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What is a Proof?
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The Subject Matter of This Course

What is a proof?

Which (logical) statements have efficient proofs?

How can we find such proofs? (Is it even possible?)

What are good methods of reasoning about logical statements?

What are natural notions of “efficiency” of proofs? (size, structural
complexity, et cetera)

How are these notions related?
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Today’s Lecture

Brief (and therefore biased) introduction to proof complexity

Even briefer discussion of connections to neighbouring areas such as
computational complexity theory and SAT solving

Some concrete examples of interesting methods of reasoning and
interesting formulas to reason about

Some “teasers” for what to expect in coming lectures

Might go slightly fast, but

slides will be online to allow recap
most things won’t be crucially needed for upcoming lectures
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Propositional Proof Systems The Notion of a Proof

So What Is a Proof?

Claim: 25957 is the product of two primes
True or false? What kind of proof would convince us?

“I told you so. Just factor and check it yourself!”
Not much of a proof

25957 ≡ 1 (mod 2) 25957 ≡ 0 (mod 101)
25957 ≡ 1 (mod 3) 25957 ≡ 1 (mod 103)
25957 ≡ 2 (mod 5)

...
... 25957 ≡ 0 (mod 257)

25957 ≡ 19 (mod 99)
...

OK, but maybe even a bit of overkill

“25957 = 101 · 257; check yourself that these are primes”

Key demand: A proof should be efficiently verifiable

DD2442 Seminars on TCS: Proof Complexity Lecture 1 Sep 5, 2016 5 / 50



Propositional Proof Systems The Notion of a Proof

Proof system

Proof system for a language L (adapted from Cook & Reckhow [CR79]):

Deterministic algorithm P(x, π) that runs in time polynomial
in |x| and |π| such that

for all x ∈ L there is a string π (a proof) such that P(x, π) = 1

for all x 6∈ L it holds for all strings π that P(x, π) = 0

Think of P as “proof checker”
Note that proof π can be very large compared to x
Only have to achieve polynomial time in |x|+ |π|

Propositional proof system: proof system for the language Taut of all
valid propositional logic formulas (or tautologies)
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Propositional Proof Systems Propositional Logic

Propositional Logic: Syntax

Set Vars of Boolean variables ranging over {0, 1} (false and true)

Logical connectives:

negation ¬
conjunction ∧
disjunction ∨
implication →
equivalence ↔

Set Prop of propositional logic formulas is smallest set X such that

x ∈ X for all propositional logic variables x ∈ Vars

if F,G ∈ X then
(
F ∧G

)
,
(
F ∨G

)
,
(
F → G

)
,
(
F ↔ G

)
∈ X

if F ∈ X then
(
¬F
)
∈ X
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Propositional Proof Systems Propositional Logic

Propositional Logic: Semantics

Let α denote a truth value assignment, i.e., α : Vars → {0, 1}

Extend α from variables to formulas by:

α(¬F ) = 1 if α(F ) = 0

α(F ∨G) = 1 unless α(F ) = α(G) = 0

α(F ∧G) = 1 if α(F ) = α(G) = 1

α(F → G) = 1 unless α(F ) = 1 and α(G) = 0

α(F ↔ G) = 1 if α(F ) = α(G)

We say that F is

satisfiable if there is an assignment α with α(F ) = 1

valid or tautological if all assignments satisfy F

falsifiable if there is an assignment α with α(F ) = 0

unsatisfiable or contradictory if all assignments falsify F
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Propositional Proof Systems Complexity of Proofs

Example Propositional Proof System

Example (Truth table)

p q r (p ∧ (q ∨ r))↔ ((p ∧ q) ∨ (p ∧ r))
0 0 0 1

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

Certainly polynomial-time checkable measured in “proof” size
Why does this not make us happy?
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Propositional Proof Systems Complexity of Proofs

Proof System Complexity

Complexity cplx (P) of a proof system P:

Smallest g : N→ N such that x ∈ L if and only if there is a proof π of size
|π| ≤ g(|x|) such that P(x, π) = 1

If a proof system is of polynomial complexity, it is said to be polynomially
bounded or p-bounded

Example (Truth table continued)

Truth table is a propositional proof system, but of exponential complexity!
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Proof Systems, Computational Complexity, and SAT solving Proofs and Computational Complexity

Proof systems and P vs. NP

Theorem (Cook & Reckhow [CR79])

NP = coNP if and only if there exists a polynomially bounded
propositional proof system

Proof sketch.

