
LACASA: Lightweight Affinity and Object Capabilities in Scala

Philipp Haller
KTH Royal Institute of Technology, Sweden

phaller@kth.se

Alex Loiko
Google, Sweden ∗

aleloi@google.com

Abstract
Aliasing is a known source of challenges in the context of
imperative object-oriented languages, which have led to im-
portant advances in type systems for aliasing control. How-
ever, their large-scale adoption has turned out to be a surpris-
ingly difficult challenge. While new language designs show
promise, they do not address the need of aliasing control in
existing languages.

This paper presents a new approach to isolation and
uniqueness in an existing, widely-used language, Scala. The
approach is unique in the way it addresses some of the most
important obstacles to the adoption of type system exten-
sions for aliasing control. First, adaptation of existing code
requires only a minimal set of annotations. Only a single
bit of information is required per class. Surprisingly, the
paper shows that this information can be provided by the
object-capability discipline, widely-used in program secu-
rity. We formalize our approach as a type system and prove
key soundness theorems. The type system is implemented
for the full Scala language, providing, for the first time, a
sound integration with Scala’s local type inference. Finally,
we empirically evaluate the conformity of existing Scala
open-source code on a corpus of over 75,000 LOC.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features; F.3.3 [Log-
ics and Meanings of Programs]: Studies of Program Con-
structs

Keywords Aliasing, uniqueness, object capabilities, Scala

1. Introduction
Uncontrolled aliasing in imperative object-oriented lan-
guages introduces a variety of challenges in large-scale soft-
ware development. Among others, aliasing can increase the

∗ Work done while at KTH Royal Institute of Technology, Sweden.

difficulty of reasoning about program behavior and software
architecture [3], and it can introduce data races in concur-
rent programs. These observations have informed the devel-
opment of a number of type disciplines aimed at providing
static aliasing properties, such as linear types [33, 51, 64],
region inference [62, 63], unique references [14, 18, 41, 48],
and ownership types [21, 50].

While there have been important advances in the flexibil-
ity and expressiveness of type systems for aliasing control,
large-scale adoption has been shown to be a much greater
challenge than anticipated. Recent efforts in the context of
new language designs like Rust [7] are promising, but they
do not address the increasing need for aliasing control in ex-
isting, widely-used languages.

One of the most important obstacles to the adoption of
a type system extension in a widely-used language with a
large ecosystem is the adaptation of existing code, including
third-party libraries. Typically, adaptation consists of adding
(type) annotations required by the type system extension.
With a large ecosystem of existing libraries, this may be pro-
hibitively expensive even for simple annotations. A second,
and almost equally critical obstacle is robust support for the
entirety of an existing language’s type system in a way that
satisfies requirements for backward compatibility.

This paper presents a new approach to integrating a flex-
ible type system for isolation and uniqueness into an exist-
ing, full-featured language, Scala. Our approach minimizes
the annotations necessary for reusing existing code in a con-
text where isolation and uniqueness is required. In the pre-
sented system, a single bit of information is enough to de-
cide whether an existing class supports isolation and unique-
ness. A key insight of our approach is that this single bit
of information is provided by the object-capability disci-
pline [27, 46]. The object capability model is an established
methodology in the context of program security, and has
been proven in large-scale industrial use for secure sandbox-
ing of JavaScript applications [23, 47, 56].

This paper makes the following contributions:

• We present a new approach to separation and unique-
ness which aims to minimize the annotations necessary to
reuse existing code (Section 2). In our system, reusabil-
ity is based on the object capability model. Thus, when

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

OOPSLA’16, November 2–4, 2016, Amsterdam, Netherlands
c© 2016 ACM. 978-1-4503-4444-9/16/11...

http://dx.doi.org/10.1145/2983990.2984042

272

annotating existing code bases, only a single bit of infor-
mation is required per class.

• We formalize our approach in the context of two object-
oriented core languages (Section 3). The first core lan-
guage formalizes a type-based notion of object capabili-
ties. The second core language additionally provides ex-
ternal uniqueness via flow-insensitive permissions.

• We provide complete soundness proofs, formally estab-
lishing heap separation and uniqueness invariants for our
two core languages (Section 4). Moreover, a concurrent
extension enables the statement of an isolation theorem
for processes in the presence of a shared heap and ef-
ficient, by-reference message passing (Section 4.1). We
have also mechanized the operational semantics and type
system of the first core language in Coq (see the compan-
ion technical report [37]).

• We implement our approach for the full Scala language
as a compiler plugin (Section 5).1 To our knowledge, our
implementation of (external) uniqueness is the first to in-
tegrate soundly with local type inference in Scala. More-
over, the implementation leverages a unique combination
of previous proposals for (a) implicit parameters [24, 25],
and (b) closures with capture control [31, 45].

• We empirically evaluate the conformity of existing Scala
classes to the object capability model on a corpus of over
75,000 LOC of popular open-source projects (Section 6).
Results show that between 21% and 79% of the classes
of a project adhere to a strict object capability discipline.

In the following we discuss the most closely related work,
and defer a discussion of other related work to Section 7. In
Section 8 we conclude.

Selected Related Work. Most closely related to our system
are approaches based on permissions or capabilities. Of par-
ticular relevance is previous work on capabilities for unique-
ness in Scala by Haller and Odersky [39] (“Cap4S”). While
this prior work shares our high-level goal of lightweight
unique references in Scala, the two approaches are signif-
icantly different, with important consequences concerning
soundness, robustness, and compatibility. First, Cap4S is
based on flow-sensitive capabilities which are modeled using
Scala’s annotations, similar to the use of extended type anno-
tations in Java 8 for pluggable type systems [29]. However,
the interaction between Scala’s local type inference [53] and
annotation propagation has been shown to be a source of un-
soundness and implementation complexities for such plug-
gable type systems [58]; these challenges are exacerbated
in flow-sensitive type systems. In contrast, LACASA models
capabilities using Scala’s implicits [24], an intrinsic part of
type inference in Scala. In addition, foundations of implicits
have been studied [25], whereas Scala’s annotations remain

1 LACASA is available under an open-source license at: https://github.
com/phaller/lacasa/

1 class ActorA extends Actor[Any] {
2 override def receive(msg: Any): Unit = msg match {
3 case s: Start =>
4 val newMsg = new Message
5 newMsg.arr = Array(1, 2, 3, 4)
6 s.next.send(newMsg)
7 newMsg.arr(2) = 33
8 // ...
9 case other => // ...

10 }
11 }
12 class ActorB extends Actor[Message] {
13 override def receive(msg: Message): Unit = {
14 println(msg.arr.mkString(","))
15 }
16 }
17 class Message {
18 var arr: Array[Int] = _
19 def leak(): Unit = {
20 SomeObject.fld = arr
21 }
22 }
23 object SomeObject {
24 var fld: Array[Int] = _
25 }
26 class Start {
27 var next: ActorRef[Message] = _
28 }

Figure 1. Two communicating actors in Scala.

poorly understood. Second, LACASA fundamentally simpli-
fies type checking: as long as a class conforms to the object-
capability model, LACASA’s constructs enable isolation and
uniqueness for instances of the class. This has two important
consequences: (a) a minimal set of additional annotations (a
single bit of information per class) enables reusing existing
code, and (b) type checking reusable class declarations is
simple and well-understood, following the object-capability
discipline, which we adapt for Scala.

2. Overview
We proceed with an informal overview of LACASA: its pro-
gramming model in Scala, and its type system.

A First Example. Consider the case of asynchronous com-
munication between two concurrent processes. This style of
concurrency is well-supported by the actor model [2, 40]
for which multiple implementations exist for Scala [36, 38,
43]. Figure 1 shows the definition of two actor classes.2

The behavior of each actor is implemented by overriding
the receive method inherited from superclass Actor. The
receive method is invoked by the actor runtime system
whenever an actor is ready to process an incoming message.
In the example, whenever ActorA has received an instance of
class Start, it creates an instance of class Message, initial-
izes the instance with an integer array, and sends the instance
to the next actor.
2 In favor of clarity of explanation, Figure 1 shows hypothetical Scala code
which requires slight changes for compilation with the Akka [43] library.

273

https://github.com/phaller/lacasa/
https://github.com/phaller/lacasa/

Note that field next of class Start has type
ActorRef[Message] (line 27) instead of Actor[Message].
An ActorRef serves as an immutable and serializable han-
dle to an actor. The public interface of ActorRef is minimal;
its only purpose is to provide methods for
asynchronously sending messages to the ActorRef’s
underlying actor (an instance of a subclass of Actor). The
purpose of ActorRef as a type separate from Actor is to
provide a fault handling model similar to Erlang [8].3 In
this model, a faulty actor may be restarted in a way where
its underlying Actor instance is replaced with a new in-
stance of the same class. Importantly, any ActorRef refer-
ring to the actor that is being restarted switches to using the
new Actor instance in a way that is transparent to clients
(which only depend on ActorRefs). This enables introduc-
ing fault-handling logic in a modular way (cf. Erlang’s OTP
library [32]).

The shown program suffers from multiple safety haz-
ards: first, within the leak method (line 19), the array of
the current Message instance is stored in the global single-
ton object SomeObject (line 20); thus, subsequently, multi-
ple actors could access the array through SomeObject con-
currently. Second, after sending newMsg to ActorB (line 6),
ActorA mutates the array contained in newMsg (line 7); this
could lead to a data race, since ActorB may be accessing
newMsg.arr at this point.

LACASA prevents the two safety hazards of the example
using two complementary mechanisms: object capabilities
and affine access permissions. Figure 2 shows the same
example written in LACASA. LACASA introduces two main
changes to the Actor and ActorRef library classes:

1. Actors send and receive boxes of type Box[T], rather than
direct object references. As explained in the following,
LACASA’s type system enforces strong encapsulation
properties for boxes.

2. The type of the receive method is changed to addition-
ally include an implicit permission parameter. (We ex-
plain implicit permissions in detail below.)

Due to these changes, LACASA provides its own versions of
the Actor and ActorRef library classes.4

Boxes. A box of type Box[T] encapsulates a reference to
an object of type T. However, this reference is only accessi-
ble using an open method: box.open({ x => ... }); here,
x is an alias of the encapsulated reference. For example, on
line 22 ActorB opens the received box in order to print the
array of the Message instance. Note that the use of open on
lines 4–16 relies on Scala’s syntax for partial functions: a
block of case clauses

3 Scala’s original actor implementation [38] only provided an Actor type;
the distinction between Actor and ActorRef was introduced with the adop-
tion of Akka as Scala’s standard actor implementation.
4 In ongoing work we are developing adapter classes to conveniently inte-
grate LACASA and the Akka actor library.

1 class ActorA extends Actor[Any] {
2 override def receive(box: Box[Any])
3 (implicit acc: CanAccess { type C = box.C }) {
4 box.open({
5 case s: Start =>
6 mkBox[Message] { packed =>
7 val access = packed.access
8 packed.box.open({ msg =>
9 msg.arr = Array(1, 2, 3, 4)

10 }) (access)

11 s.next.send(packed.box)({
12 // ...

13 }) (access)

14 }
15 case other => // ...

16 }) (acc)

17 }
18 }
19 class ActorB extends Actor[Message] {
20 override def receive(box: Box[Message])
21 (implicit acc: CanAccess { type C = box.C }) {
22 box.open({ msg =>
23 println(msg.arr.mkString(","))

24 }) (acc)

25 }
26 }

Figure 2. Two communicating actors in LACASA.

{
case pat1 => e1
...

case patn => en
}

creates a partial function with the same run-time semantics
as the function

x => x match {
case pat1 => e1
...

case patn => en
}

In combination with LACASA’s type system, boxes en-
force constraints that directly prevent the first safety haz-
ard in the previous example. Boxes may only encapsulate
instances whose classes follow the object-capability dis-
cipline. Roughly speaking, the object-capability discipline
prevents an object obj from obtaining references that were
not explicitly passed to obj via constructor or method calls;
in particular, it is illegal for obj to access shared, global sin-
gleton objects like SomeObject. As a result, the problematic
leak (line 20 in Figure 1) causes a compilation error.

