
DD2242 Seminars on TCS: Proof Complexity Sep 19, 2016

Lecture 5
Lecturer: Marc Vinyals Scribe: Robert Alnesjö, Susanna F. de Rezende

1 Introduction

In the last lecture we began by introducing the cutting planes proof system but then switched our focus
back to resolution when we wanted to illustrate how to use the interpolation technique to prove lower
bounds. Today we want to extend the interpolation technique to cutting planes and show how to obtain
exponential lower bounds on proof length for this proof system.

Let us recall the strategy for proving the lower bound for resolution via interpolation. We start with an
unsatisfiable CNF formula on the formA(p,q)∧B(p, r) for disjoint sets of variables p,q, r, and suppose
for the sake of contradiction thatA(p,q)∧B(p, r) has a short resolution refutation. We then prove that we
can construct a small interpolating circuit for A(p,q) ∧B(p, r), that is, a Boolean circuit I(p) such that
for any assignment ρ to the variables p, which splits the formula into two subformulasA(p,q)�ρ = A(ρ,q)
and B(p, r)�ρ = B(ρ, r) over disjoint sets of variables, it holds that I(ρ) = 0 implies that A(ρ,q) is
unsatisfiable and I(ρ) = 1 implies that B(ρ, r) is unsatisfiable. Finally, we appeal to an already known
circuit complexity lower bound that states that no such small circuit can exist. For this final step to work
and yield unconditional lower bounds it is important that the interpolating circuit is monotone, because it
is currently not known how to prove strong enough lower bounds for general, non-monotone, circuits.

The proof strategy for cutting planes follows the same idea, but in order to extract interpolating circuits
from cutting planes refutations we have to use a more general class of real circuits, which are circuits that
compute with real numbers and have arbitrary real functions as gates. The plan for today is to first show
how to build interpolants in the form of monotone real circuits from short cutting planes refutations of
clique-coclique formulas, and then present the main ideas behind the proof that these formulas do not have
such small interpolating circuits. In the next lecture we will see the full proof of the latter result.

Recall that the clique-coclique formulas are unsatisfiable CNF formulas encoding the contradictory
claim that there exist undirected graphs G = (V,E) on n = |V | vertices which have an m-clique but are
also (m− 1)-colourable. The encoding uses the following Boolean variables:

• pi,j , for i, j ∈ [n], i < j representing the truth value of “there is an edge between vertices i and j;”

• qk,i, for i ∈ [n] and k ∈ [m] representing the truth value of “vertex i is the kth member of the
m-clique;” and

• ri,`, for i ∈ [n] and ` ∈ [m− 1] representing the truth value of “vertex i is has colour `.”

The clique-coclique formula consists of the following clauses (where we write (x1 ∧ · · · ∧ xm)→ y to
denote the equivalent clause x1 ∨ · · · ∨ xm ∨ y to highlight that a clause on this form can be viewed as
encoding an implication):

qk,1 ∨ qk,2 ∨ · · · ∨ qk,n k ∈ [m] (1.1a)
qk,i ∨ qk′,i i ∈ [n]; k, k′ ∈ [m], k 6= k′ (1.1b)
(qk,i ∧ qk′,j)→ pi,j i, j ∈ [n], i < j; k, k′ ∈ [m], k 6= k′ (1.1c)
ri,1 ∨ ri,2 ∨ · · · ∨ ri,m−1 i ∈ [n] (1.1d)
(ri,` ∧ rj,`)→ pi,j i, j ∈ [n], i < j; ` ∈ [m− 1] (1.1e)

We observe that the clauses in the clique-coclique formula can indeed be partitioned into two sets: one
set, which we denote A(p,q), consisting of clauses that contain p- and q-variables, i.e., the clauses

5-1

in (1.1a)–(1.1c); and a second set, which we denote B(p, r), consisting of clauses that contain p- and
r-variables, i.e., the clauses in (1.1d)–(1.1e).

