Datorarkitektur, VT 2009
Lab 3: Optimizing the Performance of a Pipelined Processor

Inge Frick

2009-02-18

Inge Frick (i nge@ada. kt h. se)isthelead person for this assignment.

1 Introduction

In this lab, you will learn about the design and implementation of a pipelined Y 86 processor, optimizing its
performance on a benchmark program. You are alowed to make any semantics preserving transformations
to the benchmark program, or to make enhancements to the pipelined processor, or both. When you have
completed the lab, you will have a keen appreciation for the interactions between code and hardware that
affect the performance of your programs.

The lab is organized into three parts, each with its own handin. In Part A you will write some simple Y 86
programs and become familiar with the Y 86 tools. In Part B, you will extend the SEQ simulator with two
new instructions. These two parts will prepare you for Part C, the heart of the lab, where you will optimize
the Y 86 benchmark program and the processor design.

2 Logistics

You will work on this lab either alone or in agroup of two.

This assignement will be done on any of CSCs Unix-computers. You can probably also do it at home, but
for the graphical simulator you need to have Tcl-Tk and you will have to change some Makefiles.

To convert files from prog.c to prog.ys you can compile prog.c on assembler.nada.kth.se with gec -02 -S
prog.c and then by hand convert the generated prog.s to prog.ys. It's important to have the -O2 flag. If you
do, the generated code will use registersfor local variables. Thiswill be much easier to convert to Y 86 code.

Any clarifications and revisions to the assignment will be posted on the course Web page.

3 Handout Instructions

1. Start by copying thefile/ i nf o/ maski n09/1 abbar /| ab3/ ar chl ab- handout . t ar toadi-
rectory (call it | ab3) in which you plan to do your work.

2. Thengivethecommand: t ar xvf ar chl ab- handout . t ar . Thiswill cause the following files
to be unpacked into the directory: READMVE, Makefil eandsi mtar.

3. Now change the team name at the beginning of Makef i | e.

4. Next, givethe commandt ar xvf simtar. Thiswill create the directory si m which contains
your personal copy of the Y 86 tools. You will be doing al of your work inside this directory.

5. Findly, change to the si mdirectory and build the Y 86 tools:

uni x> cd sim
uni x> make cl ean; nmake

4 Part A

You will be working in directory si nf m sc in this part.

Your task is to write and simulate the following three Y 86 programs. The required behavior of these pro-
grams is defined by the example C functions in exanpl es. c. Be sure to put your name(s) and ID(s) in a
comment at the beginning of each program.

sum ys: Iteratively sum linked list elements
Write a Y86 program (sum ys) that iteratively sums the elements of a linked list. Your program should

consist of amain routine that invokes a Y86 function (suml i st) that is functionally equivalent to the C
suml i st function in Figure 1. Test your program using the following three-element list:

Sanple linked |ist

.align 4
el el:
.1 ong 0x00a
.long el e2
el e2:
.l ong 0x0bO
.long el e3
el e3:
.1 ong 0xc00
.long O

rsum ys: Recursively sum linked list elements

Write arecursive version of sum ys (r sum ys) that recursively sums the elements of alinked list.

Your program should consist of a main routine that invokes arecursive Y 86 function (r suml i st) that is
functionally equivalent to ther suml i st function in Figure 1. Test your program using the same three-
element list you used for testing | i st . ys.

copy. ys: Copy asource block to a destination block

Write a program (copy. ys) that copies a block of words from one part of memory to another (non-
overlapping ared) area of memory, computing the checksum (Xor) of all the words copied.

© 00 N O O B~ WDN PP

ADA W W WWWWWWWWDNDNDNDNDNDNDNDNDNMDNMNDNDNDNDNDNERERPRERPRPRERERPRPRPRPRPPR
P O © 00 NO O b WNE O OOWNOO A WNEOOOWWNOOOO>MWDNRELO

/* linked |ist elenent */
typedef struct ELE {
int val
struct ELE *next;
} *xlist_ptr;
[+ sumlist - Sumthe elenments of a linked list =*/
int sumlist(list _ptr Is)
{
int val = 0;
while (Is) {
val += | s->val
I's = | s->next;
}
return val
}
[+ rsumlist - Recursive version of sumlist */
int rsumlist(list_ptr Is)
{
if (!'ls)
return O;
el se {
int val = |s->val;
int rest = rsumlist(ls->next);
return val + rest;
}
}