Capture Control. In general, the requirement of boxes to
encapsulate object-capability safe classes is not sufficient to
ensure isolation, as the following example illustrates:
1 // box: Box[Message]
2 var a: Array[Int] = null
3 box.open({ msg =>
4 a = msg.arr

274

5 SomeObject.fld = msg.arr
6 })(acc)
7 next.send(box)({
8 a(2) = 33
9 })(acc)

In this case, by capturing variable a in the body of open,
and by making a an alias of the array in msg, it would be
possible to access the array even after sending it (inside msg
inside box) to next. To prevent such problematic leaks, the
body of open is not allowed to capture anything (i.e., it must
not have free variables). Furthermore, the body of open is
not allowed to access global singleton objects. Thus, both
the access to a on line 4 and the access to SomeObject on
line 5 cause compilation errors. Finally, the body of open
may only create instances of object-capability safe classes
to prevent indirect leaks such as on line 20 in Figure 1.

The second safety hazard illustrated in Figure 1, namely
accessing a box that has been transferred, is prevented using
a combination of boxes, capture control, and access permis-
sions, which we discuss next.

Access Permissions. A box can only be accessed (e.g., us-
ing open) at points in the program where its corresponding
access permission is in scope. Box operations take an ex-
tra argument which is the permission required for accessing
the corresponding box. For example, the open invocation on
lines 22–24 in Figure 2 takes the acc permission as an argu-
ment (highlighted) in addition to the closure. Note that acc
is passed within a separate argument list. The main reason
for using an additional argument list instead of just an addi-
tional argument is the use of implicits to reduce the syntactic
overhead (see below).

The static types of access permissions are essential for
alias tracking. Importantly, the static types ensure that an ac-
cess permission is only compatible with a single Box[T] in-
stance. For example, the acc parameter on line 3 has type
CanAccess { type C = box.C } where box is a parameter
of type Box[Any]. Thus, the type member C of the permis-
sion’s type is equal to the type member C of box.

In Scala, box.C is a path-dependent type [5, 6]; box.C
is equivalent to the type box.type#C which selects type C
from the singleton type box.type. The type box.type is
only compatible with singleton types x.type where the type
checker can prove that x and box are always aliases. (Thus,
in a type box.type, box may not be re-assignable.) Access
permissions in LACASA leverage this aliasing property of
singleton types: since it is impossible to create a box b such
that b.C is equal to the type member C of an existing box, it
follows that an access permission is only compatible with at
most one instance of Box[T].

The only way to create an access permission is by cre-
ating a box using an mkBox expression. For example, the
mkBox expression on line 6 in Figure 2 creates a box of type
Box[Message] as well as an access permission. Besides a
type argument, mkBox also receives a closure of the form
{ packed => ... }. The closure’s packed parameter

encapsulates both the box and the access permission, since
both need to be available in the scope of the closure.

Certain operations consume access permissions, causing
associated boxes to become unavailable. For example, the
message send on line 11 consumes the access permission of
packed.box to prevent concurrent accesses from the sender
and the receiver. As a result, packed.box is no longer acces-
sible in the continuation of send.

Note that permissions in LACASA are flow-insensitive by
design. Therefore, the only way to change the set of avail-
able permissions is by entering scopes that prevent access
to consumed permissions. In LACASA, this is realized us-
ing continuation closures: each operation that changes the
set of available permissions also takes a closure that is the
continuation of the current computation; the changed set of
permissions is only visible in the continuation closure. Fur-
thermore, by discarding the call stack following the execu-
tion of a continuation closure, LACASA enforces that scopes
where consumed permissions are visible (and therefore “ac-
cessible”) are never re-entered. The following LACASA op-
erations discard the call stack: mkBox, send, swap (see be-
low). In contrast, open does not discard the call stack, since
it does not change the set of permissions.

In the example, the send operation takes a continuation
closure (line 11–13) which prevents access to the permission
of packed.box; furthermore, the call stack is discarded,
which means that if there was any additional code in the case
branch ending at line 14, it would be unreachable.

Implicit Permissions. To make sure access permissions
do not have to be explicitly threaded through the program,
they are modeled using implicits [24, 25]. For example,
consider the receive method on line 2–3. In addition to
its regular box parameter, the method has an acc param-
eter which is marked as implicit. This means at invoca-
tion sites of receive the argument passed to the implicit
parameter is optionally inferred (or resolved) by the type
checker. Importantly, implicit resolution fails if no type-
compatible implicit value is in scope, or if multiple ambigu-
ous type-compatible implicit values are in scope.5 The ben-
efit of marking acc as implicit is that within the body of
receive, acc does not have to be passed explicitly to meth-
ods requiring access permissions, including LACASA ex-
pressions like open. Figure 2 makes all uses of implicits
explicit (shaded). This explicit style also requires making
parameter lists explicit; for example, consider lines 22–24:
box.open({ x => ... })(acc). In contrast, passing the ac-
cess permission acc implicitly enables the more lightweight
Scala syntax box open { x => ... }.

Stack Locality. It is important to note that the above safety
measures with respect to object capabilities, capture control,
and access permissions could be circumvented by creating
heap aliases of boxes and permissions. Therefore, boxes and

5 See the Scala language specification [54] for details of implicit resolution.

275

1 class ActorA(next: ActorRef[C])
2 extends Actor[Container] {
3 def receive(msg: Box[Container])
4 (implicit acc: CanAccess { type C = msg.C }) {
5 mkBox[C] { packed =>
6 // ...
7 msg.swap(_.part1)(_.part1 = _, packed.box)(
8 spore { pack =>
9 val acc = pack.access

10

11 pack.box.open({ part1Obj =>
12 println(part1Obj.arr.mkString(","))
13 part1Obj.arr(0) = 1000
14 })(acc)
15

16 next.send(pack.box)({
17 // ...
18 })(acc)
19 }
20)(acc)
21 }
22 }
23 }
24 class Container {
25 var part1: Box[C] = _
26 var part2: Box[C] = _
27 }
28 class C {
29 var arr: Array[Int] = _
30 }

Figure 3. An actor accessing a unique field via swap.

permissions are confined to the stack by default. This means,
without additional annotations they cannot be stored in fields
of heap objects or passed as arguments to constructors.

Unique Fields. Strict stack confinement of boxes would
be too restrictive in practice. For example, an actor might
have to store a box in the heap to maintain access across
several invocations of its message handler while enabling
a subsequent ownership transfer. To support such patterns
LACASA enables boxes to have unique fields which store
boxes.6 Access is restricted to maintain external unique-
ness [18] of unique fields (see Section 3 for a formalization
of the uniqueness and aliasing guarantees of unique fields).

The actor in Figure 3 receives a box of type
Box[Container] where class Container declares two unique
fields, part1 and part2 (line 25–26). These fields are iden-
tified as unique fields through their box types; they have
to be accessed using a swap expression. swap “removes”
the box of a unique field and replaces it with another box.
For example, on line 7, swap extracts the part1 field of the
msg box and replaces it with packed.box, the box created
by mkBox on line 5. The extracted box is accessible via the
pack parameter of the subsequent “spore” (see Section 5).

6 As a pragmatic extension, LACASA also enables actors to have unique
fields; this is safe, since actors are alias-free, in contrast to ActorRefs.

p ::= cd vd t program
cd ::= class C extends D {vd md} class
vd ::= var f : C variable
md ::= defm(x : σ) : τ = t method
σ, τ ::= type

C,D class type
| Box[C] box type
| Null null type

Figure 4. CLC1 syntax. C, D range over class names, f ,
m, x range over term names.

3. Formalization
We formalize the main concepts of LACASA in the context
of typed object-oriented core languages. Our approach, how-
ever, extends to the whole of Scala (see Section 5). Our tech-
nical development proceeds in two steps. In the first step,
we formalize simple object capabilities. In combination with
LACASA’s boxes and its open construct object capabilities
enforce an essential heap separation invariant (Section 3.2).
In the second step, we extend our first core language with
lightweight affinity based on permissions. The extended core
language combines permissions and continuation terms to
enable expressing (external) uniqueness, ownership transfer,
and unique fields. Soundness, isolation, and uniqueness in-
variants are established based on small-step operational se-
mantics and syntax-directed type rules.

3.1 Object Capabilities
This section introduces CORELACASA1 (CLC1), a typed,
object-oriented core language with object capabilities.

Syntax. Figure 4 and Figure 5 show the syntax of CLC1.
A program consists of a sequence of class definitions, cd, a
sequence of global variable declarations, vd, and a “main”
term t. Global variables model top-level, stateful singleton
objects of our realization in Scala (see Section 5). A class
C has exactly one superclass D and a (possibly empty)
sequence of fields, vd, and methods, md. The superclass
may be AnyRef, the superclass of all classes. To simplify the
presentation, methods have exactly one parameter x; their
body is a term t. There are three kinds of types: class types
C, box types Box[C], and the Null type. Null is a subtype
of all class types; it is used to assign a type to null.

In order to simplify the presentation of the operational se-
mantics, programs are written in A-normal form [34] (ANF)
which requires all subexpressions to be named. We enforce
ANF by introducing two separate syntactic categories for
terms and expressions, shown in Figure 5. Terms are either
variables or let bindings. Let bindings introduce names for
intermediate results. Most expressions are standard, except
that the usual object-based expressions, namely field selec-
tions, field assignments, and method invocations, have only
variables as trivial subexpressions. The instance creation ex-

276

t ::= terms
x variable
| let x = e in t let binding

e ::= expressions
null null reference
| x variable
| x.f selection
| x.f = y assignment
| new C instance creation
| x.m(y) invocation
| box[C] box creation
| x.open {y ⇒ t} open box

Figure 5. CLC1 terms and expressions.

pression (new) does not take arguments: all fields of newly-
created objects are initialized to null.

Two kinds of expressions are unique to our core language:
box[C] creates a box containing a new instance of class
C. The expression box[C] has type Box[C]. The expression
x.open {y ⇒ t} provides temporary access to box x.

3.1.1 Dynamic Semantics
We formalize the dynamic semantics as a small-step opera-
tional semantics based on two reduction relations,H,F −→
H ′, F ′, and H,FS � H ′,FS ′. The first relation reduces
single (stack) frames F in heap H , whereas the second rela-
tion reduces entire frame stacks FS in heap H .

A heap H maps references o ∈ dom(H) to run-time
objects 〈C,FM 〉 where C is a class type and FM is a field
map that maps field names to values in dom(H) ∪ {null}.
FS is a sequence of stack frames F ; we use the notation
FS = F ◦ FS ′ to indicate that in stack FS frame F is the
top-most frame which is followed by frame stack FS ′.

A single frame F = 〈L, t〉l consists of a variable envi-
ronment L = env(F), a term t, and an annotation l. The
variable environment L maps variable names x to values
v ∈ dom(H) ∪ {null} ∪ {b(o) | o ∈ dom(H)}. A value
b(o) is a box reference created using CLC1’s box[C] expres-
sion. A box reference b(o) prevents accessing the members
of o using regular selection, assignment, and invocation ex-
pressions; instead, accessing o’s members requires the use
of an open expression to temporarily “borrow” the encap-
sulated reference. As is common, L′ = L[x 7→ v] denotes
the updated mapping where L′(y) = L(y) if y 6= x and
L′(y) = v if y = x. A frame annotation l is either empty
(or non-existant), expressed as l = ε, or equal to a variable
name x. In the latter case, x is the name of a variable in the
next frame which is to be assigned the return value of the
current frame.

As is common [42], fields(C) denotes the fields of class
C, andmbody(C, f) = x→ t denotes the body of a method
defm(x : σ) : τ = t.

H, 〈L, let x = null in t〉l
−→ H, 〈L[x 7→ null], t〉l (E-NULL)

H, 〈L, let x = y in t〉l
−→ H, 〈L[x 7→ L(y)], t〉l (E-VAR)

H(L(y)) = 〈C,FM 〉 f ∈ dom(FM)

H, 〈L, let x = y.f in t〉l
−→ H, 〈L[x 7→ FM (f)], t〉l

(E-SELECT)

L(y) = o H(o) = 〈C,FM 〉
H ′ = H[o 7→ 〈C,FM [f 7→ L(z)]〉]
H, 〈L, let x = y.f = z in t〉l
−→ H ′, 〈L, let x = z in t〉l

(E-ASSIGN)

o /∈ dom(H) fields(C) = f

H ′ = H[o 7→ 〈C, f 7→ null〉]
H, 〈L, let x = new C in t〉l
−→ H ′, 〈L[x 7→ o], t〉l

(E-NEW)

o /∈ dom(H) fields(C) = f

H ′ = H[o 7→ 〈C, f 7→ null〉]
H, 〈L, let x = box[C] in t〉l
−→ H ′, 〈L[x 7→ b(o)], t〉l

(E-BOX)

Figure 6. CLC1 frame transition rules.