We want to use refutations of the clique-coclique formula in in (1.1a)–(1.1e) to build an interpolating
circuit, which is a circuit computing with p-variables encoding edges and non-edges in a graph G
with n vertices. This interpolating circuit should be able to distinguish between a graph G that has no
m-clique (i.e., an assignment ρ to the p-variables such that A(ρ,q) is unsatisfiable) and one that has no
(m− 1)-colouring (i.e., an assignment such that B(ρ, r) is unsatisfiable). Rephrasing the conditions on
interpolants discussed above, for the clique-coclique formula the interpolating circuit has to output 1 if the
graph G encoded by ρ contains an m-clique and 0 if G has an (m− 1)-colouring, and can answer with
either value if none of these conditions hold.

2 Clique-Coclique Formulas and Interpolation for Cutting Planes

As explained in Lecture 4, when we want to refute a CNF formula in cutting planes we translate clauses
to inequalities by replacing connectives ∨ with addition and negated variables x with (1 − x). When
converting the clauses (1.1b) in clique-coclique formulas to inequalities, however, we can note that a set of
clauses {

xi ∨ xj
∣∣1 ≤ i < j ≤ s

}
, (2.1a)

which is translated to {
−xi − xj ≥ −1

∣∣1 ≤ i < j ≤ s
}
, (2.1b)

is just another way to encode the constraint
s∑
i=1

xi ≤ 1 , (2.1c)

and since (2.1c) can be written natively as just one linear constraint
s∑
i=1

−xi ≥ −1 (2.1d)

in the context of cutting planes (where we switched to negations just to keep the format
∑

i cixi ≥ C of
greater-than inequalities that we have adopted for cutting planes) it seems more natural to use the latter
encoding rather than a quadratic number of constraints as in (2.1b). For our purposes, it does not really
matter which form we use since one can derive (2.1b) from (2.1d) and vice-versa in polynomial length. In
one direction (the one we care about in order to get lower bounds for refutations of CNF formulas) this is
obvious—from

∑s
i=1−xi ≥ −1 one can derive −xi1 − xi2 ≥ −1 for any i1, i2 ∈ [s], i1 6= i2, by just

adding axioms xi ≥ 0 for all i ∈ [s] \ {i1, i2}; the other direction is also straightforward. This means that
superpolynomial length lower bounds for clique-coclique formulas using the encoding in (2.1d) imply
superpolynomial bounds for the encoding using (2.1b) and the other way round. In view of this, we will
define the clique-coclique formula in cutting planes as consisting of the inequalities

qk,1 + qk,2 + · · ·+ qk,n ≥ 1 k ∈ [m] (2.2a)
−q1,i − q2,i − · · · − qm,i ≥ −1 i ∈ [n] (2.2b)

pi,j − qk,i − qk′,j ≥ −1 i, j ∈ [n], i < j; k, k′ ∈ [m], k 6= k′ (2.2c)
ri,1 + ri,2 + · · ·+ ri,m−1 ≥ 1 i ∈ [n] (2.2d)

−pi,j − ri,` − rj,` ≥ −2 i, j ∈ [n], i < j; ` ∈ [m− 1] (2.2e)

and prove a lower bound on the length of cutting planes derivations establishing that this set of linear
constraints is inconsistent.

Since lines in a cutting planes proofs consist of linear inequalities and the coefficients can be arbitrary
integers, we need a more general computational model than standard Boolean circuits when we want to
construct interpolants from cutting planes proofs.

5-2

Definition 2.1 (Real circuit [Pud97]). A real circuit C is a directed acyclic graph (DAG) with s sources,
which are vertices labelled by variable inputs, and a unique sink. Every non-source vertex v with fan-in dv
is labelled by a function fv : Rdv → R of arity matching the fan-in of the vertex, and we will also refer to
such vertices v as gates. The incoming edges from the predecessors of v are ordered in some fixed way, so
that the function fv labelling v is well-defined, and every gate v computes the value of the function fv
applied to the values provided by its predecessors. We require all vertices to have bounded fan-in O(1),
and although the exact bound is not too important in what follows we will insist on fan-in at most 2. The
output of the circuit C is the value computed by the sink vertex, and this defines a function fC : Rs → R
on the inputs in the natural way, which is the function computed by the circuit. The size of a circuit is the
total number of vertices in the DAG.

A real circuit is monotone if all gates in it compute non-decreasing functions. We say that a real circuit
computes a Boolean function if when restricted to inputs in {0, 1}s it produces an output in {0, 1} (but in
intermediate steps the circuit can still work with arbitrary real numbers).