NP is exactly the set of languages with p-bounded proof systems.

(⇒) Taut ∈ coNP since F is not a tautology iff ¬F ∈ Sat.
If NP = coNP, then Taut ∈ NP has a p-bounded proof system by
definition.

(⇐) Suppose there exists a p-bounded proof system. Then Taut ∈ NP,
and since Taut is complete for coNP it follows that NP = coNP.

DD2442 Seminars on TCS: Proof Complexity Lecture 1 Sep 5, 2016 11 / 50



Proof Systems, Computational Complexity, and SAT solving Proofs and Computational Complexity

Polynomial Simulation

The conventional wisdom is that NP 6= coNP
Seems that proof of this is light-years away
(Would imply P 6= NP as a corollary)

Reason 1 for proof complexity: approach this distant goal by studying
successively stronger proof systems and relating their strengths

Definition (p-simulation)

P1 polynomially simulates, or p-simulates, P2 if there exists a
polynomial-time computable function f such that for all F ∈ Taut it
holds that P2(F, π) = 1 iff P1(F, f(π)) = 1

Weak p-simulation: cplx (P1) = (cplx (P2))O(1) but we do not know
explicit translation function f from P2-proofs to P1-proofs
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Proof Systems, Computational Complexity, and SAT solving Proofs and Computational Complexity

Polynomial Equivalence

Definition (p-equivalence)

Two propositional proof systems P1 and P2 are polynomially equivalent, or
p-equivalent, if each proof system p-simulates the other

If P1 p-simulates P2 but P2 does not (even weakly) p-simulate P1, then
P1 is strictly stronger than P2

Lots of results proven relating strength of different proof systems
Will mention a few examples in this course
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Proof Systems, Computational Complexity, and SAT solving Satisfiability Algorithms and Efficient Proof Search

A Fundamental Theoretical Problem. . .

The constructive version of the problem:

Problem

Given a propositional logic formula F , can we decide efficiently whether is
it true no matter how we assign values to its variables?

Taut: Fundamental problem in theoretical computer science ever since
Stephen Cook’s NP-completeness paper [Coo71]

And significance realized much earlier — cf. Gödel’s famous letter to
von Neumann in 1956 (rjlipton.wordpress.com/the-gdel-letter)

These days recognized as one of the main challenges for all of
mathematics — one of the million dollar “Millennium Problems” of the
Clay Mathematics Institute [Mil00]
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Proof Systems, Computational Complexity, and SAT solving Satisfiability Algorithms and Efficient Proof Search

. . . with Huge Practical Implications

All known algorithms run in exponential time in worst case

But enormous progress on applied computer programs last 20 years
(see, e.g., [BS97, MS99, MMZ+01, ES04, AS09, Bie10])

These so-called SAT solvers are routinely deployed to solve large-scale
real-world problems with 100 000s or even 1 000 000s of variables

Used in, e.g., hardware verification, software testing, software package
management, artificial intelligence, cryptography, bioinformatics,
operations research, railway signalling systems, et cetera (and even in
pure mathematics)

But we also know small example formulas with only hundreds of
variables that trip up even state-of-the-art SAT solvers
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Proof Systems, Computational Complexity, and SAT solving Satisfiability Algorithms and Efficient Proof Search

Automated Theorem Proving or SAT Solving

Reason 2 for proof complexity: understand proof systems used for
solving formulas occurring in “real-world applications”

Approach:

Study proof systems used by SAT solvers

Model actual methods of reasoning used by SAT solvers as
“refinements” (subsystems) of these systems

Prove upper and lower bounds in these systems

Try to explain or predict theoretically what happens in practice

A truly fascinating area. . . (But I am severely biased)

A lot of my own research is about investigating these questions

But we will essentially ignore such connections in this course

However, lots of good problems for, e.g., MSc theses
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Proof Systems, Computational Complexity, and SAT solving Satisfiability Algorithms and Efficient Proof Search