Reduction of a program p = cd vd t begins in an
initial environment H0, F0 ◦ ε such that H0 = {og 7→
〈Cg,FMg〉} (initial heap), F0 = 〈L0, t〉ε (initial frame),
L0 = {global 7→ og}, FMg = {x 7→ null | var x : C ∈
vd}, and og a fresh object identifier; Cg is a synthetic class
defined as: class Cg extends AnyRef {vd}. Thus, a global
variable var x : C is accessed using global.x; we treat
global as a reserved variable name.

Single Frame Reduction. Figure 6 shows single frame
transition rules. Thanks to the fact that terms are in ANF
in our core language, the reduced term is a let binding in
each case. This means reduction results can be stored im-
mediately in the variable environment, avoiding the intro-
duction of locations or references in the core language syn-
tax. Rule E-BOX is analogous to rule E-NEW, except that
variable x is bound to a box reference b(o). As a result,
fields of the encapsulated object o are not accessible us-
ing regular field selection and assignment, since rules E-
SELECT and E-ASSIGN would not be applicable. Apart from
E-BOX the transition rules are similar to previous stack-
based formalizations of class-based core languages with ob-
jects [11, 12, 55].

Frame Stack Reduction. Figure 7 shows the frame stack
transition rules. Rule E-INVOKE creates a new frame, anno-
tated with x, that evaluates the body of the called method.
Rule E-RETURN1 uses the annotation y of the top-most
frame to return the value of x to its caller’s frame. Rule

277

H(L(y)) = 〈C,FM 〉
mbody(C,m) = x→ t′

L′ = L0[this 7→ L(y), x 7→ L(z)]

H, 〈L, let x = y.m(z) in t〉l ◦ FS
� H, 〈L′, t′〉x ◦ 〈L, t〉l ◦ FS

(E-INVOKE)

H, 〈L, x〉y ◦ 〈L′, t′〉l ◦ FS
� H, 〈L′[y 7→ L(x)], t′〉l ◦ FS

(E-RETURN1)

H, 〈L, x〉ε ◦ 〈L′, t′〉l ◦ FS
� H, 〈L′, t′〉l ◦ FS

(E-RETURN2)

L(y) = b(o) L′ = [z 7→ o]

H, 〈L, let x = y.open {z ⇒ t′} in t〉l ◦ FS
� H, 〈L′, t′〉ε ◦ 〈L[x 7→ L(y)], t〉l ◦ FS

(E-OPEN)

Figure 7. CLC1 frame stack transition rules.

p ` cd p ` Γ0 Γ0 ; ε ` t : σ

p ` cd vd t
(WF-PROGRAM)

C ` md D = AnyRef ∨ p ` class D . . .

∀ (defm . . .) ∈ md. override(m,C,D)

∀ var f : σ ∈ fd. f /∈ fields(D)

p ` class C extends D {fd md}
(WF-CLASS)

mtype(m,D) not defined ∨mtype(m,D) = mtype(m,C)

override(m,C,D)
(WF-OVERRIDE)

Γ0, this : C, x : σ ; ε ` t : τ ′

τ ′ <: τ

C ` defm(x : σ) : τ = t
(WF-METHOD)

Figure 8. Well-formed CLC1 programs.

E-RETURN2 enables returning from an ε-annotated frame.
Rule E-OPEN creates such an ε-annotated frame. In the new
frame, the object encapsulated by box y is accessible un-
der alias z. In contrast to E-INVOKE, the new frame does
not include the global environment L0; instead, z is the only
variable in the (domain of the) new environment.

3.1.2 Static Semantics
Type Assignment. A judgement of the form Γ ; a ` t : σ
assigns type σ to term t in type environment Γ under effect
a. When assigning a type to the top-level term of a program
the effect a is ε which is the unrestricted effect. In contrast,
the body of an open expression must be well-typed under
effect ocap which requires instantiated classes to be ocap.

Well-Formed Programs. Figure 8 shows the rules for well-
formed programs. (We write . . . to omit unimportant parts of
a program.) A program is well-formed if all its class defini-
tions are well-formed and its top-level term is well-typed in

ocap(AnyRef) (OCAP-ANYREF)
p ` class C extends D {fd md}

C `ocap md ocap(D)

∀ var f : E ∈ fd. ocap(E)

ocap(C)
(OCAP-CLASS)

this : C, x : σ ; ocap ` t : τ ′

τ ′ <: τ

C `ocap defm(x : σ) : τ = t
(OCAP-METHOD)

Figure 9. Object capability rules.

type environment Γ0 = {global : Cg} (WF-PROGRAM).
Rule WF-CLASS defines well-formed class definitions. In a
well-formed class definition (a) all methods are well-formed,
(b) the superclass is either AnyRef or a well-formed class in
the same program, and (c) method overriding (if any) is well-
formed; fields may not be overridden. We use a standard
function fields(D) [42] to obtain the fields in classD and su-
perclasses of D. Rule WF-OVERRIDE defines well-formed
method overriding: overriding of a methodm in classC with
superclass D is well-formed if D (transitively) does not de-
fine a method m or the type of m in D is the same as the
type of m in C. A method m is well-typed in class C if its
body is well-typed with type τ ′ under effect ε in environment
Γ0, this : C, x : σ, where σ is the type of m’s parameter x,
such that τ ′ is a subtype of m’s declared result type τ (WF-
METHOD).

Object Capabilities. For a classC to satisfy the constraints
of the object-capability discipline, written ocap(C), it must
be well-formed according to the rules shown in Figure 9.
Essentially, for a class C we have ocap(C) if its superclass
is ocap, the types of its fields are ocap, and its methods
are well-formed according to `ocap. Rule OCAP-METHOD
looks a lot like rule WF-METHOD, but there are two essen-
tial differences: first, the method body must be well-typed
in a type environment that does not contain the global envi-
ronment Γ0; thus, global variables are inaccessible. Second,
the method body must be well-typed under effect ocap; this
means that within the method body only ocap classes may
be instantiated.

Subclassing and Subtypes. In CLC1, the subtyping rela-
tion <:, defined by the class table, is identical to that of
FJ [42] except for two additional rules:

C <: D

Box[C] <: Box[D]
(<:-BOX)

Null <: σ (<:-NULL)

Term and Expression Typing. Figure 10 shows the infer-
ence rules for typing terms and expressions. The type rules
are standard except for T-NEW, T-BOX, and T-OPEN. Under
effect ocap T-NEW requires the instantiated class to be ocap.
An expression box[C] has type Box[C] provided ocap(C)

278

Γ ; a ` null : Null
(T-NULL)

x ∈ dom(Γ)

Γ ; a ` x : Γ(x)
(T-VAR)

Γ ; a ` e : τ Γ, x : τ ; a ` t : σ

Γ ; a ` let x = e in t : σ
(T-LET)

Γ ; a ` x : C ftype(C, f) = D

Γ ; a ` x.f : D
(T-SELECT)

Γ ; a ` x : C ftype(C, f) = D
Γ ; a ` y : D′ D′ <: D

Γ ; a ` x.f = y : D
(T-ASSIGN)

a = ocap =⇒ ocap(C)

Γ ; a ` new C : C
(T-NEW)

Γ ; a ` x : C mtype(C,m) = σ → τ
Γ ; a ` y : σ′ σ′ <: σ

Γ ; a ` x.m(y) : τ
(T-INVOKE)

ocap(C)

Γ ; a ` box[C] : Box[C]
(T-BOX)

Γ ; a ` x : Box[C] y : C ; ocap ` t : σ

Γ ; a ` x.open {y ⇒ t} : Box[C]
(T-OPEN)

Figure 10. CLC1 term and expression typing.

holds (T-BOX). Finally, T-OPEN requires the body t of open
to be well-typed under effect ocap and in a type environment
consisting only of y : C. The type of the open expression it-
self is Box[C] (it simply returns box x).

Well-Formedness. Frames, frame stacks, and heaps must
be well-formed. Figure 11 shows the well-formedness rules
for environments, frames, and frame stacks. Essentially, Γ, L
are well-formed in heap H if for all variables x ∈ dom(Γ)
the type of L(x) inH is a subtype of the static type of x in Γ
(WF-VAR, WF-ENV). A frame 〈L, t〉l is well-typed in H if
its term t is well-typed in some environment Γ such that Γ, L
are well-formed in H (T-FRAME1, T-FRAME2). A frame
stack is well-formed if all its frames are well-typed. Rules T-
FS-NA and T-FS-NA2 are required for ε-annotated frames.
Well-typed heaps are defined as follows. Note that we make
use of a predicate reach(H, o, o′) which holds iff object o′

is reachable from o in H . The definition is standard and
therefore omitted.

Definition 1 (Object Type). For an object identifier o ∈
dom(H) where H(o) = 〈C,FM 〉, typeof(H, o) := C

L(x) = null ∨
typeof(H,L(x)) <: Γ(x)

H ` Γ;L;x
(WF-VAR)

dom(Γ) ⊆ dom(L)
∀x ∈ dom(Γ). H ` Γ;L;x

H ` Γ;L
(WF-ENV)

Γ ; a ` t : σ
H ` Γ;L

H ` 〈L, t〉l : σ
(T-FRAME1)

H ` ε (T-EMPFS)

Γ, x : τ ; a ` t : σ H ` Γ;L

H `τx 〈L, t〉l : σ
(T-FRAME2)

H ` F ε : σ
H ` FS

H ` F ε ◦ FS
(T-FS-NA)

H `τx F ε : σ
H ` FS

H `τx F ε ◦ FS
(T-FS-NA2)

H ` F x : τ
H `τx FS

H ` F x ◦ FS
(T-FS-A)

H `σy F x : τ
H `τx FS

H `σy F x ◦ FS
(T-FS-A2)

Figure 11. Well-formed environments, frames, and frame
stacks.

Definition 2 (Well-typed Heap). A heap H is well-typed,
written ` H : ? iff

∀o ∈ dom(H). H(o) = 〈C,FM 〉 =⇒
(dom(FM) = fields(C) ∧
∀f ∈ dom(FM). FM (f) = null ∨
typeof(H,FM (f)) <: ftype(C, f))

To formalize the heap structure enforced by CLC1 we use
the following definitions.

Definition 3 (Separation). Two object identifiers o and o′

are separate in heap H , written sep(H, o, o′), iff
∀q, q′ ∈ dom(H).

reach(H, o, q) ∧ reach(H, o′, q′) =⇒ q 6= q′.

Definition 4 (Box Separation). For heap H and frame F ,
boxSep(H,F) holds iff
F = 〈L, t〉l ∧ ∀x 7→ b(o), y 7→ b(o′) ∈ L.

o 6= o′ =⇒ sep(H, o, o′)

Definition 5 (Box-Object Separation). For heap H and
frame F , boxObjSep(H,F) holds iff
F = 〈L, t〉l ∧ ∀x 7→ b(o), y 7→ o′ ∈ L. sep(H, o, o′)

Definition 6 (Box Ocap Invariant). For heap H and frame
F , boxOcap(H,F) holds iff
F = 〈L, t〉l ∧ ∀x 7→ b(o) ∈ L, o′ ∈ dom(H).

reach(H, o, o′) =⇒ ocap(typeof(H, o′))

In a well-formed frame, (a) two box references that are not
aliases are disjoint (Def. 4), (b) box references and non-box

279

boxSep(H,F) boxObjSep(H,F)
boxOcap(H,F)

a = ocap =⇒ globalOcapSep(H,F)

H ; a ` F ok
(F-OK)

H ; a ` F ok
H ; a ` F ◦ ε ok

(SINGFS-OK)

H ; b ` F l ok H ; a ` FS ok

b =

{
ocap if a = ocap ∨ l = ε

ε otherwise
boxSeparation(H,F,FS)
uniqueOpenBox(H,F,FS)

openBoxPropagation(H,F l,FS)

H ; b ` F l ◦ FS ok
(FS-OK)

Figure 12. Separation invariants of frames and frame
stacks.

references are disjoint (Def. 5), and (c) all types reachable
from box references are ocap (Def. 6).

Definition 7 (Global Ocap Separation). For heap H and
frame F , globalOcapSep(H,F) holds iff
F = 〈L, t〉l ∧ ∀x 7→ o ∈ L, y 7→ o′ ∈ L0.

ocap(typeof(H, o)) ∧ sep(H, o, o′)

In addition, in a well-formed frame that is well-typed under
effect ocap, non-box references have ocap types, and they
are disjoint from the global variables in L0 (Def. 7).

