be a read-once formula computing f . Replace in

Lemma 3.7 s by s=2 and apply it in this form to the formula F . We will get a representation
of the form (11). Let g; h be the functions computed by the formulas G;H respectively.
Renaming variables we may assume w.l.o.g. that g depends on the variables x1; : : : ; xr; y
whereas h depends on xr+1; : : : ; xn; r + 1 � s=2. Let g� be the function obtained from g
by setting y to � (� 2 f0; 1g). The crucial observation is that

Ef (p) � Eg0(p) + Eg1(p) + Eh(p): (18)

We prove (18) locally i.e. we show that for any �xed restriction � 2 f0; 1; �gn ,
L(�(f)) � L(�(g0)) + L(�(g1)) + L(�(h)): (19)
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Extend � by setting �(y) *) �. If � kills y in G or � reduces h to a constant, �(f)
coincides with �(g�) for some � 2 f0; 1g and (19) becomes obvious. Otherwise L(�(f)) =
L(�(g))+L(�(h))�1. Moreover we can set y to a constant � so that this does not produce
any extra killings in �(g). Which means L(�(g�)) = L(�(g))� 1 and again implies (19). So
(19) and hence (18) are proved.

Now, since r + 1 � s=2, we may apply (17) and derive from (18) that Ef (p) � 2C
log s

+

Eh(p). Let us recall >from Lemma 3.7 that additionally we have either r + 1 > s=4
or H � H1 � H2 where L(H1); L(H2) � s=4. In the �rst case we apply the inductive
assumption to H (note that L(H) � L(F )� s=2 + 1 � s=2) to conclude

Ef (p) � 2C

log s
+
C(12(n� r)� 2s)

s log s
� 2C

log s
+
C(12n� 5s+ 12)

s log s
� C(12n� 2s)

s log s
:

In the second case the inductive assumption can be applied to both H1 and H2 and we
have

Ef (p) � 2C

log s
+ Eh1(p) + Eh2(p) �

2C

log s
+
C(12 � L(H1)� 2s)

s log s
+
C(12 � L(H2)� 2s)

s log s
� C(12n� 2s)

s log s
:

In either case the inductive step is completed and this also completes the proofs of
Lemma 4.2 and Theorem 2.1.

5. Proof of Theorem 2.3

The proof of Theorem 4.1 is not \analytic" in the sense that it does not provide us with an
analytic bound on Ef (p) provable by induction on L(f). Instead it requires a rather non-
trivial analysis essentially involving the tree structure of the read-once formula computing
f . We do not know whether this proof can be smoothed in the general (unbalanced) case.
In this section we show how to do this for balanced formulae by proving Theorem 2.3. As

a reward, we get rid of the factor
�
log 1

p

���1
(see Corollary 2.4).

Denote by C the constant assumed in the term O(x) in (4). Let

a *) log [5(C + 1)] ; D *) � log

 
1

p

!
� a� 6:
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Lemma 5.1. For a read-once function f(x1; : : : ; xn) such that D(f) � D we have the

bound Ef (p) � O(1).

Theorem 2.3 follows easily from Lemma 5.1. In fact, any read-once function f with
D(f) � D can be decomposed as f = g(h1; : : : ; hl) where l � O

�
p�2D(f)

�
and hi are

read-once functions of depth at most D. This gives us immediately Ef(p) � Pl
i=1Ehi(p) �

O(l) � O
�
p�2D(f)

�
, and hence Theorem 2.3.

Proof of Lemma 5.1. We can assume D � 0. For d � D set

�d *)
d�1Y
k=0

�
1 + p2k=�(D + a� k)

�

and
�d *) Cp2d+d=��D:

We are going to prove that for any d � D and any monotone read-once function f of
depth D(f) � d,

Ef(p) � �d
�
pA0

f(1=2) + �d

�
: (20)

With the help of 1 + x � ex, it is easy to see that �D � O(1) and �D � O(1). It is also
easy to derive from Proposition 3.1 that A0

f(1=2) � p�1. Hence (20) would su�ce to �nish
the proof of Lemma 5.1.

We prove (20) by induction on d.
Base d = 0 is obvious since �0 = 1, Ef(p) = p and A0

f (1=2) = 1.
Inductive step. Let D(f) = d + 1, d � D � 1. Assume that f � g ^ h where

D(g); D(h) � d and that (20) is already established for g and h. Please remember that by
our choice of parameters p�2d is bounded by 2�a�7 which is a small constant.

