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Abstract

An important challenge in robotics is to achieve robust performance in object grasping and manipulation, dealing

with noise and uncertainty. This paper presents an approach for addressing the performance of dexterous grasping

under shape uncertainty. In our approach, the uncertainty in object shape is parameterized and incorporated as a

constraint into grasp planning. The proposed approach is used to plan feasible hand configurations for realizing

planned contacts using different robotic hands. A compliant finger closing scheme is devised by exploiting both

the object shape uncertainty and tactile sensing at fingertips. Experimental evaluation demonstrates that our method

improves the performance of dexterous grasping under shape uncertainty.
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1. Introduction

Dexterous grasping is an essential skill for many

tasks that robots are expected to perform, ranging from

the assembly of workpieces in a factory setup to ad-

vanced manipulation of cutlery in a household environ-

ment. The core requirement of a successful dexterous

grasping system is to place the fingertips on the relevant

locations of an object, applying sufficient contact forces

and maintaining grasp stability. To achieve this, a com-

mon approach is to address two subproblems: grasp

planning and grasp execution. Considerable progress

has been made during the last couple of years and ef-

ficient grasp planning algorithms have been proposed

to generate grasps for known, partially known or un-

known objects in structured or unstructured environ-

ments [1, 2, 3, 4, 5]. Robust and reactive grasp control

techniques have been developed and validated on differ-

ent robotic platforms relying on single or multiple sen-

sory feedback. Despite these achievements, demonstrat-

ing robust and flexible object grasping and manipulation

in natural environments taking into account uncertain-

ties in perception and control remains a challenge.

In this paper, we address the problem of uncer-

tain shape perception in a system considering finger-

tip grasping. Uncertain shape perception may originate
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from occlusion, partial view or issue with sensor cali-

bration. We present a system which takes into account

shape uncertainty during grasp planning and execution.

Shape uncertainty is parametrized using Gaussian Pro-

cesses (GP) and it is incorporated as a constraint into a

contact-level grasp synthesis algorithm. The output of

the algorithm is a set of contacts defining a grasp with an

associated shape uncertainty that determines the maxi-

mum uncertainty a grasp can withstand, as shown in the

left upper part of Fig. 1(1). Given the desired grasping

contacts, the feasible hand configuration (hand pose and

finger joint configuration), is computed using a proba-

bilistic model. The probabilistic model is learned offline

for each hand and is frame invariant thanks to the use

of a Virtual Frame (VF) approach. The learned model

is hence, independent of the choice of hand and object

frame. VF relies on a set of parameters defined to en-

code grasps as shown in the right upper part of Fig. 1(2).

Since a grasp is first planned in the object frame by gen-

erating a set of contact locations, it is not dependent on a

specific hand design. Similarly, the learned probabilistic

model for the hand inverse kinematics is not constrained

by object shape. Therefore, given a new hand with

its learned probabilistic model, the corresponding hand

configuration that matches the generated grasping con-

tacts can be obtained in real time. For grasp execution,

a compliant finger closing scheme is devised. A parallel
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Figure 1: The overview of the

proposed approach.

1©: The contact-level grasp planning

with shape uncertainty. The output is a

set of contacts defining a grasp with asso-

ciated shape uncertainty these can with-

stand.

2©: The probabilistic model for the hand

inverse kinematics is learned offline and

is frame invariant.

3©: Given the desired grasping points

and the employed hand, the correspond-

ing hand configuration is obtained in real

time.

4©: The obtained hand configuration and

the uncertainty information are passed to

the controller for compliant grasp execu-

tion.

position/force (tactile) controller is implemented by ex-

ploiting the uncertainty in shape and contact force based

on our previous work [6]. An overview of the system is

shown in Fig. 1.

The paper is organized as follows: Section 2 provides

a review of the related work. Section 3 gives an intro-

duction to object surface modeling using GP, along with

its application in grasp planning. Section 4 presents a

learning-based approach for the hand inverse kinemat-

ics. A compliant finger closing scheme is depicted in

Section 5. Implementation details and experimental re-

sults are described in Section 6, followed by a discus-

sion and conclusion in Section 7.

2. Related work

We provide an overview of related work considering

dexterous grasp planning, control systems for grasping

and grasping under uncertainty.

Early work on grasp planning focused on finding the

optimal contact points considering force closure as a

grasp quality measure [7, 8, 9, 10]. More recently, hand

kinematics has been taken into account when estimating

the feasible hand configuration for realizing the grasp-

ing points [11, 12]. A drawback of this approach is

that the valid hand configuration to realize the contacts

may not be found. An alternative approach is to opti-

mize the contact locations and the hand configurations

simultaneously. Due to the high dimensionality of the

problem, the optimization is conducted in a projected

space of lower dimensionality using hand synergies [13]

or eigen grasps [14]. There are also works that formu-

late the optimization in the original hand configuration

space [15, 16]. However, this is computationally expen-

sive and the obtained grasps are hand-dependent. In this

paper, we decouple contact synthesis and hand configu-

ration estimation and rely on an offline learning process

to obtain the relevant hand configuration.

Learning-based approaches have been proposed be-

fore and most of these use data-driven model to learn

“rules” between object shape and feasible hand config-

urations [1]. In [27, 28, 29], objects are represented as

basic shape primitives and then associated with prede-

fined grasp primitives. In [30], a support vector machine

(SVM) is used to learn the grasp quality manifold for a

specific hand and simple object shapes. The manifold
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Table 1: A brief summary of grasping under uncertainty. Uncertainty type: The type of uncertainty has been studied; Rep.: The uncertainty is represented

implicitly (not parametrized) or explicitly (parametrized); Hand: The type of robotic hand has been considered; Planning: The uncertainty has been considered during

the planning; Control: The uncertainty has been considered during the control stage and the corresponding strategy used.