The judgement H ; a ` F ok combines these invariants
as shown in Figure 12; the corresponding judgement for
frame stacks uses the following additional invariants.

Definition 8 (Box Separation). For heap H , frame F , and
frame stack FS , boxSeparation(H,F,FS) holds iff
∀o, o′ ∈ dom(H). boxRoot(o, F) ∧ boxRoot(o′,FS) ∧

o 6= o′ =⇒ sep(H, o, o′)

Def. 8 uses auxiliary predicate boxRoot shown in Figure 13.
boxRoot(o, F) holds iff there is a box reference to o in frame
F ; boxRoot(o,FS) holds iff there is a box reference to o in
one of the frames FS . Informally, boxSeparation(H,F,FS)
holds iff non-aliased boxes are disjoint.

Definition 9 (Unique Open Box). For heapH , frame F , and
frame stack FS , uniqueOpenBox(H,F,FS) holds iff
∀o, o′ ∈ dom(H). openbox(H, o, F,FS) ∧

openbox(H, o′, F,FS) =⇒ o = o′

Def. 9 uses auxiliary predicate openbox shown in Figure 13.
openbox(H, o, F,FS) holds iff boxRoot(o,FS) and there
is a local variable in frame F which points to an object
reachable from o (box o is “open” in frame F). Informally,
uniqueOpenBox(H,F,FS) holds iff at most one box is
open (i.e., accessible via non-box references) in frame F .

x 7→ b(o) ∈ L
boxRoot(o, 〈L, t〉l)

boxRoot(o, F)

boxRoot(o, F ◦ ε)

boxRoot(o, F) ∨ boxRoot(o,FS)

boxRoot(o, F ◦ FS)

boxRoot(o,FS) x 7→ o′ ∈ env(F) reach(H, o, o′)

openbox(H, o, F,FS)

Figure 13. Auxiliary predicates.

Definition 10 (Open Box Propagation). For heap H , frame
F l, and frame stack FS , openBoxPropagation(H,F l,FS)
holds iff
l 6= ε ∧ FS = G ◦ GS ∧ openbox(H, o, F,FS) =⇒

openbox(H, o,G,GS)

Informally, openBoxPropagation(H,F l,FS) holds iff
frame F l preserves the open boxes in the top-most frame
of frame stack FS .

According to rule FS-OK shown in Figure 12, well-
formed frame stacks ensure (a) non-aliased boxes are dis-
joint (Def. 8), (b) at most one box is open (i.e., accessible
via non-box references) per frame (Def. 9), and (c) method
calls preserve open boxes (Def. 10).

3.2 Soundness and Heap Separation
Type soundness of CLC1 follows from the following preser-
vation and progress theorems. Instead of proving these the-
orems directly, we prove corresponding theorems for an ex-
tended core language (Section 4).

Theorem 1 (Preservation). If ` H : ? then:

1. If H ` F : σ, H ; a ` F ok, and H,F −→ H ′, F ′

then ` H ′ : ?, H ′ ` F ′ : σ, and H ′ ; a ` F ′ ok.
2. If H ` FS , H ; a ` FS ok, and H,FS � H ′,FS ′

then ` H ′ : ?, H ′ ` FS ′, and H ′ ; b ` FS ′ ok.

Theorem 2 (Progress). If ` H : ? then:
If H ` FS and H ; a ` FS ok then either H,FS �

H ′,FS ′ or FS = 〈L, x〉l ◦ ε or FS = F ◦ GS where
F = 〈L, let x = t in t′〉l, t ∈ {y.f, y.f = z, y.m(z),
y.open {z ⇒ t′′}}, and L(y) = null.

The following corollary expresses an essential heap sep-
aration invariant enforced by CLC1. Informally, the corol-
lary states that objects “within a box” (reachable from a box
reference) are never mutated unless their box is “open” (a
reference to the box entry object is on the stack).

Corollary 1 (Heap Separation). If ` H : ? then:
If H ` FS , H ; a ` FS ok, H,FS � H ′,FS ′,

FS = F ◦ GS , F = 〈L, let x = y.f = z in t〉l,

280

p ::= cd vd t program

cd ::= class C extends D { fd md} class
vd ::= var f : C variable
ud ::= var f : Box[C] unique field

fd ::= vd | ud field

md ::= defm(x : σ) : C = t method
σ, τ ::= surface type

C,D class type
| Box[C] box type
| Null null type

π ::= type
σ, τ surface type
Q . Box[C] guarded type

⊥ bottom type

Figure 14. CLC2 syntax. C, D range over class names, f ,
m, x range over term names. Q ranges over abstract types.

L(y) = o′, boxRoot(o,FS), and reach(H, o, o′), thenw 7→
o ∈ env(G) where G ∈ FS .

Proof sketch. First, by H ; a ` FS ok, FS-OK, and FS =
F ◦ GS we have H ; a ` F ok. By F-OK we have
boxObjSep(H,F). By def. 5 this means u 7→ b(o) /∈ L
and therefore ¬boxRoot(o, F). Given that L(y) = o′,
reach(H, o, o′), and boxRoot(o,FS) it must be that
boxRoot(o,GS). Given that boxRoot(o,GS) by def.
boxRoot (Figure 13), there is a frame G′ ∈ GS such that
u 7→ b(o) ∈ env(G′). Well-formedness of FS implies
well-formedness of all its frames (FS-OK). Therefore, G′

is well-formed and by F-OK, o is disjoint from other boxes
(def. 4) and other objects (def. 5) reachable in G′, includ-
ing the global variable. By the transition rules, box refer-
ence u 7→ b(o) prevents field selection; as a result, between
frames F and G′ there must be a frame created by opening
b(o). By E-OPEN, this means there is a frame G ∈ FS such
that w 7→ o ∈ env(G).

3.3 Lightweight Affinity
This section introduces the CORELACASA2 language
(CLC2) which extends CLC1 with affinity, such that boxes
may be consumed at most once. Access to boxes is con-
trolled using permissions. Permissions themselves are nei-
ther flow-sensitive nor affine. Consequently, they can be
maintained in the type environment Γ. Our notion of affin-
ity is based on continuation terms: consumption of permis-
sions, and, thus, boxes, is only possible in contexts where an
explicit continuation is provided. The consumed permission
is then no longer available in the continuation.

Syntax. Figure 14 and Figure 15 show the syntactic differ-
ences between CLC2 and CLC1: first, field types are either
class types C or box types Box[C]; second, we introduce a
bottom type⊥ and guarded typesQ.Box[C] whereQ ranges

over a countably infinite supply of abstract types; third, we
introduce continuation terms.

In CLC2 types are divided into surface types which can
occur in the surface syntax, and general types, including
guarded types, which cannot occur in the surface syntax;
guarded types are only introduced by type inference (see
Section 3.3.2). The bottom type⊥ is the type of continuation
terms tc; these terms come in three forms:

1. A term box[C] {x ⇒ t} creates a box containing a new
instance of class type C, and makes that box accessible
as x in the continuation t. Note that in CLC1 boxes are
created using expressions of the form box[C]. In CLC2

we require the continuation term t, because creating a
box in addition creates a permission only available in t.

2. A term capture(x.f, y) {z ⇒ t} merges two boxes x
and y by assigning the value of y to the field f of the
value of x. In the continuation t (a) y’s permission is no
longer available, and (b) z refers to box x.

3. A term swap(x.f, y) {z ⇒ t} extracts the value of the
unique field x.f and makes it available as the value of
a box z in the continuation t; in addition, the value of
box y replaces the previous value of x.f . Finally, y’s
permission is consumed.

Given that only continuation terms can create boxes in
CLC2, method invocations cannot return boxes unknown
to the caller. As a result, any box returned by a method
invocation must have been passed as the single argument in
the invocation. However, a method that takes a box as an
argument, and returns the same box can be expressed using a
combination of open and a method that takes the contents of
the box as an argument. Therefore, method return types are
always class types in CLC2, simplifying the meta-theory.

3.3.1 Dynamic Semantics
CLC2 extends the dynamic semantics compared to CLC1

with dynamically changing permissions. A dynamic access
to a box requires its associated permission to be available.
For this, we extend the reduction relations compared to
CLC1 with permission sets P . Thus, a frame 〈L, t, P 〉l com-
bines a variable environment L and term t with a set of per-
missions P . (As before, the label l is used for transferring
return values from method invocations.)

The transition rules of CLC2 for single frames are iden-
tical to the corresponding transition rules of CLC1; the per-
mission sets do not change.7 In contrast, the transition rules
for frame stacks affect the permission sets of frames.

The extended transition rules of CLC2 are shown in Fig-
ure 16. Rule E-INVOKE additionally requires permission p
to be available in P in case the argument of the invocation
is a box protected by p; in this case permission p is also
transferred to the new frame (the “activation record”). Re-

7 Therefore, the transition rules (trivially) extended with permission sets are
only shown in Appendix A.

281

t ::= terms
x variable
| let x = e in t let binding
| tc continuation term

e ::= expressions
null null reference
| x variable
| x.f selection
| x.f = y assignment
| new C instance creation
| x.m(y) invocation
| x.open {y ⇒ t} open box

tc ::= continuation term
box[C] {x⇒ t} box creation

| capture(x.f, y) {z ⇒ t} capture

| swap(x.f, y) {z ⇒ t} swap

Figure 15. CLC2 terms and expressions.

H(L(y)) = 〈C,FM 〉 mbody(C,m) = x→ t′

L′ = L0[this 7→ L(y), x 7→ L(z)]
P ′ = ∅ ∨ (L(z) = b(o, p) ∧ p ∈ P ∧ P ′ = {p})

H, 〈L, let x = y.m(z) in t, P 〉l ◦ FS
� H, 〈L′, t′, P ′〉x ◦ 〈L, t, P 〉l ◦ FS

(E-INVOKE)

H, 〈L, x, P 〉y ◦ 〈L′, t′, P ′〉l ◦ FS
� H, 〈L′[y 7→ L(x)], t′, P ′〉l ◦ FS

(E-RETURN1)

H, 〈L, x, P 〉ε ◦ 〈L′, t′, P ′〉l ◦ FS
� H, 〈L′, t′, P ′〉l ◦ FS

(E-RETURN2)

L(y) = b(o, p) p ∈ P L′ = [z 7→ o]

H, 〈L, let x = y.open {z ⇒ t′} in t, P 〉l ◦ FS
� H, 〈L′, t′, ∅〉ε ◦ 〈L[x 7→ L(y)], t, P 〉l ◦ FS

(E-OPEN)

o /∈ dom(H) fields(C) = f

H ′ = H[o 7→ 〈C, f 7→ null〉] p fresh
H, 〈L, box[C] {x⇒ t}, P 〉l ◦ FS

� H ′, 〈L[x 7→ b(o, p)], t, P ∪ {p}〉ε ◦ ε

(E-BOX)

Figure 16. CLC2 frame stack transition rules.

duction gets stuck if permission p is not available. Rules E-
RETURN1 and E-RETURN2 do not affect permission sets
and are otherwise identical to the corresponding rules of
CLC1. Rule E-OPEN requires that permission p of the box-
to-open b(o, p) is one of the currently available permissions
P . The permission set of the new frame is empty. Rule E-
BOX creates a box b(o, p) accessible in continuation t us-
ing fresh permission p. Note that rule E-BOX discards frame
stack FS in favor of the continuation t.

L(x) = b(o, p) L(y) = b(o′, p′) {p, p′} ⊆ P
H(o) = 〈C,FM 〉 H ′ = H[o 7→ 〈C,FM [f 7→ o′]〉]

H, 〈L, capture(x.f, y) {z ⇒ t}, P 〉l ◦ FS
� H ′, 〈L[z 7→ L(x)], t, P \ {p′}〉ε ◦ ε

(E-CAPTURE)

L(x) = b(o, p) L(y) = b(o′, p′) {p, p′} ⊆ P
H(o) = 〈C,FM 〉 FM (f) = o′′ p′′ fresh

H ′ = H[o 7→ 〈C,FM [f 7→ o′]〉]
H, 〈L, swap(x.f, y) {z ⇒ t}, P 〉l ◦ FS

� H ′, 〈L[z 7→ b(o′′, p′′)], t, (P \ {p′}) ∪ {p′′}〉ε ◦ ε
(E-SWAP)

Figure 17. Transition rules for capture and swap.

Γ0, this : C, x : D ; ε ` t : E′

E′ <: E

C ` defm(x : D) : E = t
(WF-METHOD1)

Γ = Γ0, this : C, x : Q . Box[D], Perm[Q]

Q fresh Γ ; ε ` t : E′ E′ <: E

C ` defm(x : Box[D]) : E = t
(WF-METHOD2)

Figure 18. Well-formed CLC2 methods.

