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Abstract— In this paper, we present a unifying approach for

learning and recognition of objects in unstructured environ-

ments through exploration. Taking inspiration from how young

infants learn objects, we establish four principles for object

learning. First, early object detection is based on an attention

mechanism detecting salient parts in the scene. Second, motion

of the object allows more accurate object localization. Next,

acquiring multiple observations of the object through manipu-

lation allows a more robust representation of the object. And

last, object recognition benefits from a multi-modal represen-

tation. Using these principles, we developed a unifying method

including visual attention, smooth pursuit of the object, and a

multi-view and multi-modal object representation. Our results

indicate the effectiveness of this approach and the improvement

of the system when multiple observations are acquired from

active object manipulation.

I. INTRODUCTION

Bringing artificial systems to real-world environments
poses many different problems that must be solved. One of
the challenges is to recognize objects despite the uncontrolled
nature of the real world. Variations in object appearance
due to viewpoint or environmental conditions need to be
overcome by the system. In this paper, we approach this chal-
lenge by taking inspiration from object learning in infants. As
defined in the cognitive theory of Piaget [18], infants learn
representations of objects by actively exploring them. Doing
so, allows to observe the objects from different viewpoints,
and thus exploring the possible variations in appearance. In
early stages in child development, the infant’s visual attention
is directed primarily to salient parts of the environment [22].
The child will first be able to learn representations of the
objects that are actively shown by the caregivers [9]. In later
stages, the infant will learn to manipulate and explore the
objects independently [20].

In this paper, we aim to mimic the early stage of object
learning on an artificial cognitive system, using a caregiver
to demonstrate objects by manipulating them. We believe it
is important to start at an early stage, in order to develop and
test important concepts in object learning. Future versions of
our system will develop in line with child development, as
advocated in [28].

Figure 1 shows our cognitive model of object learning
and recognition. The model is based on Baddeley’s model
of working memory [1] and Knudsen’s model of attention
[10]. We narrow both models down to the parts that deal
with visual information. The central executive is responsible
for the control of cognitive processes and, in our approach,
has the coordinating role in visual learning and recognition,
involving the long-term memory, which stores the object
representations. Additionally, it is involved in the control of
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Fig. 1: Cognitive model for object learning and recognition
based on Baddeley’s model of working memory [1] and

Knudsen’s model of attention [10].

attention. The visual memory (termed visio-spatial sketchpad
in [1]) holds the visual information of the attended regions,
such as color, texture, and shape information. Our model
furthermore includes an attention mechanism as an interface
between the working memory and the outside world, as
proposed in Knudsen’s model of attention [10]. Attention is
focused on relevant parts of the visual field based on different
types of visual information, such as color, intensity, and
motion. The focus of attention can be changed to different
parts of the visual field through saccadic eye movements or
in order to track an object through smooth pursuit.

The first problem that arises in learning, is how to localize
and segment unknown objects from the background. For
the detection of unknown objects in a scene, no top-down
knowledge can be used. Object-detection methods based
on 3D point clouds calculated from stereo-image pairs [2]
provide good results in the case of the textured objects.
However, they fail in the case of uniform colored objects
which are widely present in the environment. As a solution
to this challenging problem, we therefore consider bottom-up



visual-attention methods.The saliency method presented in
[8] has, for instance, been used in [21] to guide the attention
of a robot. An attention method based on local symmetry
in the image has been proposed in [11] to fixate on objects
in the scene. Finally, following method [24] provides fast
segmentation of objects based on their saliency. Since this
method assumes no prior information about the scene and
only requires input from a single camera, we will further
exploit it in the initial step of our method.

Once objects are located, they need to be explored and
manipulated so that the system can learn them properly.
Active exploration in robotics is a hot topic and several
systems have been recently proposed [12], [15], [5]. For
example, in the work of [17] manipulation of object has been
used in a bottom up attention system as a top-down knowl-
edge to control visual search of that object. Furthermore,
by changing its viewpoint, the robot can actively test the
robustness of its object representations. This has also been
used, for instance, to select stable interest points for robust
object representations [12]. Object exploration can also be
used to build a more complete object model by integrating
different viewpoints, e.g., in [19] and in [6] In our research
we combine similar approaches to obtain a robust system for
active learning.