Proof Search Algorithms and Automatizability

Proof search algorithm AP for propositional proof system P:
Deterministic algorithm with

input: formula F

output: P-proof π of F or report that F is falsifiable

Definition (Automatizability)

P is automatizable if there exists a proof search algorithm AP such that if
F ∈ Taut then AP on input F outputs a P-proof of F in time
polynomial in size of F plus size of a smallest P-proof of F

DD2442 Seminars on TCS: Proof Complexity Lecture 1 Sep 5, 2016 17 / 50



Proof Systems, Computational Complexity, and SAT solving Satisfiability Algorithms and Efficient Proof Search

Short Proofs Seem Hard to Find (at Least in Theory)

Example (Truth table continued)

Truth table is (trivially) an automatizable propositional proof system (but
the proofs we find are of exponential size, so this is not very exciting)

We want proof systems that are both

strong (i.e., have short proofs for all tautologies) and

automatizable (i.e., we can find these short proofs efficiently)

Seems that this is not possible (under reasonable complexity assumptions)

But can find proof search algorithms that work really well “in practice”
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Proof Systems, Computational Complexity, and SAT solving Power of Mathematics

Potential and Limitations of Mathematical Reasoning

Reason 3 for proof complexity: understand how deep / hard various
mathematical truths are

Look at logic encoding of various mathematical theorems (e.g.,
combinatorial principles such as pigeonhole principle, least number
principle, handshaking lemma, et cetera)

Determine how strong proof systems are needed to provide efficient
proofs

Tells us how powerful mathematical tools are needed for establishing
such statements

Fascinating area, but this course will not go into this at all
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Propositional Proof Systems and Unsatisfiable CNFs Tseitin Transformation

Transforming Tautologies to Unsatisfiable CNFs

Any propositional logic formula F can be converted to formula F ′ in
conjunctive normal form (CNF) such that

F ′ only linearly larger than F

F ′ unsatisfiable if and only if (“iff”) F tautology

Approach by Tseitin [Tse68]:

Introduce new variable xG for each subformula G
.
= H1 ◦H2 in F ,

◦ ∈
{
∧,∨,→,↔

}
Translate G to set of disjunctive clauses Cl(G) which enforces that
truth value of xG is computed correctly given xH1 and xH2
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Propositional Proof Systems and Unsatisfiable CNFs Tseitin Transformation

Sketch of Transformation

Two examples for ∨ and → (∧ and ↔ are analogous):

G ≡ H1 ∨H2 : Cl(G) :=
(
¬xG ∨ xH1 ∨ xH2

)
∧
(
xG ∨ ¬xH1

)
∧
(
xG ∨ ¬xH2

)
G ≡ H1 → H2 : Cl(G) :=

(
¬xG ∨ ¬xH1 ∨ xH2

)
∧
(
xG ∨ xH1

)
∧
(
xG ∨ ¬xH2

)
Finally, add clause ¬xF
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Propositional Proof Systems and Unsatisfiable CNFs Refutational Proof Systems

Proof Systems for Refuting Unsatisfiable CNFs

Easy to verify that constructed CNF formula F ′ is unsatisfiable iff F
is a tautology

So any sound and complete proof system which produces refutations
of formulas in CNF can be used as a propositional proof system

From now on and for the rest of this course, we will focus exclusively
on proof systems for refuting CNF formulas

Warning:

Because of this duality, proof complexity terminology is slightly schizophrenic

Unsatisfiable formulas sometimes referred to as “tautologies” in the literature

We won’t go quite that far. . .

But throughout the course “proof” and “refutation” will be synonyms
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Propositional Proof Systems and Unsatisfiable CNFs Refutational Proof Systems

A Concrete Example

(x ∨ y) ∧ (x ∨ ¬y ∨ z) ∧ (¬x ∨ z) ∧ (¬y ∨ ¬z) ∧ (¬x ∨ ¬z)

Variables should be set to true (= 1) or false (= 0)

Constraint (x ∨ ¬y ∨ z): means x or z should be true or y false

∧ means all constraints should hold simultaneously

Is there a truth value assignment satisfying all these conditions?
Or can we find efficient proof that some constraint must fail to hold?
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Propositional Proof Systems and Unsatisfiable CNFs Refutational Proof Systems