Figure 17 shows CLC2’s two new transition rules. E-
CAPTURE merges box b(o, p) and box b(o′, p′) by assigning
o′ to field f of object H(o). The semantics of capture is
thus similar to that of a regular field assignment. However,
capture additionally requires both permissions p and p′ to
be available; moreover, in continuation t permission p′ is no
longer available, effectively consuming box b(o′, p′). Like
E-BOX, E-CAPTURE discards frame stack FS . Finally, E-
SWAP provides access to a unique field f of an object in box
b(o, p): in continuation t variable z refers to the previous
object o′′ in f ; the object o′ in box b(o′, p′) replaces o′′. Like
E-CAPTURE, E-SWAP requires both permissions p and p′ to
be available, and in continuation t permission p′ is no longer
available, consuming box b(o′, p′).

3.3.2 Static Semantics
Well-Formed Programs. CLC2 adapts method
well-formedness for the case where static permissions are
propagated to the callee context: the body of a method with a
parameter of type Box[D] is type-checked in an environment
Γ which includes a static permission Perm[Q] where Q is a
fresh abstract type; furthermore, the parameter has a guarded
type Q . Box[D]. This environment Γ ensures the method
body has full access to the argument box.

The OCAP-* rules for CLC2 treat box-typed method
parameters analogously, and are left to the appendix.

Subclassing and Subtypes. In CLC2, the subtyping rela-
tion <: is identical to that of CLC1except for one additional
rule for the ⊥ type:

282

Γ ; a ` x : C mtype(C,m) = σ → τ
Γ ; a ` y : σ′ σ′ <: σ ∨

(σ = Box[D] ∧ σ′ = Q . Box[D] ∧ Perm[Q] ∈ Γ)

Γ ; a ` x.m(y) : τ
(T-INVOKE)

a = ocap =⇒ ocap(C)

∀ var f : σ ∈ fd. ∃ D. σ = D

Γ ; a ` new C : C
(T-NEW)

Γ ; a ` x : Q . Box[C] Perm[Q] ∈ Γ

y : C ; ocap ` t : σ

Γ ; a ` x.open {y ⇒ t} : Q . Box[C]
(T-OPEN)

ocap(C) Q fresh

Γ, x : Q . Box[C] , Perm[Q] ; a ` t : σ

Γ ; a ` box[C] {x⇒ t} : ⊥
(T-BOX)

Figure 19. CLC2 term and expression typing.

⊥ <: π (<:-BOT)

The <:-BOT rule says that ⊥ is a subtype of any type
π. (Note that type Null is a subtype of any surface type,
whereas π ranges over all types including guarded types.)

Term and Expression Typing. Figure 19 shows the changes
in the type rules. In T-INVOKE, if the method parameter
has a type Box[D] then the argument y must have a type
Q . Box[D] such that the static permission Perm[Q] is avail-
able in Γ. (Otherwise, box y has been consumed.) T-NEW
checks that none of the field types are box types. This makes
sure classes with box-typed fields are only created using
box expressions. (Box-typed fields are then accessible using
swap.) T-OPEN requires the static permission Perm[Q] cor-
responding to the guarded typeQ.Box[C] of the opened box
x to be available in Γ; this ensures consumed boxes are never
opened. Finally, T-BOX assigns a guarded type Q . Box[C]
to the newly created box x where Q is a fresh abstract type;
the permission Perm[Q] is available in the type context of the
continuation term t. The box expression itself has type ⊥,
since reduction never “returns”; t is the (only) continuation.

Figure 20 shows the type rules for CLC2’s two new
expressions. Both rules require x and y to have guarded
types such that the corresponding permissions are available
in Γ. In both cases the permission of y is removed from the
environment used to type-check the continuation t; thus, box
y is consumed in each case. In its continuation, capture
provides access to box x under alias z; thus, z’s type is
equal to x’s type. In contrast, swap extracts the value of a
unique field and provides access to it under alias z in its
continuation. CLC2 ensures the value extracted from the
unique field is externally unique. Therefore, the type of z

Γ ; a ` x : Q . Box[C] Γ ; a ` y : Q′ . Box[D]
{Perm[Q], Perm[Q′]} ⊆ Γ D <: ftype(C, f)

Γ \ {Perm[Q′]}, z : Q . Box[C] ; a ` t : σ

Γ ; a ` capture(x.f, y) {z ⇒ t} : ⊥
(T-CAPTURE)

Γ ; a ` x : Q . Box[C] Γ ; a ` y : Q′ . Box[D′]
{Perm[Q], Perm[Q′]} ⊆ Γ ftype(C, f) = Box[D]

D′ <: D R fresh
Γ \ {Perm[Q′]}, z : R . Box[D], Perm[R] ; a ` t : σ

Γ ; a ` swap(x.f, y) {z ⇒ t} : ⊥
(T-SWAP)

Figure 20. Typing CLC2’s capture and swap.

is a guarded type R . Box[D] where R is fresh; permission
Perm[R] is created for use in continuation t.

Well-Formedness. CLC2 extends CLC1 with unique fields
of type Box[C] (see Figure 14); the following refined defini-
tion of well-typed heaps in CLC2 reflects this extension:

Definition 11 (Well-typed Heap). A heap H is well-typed,
written ` H : ? iff

∀o ∈ dom(H). H(o) = 〈C,FM 〉 =⇒
(dom(FM) = fields(C) ∧
∀f ∈ dom(FM). FM (f) = null ∨
(typeof(H,FM (f)) <: D ∧
ftype(C, f) ∈ {D, Box[D]}))

The most interesting additions of CLC2with respect to
well-formedness concern (a) separation invariants and (b)
field uniqueness. In CLC1, two boxes x and y are separate
as long as x is not an alias of y. In CLC2, the separation
invariant is more complex, because capture merges two
boxes, and swap replaces the value of a unique field. The key
idea is to make separation conditional on the availability of
permissions.

Box separation for frames in CLC2 is defined as follows:

Definition 12 (Box Separation). For heap H and frame F ,
boxSep(H,F) holds iff
F = 〈L, t, P 〉l ∧ ∀x 7→ b(o, p), y 7→ b(o′, p′) ∈ L. p 6=

p′ ∧ {p, p′} ⊆ P =⇒ sep(H, o, o′)

Two box references are disjoint if they are guarded by two
different permissions which are both available. As soon as a
box is consumed, e.g., via capture, box separation no longer
holds, as expected. In other invariants like boxObjSep, box
permissions are not required. Similarly, the differences in
boxOcap and globalOcapSep are minor, and therefore left
to the appendix.

CLC2’s addition of unique fields requires a new field
uniqueness invariant for well-formed frames:

283

Definition 13 (Field Uniqueness). For heap H and frame
F = 〈L, t, P 〉l, fieldUniqueness(H,F) holds iff
∀x 7→ b(o, p) ∈ L, o′, ô ∈ dom(H).

p ∈ P ∧ reach(H, o, ô) ∧ H(ô) = 〈C,FM 〉 ∧
ftype(C, f) = Box[D] ∧ reach(H,FM (f), o′) =⇒
domedge(H, ô, f, o, o′)

This invariant expresses the fact that all reference paths from
a box b(o, p) to an object o′ reachable from a unique field
f of object ô must “go through” that unique field. In other
words, in all reference paths from o to o′, the edge (ô, f) is a
dominating edge. (A precise definition of domedge appears
in the appendix.)

Frame Stack Invariants. The frame stack invariants of
CLC2 are extended to take the availability of permissions
into account. For example, box separation is now only pre-
served for boxes (a) that are not controlled by the same per-
mission, and (b) whose permissions are available:

Definition 14 (Box Separation). Frame F and frame stack
FS satisfy the box separation property in H , written
boxSep(H,F,FS) iff
∀o, o′ ∈ dom(H). boxRoot(o, F, p) ∧

boxRoot(o′,FS , p′) ∧ p 6= p′ =⇒ sep(H, o, o′)

Note that the availability of permissions is required indi-
rectly by the boxRoot predicate (its other details are unin-
teresting, and therefore omitted).

4. Soundness
Theorem 3 (Preservation). If ` H : ? then:

1. If H ` F : σ, H ; a ` F ok, and H,F −→ H ′, F ′

then ` H ′ : ?, H ′ ` F ′ : σ, and H ′ ; a ` F ′ ok.
2. If H ` FS , H ; a ` FS ok, and H,FS � H ′,FS ′

then ` H ′ : ?, H ′ ` FS ′, and H ′ ; b ` FS ′ ok.

Proof. Part (1) is proved by induction on the derivation of
H,F −→ H ′, F ′. Part (2) is proved by induction on the
derivation of H,FS � H ′,FS ′ and part (1). (See the
companion technical report [37] for the full proof.)

Theorem 4 (Progress). If ` H : ? then:
If H ` FS and H ; a ` FS ok then either H,FS �

H ′,FS ′ or FS = 〈L, x, P 〉l ◦ ε or FS = F ◦GS where

• F = 〈L, let x = t in t′, P 〉l, t ∈ {y.f, y.f =
z, y.m(z), y.open {z ⇒ t′′}}, and L(y) = null; or

• F = 〈L, capture(x.f, y) {z ⇒ t}, P 〉l where L(x) =
null ∧ L(y) = null; or

• F = 〈L, swap(x.f, y) {z ⇒ t}, P 〉l where L(x) =
null ∧ L(y) = null.

Proof. By induction on the derivation of H ` FS . (See the
companion technical report [37] for the full proof.)

σ, τ ::= surface type
. . .
| Proc[C] process type

e ::= expression
. . .
| proc {(x : Box[C])⇒ t} process creation

tc ::= continuation term
. . .
| send(x, y) {z ⇒ t} message send

Figure 21. Syntax extensions for concurrency.

Importantly, for a well-formed frame configuration,
CLC2 ensures that all required permissions are dynamically
available; thus, reduction is never stuck due to missing per-
missions.

4.1 Isolation
In order to state an essential isolation theorem, in the fol-
lowing we extend CLC2 with a simple form of message-
passing concurrency. We call the resulting language CLC3.
CLC3 enables the statement of Theorem 5 which expresses
the fact that the type system of CLC3 enforces process iso-
lation in the presence of a shared heap and efficient, by-
reference message passing.

Figure 21 summarizes the syntax extensions. CLC3 adds
a generic type Proc[C] for processes capable of receiv-
ing messages of type Box[C]. An expression of the form
proc {(x : Box[C]) ⇒ t} creates a concurrent pro-
cess which applies the function {(x : Box[C]) ⇒ t} to
each received message. A continuation term of the form
send(x, y) {z ⇒ t} asynchronously sends box y to process
x and then applies the continuation closure {z ⇒ t} to x.

Dynamic Semantics. CLC3 extends the dynamic seman-
tics of CLC2 such that the configuration of a program con-
sists of a shared heap H and a set of processes P . Each pro-
cess FSo is a frame stack FS labelled with an object iden-
tifier o. A heap H maps the object identifier o of a process
FSo to a process record 〈Box[C],M, x → t〉 where Box[C]
is the type of messages the process can receive, M is a set
of object identifiers representing (buffered) incoming mes-
sages, and x→ t is the message handler function. CLC3 in-
troduces a third reduction relation H,P H ′,P ′ which
reduces a set of processes P in heap H .

Figure 22 shows the process transition rules. Rule E-
PROC creates a new process by allocating a process record
with an empty received message set and the message type
and handler function as specified in the proc expression. The
new process εo

′
starts out with an empty frame stack, since

it is initially idle. Rule E-SEND sends the object identifier
in box y to process x. The required permission p′ of box
y is consumed in the resulting frame F ′. The call stack

284

F = 〈L, let x = proc {(y : Box[C])⇒ t′} in t, P 〉l
F ′ = 〈L[x 7→ o′], t, P 〉l o′ fresh
H ′ = H[o′ 7→ 〈Box[C], ∅, y → t′〉]

H, {(F ◦ FS)o} ∪ P H ′, {(F ′ ◦ FS)o, εo
′} ∪ P
(E-PROC)

F = 〈L, send(x, y) {z ⇒ t}, P 〉l L(x) = o
H(o) = 〈Box[C],M, f〉 L(y) = b(o′, p′) p′ ∈ P

F ′ = 〈L[z 7→ o], t, P \ {p′}〉ε
H ′ = H[o 7→ 〈Box[C],M ∪ {o′}, f〉]

H,F ◦ FS � H ′, F ′ ◦ ε
(E-SEND)

H(o) = 〈Box[C],M, x→ t〉 M = M ′] {o′}
F = 〈L, y, P 〉l F ′ = 〈∅[x 7→ b(o′, p)], t, {p}〉ε p fresh

H ′ = H[o 7→ 〈Box[C],M ′, x→ t〉]
H, {(F ◦ ε)o} ∪ P H ′, {(F ′ ◦ ε)o} ∪ P

(E-RECEIVE)
Figure 22. CLC3 process transition rules.

