CS.APP Guideto Y 86 Processor Simulators*

Randal E. Bryant
David R. O'Hallaron

December 22, 2003

*Copyright © 2002, R. E. Bryant, D. R. O'Hallaron. All rights reserved.

1

This document describes the processor simulators that accompany the presentation of the Y86 processor
architectures in Chapter 4 of Computer Systems: A Programmer’s Perspective. These simulators model
three different processor designs: SEQ, SEQ+, and PIPE.

1 Installing

The code for the simulator is distributed as a Tar format file named si m t ar . You can get a copy of this
file from the CS:APP Web site (csapp. ¢s. cnu. edu).

With the tar file in the directory you want to install the code, you should be able to do the following:

uni x> tar xf simtar
uni x> cd sim

uni x> nmake cl ean

uni x> nake

By default, this generates GUI (graphic user interface) versions of the simulators, which require that you
have Tcl/Tk installed on your system. If not, then you have the option to install TTY-only versions that emit
their output as ASCII text on stdout. See file READVE for a description of how to generate the GUI and
TTY versions.

The directory si mcontains the following subdirectories:

m sc Source code files for utilities such as YAS (the Y86 assembler), Y1s (the Y86 instruction set simula-
tor), and HcL2c (HCL to C translator). It also contains the i sa. ¢ source file that is used by all of
the processor simulators.

seq Source code for the SEQ and SEQ+ simulators. Contains the HCL file for homework problems 4.34
and 4.35. See file README for instructions on compiling the different versions of the simulator.

pi pe Source code for the PIPE simulator. Contains the HCL files for homework problems 4.37-4.42. See
file READIVE for instructions on compiling the different versions of the simulator.

y86- code Y86 assembly code for many of the example programs shown in the chapter. You can automat-
ically test your modified simulators on these benchmark programs. See file README for instructions
on how to run these tests. As a running example, we will use the program asum ys in this subdirec-
tory. This program is shown as CS:APP Figure 4.6. The compiled version of the program is shown in
Figure 1.

pt est Scripts that generate systematic regression tests of the different instructions, the different jump
possibilities, and different hazard possibilities. These scripts are very good at finding bugs in your
homework solutions. See file READIVE for instructions on how to run these tests.

0x000:
0x000: 308400010000
0x006: 308500010000
0x00c: 7024000000

cute nain program

a b~ W DN PR

0x014:
0x014:
0x018:
0Ox01c:
0x020:

© 00 N O

0d000000
c0000000
000b0000
00a00000

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

0x024:
0Ox02a:
0x02c:
0x032:
0x034:
0x039:

308004000000
a008
308214000000
a028
803a000000
10

0x03a:
0x03c:
0x03e:
0x044:
Ox04a:
0x050:
0x052:
0x057:
0x05d:
0x05f :
0x065:
0x067:
0x06d:
0x06f :
0x074:
0x074:
0x076:
0x100:
0x100:

a058

2045
501508000000
50250c000000
308000000000
6222
7374000000
506100000000
6060
308304000000
6031
3083ffffffff
6032
7457000000

b058
90

Execution begins at address 0
.pos O

i rmovl St ack,
i rmovl St ack,
jmp Main

init: %esp
%ebp

Exe-

of 4 elements
.align 4

.1 ong Oxd

.1 ong 0xcO

.1 ong 0xb0O0O
.1 ong 0xa000

Array

array:

$4, Yeax

Yeax # Push 4
array, Yedx

%edx # Push array
Sum # Sum(array,

i rmovl
pushl
i rnmovl
pushl
cal |
hal t

4)

int Sum(int *Start,
pushl %bp

rrnovl %esp, Y%ebp

nr novl 8(%bp), Yecx
nrnovl 12(%ebp), %edx
i rmovl $0, %ax

andl %edx, Yedx

je End

nrnovl (%ecx), %es
addl %esi, %eax

i rmovl $4, %ebx

addl %ebx, Yecx
irmovl $-1, %bx

addl %ebx, Y%edx

j ne Loop

i nt Count)
Sum

ecx
edx
sum

H H

Loop: get

Count -

HoHHH R

End:

popl %ebp
ret
. pos 0x100

Stack: # The stack goes here

Set up Stack pointer
Set up base pointer

Start
Count

*Start
add to sum

Start ++

Stop when O

Figure 1: Sample object code file. This code is in the file asum yo in the y86- code subdirectory.