Some Notation and Terminology

Literal a: variable x or its negation x (rather than ¬x); let x = x

Sometimes write x1 = x and x0 = x (xb satisfied by setting x = b)

Clause C = a1 ∨ . . . ∨ ak: set of literals
At most k literals: k-clause

CNF formula F = C1 ∧ . . . ∧ Cm: set of clauses
k-CNF formula: CNF formula consisting of k-clauses

Vars(·): set of variables in clause or formula
Lit(·): set of literals in clause or formula

F � D: semantical implication, α(F ) true ⇒ α(D) true
for all truth value assignments α

[n] = {1, 2, . . . , n}
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Some Interesting Propositional Proof Systems

Sequential Proof Systems

Proof system could be any polynomial-time computable predicate. . .
But often natural to view proof as sequence of derivation steps

More formally, a proof system P is sequential if a proof π in P is a

sequence of lines π = {L1, . . . , Lτ}
of some prescribed syntactic form
(depending on the proof system in question)

where each line is derived from previous lines by one of a finite set of
allowed inference rules

Let’s look at some such proof systems that we will study in this course
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Some Interesting Propositional Proof Systems Resolution

The Resolution Proof System

Resolution:

Most well-studied proof system in all of proof complexity

Originally described by Blake [Bla37]

Used in the context of SAT solving [DP60, DLL62, Rob65]

Still the basis of state-of-the-art SAT solvers

Lines in refutation are disjunctive clauses

Just one inference rule, the resolution rule:

B ∨ x C ∨ x
B ∨ C

B ∨ C is the resolvent of B ∨ x and C ∨ x
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Some Interesting Propositional Proof Systems Resolution

Using Resolution to Refute CNF Formulas

Observation

If F is a satisfiable CNF formula and D is derived from clauses
D1, D2 ∈ F by the resolution rule

B ∨ x C ∨ x
B ∨ C

,

then F ∧D is also satisfiable

So if we can use the resolution rule to derive a contradiction from F , this
shows that F is unsatisfiable
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Some Interesting Propositional Proof Systems Resolution

Soundness and Completeness of Resolution

Resolution derivation π from CNF formula F :

Start with clauses in F

Interatively derive new clauses by resolution rule and add

Final clause in π is A ⇔ π is derivation of A (notation: π : F `A)

Resolution is:

Sound If there is a resolution derivation π : F `A then F � A
(easy to show)

Complete If F � A then there is a resolution derivation π : F `A′ for
some A′ ⊆ A (not hard to prove, but we will skip this)

In particular:

F is unsatisfiable
m

∃ resolution refutation of F = derivation of unsatisfiable empty clause ⊥
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Some Interesting Propositional Proof Systems Resolution

Example Resolution Refutation

Recap of set-up:

Goal: refute unsatisfiable CNF

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Refutation/proof ends when empty
clause ⊥ derived

Can represent refutation as

annotated list or

directed acyclic graph

Tree-like resolution if DAG is tree

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)
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Some Interesting Propositional Proof Systems Resolution

Example Resolution Refutation

Recap of set-up:

Goal: refute unsatisfiable CNF

Start with clauses of formula (axioms)

Derive new clauses by resolution rule

C ∨ x D ∨ x
C ∨D

Refutation/proof ends when empty
clause ⊥ derived

Can represent refutation as

annotated list or

directed acyclic graph

Tree-like resolution if DAG is tree

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)
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Some Interesting Propositional Proof Systems Resolution

Resolution Length and Size

Length = # clauses in resolution refutation (9 in our example)

Size = total # literals in refutation, strictly speaking

In practice, ignore linear factor and set size = length for resolution

Proof size/length is the most fundamental measure in proof complexity
Main complexity measure of interest in this course
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Some Interesting Propositional Proof Systems Resolution

Resolution Space

Space = amount of memory needed when
performing refutation

Can be measured in different ways:

line space (or clause space)

total space

Line space at step t: # clauses at steps ≤ t
used at steps ≥ t
Total space at step t: Count also literals

Example: Line space at step 7 is 5
Total space at step 7 is 9

Space of refutation: Max over all steps

1.