H ` FSo H ` P
H ` {FSo} ∪ P

(WF-SOUP)

H ` FS H ; a ` FS ok
H ` FSo

(WF-PROC)

Figure 23. CLC3 well-formedness rules.

is discarded, since send is a continuation term. In rule E-
RECEIVE process o is ready to process a message from its
non-empty set of incoming messages M , since (the term in)
frame F cannot be reduced further and there are no other
frames on the frame stack. (The] operator denotes disjoint
set union.) Frame F ′ starts message processing with the
parameter bound to a box reference with a fresh permission.

Static Semantics. Figure 23 shows the well-formedness
rules that CLC3 introduces for (sets of) processes. A set
of processes is well-formed if each process is well-formed
(WF-SOUP). A process is well-formed if its frame stack
is well-formed (WF-PROC). CLC3 also extends the object
capability rules: ocap(C) =⇒ ocap(Proc[C])

Figure 24 shows the typing of process creation and mes-
sage sending. Rule T-PROC requires the body of a new pro-
cess to be well-typed in an environment that only contains
the parameter of the message handler and a matching ac-
cess permission which is fresh. Importantly, body term t is
type-checked under effect ocap. This means that t may only
instantiate ocap classes. As a result, it is impossible to ac-
cess global variables from within the newly created process.
Rule T-SEND requires the permission Perm[Q] of sent box y
to be available in context Γ. The body t of the continuation
closure must be well-typed in a context where Perm[Q] is no
longer available. As with all continuation terms, the type of
a send term is ⊥.

x : Q . Box[C], Perm[Q] ; ocap ` t : π
Q fresh

Γ ; a ` proc {(x : Box[C])⇒ t} : Proc[C]
(T-PROC)

Γ ; a ` x : Proc[C] Γ ; a ` y : Q . Box[D]
Perm[Q] ∈ Γ D <: C

Γ \ {Perm[Q]}, z : Proc[C] ; a ` t : π

Γ ; a ` send(x, y) {z ⇒ t} : ⊥
(T-SEND)

Figure 24. CLC3 typing rules.

x 7→ o ∈ L ∨ (x 7→ b(o, p) ∈ L ∧ p ∈ P)

accRoot(o, 〈L, t, P 〉l)
(ACC-F)

accRoot(o, F) ∨ accRoot(o,FS)

accRoot(o, F ◦ FS)
(ACC-FS)

∀o, o′ ∈ dom(H). (accRoot(o,FS)
∧accRoot(o′,FS ′))⇒ sep(H, o, o′)

isolated(H,FS ,FS ′)
(ISO-FS)

H(o) = 〈Box[C],M, f〉
H(o′) = 〈Box[D],M ′, g〉

∀q ∈M, q′ ∈M ′. sep(H, q, q′)
isolated(H,FS ,GS)

isolated(H,FSo ,GSo′
)

(ISO-PROC)

Figure 25. CLC3 process and frame stack isolation.

Figure 25 defines a predicate isolated to express isolation
of frame stacks and processes. Isolation of frame stacks
builds on an accRoot predicate: identifier o is an accessible
root in frame F , written accRoot(o, F), iff env(F) contains
a binding x 7→ o or x 7→ b(o, p) where permission p is
available inF (ACC-F); o is an accessible root in frame stack
FS iff accRoot(o, F) holds for any frame F ∈ FS (ACC-
FS). Two frame stacks are then isolated in H iff all their
accessible roots are disjoint in H (ISO-FS). Finally, two
processes are isolated iff their message queues and frame
stacks are disjoint (ISO-PROC).

Theorem 5 (Isolation). If ` H : ? then:
IfH ` P , ∀P, P ′ ∈ P. P 6= P ′ =⇒ isolated(H,P, P ′),

and H,P H ′,P ′ then ` H ′ : ?, H ′ ` P ′, and
∀Q,Q′ ∈ P ′. Q 6= Q′ =⇒ isolated(H ′, Q,Q′).

Theorem 5 states that preserves isolation of well-
typed processes. Isolation is preserved even when boxes are
transferred by reference between concurrent processes. In-
formally, the validity of this statement rests on the preser-
vation of well-formedness of frames, frame stacks, and pro-
cesses; well-formedness guarantees the separation of boxes
with available permissions (def. 12 and def. 14), and the
separation of boxes with available permissions from objects
“outside” of boxes (def. 15 and def. 17 in Appendix A).

285

Informally, Theorem 5 together with the soundness of
CLC2 implies data-race freedom. According to the reduc-
tion rules of CLC2, an access to a box reference with permis-
sion p cannot be reduced if p is not available dynamically.
By Theorem 4, a well-typed program never attempts such a
reduction. However, Theorem 5 states that accessing boxes
with available permissions preserves process isolation.

5. Implementation
LACASA is implemented as a combination of a compiler
plugin for the current Scala 2 reference compiler and a run-
time library. The plugin extends the compilation pipeline
with an additional phase right after regular type checking. Its
main tasks are (a) object-capability checking, (b) checking
the stack locality of boxes and permissions, and (c) check-
ing the constraints of LACASA expressions. In turn, (c) re-
quires object-capability checking: type arguments of mkBox
invocations must be object-capability safe, and open bodies
may only instantiate object-capability safe classes. Certain
important constraints are implemented using spores [45].

Object Capability Checking in Scala. Our empirical study
revealed the importance of certain Scala-specific “tweaks”
to conventional object-capability checking. We describe the
most important one. The Scala compiler generates so-called
“companion” singleton objects for case classes and custom
value classes if the corresponding companions do not al-
ready exist. For a case class such a synthetic companion ob-
ject provides, e.g., factory and extractor [30] methods. Syn-
thetic companion objects are object-capability safe.

Leveraging Spores. We leverage constraints supported by
spores in several places in LACASA. We provide two exam-
ples where spores are used in our implementation.

The first example is the body of an open expression.
According to the rules of LACASA, it is not allowed to have
free variables (see Section 2). Using spores, this constraint
can be expressed in the type of the open method as follows:

def open(fun: Spore[T, Unit])(implicit
acc: CanAccess { type C = self.C },
noCapture: OnlyNothing[fun.Captured]): Unit

Besides the implicit access permission, the method also
takes an implicit parameter of type
OnlyNothing[fun.Captured]. The generic OnlyNothing
type is a trivial type class with only a single instance, namely
for type Nothing, Scala’s bottom type. Consequently, for
an invocation of open, the compiler is only able to resolve
the implicit parameter noCapture in the case where type
fun.Captured is equal to Nothing. In turn, spores ensure
this is only the case when the fun spore does not capture
anything.

The second example where LACASA leverages spores is
permission consumption in swap:

1 def swap[S](select: T => Box[S])
2 (assign: (T, Box[S]) => Unit, b: Box[S])

3 (fun: Spore[Packed[S], Unit] {
4 type Excluded = b.C
5 })
6 (implicit acc: CanAccess { type C = b.C }): Unit

select and assign are field accessor functions (see Sec-
tion 2); the LACASA plugin must enforce that they are trivial
function literals. The box b is put into the unique field. The
implicit acc parameter ensures the availability of b’s permis-
sion. Crucially, b’s permission is consumed by the assign-
ment to the unique field. Therefore, b must not be accessed
in the continuation spore fun, which is expressed using the
spore’s Excluded type member. As a result, fun’s body can
no longer capture the permission. Note that it is impossible
to capture a permission indirectly via another object or clo-
sure, since permissions are confined to the stack.

5.1 Discarding the Stack Using Exceptions
Certain LACASA operations require discarding the stack
of callers in order to ensure consumed access permissions
become unavailable. For example, recall the message send
shown in Figure 2 (see Section 2):

1 s.next.send(packed.box)({
2 // continuation closure
3 })(access)
4 // unreachable

Here, the send invocation consumes the access permission:
the permission is no longer available in the continuation.
This semantics is enforced by ensuring (a) the access per-
mission is unavailable within the explicit continuation clo-
sure (line 2), and (b) code following the send invocation
(line 4) is unreachable. The former is enforced analogously
to swap discussed above. The latter is enforced by discarding
the stack of callers.

Discarding the call stack is a well-known technique in
Scala, and has been widely used in the context of event-
based actors [38] where the stack of callers is discarded
when an actor suspends with just a continuation closure.8

The implementation consists of throwing an exception which
unwinds the call stack up to the actor’s event-loop, or up to
the boundary of a concurrent task.

Prior to throwing the stack-unwinding exception, opera-
tions like send invoke their continuation closure which is
provided explicitly by the programmer:

1 def send(msg: Box[T])(cont: NullarySpore[Unit] {...})
2 (implicit acc: CanAccess {...}): Nothing = {
3 ... // enqueue message
4 cont() // invoke continuation closure
5 throw new NoReturnControl // discard stack
6 }

The thrown NoReturnControl exception is caught either
within the main thread where the main method is wrapped

8 See https://github.com/twitter-archive/kestrel/blob/
3e64b28ad4e71256213e2bd6e8bd68a9978a2486/src/main/scala/
net/lag/kestrel/KestrelHandler.scala for a usage example in a
large-scale production system.

286

https://github.com/twitter-archive/kestrel/blob/3e64b28ad4e71256213e2bd6e8bd68a9978a2486/src/main/scala/net/lag/kestrel/KestrelHandler.scala
https://github.com/twitter-archive/kestrel/blob/3e64b28ad4e71256213e2bd6e8bd68a9978a2486/src/main/scala/net/lag/kestrel/KestrelHandler.scala
https://github.com/twitter-archive/kestrel/blob/3e64b28ad4e71256213e2bd6e8bd68a9978a2486/src/main/scala/net/lag/kestrel/KestrelHandler.scala

1 class MessageHandlerTask(
2 receiver: Actor[T],
3 packed: Packed[T]) extends Runnable {
4 def run(): Unit = {
5 // process message in ‘packed‘ object
6 try {
7 // invoke ‘receive‘ method of ‘receiver‘ actor
8 receiver.receive(packed.box)(packed.access)
9 } catch {

10 case nrc: NoReturnControl => /* do nothing */
11 }
12 // check for next message
13 ...
14 }
15 ...
16 }

Figure 26. Handling NoReturnControl within actors.

in a try-catch (see below), or within a worker thread of the
actor system’s thread pool. In the latter case, the task that ex-
ecutes actor code catches the NoReturnControl exception,
as shown in Figure 26. Note that the exception handler is at
the actor’s “top level:” after processing the received message
(in packed) the receiver actor is ready to process the next
message (if any).

Scala’s standard library provides a special
ControlThrowable type for such cases where exceptions
are used to manage control flow. The above
NoReturnControl type extends ControlThrowable. The
latter is defined as follows:

trait ControlThrowable extends Throwable
with NoStackTrace

Mixing in the NoStackTrace trait disables the generation
of JVM stack traces, which is expensive and not needed.
The ControlThrowable type enables exception handling
without disturbing exception-based control-flow transfers:

try { ... } catch {
case c: ControlThrowable => throw c // propagate
case e: Exception => ...

}

Crucially, exceptions of a subtype of ControlThrowable are
propagated in order not to influence the in-progress control
flow transfer. Patterns such as the above are unchecked in
Scala. However, in the case of LACASA, failure to propagate
ControlThrowables could result in unsoundness. For exam-
ple, consider the following addition of a try-catch to the
previous example (shown at the beginning of Section 5.1):

1 try {
2 s.next.send(packed.box)({
3 // continuation closure
4 })(access)
5 } catch {
6 case c: ControlThrowable => // do nothing
7 }
8 other.send(packed.box)({
9 ...

10 })(access)

By catching and not propagating the ControlThrowable,
the access permission remains accessible from line 8, en-
abling sending the same object (packed.box) twice.

In order to prevent such soundness issues, the LA-
CASA compiler plugin performs additional checks:
a try-catch expression is valid if either (a) none of its
catch clauses match ControlThrowables, or (b) all catch
clauses matching ControlThrowables propagate caught ex-
ceptions. Furthermore, to support trusted LACASA code, a
marker method permits unsafe catches.

