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Abstract— In this paper we describe an approach to simul- In many environments the sensors will give some readings
taneous localization and mapping, SLAM. This approach has that are not useful for localization. These could be rangaesc
the highly desirable property of robustness to data associ@sn of a bush or hedge, people, cars, sloping surfaces and so on.
errors. Another important advantage of our algorithm is that Bv trving t i t, df 't ’f th dat h of
non-linearities are computed exactly, so that global constints y rymg 0 ex rap good teatures rom. € raw data much o
can be imposed even if they result in |arge shifts to the map. the noise can be |gn0red. AlSO mapS W|th abStraCt featu&Z‘S ar
We represent the map as a graph and use the graph to find an sometimes more useful that maps that consist of raw data.
efficient map update algorithm. We also show how topological ~ Both feature based and scan based methods suffer from
consistency can be imposed on the map, such as, closing a 100pyat4 association errors. Incorrectly matching sensorimgad

The algorithm has been implemented on an outdoor robot and leads t in th i o h
we have experimental validation of our ideas. We also explai eads 1o errors In the resuiting maps. Lnce such an error

how the graph can be simplified leading to linear approximatons has occurred, many of the existing methods have no way to
of sections of the map. This reduction gives us a natural wayot correct or detect these errors. Others can do limited ciiorec

connect local map patches into a much larger global map. Matching errors are handled best by expectation maxinaiaati
EM, methods, [2]. When applied in the pure form EM will
find the best set of matches. In real-time implementations of

If robots are to move in the real world they need to be able &M this desirable property must be partially sacrificed as th
keep track of their position. For this they need maps. We wamtimber of combinations of matches is very large [3].
robots to be able to learn these maps as they move about thene reason that data association is such a problem is that
environment. This problem is known as simultaneous mappitige really hard problems are ones that look reasonablelyocal
and localization, (SLAM). The SLAM problem is central toput lead to global failure. With real data, matching errdtsm
autonoumous mobile robotics, [1]. do not lead to inconsistency until a loop is closed which can

This paper presents a new way to look at the problefake thousands of iterations. Up to that point the match seem
focusing on the issues that have caused the most trouble doite OK. This type of problem is very hard for any method
other methods. We have tried to combine the best features@fdeal with. All of the methods can produce good locally
existing approaches in a way that allows a robust solution ¢ensistent maps. Some can even correct locally inconsisten
the problem. coorespondance errors.

Our guiding principle is to retain all the important informa  Global consistency, the problem of closing large loops, is
tion and use it in the exact way with no approximations aauch harder. Many methods can not use the information that
long as possible. We can then introduce approximations latee robot has closed a loop to fix the map. Some methods are
when we have a better idea of the true state. designed to use this type of information explicitly [4], [F].

We represent this exact information as a graph with thhe idea of combining topological and metric information in
edges representing the measurements from our sensors. heified approach was shown in [7] to be a powerful one.
updates and approximations can then be formulated as op&ar method is similar to those methods and can also use the
tions on the graph. Large sections of the graph can be apprgiebal consistency constraints to improve the map.
imated linearly in a local frame leading to a simplificatibiat ~ Another major difficulty inherent in the SLAM problem is
does not suffer from non-linear effects as the global map tise inconsistent linearizations that arise from obserimg
distorted to impose topological constraints. same features from different locations. The extended Kalma

By using this very general representation we are abfiter SLAM methods make a linearization of the observation
to apply any method to find a good solution and just about the current state. As the state evolves, the lindansa
importantly, we have a measure, the energy as explained lat# the measurements will be about different points. Thisldea
to test how good that solution is. to inconsistancies in the resulting map after many itenastio
Julier and Uhlmann have first explained the problem [8].