Paper Uncertainty type Rep. Hand Planning Control

[17, 18] Object pose Implicit Barrett hand No Hand adjustment

[19] Object pose and shape Implicit PR2 gripper Grasp primitives Heuristic

[20, 21, 22] Object shape Explicit Dexterous hand Grasp primitives iterative exploration

[23] Object pose Explicit Dexterous hand Grasp Primitives No

[24] Contact location Explicit No Yes No

[12] Contact location Explicit Dexterous Hand Yes No

[25] Contact location and shape Explicit No Yes No

[26, 6] Object mass and friction Implicit Dexterous hand No Finger adaptation

Our work Object shape Explicit Dexterous hand Yes Finger adaptation

represents the mapping from grasp parameters and ob-

ject shape to the grasp quality and new optimal grasps

are found through interpolation on the manifold. Most

of these methods are either limited to basic shapes or

simple grasp primitives and cannot be used to execute

a set of specific contact locations. Along this direc-

tion, [31] learns the joint density function of hand pose

and finger joints from a large set of grasps. This den-

sity function is used later to retrieve finger joints online

given any query hand pose. However, learning is con-

ducted in the object frame and with specific hand-object

combination. As a result, a new learning model is re-

quired for each new pair of hand-object combination.

The authors in [32] learn two separate models, i.e., the

contact model to express the relationship between fin-

gers and object local features, and the hand configura-

tion model to represent whole hand configuration during

approach to grasp. They show this approach can gener-

alize to new objects for given grasp types. In this work,

we follow a similar principle as [32] to address the grasp

planning in two steps. With the help of Virtual Frame,

planning of grasping points and learning of hand inverse

kinematics are conducted independently, thus allowing

for different hands to be used and making it also possi-

ble for different contact level grasp planners to be used

in the system.

The research on grasp control has mainly focused on

the design of control algorithms for achieving the de-

sired grasping force that can either balance the external

forces or exert proper ones on the object [33]. The ap-

proaches can be classified into two groups depending on

whether the contact force is explicitly controlled or not.

One is the hybrid position and force control (including

the grasping force control) [34, 35, 36, 37] which con-

trols the positions in some directions and the force in

other directions simultaneously. The other is impedance

control which regulates the contact forces implicitly by

specifying the desired impedance [38, 39, 40, 41]. Both

approaches have their own merits and disadvantages and

a detailed comparison has been given in [33]. While

these studies focus more on the grasp control after the

fingers are closed, rather few works have been reported

on devising control algorithms for the finger approach-

ing and closing stage. Previous works usually assume

that a position controller is first used for approaching

and then it is switched to a force controller once contact

or collision is detected [26, 42]. However, the switching

may easily cause the overshooting of the contact force

due to the limitation in sensing and low control rate.

To alleviate this problem, a parallel position/force con-

troller is adopted as proposed in [43] with a tradeoff for

smooth switching from position controller to force con-

troller, depending on the distance to the target hand pose

obtained from our learned probabilistic model. Further-

more, the control gain for the position and force con-

troller are determined by the shape uncertainty and the

contact forces uncertainty, rather than being hard-coded.

Considering uncertainty in robotic grasping, both for

planning and control, has become increasingly impor-

tant. To deal with various uncertainties in the grasp-

ing problem, one approach is to use sensory feedback

to perform grasp adjustment locally so as to find sta-

ble grasps near the original planned grasp [17, 19, 18].

For instance, [19] proposes a set of simple and efficient

heuristics to reactively correct the alignment error of the

PR2 gripper. In [18], a sensor-based grasp primitive of

Barrett hand is developed to adapt to the variation of

the task conditions. These methods are usually reactive

using actual sensing data from force or tactile sensors.

The reactive correction strategy is designed to alleviate

the need for precise hand-object pose information and

hence can be more robust to pose and location uncer-
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tainty. The main problem of these methods is that, to

design the corrective strategy, the grasp is usually lim-

ited to a predefined set of grasp primitives [18] or only

simple hand kinematics is considered [19]. For a more

complex dexterous hand with a possibility to execute a

large variety of grasps, it becomes more difficult to de-

sign such a corrective strategy. In our previous work

[6], an object-level grasp adaptation is proposed to deal

with physical uncertainties in object mass and friction,

focusing mainly on the grasping stage when the object

is already in the hand.

Another approach to deal with the uncertainty is to

consider uncertainty during the planning process. One

way is to incorporate robustness into the planning, pre-

ferring grasps that are somewhat insensitive to the un-

certainty or search for stable graspable regions on the

object [44, 45, 46, 24, 25]. For instance, the con-

cept of independent contact regions (ICRs) is intro-

duced to provide robustness to finger placement error

[24] where any grasp with fingertip’s positions inside

the ICR will achieve a force-closure grasp. The uncer-

tainty information can also be updated online using vi-

sion [23, 47] or tactile exploration [20, 21, 22]. How-

ever, these approaches usually use a set of predefined

grasps and require several rounds of grasp trials. A

comparative study in robotic grasping dealing with un-

certainty is given in Table 1. Few works have consid-

ered object shape uncertainty by integrating planning

and control. However, in real robotic grasping tasks

due to the, for example, occlusion problems [48, 49, 22]

or non-reachability from tactile exploration [21], object

shape uncertainty is inevitable. In this work, we thus

integrate object uncertainty in grasp planning and con-

trol. In the planning stage, we can explicitly control the

level of uncertainty of the final grasp. During the execu-

tion stage, an adaptive finger closing strategy is used to

compliantly place the fingers on the desired locations.

