
Direct FEM parallel-in-time computation of

turbulent flow

Johan Jansson, Johan Hoffman

November 1, 2017

Abstract

...

1 Introduction

Large-scale supercomputing with distributed memory has become pervasive in
many scientific disciplines, with Computational Fluid Dynamics (CFD) as one
of the main application areas. This has enabled scientists to investigate prob-
lems several orders of magnitude larger than would be possible on a standard
workstation, which was the standard computational resource for most scientists
for the past decades.

1.1 Parallel in time methods

The dominant paradigm to solve a large scale space-time partial differential
equation (PDE) is partition the spatial domain, and using distributed linear
algebra algorithms to solve the global problem in parallel. This paradigm has
shown good parallel scaling, up to hundreds of thousands of computing cores,
or processing elements (PE) but there is an inherent bottleneck in that the time
dimension is not parallelized. This is a severe bottleneck since the spatial cell
size and time step size need to be typically proportional for stability reasons.
There is also a limit to how few spatial degrees of freedom can be assigned to
each PE, and this imposes a limit for the wall-clock time required to solve one
time step.

As a possible remedy to this problem, Lions et. al. proposed the parareal
method [1] which is a multilevel approach for parallelizing the time dimension,
i.e. a parallel-in-time method. The method in parallel timesteps partitions of
the time interval with the finest timestep size, and uses a coarse timestepping
of the global problem to couple the local partitions. The coarse solver which is
computationally cheap is executed in serial and provides the initial condition for
the fine solver, which is run in parallel. The method then iterates through this
procedure until it converges to the solution of the initial PDE, under certain

1

conditions. Good performance of the parareal algorithm has been demonstrated
for a wide range of problems such as molecular dynamics [2] and stochastic
ordinary differential equations [3] with significant improvements in timing (see
also the references provided by Minion [4]).

Over recent years, the parareal algorithm has been applied to the Navier-
Stokes equations and its performance has been analyzed and studied in many
works. Fischer et. al. [5] applied parareal to the laminar regime of the Navier-
Stokes equations. In the manuscript by Croce et. al., [6] a combined parareal
and domain-decomposition approach is used to successfully solve the three-
dimensional, time-dependent, incompressible Navier-Stokes equations. The sim-
ulations, which were run on up to 2048 cores, show the applicability of a parallel-
in-time method to challenging cavity flow problems. For the quasi-2D flow prob-
lem, parareal converges rapidly. However, the observed convergence rate stag-
nates for the 3D case when the number of time-intervals taken by the parareal
solver becomes larger. The stability issues observed by Croce et. al. coin-
cide with the stability issues that parareal faces when applied to hyperbolic
and convection-dominant problems, see for example [7, 8, 9]. Numerical results
shown in Steiner et. al. [10] confirm that the convergence of parareal wors-
ens as the Reynolds number increases and the flow becomes more and more
convection-dominated.

1.2 Turbulent flow

Recently, there has been active research in the field of time-parallel methods
applied to turbulent flow problems. Reynolds-Barredo et. al. [11] showed con-
vergence of the parareal algorithm on large scale numerical simulations of turbu-
lent plasmas. However, as discussed in Wang et. al. [12] and references therein,
the computational cost of most parallel-in-time methods, including parareal, is
quadratic with respect to the time domain length and therefore the performance
of parareal deteriorates as the length of the time domain increases. This poor
scalability is argued to be due to the sensitivity of the algorithm to chaos, i.e.
a small perturbation in the early partitions of parareal can result in a large
difference in the solution estimate and the converged solution. Wang et. al
[12] reformulated the turbulent problem by relaxing the initial condition in or-
der to make parallel-in-time method stable. The system with a relaxed initial
condition does not suffer from the ill-conditioning present when simulating tur-
bulent flows with a fixed initial value. This relaxation is justified under two
assumptions, namely that (1) the quantities of interest are stable flow statistics
when the system has reached quasi-steady state and (2) the system is ergodic,
i.e. that the initial condition has small, or no influence, on the solution after
a transient period has elapsed. Both these assumptions allow for efficient and
scalable parallel-in-time algorithms.