The method we propose does not suffer from this problem

A number of methods been proposed to do SLAM. Thas we work with the full non-linear problem. The approach
methods can be characterized as being batch or recursiees suffer from local minimum. It is possible for our map to
feature based or raw data based and topological or methecome trapped in a local minimum. Any method that doesn’t
Most methods have some probabilistic interpretation. explore the entire space of possible maps will make similar

I. INTRODUCTION
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mistakes. This is a fundamental limitation of all methods. the probability of an explanation aB(x, z,d, f,A) we can
write:
[1l. THE REAL PROBLEM OF SLAM - OUR GOAL
What is it that causes SLAM maps to fail? Well a good P(z,z,d, f,A) = P(d, f|lz,z, A\)P(x, 2, A) Q)
answer is that there are just too many possible maps. Thef\l
ow the termP

space of all possible interpretations of the measuremeru i map and an association. We make an assumption here that this

a very high dimension. )
At the start there is one most likely solution and the Iesdsoes not depend on the map or path and that it only depends

but significantly likely solutions are all ‘close’ to the heme. On the number of features in the resulting nép. The idea is

Thus, one can safely use the maximum likelihood solution thsat the smaller the number of features the more apriorhyike

the solution. This is what the EKF method does. & association. So our first assumption is:
Now as the robot moves to new areas, some solutions
will begin to appear that are significantly likely but not yer
'close’ to the maximum likelihood solution. This is bound to Here we have chosen a rather arbitrary exponential form for
happen unless the robot explores very tediously with lots tife probability which is justified by two facts. It leads torye
exploration of the areas already mapped and only occagjonaimple expressions and it works well. We will also assume

(z, z,A) is the apriori probability of a path,

P(z,z,A) < P(A) = P(Ny) oc e N7 2

expanding the map size. that the motion and feature measurements are independent.
The number of distinct regions of the state space with
significant likelihood will grow as the robot explores the P(z,z,d, f,A) < P(d|z)P(f|z,z,A)e N7 ()

environment. When the robpt comes back to areas aIread¥1\1OW we can define the "energy’, or entropy, of our system.
mapped the number of regions will decrease as a result o

inconsistancies. If the maximum likelihood solution is ineo
of the regions that become inconsistent, it will no longer beF(z, z,d, f,A) = —log(P(d|z) — log(P(f|x, z, A) + ANy

the maximum likelihood solution and won’t even be 'close’ to (4)
a likely solution. The last term can be rewritten as:

The EKF has no way to find and jump to another region Ny
of the state space. Therefore, it can only be part of a larger ANy = N, — Z Aln; —1). (5)
solution to the SLAM problem and not the ultimate solution. j=1

Multiple hypothesis solutions, [9], will suffer from thedg  \wheren; is the number of measurements associated with
that over large loops the number of hypothesis that will Ggature ;. In this form we have an energy reduction if we

needed will be way too large. associate a new measurement with an existing feature as

One needs a single real-time solution for many applicatiogﬁposed to creating a new feature for that measurement.
but one would like to be able to impose the loop closing

constraint on that solution. The ultimate solution will be 1

continuously providing a map that is locally consistent and En=— Z Anj —1). ©)
pose estimate on that map. It will also be able to incorporate =t

global consistence constraints as they become available tdhe parameten specifies how much we can distort the

produce a more correct map and pose estimate. This is @f@Ph edges to make a match and still lower the energy. It will
goal. be important when making the data associations. If the gnerg

after matching two measurements is more then before, the
IV. THE PROBABILISTIC FOUNDATION match is likely incorrect. Thig is similar to the threshold one
We have a robot moving through a series of poses} Nnormally places on the mahalanobis distance when matching
taking measurements of both the relative movement betwashen using a maximum likelihood estimator.
poses and of the relative position of features. Hemans from The movement term gives rise to an energy:
1lto J\%.I Trrlle fmovement measurement”sbcag be denoted by N, LN
d;} while the feature measurements will be denote , o .
\ivhire k runs from 1 tdV,,,. The set of feature coordinigwill Ea= - Z log P(difwi—1, i) = 2 ; Sikii (7)

be denoted by z; }and the number of features by, < N,,. . .
L Xz} . By < Non , Here we assume a independent Gaussian model and drop an
An association of feature measurements with features will b

denoted byA,. This association then indirectly specifies thgldd't've constant. Théi are the inverse covariance matrices
of the dead reckoning estimates and
number of featuresyV;.