2 Utility Programs
Once installation is complete, the m sc directory contains two useful programs:

YAS The Y86 assembler. This takes a Y86 assembly code file with extension . ys and generates a file with
extension . yo. The generated file contains an ASCII version of the object code, such as that shown in
Figure 1 (the same program as shown in CS:APP Figure 4.7). The easiest way to invoke the assembler
is to use or create assembly code files in the y86- code subdirectory. For example, to assemble the
program in file asum ys in this directory, we use the command:

uni x> make asum yo

YIS The Y86 instruction simulator. This program executes the instructions in a Y86 machine-level pro-
gram according to the instruction set definition. For example, suppose you want to run the program
asum yo from within the subdirectory y86- code. Simply run:

uni x> ../ msc/yis asumyo

Y s simulates the execution of the program and then prints changes to any registers or memory loca-
tions on the terminal, as described in CS:APP Section 4.1.

3 Processor Simulators

For each of the three processors, SEQ, SEQ+, and PIPE, we have provided simulators ssim, ssim+, and
PSIM respectively. Each simulator can be run in TTY or GUI mode:

TTY mode Uses a minimalist, terminal-oriented interface. Prints everything on the terminal output. Not
very convenient for debugging but can be installed on almost any system and can be used for auto-
mated testing. The default mode for all simulators.

GUI mode Has a graphic user interface, to be described shortly. Very helpful for visualizing the processor
activity and for debugging modified versions of the design. However, requires installation of Tcl/Tk
on your system. Invoked with the - g command line option.

3.1 Command Line Options
You can request a number of options from the command line:

- h Prints a summary of all of the command line options.

- g Run the simulator in GUI mode (default TTY mode).

-t Runs both the processor and the ISA simulators, comparing the resulting values of the memory, register
file, and condition codes. If no discrepancies are found, it prints the message “ISA Check Succeeds.”
Otherwise, it prints information about the words of the register file or memory that differ. This feature
is very useful for testing the processor designs.

-1 m Sets the instruction limit, executing at most m instructions before halting (default 20000 instruc-
tions).

-V n Sets the verbosity level to 0 <= n <= 2 (default n = 2).

Simulators running in GUI mode must be invoked with the name of an object file on the command line. In
TTY mode, the object file name is optional, coming from stdin by default.

Here are some typical invocations of the simulators (from the y86- code subdirectory):

uni x> ../seqg/ssim-h
uni x> ../seg/ssim-t < asumyo
uni x> ../ pipe/psim-t -g asumyo

The first case prints a summary of the command line options for ssim. The second case runs the SEQ
simulator in TTY mode, reading object file asum yo from stdin. The third case runs the PIPE simulator in
GUI mode, executing the instructions object file asum yo. In both the second and third cases, the results
are compared with the results from the higher-level ISA simulator.

3.2 SEQ and SEQ+ Simulators

The GUI version of the SEQ processor simulator is invoked with an object code filename on the command
line:

uni x> ../seqg/ssim-g asumyo &

where the “&” at the end of the command line allows the simulator to run in background mode. The
simulation program starts up and creates three windows, as illustrated in Figure 2—4.

The first window (Figure 2) is the main control panel. If the HCL file was compiled by HcL2cC with the
- n narme option, then the title of the main control window will appear as “Y86 Processor: nane”
Otherwise it will appear as simply “Y86 Pr ocessor.”

The main control window contains buttons to control the simulator as well as status information about the
state of the processor. The different parts of the window are labeled in the figure:

Control: The buttons along the top control the simulator. Clicking the Quit button causes the simulator to
exit. Clicking the Go button causes the simulator to start running. Clicking the Stop button causes the
simulator to stop temporarily. Clicking the Step button causes the simulator to execute one instruction
and then stop. Clicking the Reset button causes the simulator to return to its initial state, with the
program counter at address 0, the registers set to 0s, the memory erased except for the program, and
the condition codes set with ZF = 1, CF = 0, and OF = 0.