We have over a number of years developed methods, algorithms and software
for efficiently predicting gross quantities of turbulent flow, such as aerodynamic
drag and lift coefficients [13, ?]. We here aim to apply some of the concepts
in our computational methodology to investigate the potential for exploiting

2

parallel-in-time scalability for turbulent flow. In this paper, we propose an
embarrassingly parallel implementation of the Direct FEM-Simulation (DFS)
[13] method for when the system satisfies the same two properties discussed in
Wang et. al. [12]: That the quantity of interest is a stable flow statistics after
the system has reached steady state and that the system satisfies the ergodicity
property. The DFS method is a stabilized finite element method with automatic
turbulence modeling based on the residual of the equations. We demonstrate
the parallel-in-time DFS method on a model problem for the incompressible
Euler equations approximating flow past a cube in a channel with high Reynolds
number, where the quantity of interest is the drag coefficient of the cube. We
show that after an initial transient time the quantity of interest (here the drag
coefficient) satisfies the ergodicity property, and we conclude by showing the
speedup of using the DFS method versus a purely space parallel method with
the same accuracy.

2 Computation of turbulent flow

The incompressible NS equations for a unit density Newtonian fluid with con-
stant kinematic viscosity ν > 0 enclosed in a volume Ω in R3 (where we assume
that Ω is a polygonal domain), together with suitable boundary conditions, take
the form:

R(û) = 0, in Q = Ω× I, (1)

for û = (u, p), with u(x, t) the velocity vector and p(x, t) the pressure at (x, t),
with I = (0, T) a time interval, and R(û) ≡ R̄(û) − (f, 0) = (R̄1(û), R̄2(u)) −
(f, 0) the residual, where

R̄1(û) = u̇+ u · ∇u+∇p− ν∆u

R̄2(u) = ∇ · u. (2)

The main existence result available is due to Jean Leray, who in 1934 proved
the existence of a so-called weak solution (or turbulent solution in the terminol-
ogy of Leray) [14], which is a solution satisfying (1) in an average sense; û is a
weak solution if

((R(û), v̂)) = 0, (3)

for all test functions v̂ in a test space V̂ with norm ‖ · ‖V̂ , consisting of suitable

differentiable functions, R(û) is assumed to belong to a space dual to V̂ , and
((·, ·)) denotes a duality pairing.

In a turbulent flow we may expect an extreme pointwise perturbation growth,
and thus pointwise uniqueness is too much to ask for. On the other hand, some
aspects of turbulent flow are more stable. Typically we expect various types of
mean value output in a turbulent flow to be more stable than pointwise output.

3

2.1 Output Sensitivity and the Dual Problem

Suppose that the quantity of interest, or output, related to a given weak solution
û is a scalar quantity of the form

M(û) = ((û, ψ̂)), (4)

which represents a mean value in space-time, where ψ̂ ∈ L2(Q) is a given weight
function. The output could e.g. be the drag or lift coefficient in a bluff body
problem, for which the weight ψ̂ is a piecewise constant function in space-time.
More generally, ψ̂ may be a piecewise smooth function corresponding to a mean
value output.

We now seek to estimate the difference in output between a weak solution
û = (u, p) and a finite element approximation Û = (U,P). To this end, we
introduce the following linearized dual problem of finding ϕ̂ = (ϕ, θ) ∈ V̂ , such
that

a(û, Û ; v̂, ϕ̂) = ((v̂, ψ̂)), ∀v̂ ∈ V̂0, (5)

where V̂0 = {v̂ ∈ V̂ : v(·, 0) = 0}, and

a(û, Û ; v̂, ϕ̂) ≡ ((v̇, ϕ)) + ((u · ∇v, ϕ)) + ((v · ∇U,ϕ))

+((∇ · ϕ, q))− ((∇ · v, θ)) + ((ν∇v,∇ϕ))

with u and U acting as coefficients, and ψ̂ is given data.
This is a linear convection-diffusion-reaction problem in variational form, u

acting as the convection coefficient and ∇U as the reaction coefficient, and the
time variable runs ‘backward’ in time with initial value (ϕ(·,T) = 0) given at
final time T imposed by the variational formulation. The reaction coefficient
∇U may be large and highly fluctuating, and the convection velocity u may also
be fluctuating.

Choosing now v̂ = û− Û in (5), we obtain

((û, ψ̂))− ((Û , ψ̂)) = a(û, Û ; û− Û , ϕ̂) = −((R(Û), ϕ̂)).

We may estimate the difference in output as follows:

|M(û)−M(Û)| ≤ C‖hR(Û)‖L(Ω)‖ϕ̂‖H1(Q), (6)

using standard interpolation error estimates [?].