3. Grasp planning under shape uncertainty

In this section, we first describe the GP for object

shape modeling as well as the parametrization of as-

sociated shape uncertainty. Thereafter, a shape uncer-

tainty constrained contact level grasp planning approach

is presented. For clarity of the presentation, the nota-

tions adopted in this paper are summarized in Table 2.

3.1. Object modeling for grasping

For an unknown object, due to the limited viewing an-

gle or occlusion, it may be difficult for a robot to observe

its complete shape. The unseen parts of the object may

Notation Definition

x ∈ R3 a point in R
3

d ∈ R signed distance

ω ∈ R3 normal direction

y = {d,ω} ∈ R4 output of GP

cov(yi, y j) ∈ R4 covariance between yi and y j

E(y∗) ∈ R
4×1 predicted output of GP

cov(y∗) ∈ R
4×4 the covariance with the prediction

fcov(x∗) shape uncertainty, i.e., [cov(y∗)]11

pi ∈ R3 position of contact point

ni ∈ R3 normal direction at contact point

S thresh threshold on the shape uncertainty

w
j

i
∈ R6 contact wrench

φi
j

coefficient of contact wrench

po ∈ R3 origin of virtual frame

Ro ∈ SO(3) orientation of virtual frame

Θ ∈ Rh finger joints

L ∈ R3 distance between each fingertip and po

N ∈ R3 pairwise inner product of ni

πi prior of the ith Gaussian component

N(µi,Σi) Gaussian distribution

T
Ob j

Hand
∈ R4×4 hand pose in object frame

xd ∈ R
3 desired fingertip position

fd ∈ R
3 desired contact force

KP ∈ R
3×3 position control gain

CF ∈ R
3×3 force control gain

Table 2: List of notations

be important from a grasping perspective as these may

provide better contact locations. To synthesize contacts

on unseen parts, we propose to model the whole object

surface using GPs.

We denote by x ∈ R
3 an arbitrary point with normal

directionω ∈ R3, and by d ∈ R the relative position of x

with respect to the object surface. We define a function

g(x) : R3 → R
4 (1)

that maps the position of a point to its relative position

and its outward normal direction as the basis for estima-

tion of the object shape. In particular, the relative posi-

tion d = 0 when the point is on the object, and d ∈ R− or

d ∈ R+ when the point is inside or outside of the object

respectively.

For training the GP model of the object, the input is

a training dataset denoted X = {xi ∈ R
3}i=1···nt , com-

posed of points on the object surface. It originates from

point clouds of partially viewed object, consisting also

of points inside and outside the object surface. The

latter two kinds of points are included to increase the
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accuracy of the GP estimation [50]. In practice, we

first normalize the points on the object surface to range

[−1, 1]. The origin is then selected as the interior point

for training with d = −1. For the outside points, 20

points are randomly sampled from a sphere with radius

1.2 with d = 1. The output of our training dataset is

Y = {yi = (di,ωi) ∈ R4}i=1···nt . The covariance between

two outputs cov(yi, y j) ∈ R4 is defined as:

cov(yi, y j) =





cov(di, d j) cov(di,ω
j

1
) cov(di,ω

j

2
) cov(di,ω

j

3
)

cov(ωi
1
, d j) cov(ωi

1
,ω

j

1
) cov(ωi

1
,ω

j

2
) cov(ωi

1
,ω

j

3
)

cov(ωi
2
, d j) cov(ωi

2
,ω

j

1
) cov(ωi

2
,ω

j

2
) cov(ωi

2
,ω

j

3
)

cov(ωi
3
, d j) cov(ωi

3
,ω

j

1
) cov(ωi

3
,ω

j

2
) cov(ωi

3
,ω

j

3
)





(2)

To compute all the entries in the covariance matrix,

the following identities are required, which can be ob-

tained from the selected kernel function k(·, ·) and its

derivatives [51]:

cov(di, d j) = k(xi, x j) (3)

cov(ωi
m, d

j) =
∂

∂xm

cov(di, d j) (4)

cov(ωi
m,ω

j
n) =

∂2

∂xm∂xn

cov(di, d j) (5)

m = 1, 2, 3, n = 1, 2, 3;

For the kernel function, a thin plate kernel [52] is

adopted to regularize the first order continuity, assuming

that the normal direction on the object surface is contin-

uous. Given two inputs, the thin plate kernel function is

computed by

k(xi, x j) = 2‖xi − x j‖3 − 3ψ‖xi − x j‖2 + ψ3 (6)

where ψ ∈ R+ is the longest pairwise distance among all

the training inputs. Note that ψ is the only parameter in

the kernel function and it can be easily determined from

the training inputs without any optimization procedure

involved, such as maximizing the likelihood. This is one

of the main reasons for adopting it here in comparison

to other kernel functions such as Radial Basis Function

[53, 20].

Given the computed covariance matrix and a new data

point x∗ ∈ R
3, we can use GP to predict the function

mean value E(y∗) ∈ R
4×1 and its corresponding variance

cov(y∗) ∈ R
4×4, [50] by

E(y∗) = E([d∗,ω
T
∗ ]T ) = K∗[K(X,X) + σ2I)]−1Y (7)

cov(y∗) = K(x∗, x∗) − K∗[K(X,X) + σ2I)]−1KT
∗ (8)

where K∗ = K(x∗,X) denotes the 4 × 4nt covariance

matrix evaluated at all pairs of the testing and train-

ing inputs, and similarly for K(X,X) ∈ R
4nt×4nt and

K(x∗, x∗) ∈ R
4×4. The parameter σ2 reflects the vari-

ance of noise in the output.