[+ copy_bl ock - Copy src to dest and return xor checksum of src x/

int copy_block(int *src, int xdest, int |len)
{
int result = 0;
while (len > 0) {
int val = *src++
xdest ++ = val
result "= val
| en--;
}
return result;
}

Figure 1. C versions of the Y86 solution functions. See si nf i sc/ exanpl es. ¢

Your program should consist of a main routine that calls a'Y 86 function (copy _bl ock) that isfunctionally
equivaent to the copy_bl ock function in Figure 1. See also pages 265-268 in the book for a similar
example. Test your program using the following three-element source and destination blocks:

.align 4
Source bl ock
src:
.l ong 0x00a
.1 ong 0x0bO
.1 ong 0xc00
Destination bl ock
dest:
.long Ox111
.l ong 0x222
.1 ong 0x333
5 PartB

You will be working in directory si m seq in this part.

Your task in Part B is to extend the SEQ processor to support two new instructions: i addl (described
in homework problems 4.32 and 4.34) and | eave (described in homework problems 4.33 and 4.35). To
add these instructions, you will modify the file seq- f ul | . hcl , which implements the version of SEQ
described in the CS:APP textbook. In addition, it contains declarations of some constants that you will need
for your solution.

Your HCL file must begin with a header comment containing the following information:
e Your name(s) and CSC user ID(s).

e A description of the computations required for the i addl instruction. Use the descriptions of
i rmovl and OPl in Figure 4.16 in the CS:APP text as aguide.

e A description of the computations required for the | eave instruction. Use the description of popl
in Figure 4.18 in the CS:APP text as aguide.

Building and Testing Your Solution

Once you have finished modifying the seq- f ul | . hcl file, then you will need to build a new instance of
the SEQ simulator (ssi m) based on this HCL file, and then test it:

e Building a new ssimulator. You can use nake to build anew SEQ simulator:

uni x> make VERSI O\N=ful |

Thisbuilds aversion of ssi mthat uses the control login you specifiedinseqg-f ul | . hcl . To save
typing, you can assign VERSI ON=f ul | in the Makefile.

e Testing your solution on a simple Y86 program. For your initia testing, we recommend running a
simple program such asasum yo in TTY mode, comparing the results against the ISA simulation:

uni x> ./ssim-t asum yo

If the ISA test fails, then you should debug your implementation by single stepping the simulator in
GUI mode:

uni x> ./ssim-g asum yo

e Testing your solution using the benchmark programs. Once your simulator is able to correctly
execute small programs, then you can automatically test it on the Y86 benchmark programs in
.. 1y86-code:

uni x> (cd ../y86-code; nmake testssim

Thiswill run ssi mon the benchmark programs and check for correctness by comparing the resulting
processor state with the state from a high-level 1SA ssimulation. Seefile. . / y86- code/ READVE
file for more details.

e Performing regression tests. Once you can execute the benchmark programs correctly, then you
should run the extensive set of regression testsin . . / pt est. To test everything except i addl
and| eave:

uni x> (cd ../ptest; make Sl M. ./seq/ssim

To test your implementation of i addl :

uni x> (cd ../ptest; make SI M. ./seq/ssim TFLAGS=-i)
To test your implementation of | eave:

uni x> (cd ../ptest; make Sl M. ./seq/ssim TFLAGS=-1)
Totest both i addl and | eave:

uni x> (cd ../ptest; make SI M. ./seq/ssim TFLAGS=-il)

For more information on the SEQ simulator refer to the handout CS APP Guide to Y86 Processor Smulators
(si ngui de. pdf).

6 PartC

You will be working in directory si n1 pi pe inthis part.

Thencopy functionin Figure 2 copiesal en-element integer array sr ¢ to anon-overlapping dst , return-
ing a count of the number of positive integers contained in sr c. Figure 3 shows the baseline Y 86 version
of ncopy. Thefilepi pe-ful | . hcl contains acopy of the HCL code for PIPE, along with adeclaration
of the constant value [IADDL.

Your task in Part C isto modify ncopy. ys and pi pe-ful | . hcl with the goal of making ncopy. ys
run as fast as possible.