Finally, objects need to be robustly described and later
recognized in constantly changing illumination settings and
cluttered environments. The best results in challenging set-
tings were obtained using local features [13] and their
extensions to color [27]. Nevertheless, using keypoints to
describe novel objects will only work in the case of textured
objects, and a combination with other methods is required
for recognition of uniformly colored ones. Therefore, we
propose to utilize the method of [23], which combines both
approaches and automatically calculates dominant features
of the object.

The main contribution of this paper is a novel unify-
ing system for learning of object representations when no
prior knowledge is available. All system knowledge is boot-
strapped online by object manipulation. Mimicking cognitive
development in infants, the system first localizes unknown
objects in the environment as salient regions. For this, an
adapted version of our previous saliency method is used,
which assumes no initial information on the scene and
provides fast scene segmentation. Once localized, the object,
manipulated by the caregiver, is tracked, and segmented to
obtain different observations of the object. Based on these
observations, a multi-view multi-modal representation of the
object is build, which is used for learning and recognition.
The performance of the system is extensively tested, and
the benefits of object manipulation to obtain a sequence of
observations is shown.

II. SYSTEM LAYOUT

We assume a setup with a single camera where a hu-
man caregiver presents objects to the system by actively
manipulating them. Initially, the system has no knowledge
of the objects, but over time, the system will learn from

the demonstrations to recognize the objects. Our system
depends on four modules for both learning and recognition
of objects in unstructured environments: visual attention,
smooth pursuit, object description, and novelty detection.
The visual-attention module makes a first estimate of the
location and the initial segmentation of the objects in the
scene. This module detects visual saliency without any prior
knowledge of the objects or the scene. The resulting object
segments initialize the smooth-pursuit module, which tracks
the object that is actively shown to the system by the human
caregiver. Throughout the manipulation, the segmentation of
the tracked object is incrementally improved. The segmen-
tation is continuously used by the object-description module
for an incremental and multi-modal visual description of
the object. The feature vector consists of color, texture, and
shape information. Based on all stored feature vectors, the
dominant features are emphasized to improve performance.
Finally, based on all observations of the object during ma-
nipulation, the novelty detector classifies the object under
inspection as either novel or known, based on which the
sequence of observations are either used to learn the new
object, or to recognize the known object.

The active manipulation of the objects has several ad-
vantages. Firstly, the motion can be used to track the ob-
ject and to improve object segmentation. Secondly, through
the manipulation of the object, the system acquires novel
viewpoints, which enriches the object representation. Finally,
multiple viewpoints of the same object, allow the system to
better estimate the dominant features and the intra- and inter-
object variability.

The four modules are described in the next subsections,
followed by a description of the incremental learning method
and the active recognition method.

A. Visual Attention
The visual-attention module finds the salient parts of the

image in order to detect and segment objects without any
prior knowledge on the objects or their backgrounds. We
extend our saliency method for fast object segmentation,
proposed in [24], to benefit from multiple observations
during the manipulation of the object.

At its basis, the method calculates the spectral residuals
in three different color channels, red-green, blue-yellow,
and illumination as proposed in [7]. These residuals are
calculated by taking the Fourier transform of an image, and
taking the difference between the magnitude of the frequency
spectrum and a low-passed version of this magnitude. A
saliency map is obtain by transforming the residuals back
to the spatial domain and summing the three color channels.
The resulting saliency map defines for every pixel in the
image how much it stands out from the background.

Next, salient regions are found by applying the MSER blob
detector [14] to the saliency map. For a given image frame at
time t, this results in a set of salient regions, Rt. We observe
the salient regions over a number of s consecutive frames,
resulting in a combined set of n regions, R =

�s
j=1 Rj =

{r1, . . . , rn} where ri is the center of i-th salient region.



Fig. 2: Results of the visual attention module. The yellow
contours indicate the salient regions and the black boxes

the regions of interest.

Figure 2 shows several contours of salient regions in yellow.
Combining the salient regions over several frames improves
the robustness and quality of object detection. However, a too
large number of frames increases the chance of obtaining
overextended segments. In our experiments, we obtained
good results with s = 5.