Given Eq. (7), we can estimate if the point x∗ is on the

object surface or not using E([d∗]) as well as predicting

the normal direction at this point using E([ω∗]). From

Eq. (8), we can compute the uncertainty of our predic-

tion. In our grasp planning method presented in next

section, we only consider the shape uncertainty, which

is the first entry of cov(y∗), i.e., [cov(y∗)]11. As these

three quantities only depend on the input x∗, we use the

following notations to represent each of them: fd(x∗) =

E([d∗]), fω(x∗) = E([ω∗]) and fcov(x∗) = [cov(y∗)]11.

Therefore, the final object shape is expressed as the

function:

fd(x) = 0, x ∈ R3 (9)

3.2. Grasp planning with shape uncertainty constraints

In this section, we first describe how to explicitly

incorporate shape uncertainties as constraints in grasp

planning. We then proceed by explaining how to plan

dexterous, three-fingered grasps by formulating plan-

ning as an optimization problem. We denote a contact

point and its corresponding normal direction as pi ∈ R3

and ni ∈ R3, i = 1, 2, 3.

Points on surface and normal alignment: To execute

the desired grasp, a basic constraint is that the planned

contact locations are on the object surface. With the GP

representation of the object surface, Eq. (9), this can be

expressed as:

fd(pi) = 0, i = 1, 2, 3; (10)

Besides this constraint, the normal direction of the con-

tact points should be aligned with the object’s surface

normal which is represented as

ni = fω(pi), i = 1, 2, 3; (11)

Shape uncertainty constraint: GP based object sur-

face representation can be used to predict the shape un-

certainty and it is taken into account in the grasp plan-

ning procedure as

fcov(pi) < S thresh, i = 1, 2, 3; (12)

where S thresh is a threshold that defines how much un-

certainty a grasp can withstand.

Frictional form closure constraint: A grasp will be

said to have frictional form closure if the origin of the
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wrench space lies inside the convex hull of the contact

wrenches [54]. This is formulated as follows

∃φi
j ∈ R, φ

i
j > 0,

∑

i, j

φi
j = 1, i = 1 · · ·m, j = 1 · · · 3;

s.t.
∑

i, j

φi
jw

j

i
= 0; (13)

where w
j

i
∈ R6, i = 1 · · ·m, j = 1 · · · 3 is the i-th primi-

tive contact wrench of the j-th contact point [16], which

depends on the contact points, contact normal directions

and friction coefficient. Note that in [55] this property

is also defined as force closure, here we adopt the defi-

nition in [54] where force closure additionally requires

that the internal forces are controllable by the hand.

Objective function: Many different grasp quality met-

rics can be selected as the objective function for the con-

tact level grasp planning [3]. Here, we adopt a simple

objective function that minimizes the distance between

the center of the contact points and the origin of the ob-

ject frame as follows 1,

min:‖
1

3

3∑

i=1

pi‖ (14)

where ‖ · ‖ represents the 2−norm.

To generate grasping points, we formulate the grasp

planning as a constrained optimization problem subject

to the above constraints while minimizing the objective.

By using AMPL (A Mathematical Programming Lan-

guage) and adopting IPOPT (Interior Point OPTimizer)

as the optimization solver [56], our method can generate

multiple feasible solutions for each object by varying

the initial points for IPOPT. More details and examples

of grasp optimization are provided in Sec. 6.

4. Hand configuration in virtual frame

In this section, we present our learning-based ap-

proach for computing hand configurations needed to re-

alize the planned grasping locations. We first describe

our frame invariant encoding of hand configurations in

terms of a virtual frame. Thereafter, we introduce a

probabilistic model for representing the mapping be-

tween contact positions and hand configurations, used

to compute hand joint configurations.

1Note that if the center of gravity is chosen as the origin of object

frame, then this objective function actually attempts to minimize the

effect of gravity on the grasp. In this paper, we use the geometric

center of the object point cloud as the origin of the object frame

1
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Figure 2: The examples of Virtual Frame for Barrett hand and Allegro hand.

4.1. Probabilistic model for hand inverse kinematics

We want the mapping between contact positions and

hand configurations to be frame invariant. To this end,

we follow the idea presented in our previous work [41]

that learns a probabilistic representation using the con-

cept of Virtual Frame(VF) [57]. A VF defined in the

hand frame can be expressed as:

T Hand
VF =

[

Ro po

[0, 0, 0] 1

]

∈ R4×4 (15)

where po is the origin of the VF with

po =
1

3

3∑

i=1

pi (16)

and pi ∈ R3, i = 1, 2, 3, is the position of the i-th finger-

tip. The orientation of the frame is defined by

Ro = [rx, ry, rz] ∈ SO(3) (17)

rx =
p3 − p1

‖p3 − p1‖

ry = rz × rx

rz =
(p2 − p1) × rx

‖(p2 − p1) × rx‖

Two examples of the VF for Barrett hand and Allegro

hand are shown in Fig. 2. With the definition of the VF,

we encode a hand configuration G as

G = {Θ, L,N} (18)

where Θ ∈ Rh is the finger joint. L = [L1, L2, L3] ∈ R3

is the distance between each fingertip and the origin of

the VF, i.e., Li = ‖p
i − po‖. N = [N1,N2,N3] ∈ R

3 is

the pairwise difference of normal direction in the sense

6



of inner product, N1 = n1 ·n2,N2 = n1 ·n3,N3 = n2 ·n3.

Given this encoding, all the variables Θ, L,N are frame

invariant, and so is G.