Gates in a monotone real circuit can emulate Boolean gates such as ∧ and ∨ with for example max
and min, respectively, so monotone real circuits are at least as strong as monotone Boolean circuits. Are
they stronger, and if so how much? Well, we actually do not know! All we know is that there are functions
computable by small real monotone circuits that require large monotone Boolean circuits, but we do not
know which functions these are.

We can now formally state the theorem we will prove today.

Theorem 2.2 ([Pud97]). Let π be a cutting planes refutation of the inequalities∑
a

ei,apa +
∑
b

fi,bqb ≥ Di i ∈ I (2.3a)∑
a

ej,apa +
∑
c

gj,crc ≥ Dj j ∈ J (2.3b)

and let w be the maximal number of p-variables that appear in any of these inequalities. Then if all
coefficients ei,a for i ∈ I are non-negative or if all coefficients ej,a for j ∈ J are non-positive, it holds
that the formula has an interpolant in the form of a monotone real circuit of size at most w · L(π).

Since in the clique-coclique formulas there is at most one p-variable in each inequality, we immediately
get the following corollary.

Corollary 2.3 ([Pud97]). Let π be a cutting plane proof refutation of a clique-coclique formula. Then
there exists a real monotone interpolating circuit for this clique-coclique formula of size at most L(π).

3 Proof of Cutting Planes Interpolation Theorem

We proceed to prove Theorem 2.2. Let π be a cutting planes refutation of a clique-coclique formula as in the
statement of the theorem and let ρ be an assignment to the p-variables. We will refer to inequalities (2.3a)
as q-axioms and inequalities (2.3b) as r-axioms.

Our plan is to split the refutation π in to two derivations, one from q-axioms and one from r-axioms,
in such a way that at least one of these will be deriving contradiction. We will then build an interpolating
real circuit for the formula using one of these derivations and finally argue that this can be done by a
monotone circuit.

In order to build two derivations, one from q-axioms and one from r-axioms, we will replace each line∑
a

eaρ(pa) +
∑
b

fbqb +
∑
c

gcrc ≥ D (3.1)

in π�ρ with two inequalities ∑
b

fbqb ≥ Dq (3.2a)

5-3

and ∑
c

gcrc ≥ Dr (3.2b)

such that (3.2a) only contains r-variables and (3.2b) only contains q-variables. Note that since all variables
in p have been assigned by ρ, the expression

∑
eapa is replaced by the integer

∑
eaρ(pa).

We will refer to Dq (the constant term in the inequality only containing q-variables) as the q-part, and
similarly refer to Dr as the r-part. We want inequalities (3.2a) and (3.2b) to be valid cutting planes lines,
and therefore require Dq and Dr to be integers. Moreover, since we still want to have a refutation of the
restricted formula, we make sure that (3.2a) and (3.2b) imply (3.1). We can do this by requiring that the
inequality

Dq +Dr ≥ D −
∑
a

eaρ(pa) (3.3)

holds.

3.1 Extracting a Cutting Planes Refutation of One of the Subformulas

We now describe how to build the two independent derivations from the refutation π. We prove by forward
induction over the cutting planes refutation π that there is a refutation of the restricted formula in at most
the same length from either only q-axioms or only r-axioms.

We will go through π line by line maintaining the invariant that for all lines seen so far, written on
the form (3.1), we have two split inequalities (3.2a) and (3.2b) that satisfy (3.3) and that can be obtained
by two independent and valid derivations, one from q-axioms and the other from r-axioms. Moreover
every step in π will correspond to at most one step in each of the new derivations, so the length of these
derivations will be bounded by the length of π.

Since the final inequality in π is 0 ≥ 1, the split inequalities will be 0 ≥ Dq and 0 ≥ Dr with Dq

and Dr satisfying Dq +Dr ≥ 1. Because Dq and Dr are integers, at least one of Dq and Dr must be
greater than or equal to 1. This implies that a contradiction has been derived from either q-axioms or
r-axioms.