Since multiple salient regions can correspond to one ob-
ject, the regions are clustered using adapted Parzen-window
density estimation [26] followed by mean-shift clustering.
The density estimation is made by fitting a Gaussian kernel
to each of the centers of the salient regions, ri. For each
point in the image x, the probability density function, p(x),
is defined by:

p(x) =
1

n

n�

i=1

1

2πσ2
exp−

(x−ri)
2

2σ2 (1)

where σ represent the width of the Gaussian kernel optimized
by maximizing the likelihood [26] and n is the number of
contour centers. Subsequently, outlier points that have low
probability values and belong to isolated clusters are removed
when

log(p(x)) <
1

n

n�

i=1

log (p(ri))− 3
n
var
i=1

(log(p(ri))) (2)

where vari gives the variance over i. Finally, the salient
regions are clustered by segmenting p(x) using mean-shift
segmentation[4]. As final result, we find the regions of inter-
est around each object in the scene, as illustrated in Fig. 2.
The regions of interest serve as the initial segmentations for
learning and tracking of the objects during manipulation.

B. Smooth pursuit
The visual-attention module provides an initial segmenta-

tion of the objects in the scene, which is used by the smooth-
pursuit module to track the object during manipulation. We
combine two supplementary methods to robustly obtain good
segmentations of the object. The first method follows the
moving object using a model-based tracker [16]. The tracker
builds a color histogram of the object based on the region of
interest provided by the attention module. Using the mean-
shift framework, the object is tracked over successive frames.
[16].

Fig. 3: Results of the smooth-pursuit module. The results
of model-based tracking and motion tracking are combined

to segment the object.

The second method finds the object by detecting motion in
the image using motion-history images (MHI) [3]. The MHI
combines the motion changes over a sequence of images.
For a single frame, the regions of motion are found by
calculating the frame difference with the previous frame. By
thresholding and subsequently applying morphological dila-
tion and erosion, a motion silhouette is obtained. Especially
for low-textured object or when objects are moved slowly,
this single-frame silhouette will not correspond well to the
object. However, by continuously adding the silhouettes to
the MHI, this problem is solved. Using a decay over time,
the MHI defines the temporal history of motion at each point
in the image. The MHI is then thresholded and the largest
connected component is returned.

The bounding box returned by the model-based tracker and
the silhouette returned by the motion tracker are combined
to get the segmented object. The two methods complement
each other. On the one hand, due to fast motions or il-
lumination changes, the tracker can lose the object. This
can be compensated for by the motion detector. On the
other hand, using only motion segmentation would result in
including the manipulator (in our case the human hand) in
the object segment. By combining it with the model-based
tracker, initialized by the attention module, only the object
is segmented.

Figure 3 gives some examples of the model-based track-
ing, the motion tracking, and the combined object segmenta-
tion, illustrating the benefit of the combination of both meth-
ods. Figure 4 shows some examples of different viewpoints
of objects while being tracked during manipulation.

C. Object description
Once a viewpoint of the object is segmented, it is described

using visual features and temporarily stored in the visual
memory. Since the objects appearances can vary significantly
both in color, texture and shape, we propose to extract all
corresponding feature vectors and to automatically calculate
dominant features of the object. For this we utilize our previ-
ous research on fast and robust feature descriptors [23]. There
we used a color histogram including hue, saturation and value



as a color descriptor, a Gray Level Co-occurrence Matrix
(GLCM) as a texture descriptor, and an edge histogram for
shape information, all combined into a single D = 256
dimensional vector f . This feature vector thus describes both
textured and untextured objects.

Some features might be more descriptive than others.
We therefore perform a normalization step, in order to
emphasize the dominant features. We have shown that this
has advantages over methods that treat every element in
the feature vector as equally important in [23], where we
focused on object recognition in challenging situations, such
as occlusions and variable illumination conditions. In this
paper, we adapt this method to an online situation, where
multiple viewpoints of the objects are acquired.