Now for eachA, and values for the poses and features we € = T(x;[xi 1) — 0 ®)
will have an explanation of the measurements. We will need v %1 v
to express the probability of a particular explanation. Bhst Here T' denotes the non-linear transformation to the robot
explanation would then be the one that gives the maximuiname atx;_;. The termd; is the estimated motion in the robot
probability, the maximum likelihood solution. If we denotdrame.
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We will now describe how the graph is built up as the robot
moves about. At the'” step we will need to add thé&" pose
node and possibly some new feature nodes to the graph. The
nodes can be added at their equilibrium positions assuming
the positions of the old nodes are fixed.

Having added the new nodes and edges we must calculate

Fig. 1. The energy nodes are filled. The state nodes are not.  the change induced on the rest of the map. We have to find
the minimum of eq. (11) with respect to the pose and feature
positions. We expand eq. (11) about the current state obgto t
Making similar assumptions, the feature measurements giv@adratic terms. The terms associated with a particulaenod
call it A, look like:

1 =
E; = —log(P(f|z,z,A) = 3 ankknk 9)
k=1 Ey= Z [Ei(Xa, %) + VEi(Xa,%;) - ( AA):: )+
e = f(T(Zj|Xi)) _ <k- (10) i:edgesof A

Wherex; is the pose from which measureménivas made (1/2) ( Axa, Ax; ) T Ei (%A, %) - ( AAXA )] (12)
andz; is coordinates of the feature associated with measure- Xi

mentk. f is a non-linear function describing the measurement. Now we condense the notation to:

The assumptions about independence are essential but the

distributions need not be Gaussian, odly . G—Es— ( Ga > (13)
Gi
V. THE GRAPH
We combine the results from the last section to find: T _f Haa Ha
E = Eq(x) + Ef(x,2) + Ex(ny). (11)  WhereAx, = x4 — %4, etc. Here we just call everything

It is this energy that we must minimize to find the maximurg and make no distinction between pose and feature nodes.

likelihood solution. The energy is a sum of terms each oftge subscript indicates all the coordinates that are not node
relating a few poses and features to one another plus t‘héjm shar_e an edge with A. An_|mportant n_umber for us
last term which is the match energy giving us the benefit ) the_predlctlon Of the energy gain from moving a nqde to
matching a measurement to an existing feature. This steict{1® Minimum position holding all other nodes fixed. This can
leads us to a represent the map and poses as a graph. This&aily be calculated. First the new node position would be:

be easier to work with than matrices and long state vectors. _ .

Our graph has two basic types of nodes, state nodes and (xa =Xa) = —Hys G
energy nodes. The state nodes contain coordinates (the fhen the change in energy would be:
and z), while the energy nodes contain the functionality and
information needed to calculate one of the terms in the gnerg AE, =—(1/2)Ga - Hleax -Ga (16)
sum above. Thus, each energy node will have edges connecting . o
it those state nodes that it needs to calculate the energy. ~ This AE, will be used to make decisions as to what

State nodes are composed of pose nodes, x's and fea@ptimization method to use and whether an update is needed.
nodes, z's. The energy nodes are move nodes and featuréhe simplest and slowest method is to use steepest decent.
measurement nodes. So, a move node would have edges to\gouse this as a last resort when near a saddle point. This is
pose nodes and would store theandd; needed to calculate the situation that eq. (16) giveSE, > 0. In that case, we
one term of eq. (7). need to move the node away from the positively curved region.