The subfunction g contributes L(�(g)) to the size of �(f) unless �(h) � 0 and the same
holds for the contribution of L(�(h)). This implies

Ef (p) = Eg(p) �
�
1� C0

h(p)
�
+ Eh(p) �

�
1� C0

g (p)
�
= (by Lemma 3.3)

Eg(p) �Ah

�
1 + p

2

�
+ Eh(p) � Ag

�
1 + p

2

�
:

9>>>>>>=
>>>>>>;
(21)
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Since Af(q) = Ag(q) � Ah(q),

A0
f (1=2) = A0

g(1=2)Ah(1=2) + Ag(1=2)A
0
h(1=2): (22)

We are going to apply Lemma 3.2 with x = xd = 2d�D�a to Ag

�
1+p
2

�
; Ah

�
1+p
2

�
in (21).

For this we should �rst check (3). In our situation this inequality becomes � log 1
p
�d�6 �

1
2
p�12�d=� or � log y � 6 � 1

2
y where y *) p�12�d=�. This is easily checked by �nding the

maximum of the function � log y � 1
2
y.

Applying Lemma 3.2 allows us to continue the chain of inequalities (21) as follows:

Ef(p) � Eg(p) � (Ah(1=2) + Cxd)
�
1 + p2d=�(D + a� d)

�
+

Eh(p) � (Ag(1=2) + Cxd)
�
1 + p2d=�(D + a� d)

�
� (by inductive assumption)

�d
�
1 + p2d=�(D + a� d)

�
�h�

pA0
g(1=2) + �d

�
� (Ah(1=2) + Cxd) + (pA0

h(1=2) + �d) � (Ag(1=2) + Cxd)
i
=

�d+1

h�
pA0

g(1=2) + �d

�
� (Ah(1=2) + Cxd) + (pA0

h(1=2) + �d) � (Ag(1=2) + Cxd)
i
�

(by (22)) �d+1

h
pA0

f(1=2) + 2�d + Cxd
�
2�d + pA0

g(1=2) + pA0
h(1=2)

�i
�

(by Proposition 3.1) �d+1

h
pA0

f(1=2) + 2�d + 2Cxd
�
Cp2d=� + p2d=�

�i
�

�d+1

h
pA0

f (1=2) + �d+1

i
:

The case f � g _ h can be treated similarly.
The inductive step is completed. This also completes the proofs of (20) and Lemma

5.1.

6. Proof of Theorem 2.5

The example of Paterson and Zwick [9] shows that the bound of Theorem 4.1 is tight.
Extending their argument we prove that also Theorem 2.3 is tight and hence Theorem
2.1 is tight up to a polylogarithmic factor. Quite fortunately, Lemma 3.3 allows us to use
results of the computations already performed in [10, 2].

Proposition 6.1. For each p � 1 there exists a monotone read-once function fp of depth
at most � log 1

p
+O(1) such that

Afp(1=2) � 1=10; Afp

�
1 + p

2

�
� 9=10:
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Proof. Combining [2, Theorem 1.2 (a)] (with p := 1=2 and m := 2=p) and [2, Theorem
1.2 (b)] (with m := 4) we get the desired function fp of size O (p��). A close inspection
of the constructions involved in the proof shows that moreover D(fp) � log [O (p��)] =
� log 1

p
+O(1).

Proof of Theorem 2.5. Suppose 2�d=� � p � 1. Let dp be the depth of the function fp
de�ned above. We may assume that d � dp since otherwise [9, Theorem 6.5] applies. De�ne
fd by a formula which is an AND-OR tree with a ^ closest to the inputs of depth d � dp
and where input number l is replaced by a copy of fp, called f

l
p. For i = 1; 3; : : : ; d� dp let

ri be the probability that an input to an ^-gate on level i is forced by �p to 0. By Lemma
3.3 and the construction, r1 � 1=10 and it is easy to see that ri+2 � 4r2i which implies

ri � 1

4
�
�
2

5

�2 i�1
2

:

In a similar way let si be the probability that an input to an _-gate on level i is forced to
1. By Lemma 3.3 and the construction we have s2 � 1=100 and si+2 � 4s2i which gives us

si � 1

4
�
�
1

25

�2 i�2
2

:

Similarly to Lemma 3.5 we have

Efd(p) =
X
l

Ef lp
(p)P [Rl]

where Rl is the event that fd is not made independent of the leaf l by other �xings. Now
by construction Ef lp

(p) � Nf lp
(p) � 4=5 and by the bounds on the si and ri,

P[Rl] � 1� X
odd i

ri �
X
even i

si � 
(1):

The theorem now follows.

Note added in proof: There has been a number of recent papers in the related area.
Dubiner and Zwick [3] established the bounds of Boppana for other functions than H.
Using these bounds would decrease the exponent of the log 1

p
-factor. In a di�erent paper

Dubiner and Zwick [4], using related methods to ours remove this factor totally. For the
general case H�astad [7] has established that the shrinkage exponent is 2.
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