By defining the stability factor S(û, Û ; ψ̂) = ‖ϕ̂‖H1(Q), we can write

|M(û)−M(Û)| ≤ C‖hR(Û)‖L(Ω)S(û, Û ; ψ̂). (7)

Depending on ψ̂, the stability factor S(û, Û ; ψ̂) may be small, medium, or

large, reflecting different levels of output sensitivity, where we expect S(û, Û ; ψ̂)

to increase as the mean value becomes more local. Estimating S(û, Û ; ψ̂) using

a standard Grönwall type estimate of the solution ϕ̂ in terms of the data ψ̂
would give a bound of the form S(û, Û ; ψ̂) ≤ CeKT , where C is a constant and

4

K is a pointwise bound of |∇U|. In a turbulent flow with Re = 106 we may have

K ∼ 103, and with T = 10 such a Grönwall upper bound of S(û, Û ; ψ̂) would be

of the form S(û, Û ; ψ̂) ≤ CeKT ∼ e10 000, which is an incredibly large number.
However, computing the dual solution corresponding to drag and lift coef-

ficients in turbulent flow, we find values of S(û, Û ; ψ̂) that are much smaller.

In applications we estimate S(û, Û ; ψ̂) by computational approximation of the
dual problem.

2.2 The Do-nothing Error Estimate and Indicator

To minimize loss of sharpness, we investigate an approach where the weak form is
used directly in a posteriori error estimates, without integration by parts to the
strong form, and using Cauchy-Schwarz inequality and interpolation estimates.
We here refer to this direct form of a posteriori error representation as the
“do-nothing” approach.

In terms of the the exact adjoint solution ϕ̂, the output error with respect
to a weak solution û can be represented as:

|M(û)−M(Û)| = |((R(Û), ϕ̂))| = |
∑
K∈Tn

((R(Û), ϕ̂))K | (8)

This error representation involves no approximation or inequalities. We
thus refer to the following error indicator based on the representation as the
do-nothing error indicator:

eKN ≡ ((R(Û), ϕ̂))K (9)

A computable estimate and error indicator are again based on the computed
approximation ϕ̂h of the dual solution:

|M(û)−M(Û)| ≈ |((R(Û), ϕ̂h))| (10)

eKN,h ≡ ((R(Û), ϕ̂h))K (11)

where we may lose reliability of the global error estimate by the Galerkin or-
thogonality property, which states that the ((R(Û), ϕ̂h)) vanishes for a standard
Galerkin finite element method if ϕ̂h is chosen in the same space as the test func-
tions. Although, in the setting of a stabilised finite element method this is not
the case, as we will see below.

2.3 Adaptive Algorithm

We now present an algorithm for adaptive mesh refinement based on the a
posteriori output error estimate (8). For simplicity, here we use the same space
mesh and the same time step length for all time steps.

Given an initial coarse computational space mesh T 0, start at k = 0, then
do the following:

5

1. Compute approximation of the primal problem using T k.

2. Compute approximation of the dual problem using T k.

3. If |∑K∈TkEkK,h| < TOL then STOP, else:

4. On the basis of the size of the local error indicator EkK,h, mark a fixed

fraction of the elements in T k for refinement. Obtain a new refined mesh
T k+1, using a standard algorithm for local mesh refinement.

5. Set k = k + 1, then goto (1).

3 Direct Finite Element Simulation

The main elements of Direct Finite Element Simulation of turbulent flow are
now presented, in the form of a finite element method with residual based stabi-
lization, quantitative a posteriori error estimation, and an adaptive algorithm.

3.1 The Eulerian cG(1)cG(1) Method

The cG(1)cG(1) method is a variant of G2 using the continuous Galerkin method
cG(1) in space and time. With cG(1) in time the trial functions are continu-
ous piecewise linear and the test functions piecewise constant. cG(1) in space
corresponds to both test functions and trial functions being continuous piece-
wise linear. Let 0 = t0 < t1 < . . . < tN = T be a sequence of discrete time
steps with associated time intervals In = (tn−1, tn) of length kn = tn − tn−1 and
space-time slabs Sn = Ω × In, and let Wn ⊂ H1(Ω) be a finite element space
consisting of continuous piecewise linear functions on a mesh Tn = {K} of mesh
size hn(x) with Wn

w the functions v ∈ Wn satisfying the Dirichlet boundary
condition v|∂Ω = w.