So that eq. (11) leads to a graph with nodes organized \&% move in the direction of the g_rad_ignt a small step and then
a chain of pose nodes connected by move nodes. The feafi@eglculate and repeat until no significant change occure. T

nodes will then be linked to the pose nodes as shown in fig.Step size is increased if the change in energy seems to tadica
a flat region, (ie. the change is given by the gradient times th

VI. M AP UPDATE change in x), and decreased if the curvature is too high.

In general, finding the minimum of eq. (11) is not feasible The next simplest method is to use eq. (15) directly. This
due to the large dimensionality of the state vector. We cavill move the node to the bottom of the energy surface but
however try to start the state near the measurement valtles higher order terms in the energy might require us totitera
and use the derivatives of the energy drive the system t@wvatlis a number of times until there is no significant change in
lower energy states. If we start at well chosen states we déwe energy. We will refer to the use of these two methods,
build up the graph by adding measurements one at a time gsteepest descents and eg. (15)), for per node minimizatn
then relaxing the graph. relaxing the node.

(15)



Having implemented only this much we found that thealculating the new equilibrium position. One can then com-
maps were already looking better than our previous SLANare the total energy before and after adding the measutemen
maps,[10]. The updates were rather slow however. One miistus, the data association problem is reduced to checking
relax the new node then all the adjacent nodes then if anytbe change in energy. We need not be very careful when
those changed one must relax any adjacent to them andaskling measurements to our graph. We use a relatively loose
on. This causes the update to move back and forth betwaratching requirement and rely on this check of the energy
nodes a lot when what is needed is to move a set of nodesuncover any mistakes after recalculating the equilioriu
simultaneously. We were able to significantly speed up tAdiis formulation is similar in some ways to expectation
procedure by doing what we call chained updates on the paesaximization, EM, methods, [2] and shares those methods
nodes. robustness with respect to matching errors.

For that we exploit the special nature of our problem. We The energy of an energy node is the sum of squares of
have a chain of pose nodes connected by the dead-reckonimtgpendent normal variables. It is thusya variable. One
edges. Let us consider pose node A with the previous pasn then check the energy of individual energy nodes at any
node labeled B. We will consider the features and the nettine to see if the associations still make sense.
pose node as fixed while nodes A and B are variable. In thiswe should mention here one of the major advantages of
subspace, we can always eliminate a pose node As coordindtes representation of the map. We can at any time and with
in terms of B’s by making the substitution: little effort go in and make changes to the graph. We can

for example merge features by simply moving the edges from
_ . _ T one feature node to the other and then discarding the node.
(xa =Xa) = —Hya-[Map-(xp=%X5)+G4]  (17) we can check the energy before and after the merge to see

Making this substitution we find the edge AB now conif they really should be merged. We can add information to

tributes some extra terms to B's gradient and Hessian at féSting edges. We can also remove edges if we find that they
current state. no longer make sense. And, of course, the initializatiorhef t

features is trivial. All these things are very tricky or ingsible
with a Kalman filter and thus our approach is both easier to
implement and able to use more information.

AGp = —Mpa-H s Gh (18)

- _ VIIl. CLOSING THELOOP
AHpp = —Hpa - Hyh - Hap (19) _ _ _
By closing the loop we are, of course, interested in a loop

We now move to B and repeat the procedure using th€at did not close by applying the above update rules. This
gradient and Hessian with the extra terms added to thent. Figuation presents two separate problems. First, how dues t
test if B needs an update, (ie. does eq. (16) gielS; < robot realize that there is a problem. Second how can the map
some threshold). Then, if an update is needed, eliminate Byg changed to close the loop. We will show a way to solve the
terms of the previous pose, C. Then move to C. second problem. We pause the SLAM program and check the

When we get to a node that doesn’t need an update we ¢agp. Then supply the program with a list of pairs of features
then use its coordinate values to update its next node, th@at are to be matched, (ie. one wall from the beginning of the
the next node’s coordinates to update its next node, and sol@p and one from the end). The map will then be recalculated
until we get back to node A. with the new constraints added.