Quit Go Stop Step Reset Controls

Simulator Speed {10%log Hz)
5

Processor State
Stage

hewPC signals
00000067

PC Update Stage
weal b
00000000

Memory Stage
Bch walE
W Qoooooic
Execute Stage
wald, valB dstE dstM srca srcB
00000004 00000018 #Zecx ---- Zebx Zecx
Decode Stage
Irstr I rB valC valF
addl Zehx %ecx 00000000 00000087

Fetch Stage

PC
0o00o000es

Register File :
Register

Zeax Tecx Zedx zehx Zesl zedi Zesp ehp file
cd 18 3] 4 c0 £0 £0

Condition

Status atk Condition Codes 205000
codes

-~

Exception status

Figure 2: Main control panel for SEQ simulator

l File

.. /yBE-code fasum. vo Load < ; Control
FO08e00010000 init: Aiomowl Stack, %esp # set vp stack pointer
08700010000 Lomowl Stack, %ebp # Set vp base pointer :

FO24000000 Jmg Hadn # Execute maln progoamn
0A000GH0 arcap: . Llong Oxnd :
cOooooog Loy Oxel

O00obOo00n . Long Oxb00

00 a0000g - Lowuy Oz a0

20g004 0000008 Main: Lomowl 54, %eax

alog pushl e acr # Push 4

082140000008 Lomowl accay, %edx

alzg pushl %edx # Push acoap

032000000 call sum # Sumifaccay, 4)

10 halt

al7a S pushl %ebp

2067 ool %esp, Bebp

So170a000000 mimowl 8¢%ehpd seox # eox = Sharct

502 70e 000000 momewl 12¢sebp), ®edx # edx = count Assembly
SO08000000000 Lomowl 50, %eax # som o= 0 Code
B2z22 andl wedar, Sedn

F374000000 je End

SO41000000008 Loop: monowl (%ecx) , %esi # get *s5bact

E040 addl %esi, %eax # 3dd to sum
SDSSD4DDDDDDIA iomowl 54, %ebx &

E02d 1 addl sebx, %ecx # sumt++

BOBIELEEEEESE iomowl §-1,%ebx &

EO32 addl ssehor, feeda # cownt--

457000000 Jjne Loap # stop when 0

bO73 End: popl %ebhp E
a0 ret

Object code

Currently executing instruction

Figure 3: Code display window for SEQ simulator

0x00f 0 0x00f 4 0x00f 8 0x00f c

Figure 4: Memory display window for SEQ simulator

The slider below the buttons control the speed of the simulator when it is running. Moving it to the
right makes the simulator run faster.

Stage signals: This part of the display shows the values of the different processor signals during the current
instruction evaluation. These signals are almost identical to those shown in CS:APP Figure 4.21. The
main difference is that the simulator displays the name of the instruction in a field labeled Instr, rather
than the numeric values of icode and ifun. Similarly, all registers are shown using their names, with
“- - - - 7 indicating that no register access is required.

Register file: This section displays the values of the eight program registers. The register that has been
updated most recently is shown highlighted in light blue. Register contents are not displayed until
after the first time they are set to nonzero values.

Remember that when an instruction writes to a program register, the register file is not updated until
the beginning of the next clock cycle. This means that you must step the simulator one more time to
see the update take place.

Status: This shows the status of the current instruction being executed. The possible values are:

ACK: No problem encountered.

ADR: An addressing error has occurred either trying to read an instruction or trying to read or write
data. Addresses cannot exceed OxOFFF.

I NS: Anillegal instruction was encountered.
HLT: Ahal t instruction was encountered.

Condition codes: These show the values of the three condition codes: ZF, SF, and OF.

Remember that when an instruction changes the condition codes, the condition code register is not
updated until the beginning of the next clock cycle. This means that you must step the simulator one
more time to see the update take place.

The processor state illustrated in Figure 2 is for the second execution of line 32 of the asum yo program
shown in Figure 1. We can see that the program counter is at 0x065, that it has processed the instruction
addl %ebx %ecx, that register %@ax holds 0xcd, the sum of the first two array elements, and %edx
holds 3, the count that is about to be decremented. Register ¥%ecx still holds 0x18, the address of the
second array element, but there is a pending write of 0x01Cto this register (since dstE is set to %ecx and
valE is set to 0x01C). This write will take place at the start of the next clock cycle.