We now seek functions Û = (U,P), continuous piecewise linear in space and
time, and the cG(1)cG(1) method for the NS equations 01, with homogeneous
Dirichlet boundary conditions reads: For n = 1, . . . ,N, find (Un, Pn) ≡ (U(tn),
P(tn)) with Un ∈ V n0 ≡ [Wn

0]3 and Pn ∈Wn, such that

((Un − Un−1)k−1
n + Ūn · ∇Ūn, v) + (2νε(Ūn), ε(v))

−(Pn,∇ · v) + (∇ · Ūn, q) + SDδ(Ū
n, Pn; v, q)

= (f, v) ∀(v, q) ∈ V n0 ×Wn (12)

where Ūn = 1/2(Un + Un−1), with the stabilizing term

SDδ(Ū
n, Pn; v, q) ≡ (δ1(Ūn · ∇Ūn +∇Pn − f), Ūn · ∇v +∇q) + (δ2∇ · Ūn,∇ · v)

with δ1 = 1/2(k−2
n + |U |2h−2

n)−1/2 in the convection dominated case ν <
Ūnhn and δ1 = κ1h

2
n otherwise, δ2 = κ2hn if ν < Ūnhn and δ2 = κ2h

2
n otherwise,

with κ1 and κ2 positive constants of unit size (here we have κ1 = κ2 = 1), and

6

(v, w) =
∑
K∈Tn

∫
K

v · w dx

(ε(v), ε(w)) =

3∑
i,j=1

(εij(v), εij(w))

We note that the time step kn is given by the mesh size hn, with typically

kn ∼
minx hn(x)

Ūn(x)

4 Parallel-in-time potential for turbulent flow

Our approach to investigating the parallel-in-time potential of computation of
mean-value outputs is to study the stability factor S = S(û, Û ; ψ̂) = ‖ϕ̂‖V̂ . In
the global norm error estimate (6), S multiplied with the residual bounds the
output error, equivalently output sensitivity. In the error representation (8),
which the do-nothing adaptive method uses directly, we may also have local
cancellation between the residual and stability factor.

We may view the growth of S with regard to the length of the time interval
I = (0, T], i.e. S(T) as a measure of the propagation of a given perturbation,
or given data as initial condition.

For the heat equation, the model parabolic problem, we expect:

S(T) ≤ C (13)

with C a constant, i.e. the perturbation does not propagate, but dissipates
away. In this interpretation of a prabolic problem, we may thus say that an
initial perturbation does not affect the error after a given time.

For the wave equation, the model hyperbolic problem, we expect:

S(T) ≤ CT (14)

[FIXME: check if this is true, should be due to energy conservation, possibly
include computations for heat and wave as verification]] i.e., we expect a per-
turbation to propagate outwards with no dissipation.

4.1 Guessing initial values

In a standard serial time-stepping, solving one time step means computing the
initial value of the next step. In a parallel-in-time method however, the initial
value of the time steps to be solved are unknown, and need to be guessed or
approximated. We can thus view the main challenge of a parallel-in-time method
to approximate the initial value of the time steps.

In a parabolic problem with the property (13), the initial value of a time
step does not require information very far back in time. This property thus acts
to make partitions of the time-interval less dependent on each other.

7

4.2 The parabolic nature of turbulent flow

By investigating S we may get a measure of how parabolic a problem is, and
thus how much potential it has for parallel-in-time scalability.

To assess the parallel-in-time potential of turbulent flow, we apply the DFS
methodology to compute S(T) for incompressible Euler for a cube model prob-
lem described below, where the mean-value output is drag. In Fig. 6 we plot
S(T) for the range T = [20, 320]. We observe that S(T) after an initial transient
does not grow, it is constant in T.

This behavior appears to indicate that to compute a mean-value output in
turbulent flow behaves like a parabolic problem, specifically it has the prop-
erty (13). Thus we expect large potential for parallel-in-time computation for
turbulent flow.

5 Parallel-in-time DFS for turbulent flow

To test if our hypothesis that turbulent flow has large parallel-in-time potential
is true, we here design a rudimentary parallel-in-time method based on DFS for
the model problem below.

The method is embarassingly parallel, and is based on the assumption that
a representative initial value for the mean output can be computed.

5.1 Rudimentary parallel-in-time DFS

1. Partition the time interval I into M partitions I = ∪Ii of equal size KM .

2. Extend each partition in time by KM to the left, to allow computation of
the initial value, the new extended partitions are denoted Īi. The extended
partitions now have an overlap of KM .