Suppose that all lines so far satisfy the invariant. All we need to show is how to obtain the two split
inequalities for the next line while maintaining the invariant. We do so by a case analysis over the cutting
planes derivation rules:

Axioms Say
∑
eapa+

∑
fbqb+

∑
gcrc ≥ D is an axiom in the formula or a variable axiom (i.e., x ≥ 0

or −x ≤ −1 for some variable x).
Since no axiom (neither variable axioms nor axioms in the formula) contains both q- and r-variables
we only have to consider two cases. If the axiom does not contain r-variables, then it holds that∑
gcrc = 0 and we can setDq = D−

∑
eapa andDr = 0. Note that the inequality with the r-part

is 0 ≥ 0. If the axiom contains r-variables, it does not contain q-variables and hence we can set
Dq = 0 and Dr = D −

∑
eapa. In both cases it is clear that Dq and Dr satisfy (3.3) and clearly

the invariant holds.

Addition Say the refutation adds
∑
eapa+

∑
fbqb+

∑
gcrc ≥ D and

∑
e′apa+

∑
f ′bqb+

∑
g′crc ≥ D′.

By the induction hypothesis, we have that each inequality is associated to two split inequalities of
the form (3.2a) and (3.2b) such that (3.3) holds.
We can add the split inequalities separately to obtain∑

fbqb ≥ Dq
∑
f ′bqb ≥ D′q∑

(fb + f ′b)qb ≥ Dq +D′q
and

∑
gcrc ≥ Dr

∑
g′crc ≥ D′r∑

(gc + g′c)rc ≥ Dr +D′r
. (3.4)

Since by the induction hypothesis Dq +Dr ≥ D −
∑
eapa and D′q +D′r ≥ D′ −

∑
e′apa, clearly

the invariant still holds.

5-4

Multiplication Say we wish to multiply
∑
eapa +

∑
fbqb +

∑
gcrc ≥ D by λ. By the induction

hypothesis, we have two split inequalities of the form (3.2a) and (3.2b) such that (3.3) holds.
By multiplying each split inequality by λ separately we get∑

fbqb ≥ Dq∑
(λfb)qb ≥ λDq

and
∑
gcrc ≥ Dr∑

(λgc)rc ≥ λDr

, (3.5)

and it is easy to see that the invariant holds.

Division Say we wish to divide
∑
eapa +

∑
fbqb +

∑
gcrc ≥ D by λ. By the induction hypothesis, we

have two split inequalities of the form (3.2a) and (3.2b) such that (3.3) holds.
We can divide each split inequality by λ separately to obtain∑

fbqb ≥ Dq∑
(fb/λ)qb ≥ dDq/λe

and
∑
gcrc ≥ Dr∑

(gc/λ)rc ≥ dDr/λe
. (3.6)

Since the coefficients of the q- and the r-variables are the same, they are divisible by λ and
therefore this is a valid application of the division rule. Moreover, since by the induction hypothesis,
Dq +Dr ≥ D −

∑
eapa, we have that⌈

Dq

λ

⌉
+

⌈
Dr

λ

⌉
≥
⌈
Dq +Dr

λ

⌉
≥
⌈
D −

∑
eapa

λ

⌉
=

⌈
D

λ

⌉
−
∑ ea

λ
pa (3.7)

and hence the invariant still holds.

We have completed our goal to produce two independent derivation, one of 0 ≥ Dr from r-axioms
and one of 0 ≥ Dq from q-axioms, such that Dr +Dq ≥ 1.

3.2 Writing Down the Interpolating Circuit

Nice, but how do we build an interpolating circuit? Observe that, since Dr +Dq ≥ 1 it is enough for
the circuit to compute either Dr or Dq in order to answer correctly, i.e., to answer 1 if Dr ≥ 1 and 0 if
Dq ≥ 1. Indeed, if for example the circuit computes Dr and answers one if Dr ≥ 1 and zero otherwise,
then the fact that Dr +Dq ≥ 1 guarantees that when the circuit answers zero Dq ≥ 1. In the concrete
case of the clique-coclique formulas in equations (2.2a)–(2.2e) what this boils down to is that if the circuit
answers 1 the graph defined by ρ has no (m− 1)-colouring and if it answers 0 the graph has no m-clique.