Given a set of hand configurations {Gi, i = 1 · · ·Ng}

we can learn a probabilistic model – Gaussian Mix-

ture Model (GMM) to represent the joint density of

{Θ, L,N}. This set of hand configurations can be ob-

tained from simulation by sampling in the joint space,

or from human demonstration through demonstration

learning. The likelihood of a grasp G∗ = (Θ∗, L∗,N∗)

under a GMM model, denoted by Ω with m Gaussian

components is given by

p(G∗|Ω) =

m∑

i=1

πiN(G∗|µi,Σi) (19)

where πi is the prior of the ith Gaussian component and

N(µi,Σi) is the Gaussian distribution with mean µi and

covariance Σi as:

µi =





µΘ,i
µL,i

µN,i




,Σi =





ΣΘΘ,i ΣΘL,i ΣΘN,i

ΣLΘ,i ΣLL,i ΣLN,i

ΣNΘ,i ΣNL,i ΣNN,i




(20)

The number of Gaussian components, i.e., m is deter-

mined using Bayesian information criterion (BIC) and

the parameters of πi, µi, Σi in the model are trained using

expectation-maximization (EM) algorithm to maximize

the likelihood of all the trained grasps. More details for

training and testing the probabilistic model for a specific

hand will be given in Sec. 6.3.

4.2. Online hand configuration query

Given a set of desired grasping points, we can now

compute feasible hand configurations for realizing a

grasp using the learned probabilistic model. The key

idea here is to define two VFs using the fingertips and

the grasping points respectively. Thus, the goal of on-

line query is to search for a match of these two VFs. An

example of online hand configuration query is shown in

Fig. 3. We now explain the details of the query process

in detail.

Query hand feasibility: Given a set of desired grasp-

ing points, we first construct a VF, T
Ob j

VF
∈ R

4×4, sim-

ilarly constructing the VF for hand configurations in

Eq. (15). We then compute the corresponding L and N

for this VF and determine if the current query point, i.e.,

q = (L,N) is likely enough with respect to the learned

model Ω. This step computes the reachability of the

hand given the grasping points. For instance, if two

points are too far away and the distance between them

is larger than the maximal spread length of the finger,

query

Probabilistic Model for Allegro Hand Probabilistic Model for Barrett Hand

query

Figure 3: Given a set of grasping points on the object, we first construct a

VF and use it as a key to compute corresponding hand configurations given the

learned probabilistic model. In this figure, we also show a set of grasping points

that can be reached by two different hands, which also explains the idea of being

able to use different hands to execute grasps.

these grasping points cannot be realized by the given

hand. For this purpose, we use the Mahalanobis dis-

tance from q to the center of each Gaussian component.

The distance to the i-th component is defined as:

fi(q,Ω) =
1

2
(q − µq,i)

TΣ−1
q,i (q − µq,i) (21)

where i = 1, ...,m is the index of Gaussian compo-

nents, µq,i and Σq,i are the corresponding components

in Eq. (19) as follows:

µq,i =

[

µL,i

µN,i

]

,Σq,i =

[

ΣLL,i ΣLN,i

ΣNL,i ΣNN,i

]

(22)

We consider that the likelihood that a query point q be-

longs to the learned model is high enough if ∃i, i =

1, . . . ,m, fi(q,Ω) < 2. In other words, if the query point

is within two standard deviations of any Gaussian com-

ponent of the model, it is considered to be close enough

to the learned model. Otherwise, the grasping points are

considered as infeasible for the given hand. Note here

when we query the hand feasibility, the possible colli-

sions between the hand and object are not taken into

account. However, the collision is checked in simula-

tion (OpenRave [58]) before the final selected grasp is

executed.

Query Finger joints: When the current query point

q is likely enough under the model, the desired finger

joints Θ are obtained by taking the expectation over

7



the conditional distribution, p(Θ|L, S ,Ω), which can be

computed as follows [59]:

E{p(Θ|L,N,Ω)} =

m∑

i=1

hi(µΘ,i +ΣΘq,iΣ
−1
q,i (q−µq,i)) (23)

where ΣΘq,i =

[

ΣΘL,i

ΣΘS ,i

]

, and hi =
πiN(q|µq,i,Σq,i)

m∑

j=1

π jN(q|µq, j,Σq, j)
.

Note that for three grasping points, we can have six

different query points by permuting the correspondence

between grasping points and the finger index. There-

fore, given three grasping points, we may find several

different hand configurations that can realize the grasp-

ing points. However, it is also possible that none of

the six query points is likely enough under the model

(e.g., object too big or too small), which implies that

the given grasping points cannot be realized by the con-

sidered hand.

Query hand pose: After obtaining joint angles for

each finger, we can again construct a VF T Hand
VF

∈ R4×4

using the fingertips position: This can be obtained using

the hand’s forward kinematics. Note that this VF is rep-

resented in the hand frame. Thus, the desired hand pose

in the object frame, i.e., T
Ob j

Hand
∈ R4×4, can be obtained

as follows:

T
Ob j

Hand
= T

Ob j

VF
T Hand

VF

−1
(24)

Due to the probabilistic model we use to compute hand

configurations, there can be errors between the realized

fingertip positions and the desired grasping points. This

position error is taken care of by our compliant grasp

controller presented in the next section.

5. Grasp control under shape uncertainty

Our approach superimposes position and force con-

trol, taking both the shape and contact force uncertainty

into account. The control scheme for a given finger is

represented as

∆θ = J−1 [

(1 − λ)KP(xd − xc) + λCF( fd − fc)
]

(25)

where J is the Jacobian of a finger. xd ( fd) ∈ R
3 and

xc ( fc ∈ R
3) are respectively the desired and current fin-

gertip positions (contact normal force), both of which

are expressed in the hand frame. KP and CF are con-

troller gains. λ ∈ [0, 1] is a positional error measure to

estimate how close the finger is to its desired position

and weighted by the inverse of shape uncertainty as

λ = exp

(

−
1

2
(xd − xc)TΣ−1

cov(xd − xc)

)

(26)

By changing λ, the position controller is designed to

first dominate and then smoothly switch to the force

controller. Hence, a position error will be tolerated

along the contact normal direction in order to regulate

the contact force. Note that the desired fingertip po-

sition xd is the grasping point, i.e., pi, i = 1, 2, 3 in

Sec. 3.2, but represented in the hand frame. The desired

force fd is estimated as in our previous work [6]. More-

over, the estimation can also provide the variance of the

expected force value in the hand frame, i.e., Σ fd
∈ R3×3.