2.

3.

4.

5.

6.

7.

8.

9.

x ∨ y

x ∨ y ∨ z

x ∨ z

y ∨ z

x ∨ z

x ∨ y

x

x

⊥

Axiom

Axiom

Axiom

Axiom

Axiom

Res(2, 4)

Res(1, 6)

Res(3, 5)

Res(7, 8)

xx
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Some Interesting Propositional Proof Systems Resolution

Refutation Length, Size, and Space

For any unsatisfiable CNF formula F and any proof system P:

Length of refuting F = length of shortest P-refutation of F
Size of refuting F = size of smallest P-refutation of F
Line space of refuting F = max # lines in memory in most

space-efficient P-refutation of F
Total space of refuting F = max # literals in memory in most

space-efficient P-refutation of F

Interesting to study:

size bounds (≈ SAT solver running time)

space bounds (≈ SAT solver memory usage)

size-space trade-offs (because solvers aggressively minimize both)
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Some Interesting Propositional Proof Systems k-DNF Resolution

Generalizing Resolution to k-DNF Formulas

Family of proof systems R(k) parameterized by k ∈ N+ [Kra01]
(R(1) is resolution)

Lines in k-DNF-resolution refutation are k-DNF formulas
i.e., disjunctions of conjunctions (terms) of size ≤ k

Inference rules

Notation: G,H k-DNF formulas; T, T ′ k-terms; a1, . . . , ak literals:

k-cut
(a1 ∧ · · · ∧ ak′) ∨ G a1 ∨ · · · ∨ ak′ ∨ H

G ∨ H
, (k′ ≤ k)

∧-introduction G ∨ T G ∨ T ′

G ∨ (T ∧ T ′)
, as long as |T ∪ T ′| ≤ k

∧-elimination
G ∨ T
G ∨ T ′ for any T ′ ⊆ T

Weakening G
G ∨ H for any k-DNF formula H
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Some Interesting Propositional Proof Systems k-DNF Resolution

k-DNF Resolution Measures

Length
# derivation steps
(= # k-DNF formulas counted with repetitions)

Size
Total # literals in proof counted with repetitions

Line space (or formula space)
Max # k-DNF formulas in memory (analogue of clause space)

Total space
Max total # literals in memory counted with repetitions
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Some Interesting Propositional Proof Systems Cutting Planes

Cutting Planes: Informal Description

Geometric proof system introduced in [CCT87]

Translate clauses to linear inequalities for real variables in [0, 1]

For instance, x ∨ y ∨ z gets translated to x+ y + (1− z) ≥ 1,
i.e., x+ y − z ≥ 0

Manipulate linear inequalities to derive contradiction 0 ≥ 1
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Some Interesting Propositional Proof Systems Cutting Planes

Cutting Planes: Inference Rules

Lines in cutting planes (CP) refutation: linear inequalities with integer
coefficients

Inference rules

Variable axioms
x ≥ 0

and −x ≥ −1
for all variables x

Addition

∑
aixi ≥ A

∑
bixi ≥ B∑

(ai + bi)xi ≥ A+B

Multiplication

∑
aixi ≥ A∑
caixi ≥ cA

for c ∈ N+

Division

∑
caixi ≥ A∑

aixi ≥ dA/ce
for c ∈ N+

A CP refutation ends when the inequality 0 ≥ 1 has been derived
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Some Interesting Propositional Proof Systems Cutting Planes

Cutting Planes Measures

Length
# derivation steps

Size
# symbols needed to represent proof (coefficients can be huge)

Line space
Max # linear inequalities in memory (analogue of clause space)

Total space
Max total # variables in memory counted with repetitions
+ log of coefficients
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Some Interesting Propositional Proof Systems Polynomial Calculus

Polynomial Calculus: Using Algebra to Reason About CNFs

Algrebraic system introduced in [CEI96] under the name of “Gröbner
proof system”

Clauses are interpreted as multilinear polynomial equations over some
field F (typically finite; GF(2) perhaps most interesting)

Here, natural to flip convention and think of 0 as true and 1 as false

For instance, clause x ∨ y ∨ z gets translated to xy(1− z) = 0 or
xy − xyz = 0

Derive contradiction by showing that there is no common root for the
polynomial equations corresponding to all the clauses
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Some Interesting Propositional Proof Systems Polynomial Calculus

Polynomial Calculus: Inference Rules

Lines in polynomial calculus (PC) refutation: multivariate polynomial
equations p = 0, where p ∈ F[x, y, z, . . .]