Let us see how to build a circuit based on the derivation we obtain from the r-axioms. We assume
here that p-variables appear only negatively in r-axioms and leave the other case as an exercise to the
reader. The circuit has a gate for every step in the derivation. Each gate receives as input one or two
previously computed r-parts and outputs the value of the r-part of the new line derived. For each step in
the derivation that is not an axiom, the circuit has a gate that either adds two inputs, or multiplies the input
by a positive constant, or divides the input by a positive constant (and rounds up). For axioms, the gate
must compute the r-part which is either 0 or D −

∑
eapa. At the end we will also need a threshold gate

that will output 1 if Dr ≥ 1. Let us see each of these cases in a bit more detail and it will be clear that all
gates are monotone.

Axioms with r-variables To compute the value of the r-part of such axioms we need a circuit that
computes D −

∑
eapa. By assumption, for all axioms that contain r-variables it holds that the

coefficients ea are non-positive. This means that we can compute D −
∑
eapa with a monotone

circuit. Since there are at most w p-variables in any axiom, this means that this subcircuit has at
most w gates.

Axioms with no r-variables The value of the r-part in this case is 0, so we use the constant gate 0 (and
if we do not want constants in our circuits, it is easy to remove them in a postprocessing step, just as
in Lecture 4).

5-5

Addition The value of the r-part is the sum of two r-parts, so we use a binary addition gate.

Multiplication The value of the r-part is multiplied by a positive constant, hence we use a unary gate
that computes this multiplication.

Division The value of the r-part is divided by a positive constant and rounded up, so we use a unary gate
that computes this operation.

Output gate At the end if the r-part is at least 1, then the r-axioms are unsatisfiable and the circuit can
answer 1. If the r-part is 0, then the q-axioms are unsatisfiable and the circuit can answer 0. This
can be done by using a unary threshold gate which answers 1 if the input is greater or equal to 1.

It is easy to see that all gates described above are monotone, so we can conclude that the circuit is
monotone. This completes the proof of Theorem 2.2.

4 Outline of Monotone Real Circuit Lower Bound

Now that we know how to build interpolating circuits from cutting planes refutations of clique-coclique
formulas, we want to show that monotone circuits computing interpolants for clique-coclique formulas
must have exponential size. In what remains of today’s lecture, we will outline a proof of the following
theorem.

Theorem 4.1 ([Pud97]). There exists a constant δ > 0 such that for all large enough n it holds that any
monotone real circuit computing an interpolant for the clique-coclique formula over n p-variables has
size exp

(
nδ
)
.

One of the very few known techniques to prove circuit lower bounds is Razborov’s approximation
method [Raz85]. Razborov’s original method, which yields superpolynomial lower bounds for monotone
boolean circuits, was later extended in [AB87] to obtain exponential lower bounds and generalized
in [Pud97] to capture monotone real circuits. We present the basic idea of this method, and further clarify
it next lecture.

We wish to find some class of functions F : {0, 1}n → R, for example polynomials of low degree,
such that:

• Inputs to the circuit are in the class i.e., for every i ∈ [n] the class contains a function which given
input (b1, b2, . . . , bn) ∈ {0, 1}n outputs bi.

• If the inputs to a gate are the outputs of two functions Fi, Fj in the class, then the output of the gate
can be very well approximated by another function F̃ in the class (i.e., F̃ errors—disagrees with the
output of the gate—only on a small fraction of the inputs).

• The output of circuit cannot be approximated within the class (i.e., there is no function in the class
that only errors—disagrees with the output of the circuit—on a small fraction of the inputs).

So if we have such a class of functions then we can argue that we have functions that compute the
inputs to the bottom gates with no error, for every gate there is a function that introduces only a small error,
but in the end all functions in the class make a huge error on the circuit output! From this we can conclude
that the circuit must have many gates.

But what do we mean by errors then? To define this we introduce the notion of 1- and 0-inputs. We
say an input x is a 1-input (resp. a 0-input), if the circuit returns 1 (resp. 0) for this input. We have two
types of errors:

• If x is a 1-input and the approximation F̃ (x) is less than the original F (x) we have a 1-error.

• Analogously, if x is a 0-input and the approximation F̃ (x) is more than the original F (x) we have a
0-error.