The window depicted in Figure 3 shows the object code file that is being executed by the simulator.> The
edit box identifies the file name of the program being executed. You can edit the file name in this window
and click the Load button to load a new program. The left hand side of the display shows the object code
being executed, while the right hand side shows the text from the assembly code file. The center has an
asterisk (*) to indicate which instruction is currently being simulated. This corresponds to line 32 of the
asum yo program shown in Figure 1.

10On some windowing systems, this window begins life as a closed icon if the object fi leis large. If this happens, simply click
on theicon to expand the window.

The window shown in Figure 4 shows the contents of the memory. It shows only those locations between the
minimum and maximum addresses that have changed since the program began executing. Each row shows
the contents of four memory words. Thus, each row shows 16 bytes of the memory, where the addresses
of the bytes differ in only their least significant hexadecimal digits. To the left of the memory values is the
“root” address, where the least significant digit is shown as “- ”. Each column then corresponds to words
with least significant address digits 0x0, Ox4, 0x8, and Oxc. The example shown in Figure 4 shows
memory locations 0x00f 0, 0x00f 4, 0x00f 8, and 0x00f c.

The memory contents illustrated in the figure show the stack contents of the asum yo program shown in
Figure 1 during the execution of the Sumprocedure. Looking at the stack operations that have taken place
so far, we see that ¥%&sp was first initialized to 0x100 (line 3), and then we pushed the values 4 (line 15)
and 0x014, the address of ar r ay (line 17) before making the call to Sum(line 18). This call pushed the
return address 0x039 onto the stack. The first instruction of Sumpushes ¥%e&bp onto the stack (line 22),
having value 0x100. That accounts for all of the words shown in this memory display.

Figure 5 shows the control panel window for the SEQ+ simulator, when executing the same object code
file and when at the same point in this program. We can see that the only difference is in the ordering of
the stages and the different signals listed. These signals correspond to those in CS:APP Figure 4.31. The
SEQ+ simulator also generates code and memory windows. These have identical format to those for the
SEQ simulator.

3.3 PIPE Simulator

The PIPE simulator also generates three windows. Figure 6 shows the control panel. It has the same set of
controls, and the same display of the register file and condition codes. The middle section shows the state of
the pipeline registers. The different fields correspond to those in CS:APP Figure 4.53. At the bottom of this
panel is a display showing the number of cycles that have been simulated (not including the initial cycles
required to get the pipeline flowing), the number of instructions that have completed, and the resulting CPI.

As illustrated in the close-up view of Figure 7, each pipeline register is displayed with two parts. The
upper values in white boxes show the current values in the pipeline register. The lower values with a gray
background show the inputs to pipeline register. These will be loaded into the register on the next clock
cycle, unless the register bubbles or stalls.

The flow of values through the PIPE simulator is quite different from that for the SEQ or SEQ+ simulator.
With SEQ and SEQ+, the control panel shows the values resulting from executing a single instruction. Each
step of the simulator performs one complete instruction execution. With PIPE, the control panel shows the
values for the multiple instructions flowing through the pipeline. Each step of the simulator performs just
one stage’s worth of computation for each instruction.

Figure 8 shows the code display for the PIPE simulator. The format is similar to that for SEQ and SEQ+,
except that rather than a single marker indicating which instruction is being executed, the display indicates
which instructions are in each state of the pipeline, using characters F, D, E, M and W for the fetch, decode,
execute, memory, and write-back stages.

The PIPE simulator also generates a window to display the memory contents. This has an identical format
to the one shown for SEQ (Figure 4).