6. Empirical Evaluation
The presented approach to object isolation and uniqueness
is based on object capabilities. Isolation is enforced only
for instances of ocap classes, i.e., classes adhering to the
object-capability discipline. Likewise, ownership transfer is
supported only for instances of ocap classes. Therefore, it is
important to know whether the object-capability discipline
imposes an undue burden on developers; or whether, on the
contrary, developers tend to design classes and traits in a
way that naturally follows the object-capability discipline.
Specifically, our empirical evaluation aims to answer the
following question: How many classes/traits in medium to
large open-source Scala projects already satisfy the object-
capability constraints required by LACASA?

Methodology. For our empirical analysis we selected Scala’s
standard library, a large and widely-used class library, as
well as two medium to large open-source Scala applica-
tions. In total, our corpus comprises 78,617 source lines of
code (obtained using [26]). Determining the prevalence of
ocap classes and traits is especially important in the case of
Scala’s standard library, since it tells us for which classes/-
traits LACASA supports isolation and ownership transfer
“out of the box,” i.e., without code changes. (We will refer
to both classes and traits as “classes” in the following.)

The two open-source applications are Signal/Collect
(S/C) and GeoTrellis. S/C [61] is a distributed graph process-
ing framework with applications in machine learning and the
semantic web, among others. Concurrency and distribution
are implemented using the Akka actor framework [43]. Con-
sequently, S/C could also benefit from LACASA’s additional
safety. GeoTrellis is a high performance data processing en-
gine for geographic data, used by the City of Asheville [17]
(NC, USA) and the U.S. Army, among others. Like S/C,
GeoTrellis utilizes actor concurrency through Akka.

In each case we performed a clean build with the LA-
CASA compiler plugin enabled. We configured the plugin to
check ocap constraints for all compiled classes. In addition,
we collected statistics on classes that directly violate ocap
constraints through accesses to global singleton objects.

Results. Figure 27 shows the collected statistics.
For Scala’s standard library we found that 43% of all

classes follow the object-capability discipline. While this

287

Project Version SLOC GitHub stats #classes/traits #ocap (%) #dir. insec. (%)
Scala Standard Library 2.11.7 33,107 5,795 257 1,505 644 (43%) 212/861 (25%)
Signal/Collect 8.0.6 10,159 123 11 236 159 (67%) 60/77 (78%)
GeoTrellis 0.10.0-RC2 400 38
-engine 3,868 190 40 (21%) 124/150 (83%)
-raster 22,291 670 233 (35%) 325/437 (74%)
-spark 9,192 326 101 (31%) 167/225 (74%)
Total 78,617 2,927 1,177 (40%) 888/1,750 (51%)

Figure 27. Evaluating the object-capability discipline in real Scala projects. Each project is an active open-source project
hosted on GitHub. represents the number of “stars” (or interest) a repository has on GitHub, and represents the number
of contributors of the project (March 2016).

number might seem low, it is important to note that a
strict form of ocap checking was used: accesses to top-
level singleton objects were disallowed, even if these single-
tons were themselves immutable and object-capability safe.
Thus, classes directly using helper singletons were marked
as insecure. Interestingly, only 25% of the insecure classes
directly access top-level singleton objects. This means, the
majority of insecure classes is insecure due to dependencies
on other insecure classes. These results can be explained
as follows. First, helper singletons (in particular, “compan-
ion objects”) play an important role in the architecture of
Scala’s collections package [52]. In turn, with 22,958 SLOC
the collections package is by far the library’s largest pack-
age, accounting for 69% of its total size. Second, due to the
high degree of reuse enabled by techniques such as the type
class pattern [24], even a relatively small number of classes
that directly depend on singletons leads to an overall 57% of
insecure classes.

In S/C 67% of all classes satisfy strict ocap constraints, a
significantly higher percentage than for the Scala library. At
the same time, the percentage of classes that are not ocap due
to direct accesses to top-level singletons is also much higher
(78% compared to 25%). This means there is less reuse of in-
secure classes in S/C. All analyzed components of GeoTrel-
lis have a similarly high percentage of “directly insecure”
classes. Interestingly, even with its reliance on “companion
objects” and its high degree of reuse, the proportion of ocap
classes in the standard library is significantly higher com-
pared to GeoTrellis where it ranges between 21% and 35%.

Immutability and Object Capabilities. Many singleton ob-
jects in Scala’s standard library (a) are deeply immutable,
(b) only create instances of ocap classes, and (c) never ac-
cess global state. Such singletons are safe to access from
within ocap classes.9 To measure the impact of such single-
tons on the proportion of ocap classes, we reanalyzed S/C
with knowledge of safe singletons in the standard library. As
a result, the percentage of ocap classes increased from 67%
to 79%, while the proportion of directly insecure classes re-

9 Analogous rules have been used for static fields in Joe-E [44], an object-
capability secure subset of Java.

mained identical. Thus, knowledge of “safe singleton ob-
jects” is indeed important for object capabilities in Scala.

7. Other Related Work
A number of previous approaches leverages permissions or
capabilities for uniqueness or related notions. Approaches
limited to tree-shaped object structures for unique references
include [15, 16, 51, 57, 64, 65]. In contrast, LACASA pro-
vides external uniqueness [18], which allows internally-
aliased object graphs. Permissions in LACASA indicate
which objects (“boxes”) are accessible in the current scope.
In contrast, the deny capabilities of the Pony language [22]
indicate which operations are denied on aliases to the same
object. By distinguishing read/write as well as (actor-)local
and global aliases, Pony derives a fine-grained matrix of
reference capabilities, which are more expressive than the
presented system. While Pony is a new language design, LA-
CASA integrates affine references into an existing language,
while minimizing the effort for reusing existing classes.

The notion of uniqueness provided by our system is
similar to UTT [49], an extension of Universe types [28]
with ownership transfer. Overall, UTT is more flexible,
whereas LACASA requires fewer annotations for reusing
existing code; it also integrates with Scala’s local type infer-
ence. Active ownership [19] shares our goal of providing a
minimal type system extension, however it requires owner-
polymorphic methods and existential owners whose integra-
tion with local type inference is not clear. A more general
overview of ownership-based aliasing control is provided
in [20]. There is a long line of work on unique object ref-
erences [4, 10, 14, 41, 48] which are more restrictive than
external uniqueness; a recurring theme is the interaction be-
tween unique, immutable, and read-only references, which
is also exploited in a variant of C# for systems program-
ming [35]. Several systems combine ownership with con-
currency control to prevent data races. RaceFree Java [1]
associates fields with locks, and an effect system ensures
correct lock acquisition. Boyapati et al. [13] and Zhao [67]
extend type system guarantees to deadlock prevention.

Our system takes important inspiration from Loci [66], a
type system for enforcing thread locality which requires very

288

few source annotations. However, LACASA supports owner-
ship transfer, which is outside the domain of Loci. Kilim [60]
combines type qualifiers with an intra-procedural shape
analysis to ensure isolation of Java-based actors. To simplify
the alias analysis and annotation system, messages must be
tree-shaped. Messages in LACASA are not restricted to trees;
moreover, LACASA uses a type-based approach rather than
static analysis. StreamFlex [59] and FlexoTasks [9] are im-
plicit ownership systems for stream-based programming;
like LACASA, they allow reusing classes which pass cer-
tain sanity checks, but the systems are more restrictive than
external uniqueness.

8. Conclusion
This paper presents a new approach to integrating isolation
and uniqueness into an existing full-featured language. A
key novelty of the system is its minimization of annotations
necessary for reusing existing code. Only a single bit of in-
formation per class is required to determine its reusability.
Interestingly, this information is provided by the object ca-
pability model, a proven methodology for applications in se-
curity, such as secure sandboxing. We present a complete
formal account of our system, including proofs of key sound-
ness theorems. We implement the system for the full Scala
language, and evaluate the object capability model on a cor-
pus of over 75,000 LOC of popular open-source projects.
Our results show that between 21% and 79% of the classes
of a project adhere to a strict object capability discipline. In
summary, we believe our approach has the potential to make
a flexible form of uniqueness practical on a large scale and
in existing languages with rich type systems.

Acknowledgments
We would like to thank the anonymous OOPSLA refer-
ees for their thorough reviews which greatly helped us im-
prove the quality of the paper. Sophia Drossopoulou, Syl-
van Clebsch, Tim Wood, George Steed, Luke Cheeseman,
and Rakhylia Mekhtieva provided valuable feedback on an
earlier draft, suggesting examples we now include in the
LACASA distribution. Last but not least, we are grateful to
members of the research groups of Martin Odersky and Vik-
tor Kuncak for feedback on an earlier design of LACASA.

References
[1] M. Abadi, C. Flanagan, and S. N. Freund. Types for safe

locking: Static race detection for Java. ACM Trans. Program.
Lang. Syst, 28(2):207–255, 2006.

[2] G. A. Agha. ACTORS: A Model of Concurrent Computation
in Distributed Systems. MIT Press, Cambridge, MA, 1986.

[3] J. Aldrich, V. Kostadinov, and C. Chambers. Alias annotations
for program understanding. In OOPSLA, pages 311–330,
2002.

[4] P. S. Almeida. Balloon types: Controlling sharing of state in
data types. In ECOOP, pages 32–59, 1997.

[5] N. Amin, T. Rompf, and M. Odersky. Foundations of path-
dependent types. In OOPSLA, pages 233–249, 2014.

[6] N. Amin, S. Grütter, M. Odersky, T. Rompf, and S. Stucki.
The essence of dependent object types. In A List of Successes
That Can Change the World, pages 249–272. Springer, 2016.

[7] B. Anderson, L. Bergstrom, D. Herman, J. Matthews,
K. McAllister, M. Goregaokar, J. Moffitt, and S. Sapin. Expe-
rience report: Developing the Servo web browser engine using
Rust. CoRR, abs/1505.07383, 2015.

[8] J. Armstrong, R. Virding, C. Wikström, and M. Williams.
Concurrent Programming in Erlang. Prentice Hall, 1996.

[9] J. S. Auerbach, D. F. Bacon, R. Guerraoui, J. H. Spring, and
J. Vitek. Flexible task graphs: a unified restricted thread
programming model for Java. In LCTES, pages 1–11, 2008.

[10] H. G. Baker. ’use-once’ variables and linear objects - stor-
age management, reflection and multi-threading. SIGPLAN
Notices, 30(1):45–52, 1995.

[11] G. Bierman, M. Parkinson, and A. Pitts. MJ: An imperative
core calculus for Java and Java with effects. Technical Re-
port UCAM-CL-TR-563, University of Cambridge, Computer
Laboratory, Apr. 2003.

[12] G. M. Bierman, C. V. Russo, G. Mainland, E. Meijer, and
M. Torgersen. Pause ’n’ play: Formalizing asynchronous C#.
In ECOOP, pages 233–257, 2012.

[13] C. Boyapati, R. Lee, and M. C. Rinard. Ownership types for
safe programming: Preventing data races and deadlocks. In
OOPSLA, pages 211–230, 2002.

[14] J. Boyland. Alias burying: Unique variables without destruc-
tive reads. Softw, Pract. Exper, 31(6):533–553, 2001.

[15] J. Boyland. Checking interference with fractional permis-
sions. In SAS, pages 55–72, 2003.

[16] L. Caires and J. C. Seco. The type discipline of behavioral
separation. In POPL, pages 275–286, 2013.

[17] City of Asheville, NC, USA. Priority Places project. http:
//priorityplaces.ashevillenc.gov/.

[18] D. Clarke and T. Wrigstad. External uniqueness is unique
enough. In ECOOP, pages 176–200, 2003.

[19] D. Clarke, T. Wrigstad, J. Östlund, and E. B. Johnsen. Mini-
mal ownership for active objects. In APLAS, pages 139–154,
2008.

[20] D. Clarke, J. Östlund, I. Sergey, and T. Wrigstad. Ownership
types: A survey. In Aliasing in Object-Oriented Programming,
volume 7850 of LNCS, pages 15–58. Springer, 2013.

[21] D. G. Clarke, J. Potter, and J. Noble. Ownership types for
flexible alias protection. In OOPSLA, pages 48–64, 1998.

[22] S. Clebsch, S. Drossopoulou, S. Blessing, and A. McNeil.
Deny capabilities for safe, fast actors. In AGERE!@SPLASH,
pages 1–12. ACM, 2015.

[23] D. Crockford. ADsafe. http://www.adsafe.org, 2011.