The diagonal matrices KP ∈ R
3×3 and CF ∈ R

3×3

are respectively the gain for position control and force

control, which are usually selected heuristically. Here,

we use the information from the variance of the desired

position and desired force to choose proper parameters.

For KP, we set it inversely proportional to the variance

of the pi, i.e., fcov(pi) in Eq. (12). The variance of

the desired position is along the normal direction fω(pi)

(Eq. (11)) in the object frame, which can be transformed

to the hand frame, denoted as Σcov. We have:

KP = αp

∣
∣
∣[diag(RHand

Ob j fcov(pi) fω(pi))]−1
∣
∣
∣

︸                                 ︷︷                                 ︸

Σ−1
cov

(27)

where RHand
Ob j

is the rotation from hand frame to object

frame, which can be obtained from Eq. (24). diag(·)

means the diagonal entries of a matrix and | · | is the

absolute value for each entry of a matrix. αp ∈ R
+ is a

scaling parameter. Similar for CF , we have,

CF = α f

∣
∣
∣[diag(Σ fd

)]−1
∣
∣
∣ (28)

The intuition behind the selection KP and CF is that

when there is a large uncertainty on the desired con-

tact point location, the finger will move more slowly by

choosing a smaller KP. When there is a large variance

in the desired contact normal force, we make the con-

tribution of force controller smaller by using a smaller

CF . This also implies that the finger will first contact

the grasping point that has smaller uncertainty, and it is

demonstrated in the experiments that this scheme can

largely improve the grasp success rate.

6. Implementation and experimental results

In this section, we will present our implementation

and experimental results for object surface modeling

and grasp planning using the Allegro hand.

6.1. Results for object surface modeling

We evaluate our GP based object shape modeling

method on four different objects: a cylinder, a bunny

8



(a) Cylinder (b) Bunny (c) Spray (d) Jug

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 4: Four 3D objects and their corresponding GP representations. The first row show the original 3D point cloud object models, (a) a cylinder, (b) a bunny

rabbit, (c) a spray, (d) a jug. The second row shows object shapes modeled by GP with whole object point cloud. Spheres on the object model are the 3D points on the

object surface used to train the GP model. The arrow on the surface represent the normal direction predicted by GP on that point. The color of the surface represents the

variance of the shape prediction on that point. The third row shows partial object point cloud from a fixed camera. The fourth row shows object shapes modeled by GP

with partial object point cloud.
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Figure 5: Four of the obtained grasping points (red balls on the surface) for each object and the red arrows represent the normal directions. The grasping points are

outside the uncertain region.

rabbit, a spray bottle and a jug, as shown in Fig. 4.

The object point clouds are obtained from laser scan-

ner and 1000 data points are randomly sampled from

the original point cloud. To speed up the object shape

modeling procedure, we further adopt a GP-based fil-

ter to select the most informative data points [21] for

representing the GP. The filtered data points for GP are

shown as spheres on the object surface, Fig. 4(e)-(h).

Table 3 shows the number of filtered GP data points and

the computation time for filtering and shape modeling 2.

As shown in Fig. 4(e)-(h), when the training data

points are sampled from the whole object point cloud,

the variance or shape uncertainty is generally very small

on the whole surface except the parts with sparse or with

even no data points, such as the bottom of the jug. In

robotic grasping tasks, due to the occlusion [48, 49] or

non-reachability from tactile exploration [21], it is usu-

ally the case that some parts of the object are not per-

ceivable and point-clouds exhibit holes. To evaluate our

2Note that the main time consumption comes from the filtering,

this, however, can be done during the data collection if the object

point cloud is collected online using vision or tactile exploration.

method under missing data points, we use MeshLab 3 to

simulate partial view of point clouds with a fixed cam-

era view, and then obtain object point cloud from that

virtual camera. The results of object shape modeling

with partial object point cloud are shown in the last two

rows of Fig. 4. We can see that although the objects are

partially viewed, our method can still model the shapes,

and importantly, with explicitly computed uncertainties.

Table 3: The number of training data points (Nb.) for GP and the computa-

tion time for filtering(Time1) and shape modeling (Time2) on a 8 GB machine

with a cpu at 2.4 GHZ.

Object Nb. Time1(s) Time2(s)

Cylinder 59 24.51 0.34

Bunny 71 24.15 0.51

Spray 61 22.62 0.28

Jug 71 16.25 0.31

3http://meshlab.sourceforge.net/
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6.2. Results for grasp planning

For each object model shown in the fourth row of

Fig. 4, 1000 initial points for each of grasping point

pi ∈ R3, i = 1, 2, 3 are randomly sampled from a sphere

with radius 0.1. The coefficient of friction is set to 0.8.

In our implementation, we set S thresh = 0.03, which is

three times larger than the noise level σ in Eq. (7). The

number of final optimal grasps, the average computation

time and the grasp quality are shown in Table 4. Some

examples of the obtained optimal grasps for each of the

four objects are shown in Fig. 5. It can be noticed that

all the grasping points are in the area with small uncer-

tainty due to the explicit shape uncertainty constraint.

Table 4: The number of final optimal grasps (Nb.) out of 1000 trials and the

average computation time (Time) for each trial and the grasp quality (Q) using

Eq. (14).