3. Compute the the solutions Ûi in all extended partitions Īi in parallel.

4. Sum together all solutions restricted to the original partitions ÛΣ =
∑M
i=0 ÛIi

5. Use ÛΣ to compute the mean-value output: N(σ(ÛΣ)). Alternatively,
compute the local mean-values in parallel and take the global mean value:∑M
i=0

N(σ(ÛIi
))

M

In the model problem section below, we use the method to carry out parallel-
in-time computations for turbulent flow around a cube, and verify against serial-
in-time reference computations. In Fig.7 we show the global mean-value drag
coefficient N(σ(ÛΣ)), and in Fig.8 we show the drag coefficients over time for
two of the partitions.

8

6 Turbulent Model Problem

The parallel-in-time DFS method is now investigated in a model problem; high
Reynolds number flow past a cube in a channel. The high Reynolds number flow
is approximated by zero viscosity in the cG(1)cG(1) model, and slip boundary
conditions with zero skin friction. Thus there is no viscous dissipation in the
model, but the computed (ε -weak) solutions exhibit turbulent dissipation in the
wake through the residual based stabilization of the method. The mean output
quantity is the drag coefficient in a DFS model of the cube model problem. We
study the stability factor S, and the convergence of the drag coefficient output
quantity.

The model problem is defined by a unit velocity inflow boundary condition
in the x-direction past a unit cube located at origo in a pipe in the interval
x = [−10, 30] with radius 10, over the time interval I = [0, 400]. The outflow
boundary is modelled by a zero pressure boundary condition, and a free slip
boundary condition is applied everywhere else. The cube geometry is chosen to
minimize the influence of the boundary condition; the cube geometry is exactly
represented by the mesh, and the sharp edges trigger flow separation so that
boundary layer effects are avoided.

The initial coarse mesh has 3500 vertices, and the do-nothing adaptive
method is applied to successively refine the mesh for 14 iterations. A sequence
of adaptive meshes is thus generated with ca. 200k vertices in the finest mesh,
see Fig. 1. For each mesh we compute the primal and the adjoint solutions, see
Fig. 2 and Fig. 3.

We study the stability of the adjoint solution with respect to the length of
the time interval I = (0, T] i.e. the stability factor that appears in the global
norm a posteriori error estimate (6).

Convergence with respect to the drag coefficient can be seen in Fig. 5, where
for the last four adaptive iterations the drag coefficient vary less than 1%.

7 Parallel-in-time DFS computation

We now use the rudinmentary parallel-in-time DFS method to carry out parallel-
in-time computations for the turbulent flow cube model problem, and verify
against serial-in-time reference computations.

In Fig.7 we show the global mean-value drag coefficient N(σ(ÛΣ)). The
difference in mean-value output between the serial- and parallel-in-time results
are ca. 2%, within the error tolerance of the serial-in-time results.

8 Discussion

The development of a PIT methods for turbulent flow is still an open problem,
and is a very active field. The development of a scalable PIT method would
allow enormously effective computations on the massively parallel supercom-
puters available today, and the exascale computers available in the near future.

9

Figure 1: Adaptively refined meshes for iterations 0, 5 and 15.

10

Figure 2: Snapshots of the primal velocity (top) and pressure (bottom) for
adaptive iterations 5 and 15.

Figure 3: Adjoint velocity ϕh (top) and pressure θh (bottom) for adaptive
iterations 5 and 15

11

Figure 4: Momentum residual (left) and gradient of the adjoint velocity (right)
for adaptive iteration 15.

3.5 4.0 4.5 5.0 5.5 6.0
log10(vertices)

0.7

0.8

0.9

1.0

1.1

1.2

1.3

cd

Mesh convergence of cd

4 5 6 7 8
log10(vertices)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

lo
g1

0(
es

t)

Mesh convergence of error estimates
CS loc. est
CS glob. est
DN est
err

Figure 5: Mesh convergence of the drag coefficient cd (left) and error estimates
(right).

0 50 100 150 200 250 300 350

T

0

5

10

15

20

|Φ
| H

1
(Ω
×
I

)

growth of |Φ|H1(Ω×I) w.r.t. length of time interval

0 50 100 150 200 250 300 350

T

0.0

0.5

1.0

1.5

|Θ
| H

1
(Ω
×
I

)

growth of |Θ|H1(Ω×I) w.r.t. length of time interval

Figure 6: Growth of the stability factors for momentum (left) and continuity
(right) with regard to the length of the time interval I = (0, T].