Simulator Speed (10%0g Hz)
]

Processor State

valkd
oooooo0na

Memory Stage

Bch walE
N 0oooooic

Execute Stage

wald, walB dstE dsth srcA arcE
00000004 00000018 %ecx ---- Zebx %acx

Decode Stage

Irstr T rB vall valF
addl #ebz ®ecs 00000000 0000006T

Fetch Stage

PE
0o0oaoes

PC Stage

pBch plnstr el phialid phialP
N dirmowl 00000004 00000000 00000065

Register File
Zedx Zehx Zesl Zedl Zesp ebp

B ' 4| 0 £0 £0

Status ak Condition Codes 205000

Exception status

Figure 5: Main control panel for SEQ+ simulator

10

Controls

Stage
signals

Register
file

Condition
codes

Quit Go Stop Step Reset Controls
Simulator Speed {10%log Hz)
5

E’ipeline ﬁegisters

Exe Instr valE yali dstE dsth

& Pipeline
W State AOE jne 00000000 DOOODOOD ==-= --=-= p
Input &A0K memowl 00000018 000000C0 ---- Zesi

Memory Stage

Instr Bch walE vl dstE dstM
AOE mrmovl N 00000018 00000000 ---- %esi
EUE nop H 00000000 00000000 —--= —=—-

Execute Stage

Iristr walC wald, valB dstE dstf srcd sreB
E State BUE nop 00000000 00000000 00000000 —=== —=== —=== ===
Input &0KE addl 00000000 D0O0ODOCO O000DOOOD %eaw ---- %esi Reax

Decode Stage

Eze Instr T rB valC valP
D State AOE addl 2esi %eax 00000000 DOOOQODOSE
Input AR irmovl ---- #ehx 00000004 00000065

Fetch Stage

Exe predPC
F State noE 000000SF
Input &0F 0000006S

Register File — Register
: ; file
Eeax Eecy Fedx Eehx Zesl Zedi Zesp ebp

d 18] 3| FEEEEEEE d fo f0 ...
Condition

I Condition Codes 205000 I<_— codes
Performance

Performance cyces 25 instructions 22 CP1 1.14 ‘——- monitor

Figure 6: Main control panel for PIPE simulator

Exc Instr walE Gl e e Current state

State ADE jne 00000000 00000000 ---= —---

| @ut ADE mrmovl 00000018 DOOODOCD ———- %esi |4 Register inputs

Figure 7: View of single pipe register in control panel for PIPE simulator

W

11

File .. fyBE-code fasum. yo Load Control

| .
Ox0 0800010000 init: Aiomowl Stack, %esp # set vp stack pointer
Oxe 208700010000 Lomowl Stack, %ebp # Set vp base pointer :
4 Oxc 7024000000 Jmg Hadn # Execute maln progoamn
{ ox14 panonoon arcap: . Llong Oxnd :
. Oxld cOO00000 Loy Oxel
Oxdle 000BOOOO0 clong Oxb00
Q20 0000000 - Lowuy Oz a0
1 0x24 zozoodoonooo] Main: Lomowl 54, %eax
{ oxza a00s pushl %e s # Push 4
Ox2e S082140000004 Lomowl accay, %edx
. Ox32 al2d pushl %edx # Push acoap
O34 8032000000 call sum # Sumifaccay, 4)
{ oxzs 10 hialt
. Ox3a al7@ S pushl %ebp
Ox3e 2067 ool %esp, Bebp
Qx3e SO021708000000 mimowl 8¢%ehpd seox # eox = Sharct i
{ 0xdd So2T0C000000 momewl 12¢sebp), ®edx # edx = count : Assembly
{ oxd4s 208000000000 irmovl $0, wesx # sum = 0 ? code
{ oxco gzez andl medi, medn :
d oxcz 2av4000000 je End
057 S0410000000080w | Loop: momoel (%ecu) %esi # get Fstart
0xEd B040 il addl %esi, %eax # 3dd to sum
1 oxce zossodoonooolle iomowl 54, %ebx &
{ oxes G031 2ddl seby, weon # sum+
OxE7 BOBILLffffff irmowl §-1,%ebx #
. OxEd EBOZZ addl ssehor, feeda # cownt--
OxEf 7457000000 W Jjne Loap # stop when 0
{ 0x74 bo78 End: popl fehp
i ox76 a0 [ret .

Currently executing instructions

Object code

Figure 8: Code display window for PIPE simulator

12

The example shown in Figures 6 and 8 show the status of the pipeline when executing the loop in lines
29-35 of Figure 1. We can see that the simulator has begun the second iteration of the loop. The status of
the stages is as follows:

Write back: The loop-closing j ne instruction (line 35) is finishing.