We have essentially inverted the Hessian matrix for theif one first merges the features then recalculates the poses
chain of pose nodes assuming the feature nodes to be fix¢@ result tends to bend to fit the map on the pose update and
This is easy to do via operations on the pose nodes themselygen the features are updated the gradients are too small to
as each pose node is attached to only two other pose nodesove them much. The initial brute force way we chose to

After doing this we must move to the feature nodes attachgdt around this is to ignore most of the map and instead use
to the updated pose nodes and check if they need updatiagly the features from the loop closing constraint and thmto
This repeats until no updates are needed. In general theerunyath to adjust the existing graph. We then re-attach therfeat
of nodes needing updates only depends on the size of Bwyes to our graph one at a time. This worked but there is a
perturbation caused by the measurement. Most measurememigh better way to do this as we will soon describe.
only cause a few nodes to change. This is why in general the
method scales well to large maps, (constant time wrt. N)o Als IX. REDUCING THE GRAPH - STAR NODES
we note that we undo any updates that turn out to cause the\n optimization would be to simplify the graph by com-
energy to increase, thus we always move to lower energy. bining nodes. For a linear system one can reduce the graph
with an exact formula. One simply chooses a state node that
one wants to remove, call it node A. We let B represent the

We try to build the map up incrementally in a way thatvhole space of neighboring state nodes. One then ends up
the energy in each new feature measurement does not exosid a sub-system with an energy that is a quadratic function
A. We do this by first adding the feature measurement, thefix, andxp. Here we have simply called everythimgwith

VIl. FEATURE MATCHING



2 v a  wn @ One continues in this way forming a tree until there is only
= = one star node representing the interactions of a sectioheof t
o oxoe 0w e ow graph. The advantage of forming a tree rather than just a long
chain is numerical stability as we end up with a sum of terms
Fig. 2. Here we show how a node can be eliminated by creatiggsed with a small number of multiplications in each term rather
between all its neighborscg becomes the relative frame of the star node. than muItipIying a single matrix many times. The depth of the
tree gives a simple stopping criteria so we can for instamce g

no distinction between features and poses. The energy ©f t‘% a depth of 7 (127 reduct|o_ns_,).
C\4\]/e need not do the combining for the most recent poses.

sub-system can be re_presented as a_smgle energy node, Wgne can wait, say, 50 poses before starting to combine. So as
we call a star node, with edges radiating out to all these siode

So we combine all the energy nodes into star node and uesaeCh new pose is added to the graph we try to eliminate the

Gaussian elimination to remove the variables of node A. P93¢ 50 steps earlier. The advantage is that the lineanizati

In our case we have a nonlinear system. We must therer\f'éI be done about a better point and the match energy will

. S . ave been observed for some time. This can be compared to
expand the equations around the current equilibrium pi¥et.
o .. the EKF where these steps are done at once.
chose to only eliminate pose nodes. Thus, we end up with'a
solution for the pose node’s coordinates in terms of all the aking Sar Nodes Invariant
attached state coordinates. We make the Taylor expansion OM 9
the terms in eq. (11) that come from node A . The A part of

the gradient is zero, due to being at equilibrium, The star node calculates the energy using a Hessian matrix

as described above. This Hessian should have symmetries due
1 to the nature of the measurements that it represents. These
Eq= Z [Ei(Xa, %) +G; - (xj —%;) + 3 would be expressed by zero eigenvalues of the matrix.
jiedgesof A One symmetry is that of translation and rotation of all the
~ - o XA — XA state coordinates. Another would be sliding the end-pafts
S(xa—Ra, x5 =% )M (Ra %) - ( X — % )] (20) walls perpendicular to the wall normal vector. That is, ie th
! ’ case that the end-points were not directly measured, & fairl
common situation. By defining natural coordinates for tlag st
node we can eliminate these zero eigenvalues and represent

We can now solve fory —x4) in terms of the xg —x3p).