5-6

Note that we only care about errors in one direction. For example, if x is a 1-input and the approximation
F̃ (x) is more than the original F (x), then we do not count this as an error. In some sense, since the circuit
is monotone, we are only doing better.

We observe that when measuring errors we can choose the distribution of inputs that suits us best, and
prove that the class of functions satisfy the properties we require for this distribution. In our case, we will
only consider critical inputs x: a 0-input is critical if flipping the value of any variable in x from 0 to
1 yield a 1-input; analogously, a 1-input is critical if flipping the value of any variable in x from 1 to 0
yield a 0-input. For clique-coclique, the critical inputs are graphs of two types: complete (m− 1)-partite
graphs, because these are 0-inputs but adding any edge will ruin the colouring property and change the
answer from 0 to 1; and m-cliques (i.e., graphs that contain an m-clique and all vertices not in the clique
are isolated vertices), because these are 1-inputs but removing any edge makes it (m− 1)-colourable.

Proof sketch of Theorem 4.1. In the next lecture we will prove that there is a class of functions F :
{0, 1}n → R such that:

(1) for every i ∈ [n], it contains a function which given input (b1, b2, . . . , bn) ∈ {0, 1}n outputs bi;

(2) if the inputs to a gate are the outputs of two functions Fi, Fj in the class, then there is a function F̃
in the class that differs from the output of the gate in at most a ε = exp

(
− nδ′

)
fraction of critical

0-inputs, for some δ′ > 0;

(3) if the inputs to a gate are the outputs of two functions Fi, Fj in the class, then there is a function F̃
in the class that differs from the output of the gate in at most a ε′ = exp

(
− nδ′′

)
fraction of critical

1-inputs, for some δ′′ > 0;

(4) for a function F in the class, either F ≥ 1 on all critical inputs, or F < 1 on 2/9 fraction of cliques.

If F ≥ 1 for all critical inputs, then F is far from approximating the circuit since it errors on all critical
0-inputs; if F < 1 for 2/9 fraction of cliques, then F errors on a large fraction of critical 1-inputs and is
also far from approximating the circuit.

By (2) and (3), if there are functions in the class that approximate the inputs to a gate, say Fi and Fj ,
then there is a function in the class that approximates the output of the circuit making only a few more
errors than Fi and Fj . Together with (4) this means that the circuit has many gates. How many gates? We
must consider two cases.

If F ≥ 1 on all critical inputs, then the circuit errors on all critical 0-inputs, so there must be at least
1
ε = exp

(
nδ

′) gates. If F < 1 on 2/9 fraction of cliques, then there must be at least 2
9 ·

1
ε′ =

2
9 · exp

(
nδ

′′)
gates. In both cases we conclude that the circuit has exponentially many gates.

From Corollary 2.3 and Theorem 4.1 we immediately get the following corollary.

Corollary 4.2 ([Pud97]). There exists a constant δ > 0 such that for any N large enough, every cutting
plane refutation of the clique-coclique formula of size N has length exp

(
N δ
)
.

5 Summing up

In this lecture we proved that from a short cutting planes refutation of clique-coclique we can construct a
small monotone interpolating real circuit for clique-coclique. We argued (but did not formally prove yet)
that any such circuit must be of exponential size, and this implies that the cutting planes refutation has
exponential length. To complete the proof of Theorem 4.1, we need to define the class of functions used to
approximate the circuit and then prove that this class has the properties we need.

5-7

References

[AB87] Noga Alon and Ravi B. Boppana. The monotone circuit complexity of Boolean functions.
Combinatorica, 7(1):1–22, March 1987.

[Pud97] Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computations.
Journal of Symbolic Logic, 62(3):981–998, September 1997.

[Raz85] Alexander A. Razborov. Lower bounds for the monotone complexity of some Boolean functions.
Soviet Mathematics Doklady, 31(2):354–357, 1985. English translation of a paper in Doklady
Akademii Nauk SSSR.

5-8

	Introduction
	Clique-Coclique Formulas and Interpolation for Cutting Planes
	Proof of Cutting Planes Interpolation Theorem
	Extracting a Cutting Planes Refutation of One of the Subformulas
	Writing Down the Interpolating Circuit

	Outline of Monotone Real Circuit Lower Bound
	Summing up