Memory: The nr novl instruction (line 29) has just read 0x0CO from address 0x018. We can see the
address in valE of pipeline register M, and the value read from memory at the input of valM to pipeline
register W.

Execute: This stage contains a bubble. The bubble was inserted due to the load-use dependency between
the nr mov| instruction (line 29) and the addl instruction (line 30). It can be seen that this bubble
acts like a nop instruction. This explains why there is no instruction in Figure 8 labeled with “E.”

Decode: The addl instruction (line 30) has just read Ox00Dfrom register %eax. It also read 0x00Dfrom
register %esi , but we can see that the forwarding logic has instead used the value 0x0CO that has
just been read from memory (seen as the input to valM in pipeline register W) as the new value of
valA (seen as the input to valA in pipeline register E).

Fetch: Thei r movl instruction (line 31) has just been fetched from address 0x05f . The new value of the
PC is predicted to be 0x065.

Associated with each stage is an exception status field Exc. This field shows the status of the instruction
in that stage of the pipeline. Status “AOK” means that no exception has been encountered. Status “BUB”
indicates that a bubble is in this stage, rather than a normal instruction. Other possible status values are
“ADR” when an invalid memory location is referenced, “INS” when an illegal instruction code is encoun-
tered, “PIP” when a problem arose in the pipeline (this occurs when both the stall and the bubble signals for
some pipeline register are set to 1), and “HLT” when a halt instruction is encountered. The simulator will
stop when any of these last four cases reaches the write-back stage.

Carrying the exception status for an individual instruction through the pipeline along with the rest of the in-
formation about that instruction enables precise handling of the different exception conditions, as described
in CS:APP Section 4.5.11.

4 Some Advice

The following are some miscellaneous tips, learned from experience we have gained in using these simula-
tors.

e Get familiar with the simulator operation. Try running some of the example programs in the y86-
code directory. Make sure you understand how each instruction gets processed for some small
examples. Watch for interesting cases such as mispredicted branches, load interlocks, and procedure
returns.

e You need to hunt around for information. Seeing the effect of data forwarding is especially tricky.
There are seven possible sources for signal valA in pipeline register E, and six possible sources for

13

signal valB. To see which one was selected, you need to compare the input to these pipeline register
fields to the values of the possible sources. The possible sources are:

R[d_srcA] The source register is identified by the input to srcA in pipeline register E. The register

contents are shown at the bottom.

R[d_srcB] The source register is identified by the input to srcB in pipeline register E. The register

contents are shown at the bottom.

D_valP This value is part of the state of pipeline register D.

e_valE This value is at the input to field valE in pipeline register M.

M_valE This value is part of the state of pipeline register M.

m_valM This value is at the input to field valM in pipeline register W.

W_valE This value is part of the state of pipeline register W.

W_valM This value is part of the state of pipeline register M.

e Do not overwrite your code. Since the data and code share the same address space, it is easy to
have a program overwrite some of the code, causing complete chaos when it attempts to execute the
overwritten instructions. It is important to set up the stack to be far enough away from the code to
avoid this.

e Avoid large address values. The simulators do not allow any addresses greater than OXOFFF. In
addition, the memory display becomes unwieldy if you modify memory locations spanning a wide
range of addresses.

e Be aware of some ““features’ of the GUI-mode simulators (PSIM and SSIM).

If you are running in GUI mode on a Unix box, remember to initialize the DISPLAY environ-
ment variable:

uni x> setenv DI SPLAY nyhost. edu: 0

With some Unix X Window managers, the “Program Code” window begins life as a closed
icon. If you don’t see this window when the simulator starts, you’ll need to expand the expand
manually by clicking on it.

With some Microsoft Windows X servers, the “Memory Contents” window does not automat-
ically resize itself when the memory contents change. In these cases, you’ll need to resize the
window manually to see the memory contents.

The simulators will terminate with a segmentation fault if you ask them to execute a file that is
not a valid Y86 object file.

When running in GUI mode, the simulators will single-step past a hal t instruction.

14