You will be handing intwofiles: pi pe-ful | . hcl and ncopy. ys. Each file should begin with a header
comment with the following information:

e Your name(s) and CSC user ID(s).

e A high-level description of your code. In each case, describe how and why you modified your code.

| *

* NCOpy - copy src to dst, returning number of positive ints
* contained in src array.

* |

int ncopy(int xsrc, int xdst, int |en)

© 00 N O O B~ WDN PP

{

int count = O;

int val;
10 while (len > 0) {
11 val = xsrc++;
12 xdst ++ = val :
13 if (val > 0)
14 count ++;
15 l en--;
16 }
17 return count;
18 }

Figure 2: C version of the ncopy function. See si ml pi pe/ ncopy. c.
Coding Rules

You are free to make any modifications you wish, with the following constraints:

e Your ncopy. ys function must work for arbitrary array sizes. You might be tempted to hardwire
your solution for 64-element arrays by simply coding 64 copy instructions, but this would be a bad
idea because we will be grading your solution based on its performance on arbitrary arrays. Your
code must be correct for arrays with more than 64 elements but we will only test for speed on arrays
with 64 elements or less.

e Your ncopy. ys function must run correctly with Yis. By correctly, we mean that it must correctly
copy the sr ¢ block and return (in %gax) the correct number of positive integers.

e Yourpi pe-full . hcl implementation must passtheregressiontestsin. . / y86- code and. . / pt est
withthe-i | flagsthat testi addl and/or | eave if those instructions are implemented.

Other than that, you are free to implement thei add| instruction if you think that will help. You are free to
ater the branch prediction behavior or to implement techniques such asload forwarding. You may make any
semantics preserving transformations to the ncopy. ys function, such as swapping instructions, replacing
groups of instructions with single instructions, deleting some instructions, and adding other instructions.

Building and Running Your Solution

In order to test your solution, you will need to build a driver program that calls your ncopy function. We
have provided you with thegen- dri ver . pl program that generates a driver program for arbitrary sized
input arrays. For example, typing

uni x> nake drivers

will construct the following two useful driver programs:

6

© 00 N O O b~ WDN PP

A DA DS DSBS DD D OOWWWWWWWWWNDNDNDNDNDNNDNDDNMDNMNDNNERERRRRRERERPRPREPRE
N O O WNPEFP O OOONO O WNERPROOOONOOGD™MWDNREROOOWONOOOOGP™MWNDNLEREO

BHAHBHBHEHEH R BB R R R R R R R R R

ncopy.ys -
Return the nunber of positive ints (>0) contained in src.

HHHHHHH

HHHHHHHHHHHH IR R R R
You may change this code anyway you want but
%ebp and %esp nust have the same

values at the end of the function as they had att the begi nning.

ncopy:

Loop:

Npos:

Done:

Figure 3: Baseline Y86 version of the ncopy function. See si ni pi pe/ ncopy. ys.

Copy a src bl ock of

I ncl ude your name and | D here.

regi sters %bx, %esi

pushl %bp

rronovl %esp, Y%ebp
pushl %esi

pushl %ebx

nrnovl 8(%bp), %ebx
nrnovl 12(%ebp), ¥ecx
nrnovl 16(%ebp), Yedx

Loop header

xorl %ax, Yeax
andl %edx, Yedx
j1e Done

Loop body.
nTmovl (%ebx), %es
romovl %esi, (%ecx)
andl %esi, %s
j1 e Npos

irmovl $1, %esi
addl %esi, %ax

i rmovl $1, %esi
subl %esi, %edx

i rmovl $4, %esi
addl %esi, %ebx
addl %esi, %ecx
andl %edx, Yedx

jg Loop

popl %ebx

popl %esi

rrnovl %bp, %esp
popl %ebp

ret

%edi ,

#
#
#

H H H H*H H H*H H

H*

H*

len ints to dst.

Descri be how and why you nodified the baseline code.