_ - 1 _
(xa =Xa) = —Hyu - Hap - (xp — Xp) (1)  the energy in a lower dimensional space as eigenvectors and
Is the optimal solution. We can then plug this into eq. (2@igenvalues> 0. This makes the star node explicitly stable
to get the new energy equation with A eliminated, and invariant, two very nice properties.

We define coordinateg as the state coordinates, trans-
formed to the frame of one of the pose nodeg,and then

E*=Ea= Y {Bj(xa%)+G;-(x;—%;)+ project out the part normal to the walls.
j:edgesof A
1 _ _ q; = P.-T X;|Xo)- 23
5 (4 = %) Hyj - (x5 = %)= o) @9

. We illustrate the simple case fd? = I, two pose nodes
Z (xi = %) - Hia-Hyy-Haj- (x5 —%X;)} (22)  and the rest point nodes. We can show how to transform the

izedgesof A Hessian to the coordinates.
We see that the new Hessian has terms connecting nodes
andj that had no connection before the reduction. This new q="T(x[x0) =W - (x). (24)

energy equation is then stored in the star node. We can start —~
by eliminatingx;, fig. 2. We then end up with a star node W=Wo+W (25)
with edges toxg, xo andz; for the features, i, connected to [ _

0

0

0

0

o

x1. We can then continue by eliminating and so on. If we 0

R 0

-1

continue all the way to the current pose we end up with a fully R 0
R 0

Wy = (26)

o O O

connected graph with only one pose variable. This is similar
to what happens in the extended Kalman filter.
However, we should not carry the reduction though the
whole set of poses. The resulting system would be too hard
to update. That is because it is no longer sparsely connected
Therefore, we stop at some point and start a new star node. —
If we first chose to eliminate every other pose node, we can w
then merge two star nodes separated by a pose node into a
larger star node by eliminating the pose node between them.

(27)

S O OO
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_ ([ cos(bo)  sin(6o) 28) hew state nodes. Then do the x to g transformation to get the
R . p (28) new: _ . .
—sin(0o)  cos(6h) invariant form with the new information.

Now the Jacobian for this coordinate change looks almostStar nodes can be used to eliminate state nodes. Any state

like W. node that is only connected to one star node can be removed
J=Jo+J+Js (29) by setting its part oiAq = 0 in eq. (33).
Star nodes represent a kind of local map. They contain in-
N formation on the features attached to them that is indepgnde
_610 to the information in the other star nodes. The relatiorship
Jy = ¢ ) ( 00100 --- ) (30) between star nodes are represented by edges to common state
3 nodes. These are 'correct’ relationships based on théHibed
T function. Theq represent the star node equilibrium position

for the attached state nodes. The star nodes look much like
-~ the local sub-maps of the 'Atlas Framework’ [7].
Where J, = Wy and J = W. Of courseq has 3 less  star nodes can be used to organize the global calculations
dimensions thax. In general: efficiently. One can ignore the features completely to get
an approximate solution by usindq = 0 for them when
0%q calculating the energy and its derivatives. This is eqentl
How =" - Haq - J + x0T Ggm J" - Hgq - J. (31) to treating the features attached to each star node as being
Where we use the fact that tig, term is typically much different from the features attached to other nodes. By gloin
smaller than the other terms and can be dropped, (ie the sthigé the pose-pose forces from a star node will reflect the
is near the equilibrium point of the star node when we waffature measurements, (ie. the links will be stiffer thandde
to use this formula). By working backwards from eq. (31) anggckoning) but the graph will be able to adjust to stressemo

noticing that.J - J7 = I, we see that, quickly due to the simplified structure. This leads to olgect
that look like the strong links of [4]. One can then put back in
Hyg = T Hyw - JL. (32) the constraint that the stars have features in common tcerefin
the solution.