All viewpoints of all objects are merged in one feature
matrix, F, where F(i, j) is the value in row i and column
j, which gives the j-th feature of feature vector fi. As the
different features are obtained in a different way, the columns
in the feature matrix have significantly different values. We
therefore first normalize F by dividing all values by the
maximum value in their respective column:

F̄(i, j) = F(i, j)/m(j) (3)

m(j) =
N

max
i=1

F(i, j) (4)

where m is the vector with the maximum values per feature,
N is the number of observed feature vectors in the matrix,
and maxNi=1 gives the maximum over all rows. The second
step in the normalization procedure emphasizes dominant
features, inspired by text-retrieval approaches [25]. The dom-
inance of each feature is captured in the weight vector w,
which is calculated using the variance over all observations:

w(j) =
1

mj
log2

�
1

mj

N
std
i=1

F̄(i, j) + 2

�
(5)

mj =
1

N

N�

i=1

F̄(i, j) (6)

where stdNi=1 calculates the standard deviation over all rows.
The feature dominance is then used to reweigh F, so that
more dominant features get emphasized:

F̂(i, j) = F̄(i, j) ·w(j) (7)

The dominance weighting makes the object descriptors more
robust to changes in viewpoint and illumination conditions,
allowing more robust object recognition. Over time, when
more object are learned by the system, a better selection of
the more dominant features can be made, since there is more
data available for the statistical analysis of the feature matrix.
Similar process also appears in human working memory,
since one important characteristic of learning is pruning only
the most relevant information that will be stored in the long
term memory [1].

D. Novelty detection
For a given observation of the object, the system needs to

be able to decide whether it is a novel object or not. This is

done by a learned novelty classifier. First, the feature vector
extracted from the new observation, g is normalized based
on the stored normalization vectors w and m:

ĝ(j) = g(j) · w(j)

m(j)
(8)

The normalized feature vector ĝ is then matched to the stored
dominance-weighted feature matrix, F̂, and the distance to
each of the feature vectors in the matrix is determined using
the L1 distance:

d(i) =
D�

j=1

�ĝ(j)− F̂(i, j)� (9)

Using the distance vector d, the M best matches are found
and used to calculate an average distance value, v:

v =
1

M

M�

i=1

d�(i) (10)

where d� is the distance vector sorted in ascending order.
Based on the distance value v, the newly observed object is
classified as novel when:

v > µn + σn (11)

To obtain the values for µn and σn, the novelty classifier
is continuously learned and updated based on the intra-
object feature distances. These distances are obtained at the
end of each object-manipulation sequence, by acquiring one
more observation and calculating the average L1 distance
between that last observation and the other observations in
the sequence, similar to Eq. 10. For a given object k, this
results in the intra-object feature distance, vk. Using the
values for all objects, {v1, . . . , vK}, the novelty classifier
fits a Normal distribution to obtain the mean µn and standard
deviation σn.

Over time, when more objects are learned by the system,
the classification performance will improve, since a more
accurate estimation of the classification boundary can be
made. If the object under observation is classified as novel,
the observation sequence is used to learn the object. If
the object is classified as known, the sequence is used to
recognize the object. Both processes are described in the
following two subsections.

E. Incremental learning of objects
Initially, the system has no knowledge of the objects or

the environment. This knowledge is formed incrementally
throughout the manipulation of the objects. Using the atten-
tion module (Sect. II-A), the object(s) are localized. Next,
when the object is moved from the initial position, the
smooth-pursuit module (Sect. II-B) tracks the object, and a
total of M different observations of the object are segmented
from the background. For every segment, the combined
descriptor (Sect. II-C) is extracted online and stored in
working memory. Next, the novelty detector (Sect. II-D)
classifies the object as novel or known.

When the object is classified as novel, the observations
of the object are added to the long-term memory. To do so,



Fig. 4: Examples of learned viewpoints

the M new feature vectors are added as new rows to the
original feature matrix, F. Including the new observations,
the new dominant features are calculated and the matrix is
normalized as given by Eq. (3) to Eq. (7). The intra-object
feature distance for the novel object is furthermore calculated
and used to update the novelty classifier, as explained in
Sect. II-D.

F. Active recognition of objects

When the novelty detector classifies the object under
inspection as known, the system will attempt to recognize
the object using the sequence of M observations obtained
during the manipulation of the object.