Customary to omit “= 0” and only write p

Inference rules

Notation: α, β ∈ F; p, q ∈ F[x, y, z, . . .]; x is any variable:

Variable axioms
x2 − x

for all variables x (forcing 0/1-solutions)

Linear combination
p q

αp+ βq

Multiplication
p
xp

A PC refutation ends when 1 has been derived (i.e., 1 = 0)
(Note that multilinearity follows w.l.o.g. from x2 = x for all variables x)
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Some Interesting Propositional Proof Systems Polynomial Calculus

Polynomial Calculus: Alternative View

Can also (equivalently) consider a PC refutation to be a calculation in the
ideal generated by polynomials corresponding to clauses

Then a refutation concludes by proving that 1 is in this ideal, i.e., that the
ideal is everything

Clearly implies that there is no common root

Less obvious: if there is no common root, then 1 is always in the ideal
(requires some algebra)
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Some Interesting Propositional Proof Systems Polynomial Calculus

Polynomial Calculus Measures

Length
# derivation steps
(= # polynomial equations counted with repetitions)
Turns out to not make too much sense; exponentially large polynomials
are too powerful

Size
Total # monomials in the refutation counted with repetitions
(Ignore linear factor here; in the same spirit as resolution)

Monomial space
Max # monomials in memory counted with repetitions
(Again an analogue of clause space; line space doesn’t make sense for
same reason as length)

Total space
Max total # variables in memory counted with repetitions
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Some Interesting Formula Families

How to Prove Size/Length Lower Bounds

Find suitable family of unsatisfiable CNF formulas with size scaling
polynomially

Show that smallest possible refutations in proof system P of these
formulas scale superpolynomially or even exponentially

How to prove this? Have to establish that no short proofs exist, even
totally crazy ones!

In order to do so, need to understand formulas really well

So the formulas we know how to prove lower bounds for are mostly
formulas that look very easy to humans

A bit of a paradox. . . Let’s see some examples
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Some Interesting Formula Families

Pigeonhole Principle (PHP) Formulas

“n+ 1 pigeons don’t fit into n holes”

Variables pi,j = “pigeon i goes into hole j”, i ∈ [n+ 1], j ∈ [n]

pi,1 ∨ pi,2 ∨ · · · ∨ pi,n every pigeon i gets a hole

pi,j ∨ pi′,j no hole j gets two pigeons i 6= i′

Can also add “functionality” and/or “onto” axioms

pi,j ∨ pi,j′ no pigeon i gets two holes j 6= j′

p1,j ∨ p2,j ∨ · · · ∨ pn+1,j every hole j gets a pigeon

Resolution: All versions hard [Hak85] (next lecture)

Polynomial calculus: Onto FPHP easy [Rii93]; other versions hard
[Raz98, IPS99, MN15]

Cutting planes: All versions easy [CCT87]
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Some Interesting Formula Families

Tseitin Formulas

“Sum of degrees of vertices in graph is even” (handshaking lemma)

Variables = edges (in undirected graph of bounded degree)

Label every vertex 0/1 so that sum of labels odd

Write CNF requiring parity of # true incident edges = label

1

0 0

x y

z

(x ∨ y) ∧ (x ∨ z)

∧ (x ∨ y) ∧ (y ∨ z)

∧ (x ∨ z) ∧ (y ∨ z)

Resolution: Hard for well-connected expander graphs [Urq87]
(in two lectures)

Polynomial calculus: Easy if field is GF(2)

Cutting planes: Believed hard; big open problem
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Some Interesting Formula Families

Subset Cardinality Formulas

Variables = 1s in matrix with four 1s per row/column + extra 1
Row ⇒ majority of variables true; column ⇒ majority false