Object Nb. Time(s) Q(cm)

Cylinder 797 17.51 ± 8.03 0.065 ± 0.064

Bunny 864 18.31 ± 10.25 0.0104 ± 0.029

Spray 986 8.46 ± 3.25 0.013 ± 0.32

Jug 914 26.52 ± 13.58 0.38 ± 0.75

6.3. Results for hand configuration query

In this evaluation, we use two robotic hands – the 4

DOF Barrett hand shown in Fig. (6a), and the 16 DOF

Allegro hand shown in Fig. (6c), as examples to evalu-

ate the effectiveness of the learned probabilistic model

described in Sec. 4.1. For each hand, we randomly sam-

ple Ng = 106 self-collision free hand configurations in

the finger joint space in OpenRave [58], and then use

this dataset for further model training and testing.

For the model evaluation on Barrett hand, we use the

first 4 × 105 hand configurations for model training and

the rest for evaluation. For this hand, each data point is

10-dimensional: Θ ∈ R
4, L ∈ R

3,N ∈ R
3. The num-

ber of Gaussians in Eq. (19) is set to m = 36, as shown

in Fig. (6b)4. Using all the data from the test dataset

as grasping points queries, we evaluate the accuracy of

the model in terms of the Mean Absolute Error (MAE)

in radians, as reported in Table. 5. Fig. 7 shows ex-

amples of predicted joint angles in comparison with the

ground truth joint angles for four different testing cases,

the MAE of these four examples are also reported in

Table. 5.

4The BIC gives a range of the number of Gaussians and the final

number is determined by a 10-folds cross validation on a separate

dataset.
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(a) Barrett Hand
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(c) Allegro Hand
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Figure 6: The hands models for the testing examples and the selection of

number of Gaussians for training the model using BIC.

To keep the number of grasping points the same for

the Allegro hand, we consider only its first three fingers

as show in Fig. 7. Therefore, we have Θ ∈ R12, and the

training data is 18-dimensional. Same as before, we use

the first 4 × 105 hand configurations for model training

and the rest for testing. The number of Gaussians is

chosen as m = 41, as shown in Fig. (6d). For the overall

evaluation on the Allegro hand, the 6 × 105 data points

have been used to test the probabilistic model, and the

MAE with the standard deviation for the 12 joint angles

is reported in Fig. 8.

From Table 5 and Fig. 8, the average error is around

0.2 rad. Note that the performance of our probabilis-

Table 5: The Mean Absolute Error between the prediction and ground truth

joint angles for the four cases shown in Fig. 7 and the average error with the

standard deviation over all 6 × 105 testing data for the evaluation on Barret

hand. (Unit: Radian)

Joint case 1 case 2 case 3 case 4 Overall

J1 0.03 0.06 0.27 0.26 0.16 ± 0.01

J2 0.17 0.01 0.27 0.002 0.17 ± 0.01

J3 0.04 0.07 0.25 0.08 0.21 ± 0.007

J4 0.03 0.2 0.06 0.56 0.36 ± 0.02
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(a) case 1 (b) case 2 (c) case 3 (d) case 4

Figure 7: The joint angle prediction error of four examples for Barrett hand.

The solid color hand shows the ground truth joint angles and the transparent

color shows the predicted joint angles.
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Figure 8: The predition error for the 12 joints of Allegro hand.

tic hand inverse kinematics model depends largely on

how we sample the valid hand configurations. In this

paper, we sample the hand configurations randomly in

the finger joint space with self-collision rejection. We

noticed that our dataset includes a lot of hand config-

urations that are self-collision free, but are unlikely to

be valid grasp configurations. This is one cause of de-

terioration of the model performance. If some other in-

formation regarding the infeasibility of some postures

(e.g. through models of the finger synergy or through

human teaching) was provided to guide the sampling,

this would likely improve the performance of the feasi-

ble solutions generated by our hand inverse kinematic

model. This is one of our future working directions.

At this moment, to improve the performance, we

adopt a local derivative-free optimization technique,

called Constrained Optimization by Linear Approxima-

tion (COBYLA) [60]. This optimization algorithm is

based on linear approximation of the optimized objec-

tive function and all the constraints and transform the

original problem to a linear program to solve. With

this optimization technique, we can locally adjust the

hand pose as well as the finger joints to improve the per-

formance with respect to the objective function, which

is chosen as the sum of the distance between desired

grasping points and fingertip positions.

6.4. Results for grasp realization

In this section, we show qualitative examples of grasp

execution described in Section 4. Fig. 9 shows that the

same grasping points can be realized by two different

hand configurations for the same hand. In Fig. 10, we

show that the same grasping points can also be realized

by two different hands.

(a) (b) (c) (d)

Figure 9: Two examples show that the same grasping points can be realized

by the same hand but with two different hand configurations. The frame attached

with the object is the obtained VF and the arrows at the contact points are the

predicted normal directions.

(a) (b) (c) (d)

Figure 10: Two examples show that the same grasping points can be real-

ized by two different hands

In Fig. 11 and Fig. 12, we show some grasps for each

hand using our learned probabilistic model. Note that

all the grasps are generated using object models with

partial point cloud, see Fig. 4. Collision between the

hand and the object has also been checked in this step

and invalid grasps due to collision are discarded.