We use a voting scheme for recognition. For each observa-
tion i, the dominance-weighted feature vector, ĝi, is obtained
as in Eq. (8). The vector is matched with the feature matrix
F̂ stored in the long-term memory, and the distance vector
d, giving the distance measures of ĝi to each of the stored
feature vectors in the matrix, is obtained as in Eq. (9). Next,
the M best matching feature vectors in the matrix are found
and each of these vectors cast a vote for the object they
are associated with. This process is repeated for each of the
observations in the sequence, resulting in M ×M votes for
objects. The object with the most votes is returned as the
recognized object.

III. EXPERIMENTAL SETUP

In this section, we explain the experimental setup we
adopted to test the performance of our system, and describe
the dataset. Further, we show how we applied the SIFT
descriptor [13] in order to compare the performance with
the proposed multi-modal description module.

A. Learning and recognition approaches

To show the benefits of object manipulation, we test the
proposed incremental learning (IL) and active recognition
(AR), and compare it to passive learning (PL) and active
learning (AL). The difference is that in incremental learning
and active recognition, M = 10 observations of the object
are acquired resulting from object manipulation. In passive
learning and passive recognition, the objects are described
from only a single observation M = 1. In the case of
passive learning, due to the insufficient amount of data,
we cannot calculate the intra-object feature distance. We

Fig. 5: Subset of tested objects

therefore replaced Eq. (11) by v > 10·v̄, where v̄ is the inter-
object feature distance, that is, the average distance between
the feature vectors of all objects in the long-term memory.
The multiplier was empirically established to give optimal
novelty-classification results.

B. Dataset

In testing of our system, we used used 40 objects in
total, 20 learned objects and 20 unknown. Examples of the
objects from the database are shown in Fig. 5 and include
both textured and uniformly colored objects. The objects are
first learned online in settings with a single object and day-
light conditions. For each experiment, we further test the
recognition performance of each approach on 100 different
scenes with 1-4 objects present in them. As will be shown in
the result section, to investigate the robustness of the system
we performed tests under significant illumination changes as
well as in the cluttered scenes.

C. Applying the SIFT descriptor

To show that our description module can be implemented
using other visual descriptors as well, we test it with the
Scale-Invariant Feature Detector (SIFT) [13]. SIFT keypoints
are detected in the object segment and described using the
SIFT descriptor. For each observation of the object, this
results in a set of descriptors, which are stored together as a
set descriptor of the object. When matching a current obser-
vation with the stored descriptors in long-term memory, the
similarity is measured by the maximum number of matching
keypoints with any of the stored set descriptors. Keypoint
matching is performed as described in [13]. Object matching
and novel detection is done similar to what is described in
Sect. II-D, with the difference that v in Eq. (10) is replaced
by, u, the average of the M best keypoint-matching similarity
measures. Furthermore, since the direction is reversed –
higher values now indicate a better match – the novelty
threshold (Eq. (11)) is changed to u < 1

4 · ū, where ū
is the inter-object similarity measure, and the multiplier is
empirically determined to get optimal novelty detection.

We compared the performance of our description module
with SIFT for all tested learning and recognition approaches.
Experimental results are provided in the next section.



TABLE I: The results of object recognition in conditions of
uniform illumination

Combined descriptor Precision(%) Recall(%) F measure(%)
IL-AR 98.00 100.00 98.99
IL-PR 100.00 100.00 100.00
PL-AR 85.71 97.67 91.33
PL-PR 68.75 94.29 79.50
SIFT Precision(%) Recall(%) F measure(%)
IL-AR 81.25 97.50 88.64
IL-PR 68.33 93.33 78.90
PL-AR 64.86. 64.86 64.86
PL-PR 68.57 61.54 64.87

IV. EXPERIMENTAL RESULTS

In this section we provide detailed description of various
experiments and give discussion on obtained results.

A. System performance in uniform illumination conditions
As a first experiment, we test the system’s performance

of recognizing single objects learned online. The testing
is performed immediately after the objects were learned,
so the illumination conditions remain approximately the
same. The performance is given in Table I for both our
combined descriptor and SIFT. One can conclude that for
both descriptors, incremental learning significantly improves
the system precision; around 15% compared with the passive
learning approach. We can also see that in the case of single
objects described with our combined descriptor both active
and passive recognition give a very high precision. This
proves that the calculated dominant features are very dis-
criminative between different appearances of the object and
confirms results from our previous analysis [23]. However,
active recognition significantly improves the performance in
the case of using the SIFT descriptor, since the exploration
increases the number of matched keypoints. If we compare
the performance of the SIFT descriptor and our combined
descriptor, the combined descriptor shows much higher pre-
cision and recall rates. One of the reasons for this is that
SIFT cannot detect weakly textured objects.