Save old frame pointer
Set up new franme pointer
Save cal |l ee-save regs
src

dst

[en

count = 0;

len <= 0?

if so, goto Done:

read val fromsrc..
...and store it to dst
val <= 07?

if so, goto Npos:
count ++

| en- -

Src++

dst ++

len > 07?

if so, goto Loop:

renenber that

e sdriver. yo: Asmall driver programthat tests an ncopy function on small arrayswith 4 elements.
If your solution is correct, then this program will halt with avalue of 3 in register “eax after copying
thesr c array.

e I driver.yo: A large driver program that tests an ncopy function on larger arrays with 63 ele-
ments. If your solution is correct, then this program will halt with a value of 62 (0x3e) in register
Y%eax after copying the sr c array.

Each time you modify your ncopy. ys program, you can rebuild the driver programs by typing
uni x> make drivers

Each time you modify your pi pe-ful | . hcl file, you can rebuild the simulator by typing

uni x> nmke psim

If you want to rebuild the ssimulator and the driver programs, type

uni x> nake

To test your solution in GUI mode on asmall 4-element array, type

uni x> ./psim-g sdriver.yo

To test your solution on alarger 63-element array, type

uni x> ./psim-g ldriver.yo

Once your simulator correctly runs your version of ncopy. ys on these two block lengths, you will want
to perform the following additional tests:

e Testing your driver files on the |SA simulator. Make sure that your ncopy. ys function works prop-
erly with vis:

uni x> c¢d sin pipe
uni x> nake
uni x> ../msc/yis sdriver.yo

e Testing your code on arange of block lengths with the |SA simulator. The Perl script cor r ect ness. pl
generates driver files with block lengths from 1 up to some limit (default 70), simulates them with
Y1s, and checks the results. It generates a report showing the status for each block length:

uni x> . /correctness. pl

If you get incorrect results for some length K, you can generate a driver file for that length that
includes checking code:

uni x> ./gen-driver.pl -n K -r > driver.ys
uni x> nmke driver. yo
uni x> ../misc/yis driver.yo

The program will end with register %eax having value Oxaaaa if the correctness check passes,
Oxeeee if the count is wrong, Oxf f f f if the count is correct, but the words are not al copied
correctly and Oxbbxx if aregister that must be saved is no returned with its original value: Oxbbaa
for %ebp, Oxbbbb for %ebx, Oxbbcc for %esi and Oxbbdd for %edi .

8

e Testing your simulator on the benchmark programs. Once your simulator is able to correctly exe-
cutesdriver.ys and | driver.ys, you should test it against the Y86 benchmark programs in
.. 1y86-code:

uni x> (cd ../y86-code; nmake testpsim

Thiswill run psi mon the benchmark programs and compare results with v1s.

e Testing your simulator with extensive regression tests. Once you can execute the benchmark programs
correctly, then you should check it with the regression tests in . . / pt est . For example, if your
solution implements thei addl instruction, then

uni x> (cd ../ptest; make SI M. ./pipe/psim TFLAGS=-i)

7 Evaluation

The lab isworth 120 points: 15 points for Part A, 25 points for Part B, and 80 points for Part C.

Based on these points you will get a grade on this work. 78 points will give grade E, 88 points will give
grade D, 98 points will give grade C, 108 points will give grade B and 117 points will give grade A.

Part A

Part A isworth 15 points, 5 points for each Y 86 solution program. Each solution program will be evaluated
for correctness, including proper handling of the %ebp stack frame register and functional equivalence with
the example C functionsin exanpl es. c.

Theprogramssum ys andr sum ys will be considered correct if their respectivesuml i st andr suml i st
functions return the sum Oxcba in register Yeax.

The program copy. ys will be considered correct if itscopy _bl ock function returns the sum Oxcba in
register %eax, and copies the three words 0x00a, Ox0b, and Oxc to the 12 contiguous memory locations
beginning at address dest .

Part B
This part of the lab iswaorth 25 points:

e 5points for your description of the computations required for thei addl instruction.

5 points for your description of the computations required for the |l eave instruction.

5 points for passing the benchmark regression tests in y86- code, to verify that your simulator still
correctly executes the benchmark suite.

5 points for passing the regression tests in pt est fori addl .

5 points for passing the regression tests in pt est for | eave.

Part C

This part of the Lab isworth 80 points:

e 20 points for your descriptions in the headers of ncopy. ys and pi pe-ful | . hcl .

e 60 points for performance. To receive credit here, your solution must be correct, as defined earlier.
That is, ncopy runs correctly with viIs, and pi pe-ful | . hcl passes dl testsin y86- code and
pt est.