6.5. Implementation on real robotic hand

Using the proposed grasp controller, we demonstrate

several of our planned grasps using an Allegro hand

mounted on a 7 DOF arm – KUKA LWR. Each finger-

tip of the Allegro hand is equipped with BioTac tactile

sensors 5 to estimate the contact normal force, namely

fc ∈ R
3 in Eq. (25). After our calibration, we can ob-

tain a force prediction with an accuracy around 0.1N in

the normal direction and 0.3N in the tangential direc-

tions. In this work, we only control the normal force,

i.e., fc represented in the hand frame. The object to be

grasped is placed on the table and the position is ob-

tained using vision tracking system – OptiTrack6. Once

5http://www.syntouchllc.com/
6https://www.naturalpoint.com/optitrack/
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Figure 11: Some example grasps for Barrett hand. The red, green and blue point corresponds to finger 1, 2, 3 respectively. Notice that there are still some position

errors between the fingertips and desired grasping points due to the probabilistic model we use.

Figure 12: Some example grasps for Allegro hand. The red, green and blue point corresponds to finger 1, 2, 3 respectively.

our grasp controller has assessed that all three fingertips

are at the desired positions and that the contact forces

are stabilized, we command the robot to lift the ob-

ject and switch the hand controller to an object-level

impedance controller [6], in order to adaptively regu-

late the grasp stiffness and keep the grasp stable. Some

of the realized grasps are shown in Fig. 13.

To evaluate how shape uncertainties affect grasp plan-

ning, we relax the upper bound of shape uncertainty

S thresh in Eq. (12), and generate grasps with different

level of uncertainties. The obtained grasps are ranked

according to the sum of uncertainty on each grasping

point and the first three grasps with the largest score are

selected for implementation on the real robotic hand.

When the uncertainty increases, one of fingertips is

more likely to contact with the object first and then push

13



(a) (b) (c)

(d) (e) (f)

Figure 13: The implementation results of several planned grasps using

Allegro hand. For the jug and spray bottle, the objects are placed on the table

before lifting. For the tea can, the object is held by a human in order to realize

grasp (c) which is unreachable from the bottom.

the object away (or tilt the object), while the other fin-

gertips are still approaching the object. As a result, the

other fingertips may end up being far away from their

desired positions and thus less likely to achieve a stable

grasp.

For each grasp, the test is repeated ten times to cap-

ture the uncertain effect from pushing motion of finger-

tips 7. The percentage of the grasps that are stable over

all the trials and grasps for each object is reported in Ta-

ble 6. We can see that the percentage of stable grasps af-

ter lifting decreases when the grasps become more risk-

seeking, i.e., grasping on the object surface with large

shape uncertainties.

Table 6: Percentage of stable grasps achieved for each object under with

different level of shape uncertainty, averaged over 30 trials (3 grasps x 10 times).

Object Cylinder Spray Jug

S thresh < 0.03 40% 63.3% 56.7%

S thresh < 0.06 43.3% 33.3% 30%

S thresh < 0.10 30% 26.7% 23.3%

To evaluate the performance of the grasp controller

for finger closing, we compare it with a position con-

7During the ten trials, the initial condition is the same. However,

in practice we notice that the pushing from one fingertip may lead to

very different object position and thus the outcome of final grasps.

troller for each fingertips with same isotropic gain8, and

the finger stops when the contact force reaches 0.5N or

the finger reaches desired position. The same grasps

in the first row of Table 6 are tested with two differ-

ent controllers: uncertainty-aware controller and posi-

tion controller. The percentage of stable grasp achieved

is reported in Table 7, which shows clear improvements

given by our uncertainty-aware controller. As we have

observed in the experiments, the object is more likely

to be moved away when using a position controller with

an isotropic gain. This is usually due to the fact that one

fingertip would get contact with the object where it has

larger uncertainty, and thus the object is shifted before

other contacts are made. However, with our uncertainty-

aware controller, the position error becomes less impor-

tant when the fingertip is close to the desired position,

and in most cases, the fingertips usually first get con-

tacts on the object where it has smaller uncertainty, and

thus smaller position error and less possibility to shift

the object away. Note that due to the imprecise hand dy-

namics, large friction at finger joints and joint actuator

limitation, the total success rate is still far from practi-

cal use, which implies a requirement for reliable hand

embodiment.

Table 7: Percentage of stable grasps achieved for each object using different

controllers: uncertainty-aware controller(unc.) and position controller(pos.),

averaged over 30 trials (3 grasps x 10 times).

Object Cylinder Spray Jug

unc. 40% 63.3% 56.7%

pos. 16.7% 10% 13.3%

7. Conclusion

While dexterous grasping is considered important for

in-hand object manipulation, it is still very difficult to

realize using real robotic hands. One of the main chal-

lenges resides in how to overcome the uncertainties in

sensing, actuation and imperfect representation of the

environment. This work addressed this challenge and

considered shape uncertainty both in grasp planning and

control stages. During grasp planning, the uncertainty

of the generated grasp can be explicitly determined.

Moreover, during grasp execution, the uncertainty of the

generated grasp is fed into a compliant grasp closing

controller to further improve the grasp stability.

In this work, we proposed an approach for grasp plan-

ning and control considering object shape uncertainty.

8In practice, a PI controller is used and the gain is hand tuned to

achieve the best performance from our experience.
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A probabilistic model for estimation of hand inverse

kinematics model is adopted to compute feasible hand

configurations. During grasp execution stage, a compli-

ant finger-closing controller taking into account the un-

certainty has been devised to improve and retain grasp

stability. Experiments on a real robotic hand demon-

strate the effectiveness of our proposed method.

As a final remark, we list a number of limitations and

future research directions. First, our controller consid-

ers only one type of uncertainties, namely uncertainties

linked to the shape of the object. Other sources of un-

certainties (e.g. imprecise finger positioning, inaccurate

model of the object’s mass and friction coefficient) af-

fect importantly the chance of success of a grasp. The

grasp planning and control in this work is limited to

shape uncertainty while other sources of uncertainties

are not taken into account. However, finding an analyti-

cal representation of these uncertainties and considering

them in robotic grasping will be a promising direction

for the extension of this work.
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