B. System performance in classification of novel objects
As a second experiment, we measure the system’s ability

to correctly classify unknown objects, in the same settings as
for the first experiment. The results are given in Table II. The
learned threshold for incremental learning gives best result
in this case: 92%, followed by the actively learned threshold
for SIFT keypoints: 82%. This test depicts that an adaptive
threshold learned from observations greatly improves per-
formance over fixed thresholds. It also shows that it is very
difficult to conclude just from a single viewpoint that an
object is novel; so active recognition is beneficial in such a
case.

C. System performance in the variable illumination condi-
tions

In a third experiment, we tested the system’s ability to
work in challenging illumination conditions, which is often

TABLE II: The results of classification of unknown objects

Combined descriptor Precision(%)
IL-AR 92.00
IL-PR 66.00
PL-AR 46.00
PL-PR 44.00
SIFT Precision(%)
IL-AR 82.00
IL-PR 78.00
PL-AR 58.00
PL-PR 40.00

TABLE III: Results of the object recognition at significant
illumination variations

Combined descriptor Precision(%) Recall(%) F measure(%)
IL-AR 90.00 100.00 94.73
IL-PR 80.00 97.50 87.64
PL-AR 66.00 97.50 78.57
PL-PR 56.00 100.00 71.57
SIFT Precision(%) Recall(%) F measure(%)
IL-AR 68.00 100.00 80.95
IL-PR 53.33 82.76 64.86
PL-AR 59.46. 62.86 61.11
Pl-PR 48.94 88.46 63.01

the case in real-world setups. We learned the objects in
sunny natural light and tested it later in 4 different illu-
mination conditions (cloudy natural light, combination of
natural and halogen light, only halogen light, and sunny
natural light). The results are displayed in Table III for
both the combined descriptor and for SIFT. The incremental
learning and active recognition approach give good results
for the combined descriptor, with a precision of 90%. This
can be explained by the fact that the dominant features
are robust to illumination changes and that by using the
active method, enough viewpoints of the object are acquired.
However, passive learning and passive recognition obtain
much lower values. The precision of SIFT significantly drops
due to the illumination changes while the recall rates for both
descriptors are not so much affected by the light conditions.

D. System performance in the presence of clutter
In a fourth experiment we test the system performance

in the presence of clutter. Scenes contain multiple known
and unknown objects (distractors), where the number of
objects ranges from 2 to 4. The performance results are
shown in Table IV. The best results are obtained for the
incremental learning - active recognition approach for a com-
bined descriptor, followed by the same method for a SIFT
descriptor. The incremental learning brings an improvement
of 20% compared to passive learning. From Table IV, one
can also see that our combined descriptor outperforms the
SIFT descriptor. However, higher results are noticed for
precision than for recall. This is due to a wrong initial object
localization caused by a high clutter in the scene in which
case we obtained false negatives for all tested methods. In
total around 12% of all mistakes in the last test are due to



TABLE IV: Object recognition results in cluttered scenes
with both known and unknown objects

Combined descriptor Precision(%) Recall(%) F measure(%)
IL-AR 97.44 80.28 88.03
Il-PR 80.58 66.40 72.81

PL-AR 78.72 59.20 67.58
PL-PR 73.40 57.50 64.49
SIFT Precision(%) Recall(%) F measure(%)
IL-AR 81.36 78.05 79.67
IL-PR 68.32 61.06 64.49
PL-AR 60.19 59.62 59.90
PL-PR 59.41 57.69 58.48

a false segmentation. The main reason for this lies in the
fact that if there is an uniformly colored object placed next
to several textured objects, it will be averaged out by the
spectral residual operation. The object localization method
is very precise in the case of 1 or 2 objects in the scene
(almost 100%), while the precision rates drop to 85% for 3
objects and 80% for 4 objects in the scene.