1 1 0 1 0 0 0 1 0 0 0
0 1 1 0 1 0 0 0 1 0 0
0 0 1 1 0 1 0 0 0 1 0
0 0 0 1 1 0 1 0 0 0 1
1 0 0 0 1 1 0 1 0 0 0
0 1 0 0 0 1 1 0 1 0 0
0 0 1 0 0 0 1 1 0 1 0
0 0 0 1 0 0 0 1 1 0 1
1 0 0 0 1 0 0 0 1 1 0
0 1 0 0 0 1 0 0 0 1 1
1 0 1 0 0 0 1 1 0 0 1



(x1,1 ∨ x1,2 ∨ x1,4)

∧ (x1,1 ∨ x1,2 ∨ x1,8)

∧ (x1,1 ∨ x1,4 ∨ x1,8)

∧ (x1,2 ∨ x1,4 ∨ x1,8)

...

∧ (x4,11 ∨ x8,11 ∨ x10,11)

∧ (x4,11 ∨ x8,11 ∨ x11,11)

∧ (x4,11 ∨ x10,11 ∨ x11,11)

∧ (x8,11 ∨ x10,11 ∨ x11,11)

Resolution: Hard for expanding matrices (1s well spread out) [MN14]
Polynomial calculus: Ditto [MN14]
Cutting planes: Easy (not hard to show)
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Some Interesting Formula Families

Random k-CNF Formulas

∆n randomly sampled k-clauses over n variables

I.e., repeat ∆n times:

Pick randomly set of k out of n variables

Choose randomly for each picked variable whether it should be
negated or unnegated

Add clause to formula under construction

Fact: ∆ & 4.5 sufficient to get unsatisfiable 3-CNF asymptotically almost
surely

Resolution: Hard to refute asymptotically almost surely [CS88]
(later during the course)

Polynomial calculus: Ditto [AR03, BI10]

Cutting planes: Believed hard; another big open problem
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Concluding Remarks

Main Focus of This Course

Study proof systems such as:

Resolution

Cutting planes

k-DNF resolution

Even stronger system known as bounded-depth Frege

Perhaps also algebraic ideal proof system somewhat similar in flavour
to polynomial calculus (but stronger, and harder to explain)

Main focus:

Lower bounds (and some upper bounds) on proof size

Hopefully also hardness of proof search

(Will most likely not study space or size-space trade-offs, although
those are also fun topics)
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Concluding Remarks

Practicalities

Read course webpage www.csc.kth.se/DD2442/semteo16 carefully
— contains lots of useful information

Sign up at piazza.com/kth.se/fall2016/dd2442 ASAP to get
course announcements and to ask questions

Also need to register at KTH in whatever way appropriate for you

Examination is by problem sets + scribed lecture notes

Please note this is a research-level course, so edges can be a bit rough

Sometimes lectures a bit buggy (usually fixed quickly)
Sometimes problem sets a bit buggy! (Student bug reports appreciated)
Don’t hesitate to ask at Piazza if anything is unclear!

Course intended to be fun and interesting (and challenging)
Need feed-back to make that happen — let me know what you think!
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Concluding Remarks

Examination: Problem Sets + Scribed Lecture Notes

Problem sets

Solve individually or in groups of two

Then peer evaluate solutions of other participant (individually)

Plus discuss solutions on Piazza

See www.csc.kth.se/DD2442/semteo16/administration/#psets

for detailed description of set-up

Scribed lecture notes

Produce high-quality notes in LaTeX

As the course progresses, you yourselves create the textbook that
doesn’t exist

Good way to learn material in-depth

Useful exercise to develop scientific/technical writing skills

Detailed instructions + sign-up sheets will be posted soon
(first lectures already covered)
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Concluding Remarks

Instructors and Assistants

Jakob Nordström
Main instructor
Responsible for all aspects of course
(So any complaints should be
directed to me ,)

Marc Vinyals
Couple of guest lectures
Reviewing of scribe notes
Maybe informal office hours

Ilario Bonacina
Lectures
Grading of problem sets
Reviewing of scribe notes
Maybe informal office hours
(will vote on this later)

Susanna F. de Rezende
Reviewing of scribe notes
Maybe informal office hours

. . . And that concludes today’s lecture. . .

Next time we will get down to business
and start proving theorems!
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