We had more symmetries to deal with,7 I, so that the  Tne deas here result in a representation of the map very
dimension ofq was typically nearly half that ok. These gimijlar to the sparse extended information filter [11]. The
projections were done using constantso.J = P for them. ifference here is that we do not linearize once at the time
This is an approximation that the wall normals in the stajf the observation and lock the approximation in that frame.
frame don’t change significantly. Instead we linearize a section of the graph in a relative éram

We now have an explicitly invariant representation that cafhq at a time when it is more mature. This avoids most of the
be reduced using principle component analysis to a set (@fn-jinear effects that would otherwise result from thealoc
eigenvalues and eigenvectors. By adjusting the lineaoizat frame being rotated in the world frame. Another differerge i
point in theq space we can eliminate the gradient terms. that | uj and Thrun 'throw away’ some information in order

1 to prevent a fully connected system. We instead leave some
E"=E@)+5 > b5V - Ag)?] (33) pose nodes around which achieve the same end without loss
J of information.

Here g are the 'natural coordinates?, are the eigenvalues
and V;* are the eigenvectors. The g are expanded around thé-losing Smple Loops
equilibrium point, . In this form the star nodes have some

very nice properties. We can use theAg’s of eq. (33) and the ideas above to
set constraints around a loop. We start by adding a Lagrange
Nice Star Properties multiplier to our cost function,

node, xq, has moved significantly, one can make the q to x -
transformation by inverting the above formulas to expréss t (34)
energy as a quadratic form in the world coordinates aboutWhere: is the index of the star nodes around the lodp;,;
the currentx = x. One uses this until the base node has the difference between the two poses attached to star node
again moved significantly. This makes updates very fast. Reandd.. is the constraint on the change in pose. Now we use,
centering removes most of the non-linear effects of large
changes. axi= (B0 e, (35)

Star nodes can have information added to them. One starts 0 1
by re-centering and then adds the Hessian, gradient andhis is the way we defined the natural coordinates in terms
constant pieces of new information, possibly adding edgesdf relative poses. Thq; above refers to the first 3 components

- 1 k *
Star nodes can be re-centered. When the the base PRSA, Ag) = A - (Z Ax; —d,) + QZZibj (V:-Aq)’
i J



Full Non-Linear Graphical Slam

of the q vector for thei*" star node. The above equation T e

assumes that the g's have the right sense around the loep, thi E
is not important (possible minus signs). Also all the featur E
components of\q are set to zero for now as explained above. wof

In general the rotation matriceR,;, make the minimization sol
of the above cost function non-linear. If we assume that the
rotation matrices are constant (at the current values), ave c
solve this easily,

VTV CRT -
- iV iV i T R -
Aqi = — E T ( 0 1 ) AT (36) o -

Where i{/‘;fT are the first 3 components of the th&:

eigenvector for thet” star node. Fig. 3. This is the resulting map and path generated by thehgral SLAM
method. The average time per iteration was 30 msec. The diotsl show

R, 0 the actual building outline. The path was traversed coulitekwise. No

AT = S_l{[z < * > -qq] — d.}. (37) approximations were made. No attempt is made to match wal ate *far

0 1 from the current node, as measured by the number of graplsetipeas, the

! walls from the begining of the loop appear as new walls at tiek e

R; 0 VITVE O RT 0
S:Z{( 01 1)[2#]( 01 1)}. (38) T e
% Jj J 80 / B ﬁ’r | ]
By using these formula a number of times, (3 in practice), L =
each time with the new rotation terms, one can solve the o H\ ]
nonlinear system. Then it is just to turn on the feature megch
between star nodes to get the exact solution. wf j ‘
This procedure is quite fast taking a few seconds even o - .
for large loops with significant closing errors. The matrix who L’Jl: \ ]
operations are all 3x3. The Lagrange multiplier equatidesa o < - ,@*ﬂ :
order N time,where N is the number of star nodes around the N o o |
loop. The fine tuning after turning on the features takes the ) o =

most time and depends on the stopping criteria.

