Datorarkitektur, VT 2009
Lab 1: Manipulating Bits

Inge Frick

2008-12-30

I ntroduction

The purpose of this assignment is to become more familiar with bit-level representations and manipulations.
You'll do this by solving a series of programming “puzzles.” Many of these puzzles are quite artificial, but
you'll find yourself thinking much more about bits in working your way through them.

L ogistics

You may work in a group of up to two people in solving the problems for this assignment. The only “hand-
in” will be electronic. Any clarifications and revisions to the assignment will be posted on the course Web

page.

Hand Out Instructions

Start by copying i nf o/ maski n09/ | abbar /| abl/ dat al ab- handout . t ar to a (protected) di-
rectory in which you plan to do your work. Then give the command:

tar xvf datal ab-handout.tar.

This will cause a number of files to be unpacked in the directory. The only file you will be modifying and
turning inishi ts. c.

Thefilebt est . ¢ allows you to evaluate the functional correctness of your code. THeEA®IVE contains
additional documentation abobt est . Use the command

make bt est

to generate the test code and run it with the command
./ btest.

The remaining files are used to bubd est .

Looking at the filebi t s. ¢ you'll notice a C structuré eaminto which you should insert the requested
identifying information about the one or two individuals comprising your programming team. Do this right
away so you don't forget.

Thebi t s. c file also contains a skeleton for each of the 15 programming puzzles. Your assignment is to
complete each function skeleton using odisaightline code (i.e., no loops or conditionals) and a limited
number of C arithmetic and logical operators. Specifically, yowahg allowed to use the following eight
operators:

™ &™ | + << >>

A few of the functions further restrict this list. Also, you are not allowed to use any constants longer than 8
bits. See the comments|r t s. ¢ for detailed rules and a discussion of the desired coding style.

Evaluation

Your code will be compiled wittecc and run and tested on one of CSCs Unix machines. Your score will
be computed out of a maximum of 75 points based on the following distribution:

40 Correctness of code running on one of CSCs Unix machines.
30 Performance of code, based on number of operators used in each function.

5 Style points, based on a subjective evaluation of the quality of your solutions and your comments.

The 15 puzzles you must solve have been given a difficulty rating between 1 and 4, such that their weighted
sum totals to 40. We will evaluate your functions using the test argumeitsast . ¢. You will get full

credit for a puzzle if it passes all of the tests performedbgst . c, half credit if it fails one test, and no

credit otherwise.

Regarding performance, our main concern at this point in the course is that you can get the right answer.
However, we want to instill in you a sense of keeping things as short and simple as you can. Furthermore,
some of the puzzles can be solved by brute force, but we want you to be more clever. Thus, for each function
we've established a maximum number of operators that you are allowed to use for each function. This limit
is very generous and is designed only to catch egregiously inefficient solutions. You will receive two points
for each function that satisfies the operator limit.

Finally, we've reserved 5 points for a subjective evaluation of the style of your solutions and your com-
menting. Your solutions should be as clean and straightforward as possible. Your comments should be
informative, but they need not be extensive.

Based on these points you will get a grade on this work. 40 points will give grade E, 49 points will give
grade D, 57 points will give grade C, 65 points will give grade B and 73 points will give grade A.

Part |: Two's Complement Arithmetic

Name Description Rating | Max Ops| Record
m nusOne(voi d) return a value of -1 1 2 1
fitsBits(x,n) can x be represented as n-bit integer? 2 15 6
i sLessOr Equal (x,y) | x <= y? 3 24 10
i sLess(Xx,Y) X < y? 3 24 10
st c(x) Convert from sign-magnitude to two’s complement 4 15 5

Table 1: Arithmetic Functions

Table 1 describes a set of functions that make use of the two’s complement representation of integers.
Functionm nusOne returns two’s complementl.

Functionf i t sBi t s determines whether can be represented as bit, two’s complement integer.
Functioni sLessOr Equal determines whethet is less than or equal.

Functioni sLess determines whethex is less thary .
Functionsn?t ¢ Convert from sign-magnitude (where the MSB is the sign bit) to two’s complement.