We will express the performance of your function in units of cycles per element (CPE). That is, if the
simulated code requires C' cycles to copy a block of N elements, then the CPE is C/N. The PIPE
simulator display the total number of cycles required to complete the program. The baseline version
of thencopy function running on the standard PIPE simulator with alarge 63-element array requires
1037 cycles to copy 63 elements, for a CPE of 1037/63 = 16.46.

Since some cycles are used to set up the call to ncopy and to set up the loop within ncopy, you
will find that you will get different values of the CPE for different block lengths (generally the CPE
will drop as NV increases). We will therefore evaluate the performance of your function by computing
the average of the CPEs for blocks ranging from 1 to 64 elements. You can use the Perl script
benchmar k. pl inthepi pe directory to run simulations of your ncopy. ys code over arange of
block lengths and compute the average CPE. Simply run the command

uni x> . /benchnark. pl

to seewhat happens. For example, the baseline version of thencopy function has CPE valuesranging
between 45.0 and 16.45, with an average of 18.15. Note that this Perl script does not check for the
correctness of the answer. Usethe script cor r ect ness. pl for this.

You should be able to achieve an average CPE of lessthan 12.0. Our best version averages 6.98.
Performance is calculated by max (0, min(60,6 x (17 — x))) where X is the average CPE.

By default, benchmar k. pl and correct ness. pl compile and test ncopy. ys. Usethe - f
argument to specify a different file name. The - h flag gives a complete list of the command line
arguments.

8 Handin Instructions

e You will be handing in three groups of files:

— PatA:sum ys,rsumys,andcopy.ys.
— PatB:seq-full. hcl.
— Part C: ncopy. ys and pi pe-full. hcl.

e Make sure you have included your name(s) and CSC user ID(s) in a comment at the top of each of
your handin files.

e To handin your filesfor part X, go to your | ab3 directory and type:
uni x> nmke handi n-part X

where Xisa, b, or c. For example, to handin Part A:

10

uni x> nmke handi n-parta
o After the handin, if you discover a mistake and want to submit arevised copy, type
uni X make handi n- part X VERSI ON=2
Keep incrementing the version number with each submission.
e You can verify your handin by looking in

/i nf o/ maski n09/ | abbar /1 ab3/ handi n/ part X

You have list and insert permissions in this directory, but no read or write permissions.

9 Hints

e For part A seelecture 7A pages 13-20. Seeasofilesasum ys andasunt . ysinsi m y86- code.
e For part B seelecture 8 and CS:app problems 4.32 - 4.35.
e For part C seelecture 9, 12, CS:app 4.5 and CS:app 5.

e Some ideas on how to speed up execution in part C:

— Implement iaddl, see part B. I'ts important to test your implementation the same way you did in
part B.

— The machine expects branches to be taken. Arrange your code so this is true in most cases.
Notice that most array elements are positive.

— Do loop unrolling. Make it work doing e.g. 4 elements per round in the loop. For the last n
elements (n < 4) use ajumptable to enter the loop at the right place (see CS:app 3.6.6). When
it works for 4 elements per round extend to more elements per round.

— Thereis aload-use bubble in the code. You can get rid of the bubble by using load-forwarding

(see CS:app problem 4.41 and pipe-If.hcl) or by first fetching two elements from the source and
then moving them to the destination.

By design, bothsdri ver. yoandl dri ver . yo are small enough to debug within GUI mode. We
find it easiest to debug in GUI mode, and suggest that you use it.

If you are running in GUI mode on a Unix box, make sure that you have initialized the DISPLAY
environment variable:

uni x> setenv DI SPLAY nyhost. edu: 0

With some X servers, the “Program Code” window begins life as a closed icon when you run psi m
or ssi min GUI mode. Simply click on theicon to expand the window.

With some Microsoft Windows-based X servers, the “Memory Contents” window will not automati-
caly resizeitself. You'll need to resize the window by hand.

The psi mand ssi msimulators terminate with a segmentation fault if you ask them to execute afile
that isnot avalid Y 86 object file.

e When running in GUI mode, the psi mand ssi msimulators will single-step past ahal t instruction.

11