X. EXPERIMENTS Fig. 4. This map shows the result of reducing the graph bydhicing star

We have implemented our method on an ATRV2 outdofss. The hose todes it el e Sowr 2 o shout prey e
robot equipped with a cross-bow D-FOG 6-axis inertial S&NS@emain. Calculation time was less than half that for the figh-linear case.
which we use to adjust the odometry and to obtain the pitch
and roll angles of the robot. To measure the walls we use
a SICK laser scanner. We measure the angle, perpendic@ia@ point of the path to the left side of the building. This was
distance and if possible the angle of the endpoints of théswaldue to the robot sliding down an incline while rotating.
The dead-reckoning data fusion and the feature detection arWe then tried out the graph reduction ideas, shown in
described in an earlier paper, [10]. The output of the faatufigure 4. We calculate exactly as previously but then after
detection module is simply fed to the grapher. each update we reduce the pose nodes 50 nodes back from
The representation for walls is two endpoints each with)(x,jhe current pose node. We form a star node tree as described
values. The pose is (x,y&.¢, ). The measurement nodes ddn section IX, stopping at level 7, (127 pose nodes per star).
not always constrain all the dimensions. Thus, the and+) This method was only a little slower than our compressed
values are, for example, simple fixed at the values provid&&iman filter but the time for a particular iteration can be
by the dead-reckoning module. longer than the average. It is therefore necessary to taliec
In figure 3 we show an example map. This map has 7,50ata in a queue with separate process and then have the SLAM
pose nodes and 11,975 pose-wall measurements. The avepggram read the data from the top of the queue and process
times per iteration for graph update do not include the tinie We use a separate feature extractor/tracker to maittésn
for feature extraction, but does include matching the fourgtheue in our real-time implementation.
features to the map as well as searching for features that th&he map can be compared with the maps made using our
map says should be visible but the feature extractor did nmampressed Kalman filter, the errors on the Kalman filter map
find. This was running on a laptop with a 550 Mhz Pentiurare typically larger. Also the CEKF could not fix the map as
[ll. The pose nodes are so tightly packed as to appear asva do next.
continuous line. One can notice that there is a large error afThe result of our loop closing procedure are shown in



After Imposing Constraint

© R We have outlined an efficient implementation that is running

sof / %"Ff'-_'"ﬁ} : T the algorithm in on an outdoor robot. The time for a map

I -] update is independent of map size and only depends on
wF - \ | how well the measurements agree with previous information.
.o : Experimental results have also been shown to confirm that the
: algorithm does produce good maps. A comparison to a Kalman
) filter SLAM implementation on the same platform shows that
1 the maps are in many ways superior.
of — —-:u . Our method, while not being very subtle, does solve the
L _ 7 . problem in the most straight forward way possible. We have
N ' R ' h shown that this intuitive approach is robust and easy to
= implement. The main advantage of our formulation is the fact
Mool w w e w W w W w that all information is stored and accessible in the graftis T
allows one to try different methods to improve the map. The
Fig. 5. The map was forced to close using the Lagrange mieltiphethod. energy in the graph gives a useful measure of goodness for
the map and allows one to compare two solutions. The graph
) ives a representation of a general map probability distioD
e e e st e t Gavssan maps.
. N The reduction of the graph using star nodes which contain
loop closing calculation took less than 2 sec. . - .
all the symmetries of the original measurements is a powerfu
Xl. DISCUSSION way to correctly impose topological constraints on the map.

We believe that the results of the experiments confirm tH&'€ beauty being the simplicity and tractability of the iéag
validity of our approach. We can make good quality mal[gquatlons. Impo§|ng cons_,tralnts is redpce to.solvm.g ay eas
in this straight forward way. The graphs contain informatio-@grange multiplier equation and then fine tuning usingred! t
and computational machinery that allows us to do things likBformation.
imposing global constraints on the map. REEERENCES
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