E. Performance dependence on the number of learned ob-
servations and dominance weighting

As a fifth experiment, we measure the system depen-
dence on the number of learned object observations. We
test recognition of single objects learned online in similar
illumination conditions as in the first experiment. In total,
we tested 20 objects, for which the number of learned
viewpoints per object is varied from 1 to 20. For each case,
we calculate the precision and recall of the system. To show
the influence of the dominant features, we have compared the
performance of the combined descriptor with and without the
weighting step (7). From the performance graphics depicted
in Fig. 6 and Fig. 7, we can observe that the performance
of the system increases with the number of observations.
Using our dominance weighting, results in significant better
performance than when the raw feature vectors are used. For
the dominance-weighted descriptor, maximum performance
is already achieved at 10 observations. The raw descriptor
also benefits from multiple observations, but more then 20
observations are necessary to reach maximum performance.
These results motivate our setting of M = 10.
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Fig. 6: System precision as a function of the number of
observations used in learning.
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Fig. 7: System recall as a function of the number of
observations used in learning.

TABLE V: Multi modal analysis of different components
of the combined descriptor

Descriptor Precision(%) Recall(%) F measure(%)
Color 94.44 89.47 91.89

Texture 41.67 76.92 54.05
Edge 57.14 1 72.73

Combined descriptor 95.00 1 97.44

F. Multi-modal descriptor analysis
In the final experiment, we test the contributions of

different modalities of the combined descriptor – color,
texture, and shape – to the overall performance. We use
the same settings as in the first experiment, and test the
recognition performance in the case of uniform illumination
conditions and M = 10 learned observations per object. The
performance is tested for each of the different feature modal-
ities and compare to the performance using the combined
descriptor. For each separate feature modality the dominance-
weighted feature vector is obtained as in Eq. (5) to enhance
the dominant features. It can be observed from the results in
Table V that the largest contribution and the highest precision
is from the color descriptor, followed by the edge descriptor.
However, by combining all the components and calculating
the dominant features, the performance of the descriptor is
significantly improved, and all the good characteristics of
separate components are inherited.

V. DISCUSSION
In this paper we presented an unifying approach for incre-

mental learning and recognition of objects in an unstructured
environment based on a model of early cognition. Inspired
by how young infants learn objects, we focus on object
learning in an artificial cognitive system, using a caregiver
to demonstrate objects by manipulating them.

Based on a cognitive model for object learning and recog-
nition, our system consists of several modules. At first, the
visual-attention module is deployed to detect salient regions
in the scene and localize unknown objects. The smooth-
pursuit module is then utilized to track the object and obtain
multiple observations. For the object description, a multi-
modal descriptor is used which combines color, texture, and
shape information and improves robustness through the em-
phasize on dominant features. Finally, using the sequence of



observations, the novelty detector classifies the object under
inspection as novel or know, in which case the object is either
learned and added to the long-term memory, or is recognized
through matching with stored object representations.

The proposed approach was extensively tested and com-
pared to a passive learning and passive recognition approach
under challenging illumination settings and in cluttered
scenes. The main conclusion from these experiments is
that our system obtains good recognition performance in
the different experimental conditions. Comparing the active
methods to passive methods, we can conclude that object
manipulation during learning and recognition greatly boosts
recognition performance and the classification of novel ob-
jects.

The main benefit of object exploration is the fact that
through the manipulation, a variety of different appearances
of the object is obtained, which boosts the object description,
and allows to reliable gather statistics to find the dominant
features and to learn the novelty classifier. The motion
furthermore improves the detection and segmentation of the
object.

When comparing to a description of the objects using SIFT
[13], we observe an improvement in performance using our
multi-modal and dominance-weighted descriptor. However,
the system also benefits from object exploration when using
the SIFT descriptor. Our system shows a large improvement
when the features in descriptor are weighted according to
dominance. Investigations of the contribution of the different
feature modalities in the descriptor reveal an improvement of
the combined descriptor over single feature modalities.

Although the exploration in this paper was carried out by a
caregiver, the proposed approach is directly applicable when
the robot independently starts to explore objects. Inspired by
the next step in the development of infants, we are currently
extending our system to take the step from a supervised
setting to fully autonomous object exploration and learning.
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