[24] B. C. d. S. Oliveira, A. Moors, and M. Odersky. Type classes
as objects and implicits. In OOPSLA, pages 341–360, 2010.

[25] B. C. d. S. Oliveira, T. Schrijvers, W. Choi, W. Lee, and
K. Yi. The implicit calculus: a new foundation for generic
programming. In PLDI, pages 35–44, 2012.

289

http://priorityplaces.ashevillenc.gov/
http://priorityplaces.ashevillenc.gov/
http://www.adsafe.org

[26] A. Danial and contributors. cloc. http://cloc.
sourceforge.net/, 2006. Accessed: 2016-03-20.

[27] J. B. Dennis and E. C. V. Horn. Programming semantics for
multiprogrammed computations. Commun. ACM, 9(3):143–
155, 1966.

[28] W. Dietl and P. Müller. Universes: Lightweight ownership for
JML. Journal of Object Technology, 4(8):5–32, 2005.

[29] W. Dietl, S. Dietzel, M. D. Ernst, K. Muslu, and T. W. Schiller.
Building and using pluggable type-checkers. In ICSE, pages
681–690, 2011.

[30] B. Emir, M. Odersky, and J. Williams. Matching objects with
patterns. In ECOOP, pages 273–298, 2007.

[31] J. Epstein, A. P. Black, and S. L. P. Jones. Towards Haskell in
the cloud. In Haskell, pages 118–129, 2011.

[32] Ericsson AB. Erlang/OTP. https://github.com/erlang/
otp, 2010. Accessed: 2016-07-10.

[33] M. Fähndrich and R. DeLine. Adoption and focus: Practical
linear types for imperative programming. In PLDI, pages 13–
24, 2002.

[34] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The
essence of compiling with continuations. In PLDI, pages 237–
247, 1993.

[35] C. S. Gordon, M. J. Parkinson, J. Parsons, A. Bromfield, and
J. Duffy. Uniqueness and reference immutability for safe
parallelism. In OOPSLA, pages 21–40, 2012.

[36] P. Haller. On the integration of the actor model in mainstream
technologies: The Scala perspective. In AGERE!@SPLASH,
pages 1–6, 2012.

[37] P. Haller and A. Loiko. Object capabilities and lightweight
affinity in Scala: Implementation, formalization, and sound-
ness. CoRR, abs/1607.05609, 2016. URL http://arxiv.
org/abs/1607.05609.

[38] P. Haller and M. Odersky. Scala actors: Unifying thread-based
and event-based programming. Theor. Comput. Sci, 410(2-3):
202–220, 2009.

[39] P. Haller and M. Odersky. Capabilities for uniqueness and
borrowing. In ECOOP, pages 354–378, 2010.

[40] C. Hewitt. Viewing control structures as patterns of passing
messages. Artif. Intell, 8(3):323–364, 1977.

[41] J. Hogg. Islands: Aliasing protection in object-oriented lan-
guages. In OOPSLA, pages 271–285, 1991.

[42] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: a
minimal core calculus for Java and GJ. ACM Trans. Program.
Lang. Syst, 23(3):396–450, 2001.

[43] Lightbend, Inc. Akka. http://akka.io/, 2009. Accessed:
2016-03-20.

[44] A. Mettler, D. Wagner, and T. Close. Joe-E: A security-
oriented subset of Java. In NDSS, 2010.

[45] H. Miller, P. Haller, and M. Odersky. Spores: A type-based
foundation for closures in the age of concurrency and distri-
bution. In ECOOP, pages 308–333, 2014.

[46] M. S. Miller. Robust Composition: Towards a Unified Ap-
proach to Access Control and Concurrency Control. PhD the-
sis, Johns Hopkins University, May 2006.

[47] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay.
Caja: Safe active content in sanitized JavaScript. Google, Inc.,
Tech. Rep, 2008.

[48] N. H. Minsky. Towards alias-free pointers. In ECOOP, pages
189–209, 1996.

[49] P. Müller and A. Rudich. Ownership transfer in universe
types. In OOPSLA, pages 461–478, 2007.

[50] J. Noble, J. Vitek, and J. Potter. Flexible alias protection. In
ECOOP, pages 158–185, 1998.

[51] M. Odersky. Observers for linear types. In ESOP, pages 390–
407, 1992.

[52] M. Odersky and A. Moors. Fighting bit rot with types. In
FSTTCS, pages 427–451, 2009.

[53] M. Odersky, C. Zenger, and M. Zenger. Colored local type
inference. In POPL, pages 41–53, 2001.

[54] M. Odersky, P. Altherr, V. Cremet, G. Dubochet, B. Emir,
P. Haller, S. Micheloud, N. Mihaylov, A. Moors, L. Rytz,
M. Schinz, E. Stenman, and M. Zenger. The Scala language
specification version 2.11. http://www.scala-lang.org/
files/archive/spec/2.11/, Apr. 2014.

[55] J. Östlund and T. Wrigstad. Welterweight Java. In TOOLS,
pages 97–116, 2010.

[56] J. G. Politz, S. A. Eliopoulos, A. Guha, and S. Krishnamurthi.
ADsafety: Type-based verification of JavaScript sandboxing.
CoRR, abs/1506.07813, 2015.

[57] F. Pottier and J. Protzenko. Programming with permissions in
Mezzo. In ICFP, pages 173–184, 2013.

[58] L. Rytz. A Practical Effect System for Scala. PhD thesis,
EPFL, Lausanne, Switzerland, Sept. 2013.

[59] J. H. Spring, J. Privat, R. Guerraoui, and J. Vitek. Streamflex:
high-throughput stream programming in Java. In OOPSLA,
pages 211–228, 2007.

[60] S. Srinivasan and A. Mycroft. Kilim: Isolation-typed actors
for Java. In ECOOP, pages 104–128, 2008.

[61] P. Stutz, A. Bernstein, and W. W. Cohen. Signal/Collect:
Graph algorithms for the (semantic) web. In ISWC, pages
764–780, 2010.

[62] M. Tofte and J.-P. Talpin. Implementation of the typed call-
by-value lambda-calculus using a stack of regions. In POPL,
pages 188–201, 1994.

[63] M. Tofte and J.-P. Talpin. Region-based memory manage-
ment. Inf. Comput, 132(2):109–176, 1997.

[64] P. Wadler. Linear types can change the world! In Program-
ming Concepts and Methods, pages 561–581. North Holland,
1990.

[65] E. M. Westbrook, J. Zhao, Z. Budimlic, and V. Sarkar. Prac-
tical permissions for race-free parallelism. In ECOOP, pages
614–639, 2012.

[66] T. Wrigstad, F. Pizlo, F. Meawad, L. Zhao, and J. Vitek. Loci:
Simple thread-locality for Java. In ECOOP, pages 445–469,
2009.

[67] Z. Y. Concurrency Analysis Based On Fractional Permission
System. PhD thesis, University of Wisconsin–Milwaukee,
2007.

290

http://cloc.sourceforge.net/
http://cloc.sourceforge.net/
https://github.com/erlang/otp
https://github.com/erlang/otp
http://arxiv.org/abs/1607.05609
http://arxiv.org/abs/1607.05609
http://akka.io/
http://www.scala-lang.org/files/archive/spec/2.11/
http://www.scala-lang.org/files/archive/spec/2.11/

x 7→ b(o, p) ∈ L p ∈ P
boxRoot(o, 〈L, t, P 〉l)

x 7→ b(o, p) ∈ L p ∈ P
boxRoot(o, 〈L, t, P 〉l, p)

boxRoot(o, F, p)

boxRoot(o, F ◦ ε, p)

boxRoot(o, F, p) ∨ boxRoot(o,FS , p)

boxRoot(o, F ◦ FS , p)

Figure 30. Auxiliary predicates.

H, 〈L, let x = null in t, P 〉l
−→ H, 〈L[x 7→ null], t, P 〉l (E-NULL)

H, 〈L, let x = y in t, P 〉l
−→ H, 〈L[x 7→ L(y)], t, P 〉l (E-VAR)

H(L(y)) = 〈C,FM 〉 f ∈ dom(FM)

H, 〈L, let x = y.f in t, P 〉l
−→ H, 〈L[x 7→ FM (f)], t, P 〉l

(E-SELECT)

L(y) = o H(o) = 〈C,FM 〉
H ′ = H[o 7→ 〈C,FM [f 7→ L(z)]〉]
H, 〈L, let x = y.f = z in t, P 〉l
−→ H ′, 〈L, let x = z in t, P 〉l

(E-ASSIGN)

o /∈ dom(H) fields(C) = f

H ′ = H[o 7→ 〈C, f 7→ null〉]
H, 〈L, let x = new C in t, P 〉l
−→ H ′, 〈L[x 7→ o], t, P 〉l

(E-NEW)

Figure 31. CLC2 frame transition rules.

p ` class C extends D {fd md}
C `ocap md ocap(D)

∀ var f : σ ∈ fd. ocap(σ) ∨ σ = Box[E] ∧ ocap(E)

ocap(C)
(OCAP-CLASS)

this : C, x : D ; ocap ` t : E′ E′ <: E

C `ocap defm(x : D) : E = t
(OCAP-METHOD1)

Γ = this : C, x : Q . Box[D], Perm[Q] Q fresh
Γ ; ocap ` t : E′ E′ <: E

C `ocap defm(x : Box[D]) : E = t
(OCAP-METHOD2)

Figure 28. Well-formed ocap classes.

γ : permTypes(Γ) −→ P injective
∀x ∈ dom(Γ),

Γ(x) = Q . Box[C] ∧ L(x) = b(o, p) ∧ Perm[Q] ∈ Γ =⇒
γ(Q) = p

` Γ;L;P
(WF-PERM)

L(x) = null ∨
L(x) = o ∧ typeof(H, o) <: Γ(x) ∨

L(x) = b(o, p) ∧ Γ(x) = Q . Box[C] ∧
typeof(H, o) <: C

H ` Γ;L;x
(WF-VAR)

Γ ; a ` t : σ l 6= ε =⇒ σ <: C

H ` Γ;L H ` Γ;L;P

H ` 〈L, t, P 〉l : σ
(T-FRAME1)

Γ, x : τ ; a ` t : σ l 6= ε =⇒ σ <: C

H ` Γ;L H ` Γ;L;P

H `τx 〈L, t, P 〉l : σ
(T-FRAME2)

boxSep(H,F) boxObjSep(H,F)
boxOcap(H,F)

a = ocap =⇒ globalOcapSep(H,F)
fieldUniqueness(H,F)

H ; a ` F ok
(F-OK)

Figure 29. Frame and frame stack typing.

A. Additional Rules and Definitions
Figure 28 shows CLC2’s OCAP-* rules. Figure 29 shows
the updated rules for frame and frame stack typing in CLC2.
Figure 30 shows the boxRoot predicate.

Definition 15 (Box-Object Separation). Frame F satisfies
the box-object separation invariant in H , written
boxObjSep(H,F), iff
F = 〈L, t, P 〉l∧∀x 7→ b(o, p), y 7→ o′ ∈ L. sep(H, o, o′)

Definition 16 (Box Ocap Invariant). Frame F satisfies the
box ocap invariant in H , written boxOcap(H,F), iff
F = 〈L, t, P 〉l ∧ ∀x 7→ b(o, p) ∈ L, o′ ∈ dom(H). p ∈

P ∧ reach(H, o, o′) =⇒ ocap(typeof(H, o′))

Definition 17 (Global Ocap Separation). Frame F sat-
isfies the global ocap separation invariant in H , written
globalOcapSep(H,F), iff
F = 〈L, t, P 〉l ∧ ∀x 7→ o ∈ L, y 7→ o′ ∈ L0.

ocap(typeof(H, o)) ∧ sep(H, o, o′)
Definition 18 (Dominating Edge). Field f of ô is a domi-
nating edge for paths from o to o′ in H , written
domedge(H, ô, f, o, o′), iff
∀P ∈ path(H, o, o′). P = o . . . ô,FM (f) . . . o′

where H(ô) = 〈C,FM 〉 and f ∈ dom(FM).

291

	Introduction
	Overview
	Formalization
	Object Capabilities
	Dynamic Semantics
	Static Semantics

	Soundness and Heap Separation
	Lightweight Affinity
	Dynamic Semantics
	Static Semantics

	Soundness
	Isolation

	Implementation
	Discarding the Stack Using Exceptions

	Empirical Evaluation
	Other Related Work
	Conclusion
	Additional Rules and Definitions