Part 11: Bit manipulations

Name Description Rating | Max Ops| Record
bi t And(x,y) (x&y) using only| and” 1 8 4
i sZer o(x) x = 07? 1 2 1
i sequal (x,Yy) X =y? 2 5 2
evenBi ts(x, n) return word with even-numbered bits settg1 2 8 4
bi t Mask(hb, | b) Generate mask with of 1's between Ib and hb 3 16 5
rever seByt es(x) reverse the bytes of x 3 25 12
conditional (x,y,z) [x ?2y : z 3 16 6
reverseBits(x) reverse the bits of x 4 90 34
i sPower 2(x) returns 1 if x is a power of 2, and O otherwise 4 60 6
i sNonZer o(x) x I'= 07 4 10 5

Table 2: Bit-Level Manipulation Functions.

Table 2 describes a set of functions that manipulate and test sets of bits. The “Rating” field gives the
difficulty rating (the number of points) for the puzzle, the “Max ops” field gives the maximum number of
operators you are allowed to use to implement each function, and the “Record” field gives the minimum
number of operators needed as we know it.

Functionbi t And computes the AD function. That is, when applied to argumentsandy, it returns
(x&y) . You may only use the operatgrsand™ .

Functioni sZer o comparex to O for equality. As with allpredicate operations, it should returh if the
tested condition holds ar@otherwise.

Functioni sequal comparex toy for equality. As with allpredicate operations, it should returhif the
tested condition holds ar@@otherwise.

FunctionevenBi t s Returns a word with even-numbered bits set to 1 and odd-numbered bits set to 0.

Functionbi t Mask Assumel) <= [b <= 31, and0 <= hb <= 31 If [b > hb, then return O else return a
word where bits with]b <= position <= hb, setto 1 and others set to 0.

Functionr ever seByt es Return a word with reversed bytes.
Functioncondi ti onal is equivalenttox ?y: z.

Functionr ever seBi t s Return a word with all bits in reversed order.
Functioni sPower 2 Returns 1 if x is a power of 2, and 0 otherwise.

Functioni sNonZer o compares to 0 for nonequality. As with alpredicate operations, it should return
1 if the tested condition holds arflotherwise.

Advice

You are welcome to do your code development using any system or compiler you choose. Just make sure
that the version you turn in compiles and runs correctly on our Solaris computers. If it doesn’t compile, it
can't be graded.

Thedl ¢ program, a modified version of an ANSI C 88 compiler, will be used to check your programs for
compliance with the coding style ruledl c is available on Solaris computers when you have logged in to
the course. The typical usage is

dlc bits.c

Typedl ¢ - hel p for a list of command line options. The README file is also helpful. Some notes on
dl c:

e Thedl c program runs silently unless it detects a problem.

e Don'tinclude<st di 0. h>inyourbi t s. cfile, as it confused| ¢ and results in some non-intuitive
error messages.

¢ Note thatdl ¢ as a ANSI C 88 compiler doesn’t allow mixing of declarations and statements.{Each
} block starts with declarations and then comes the statements.

Check the fileREADME for documentation on running the est program. You'll find it helpful to work
through the functions one at a time, testing each one as you go. You can udefthg to instructbt est
to test only a single function, e.g./ btest -f isPositive.

Hand In Instructions

e Make sure you have included your identifying information in yourliilg s. c.
e Remove any extraneous print statements.
e Create a team name of the form:

— “ID"where ID is your CSC user ID, if you are working alone, or

— “ID{+1ID5" where ID is the CSC user ID of the first team member dit} is the CSC user
ID of the second team member.

This should be the same as the team name you entered in the strudiurtesinc.

e To handin youbi t s. c file, type:
make handi n TEAM=t eammane

wheret eammane is the team name described above.

e After the handin, if you discover a mistake and want to submit a revised copy, type
make handi n TEAMFt eammane VERSI ON=2

Keep incrementing the version number with each submission.

¢ You can verify your handin by looking in
/i nf o/ maski n09/ | abbar /| abl/ handi n

You have list and insert permissions in this directory, but no read or write permissions.