12

0 100 200 300 400 500
t

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

cd

Time evolution of cd
serial-in-time
parallel-in-time

Figure 7: Drag coefficients for the parallel-in-time DFS method, compared to
serial-in-time DFS as reference.

0 50 100 150 200
t

0.0

0.5

1.0

1.5

2.0

cd

Time evolution of cd
time-partition drag

200 250 300 350 400
t

0.0

0.5

1.0

1.5

2.0

cd

Time evolution of cd
time-partition drag

Figure 8: Drag coefficients for the parallel-in-time DFS method for partition I2
(left) and I4 (right), note the startup phenomenon in the extended time-interval,
which is cut away before computing the mean output.

13

It would open up real-time or near-real-time computation of grand-challenge
problems such as flow around aircraft.

In this paper we have developed a prototype PIT method in the DFS setting.
We have tested the method on a cube model problem, and verified that the PIT
method gives the same mean-value results as the serial-in-time reference method,
within the tolerance of the DFS method.

The verification results show that the method is promising and in future
work we plan a more detailed study on complex flow around aircraft, and further
development of the method.

References

[1] J.-L. Lions, Yvon Maday, and Gabriel Turinici. A ”parareal” in time dis-
cretization of PDE’s. Comptes Rendus de l’Acadmie des Sciences - Series
I - Mathematics, 332:661–668, 2001.

[2] L. Baffico, S. Bernard, Y. Maday, G. Turinici, and G. Zérah. Parallel-in-
time molecular-dynamics simulations. Phys. Rev. E, 66:057701, Nov 2002.

[3] Guillaume Bal. Parallelization in time of (stochastic) ordinary differential
equations. Math. Meth. Anal. Num.(submitted), 2003.

[4] Michael Minion. A hybrid parareal spectral deferred corrections method.
Communications in Applied Mathematics and Computational Science,
5(2):265–301, 2011.

[5] Paul F. Fischer, Frédéric Hecht, and Yvon Maday. A Parareal in Time
Semi-implicit Approximation of the Navier-Stokes Equations, pages 433–
440. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[6] Roberto Croce, Daniel Ruprecht, and Rolf Krause. Parallel-in-Space-and-
Time Simulation of the Three-Dimensional, Unsteady Navier-Stokes Equa-
tions for Incompressible Flow, pages 13–23. Springer International Pub-
lishing, Cham, 2014.

[7] Charbel Farhat and Marion Chandesris. Time-decomposed parallel time-
integrators: theory and feasibility studies for uid, structure, and fluid-
structure applications. International Journal for Numerical Methods in
Engineering, 58(9):1397–1434, 2003.

[8] Martin J Gander and Stefan Vandewalle. Analysis of the parareal time-
parallel time-integration method. SIAM Journal on Scientific Computing,
29(2):556–578, 2007.

[9] Daniel Ruprecht and Rolf Krause. Explicit parallel-in-time integration of
a linear acoustic-advection system. Computers & Fluids, 59:72–83, 2012.

14

[10] Johannes Steiner, Daniel Ruprecht, Robert Speck, and Rolf Krause. Con-
vergence of parareal for the navier-stokes equations depending on the
reynolds number. In Numerical Mathematics and Advanced Applications-
ENUMATH 2013, pages 195–202. Springer, 2015.

[11] José Miguel Reynolds-Barredo, David E Newman, R Sanchez, D Samad-
dar, Lee A Berry, and Wael R Elwasif. Mechanisms for the convergence of
time-parallelized, parareal turbulent plasma simulations. Journal of Com-
putational Physics, 231(23):7851–7867, 2012.

[12] Qiqi Wang, Steven A Gomez, Patrick J Blonigan, Alastair L Gregory, and
Elizabeth Y Qian. Towards scalable parallel-in-time turbulent flow simu-
lations. Physics of Fluids, 25(11):110818, 2013.

[13] J Hoffman, J Jansson, N Jansson, R Vilela De Abreu, and C Johnson. Com-
putability and adaptivity in cfd. encyclopedia of computational mechanics,
stein, e., de horz, r. and hughes, tjr eds, 2016.

[14] Jean Leray. Sur le mouvement d’un liquide visqueux emplissant l’espace.
Acta mathematica, 63(1):193–248, 1934.

15

