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Last time

- Funcion composition: We want to show Dcc(f ◦ g) = Ω(Dq(f) × Dcc(g)). This is
not true for all g.

- (δ, h)-hitting monochromatic rectangle distribution: We say that IPm has
(o(1),m(12 − ε))-hitting monochromatic rectangle-distributions.

This lecture

We show the following theorem:

Theorem 13.1 (Generalized simulation). Let ε ∈ (0, 1) and δ ∈ (0, 1
100) be real numbers,

and let h ≥ 6/ε and 1 ≤ n ≤ 2h(1−ε) be integers. Let f : {0, 1}n → Z be a function and
g : X ×Y → {0, 1} be a function. If g has (δ, h)-hitting monochromatic rectangle-distributions
then

Dq(f) ≤ 4

ε · h · D
cc(f ◦ g n).

For a more complete proof than what we are going to do today, refer to [CKLM17].

� Attention: Text like this implies caution! Please be careful.

A few notations (refer to Figure 1)

• Consider a product set A = A1 × . . . × An, for some natural number n ≥ 1, where
each Ai is a subset of {0, 1}m.

• Let A ⊆ A and I = {i1 < i2 < · · · < ik} ⊆ [n], and J = [n] \ I.

• Projection: For any a ∈ ({0, 1}m)n, we let aI = 〈ai1 , ai2 , . . . , aik〉 be the projection
of a onto the coordinates in I. Correspondingly, AI = {aI | a ∈ A} is the projection
of the entire set A onto I.

• For any a′ ∈ ({0, 1}m)k and a′′ ∈ ({0, 1}m)n−k, we denote by a′ ×I a
′′ the n-tuple a

such that aI = a′ and aJ = a′′.

• For i ∈ [n] and a n-tuple a, a 6=i denotes a[n]\{i}, and similarly, A 6=i denotes A[n]\{i}.

• For a′ ∈ ({0, 1}m)k, we define the set of extensions ExtJA(a′) = {a′′ ∈ ({0, 1}m)n−k |
a′ ×I a

′′ ∈ A}; we call those a′′ extensions of a′.
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Figure 1: Projecions of set A

• For an integer n, a set A ⊆ An and a subset S ⊆ A, the restriction of A to S at
coordinate i is the set Ai,S = {a ∈ A | ai ∈ S}.

• We write Ai,S
I for the set (Ai,S)I (i.e. we first restrict the i-th coordinate then project

onto the coordinates in I).

13.1 The main idea

- We are given a protocol π for f ◦ g and input z for f . We will simulate a decision
tree for f using π.

- Ideally we want to land on a leaf which has a pair (a, b) such that gn(a, b) = z. This
means that the label of the leaf is f ◦ g(a, b) = f(z).

- To trace such a root-to-leaf path, we will query bits of z from time to time.

- Goal: Devise a strategy to trace such a path.

13.2 Notion of the day: Thickness

Definition 13.2 (Aux graph, average and min-degrees). Let n ≥ 2. For i ∈ [n] and A ⊆ An,
the aux graph G(A, i) is the bipartite graph with left side vertices Ai, right side vertices A 6=i

and edges corresponding to the set A, i.e., (a′, a′′) is an edge iff a′ ×{i} a′′ ∈ A. (See Figure
1.)
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We define the average degree of G(A, i) to be the average right-degree:

davg(A, i) =
|A|
|A 6=i|

,

and the min-degree of G(A, i), to be the minimum right-degree:

dmin(A, i) = mim
a′∈A 6=i

|Ext(a′)|.

Definition 13.3 (Thickness and average-thickness). For n ≥ 2 and τ, ϕ ∈ (0, 1), a set
A ⊆ An is called τ -thick if

dmin(A, i) ≥ τ · |A|
for all i ∈ [n]. Note, an empty set A is τ-thick.

Similarly, A is called ϕ-average-thick if

davg(A, i) ≥ ϕ · |A|

for all i ∈ [n].

� For a rectangle A×B ⊆ An × Bn, we say that the rectangle A×B is τ -thick if both A
and B are τ -thick. For n = 1, set A ⊆ A is τ -thick if |A| ≥ τ · |A|.

13.3 High average degree

Lemma 13.4 (Average-thickness implies thickness). For any n ≥ 2, if A ⊆ An is ϕ-

average-thick, then for every δ ∈ (0, 1) there is a ϕ
2n -thick subset A′ ⊆ A with |A′| ≥ |A|2 .

Proof idea. Go over every coordinate and discard vertices (and edges incident on them)
which has extensions less than ϕ

2n2m.

Consider the following algorithm. Set ϕ = 4 · 2−εh and τ = 2−h.

Algorithm 1 Decision-tree procedure assuming high average degree

1: Set v to be the root of the protocol tree for Π, I = [n], A = An and B = Bn.
2: while v is not a leaf do
3: if AI and BI are both ϕ-average-thick then
4: Let v0, v1 be the children of v.
5: Choose c ∈ {0, 1} for which there is A′ × B′ ⊆ (A × B) ∩ Rvc such

that

6: (1) |A′
I ×B′

I | ≥ 1
4 |AI ×BI |

7: (2) A′
I ×B′

I is τ -thick. . Using Lemma 13.4

8: Update A = A′, B = B′ and v = vc.

9: Output f ◦ g(A×B).
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Alice communicates at node v.

• Let A0 be inputs from A on which Alice sends 0 at node v and A1 = A \A0. We can
pick c ∈ {0, 1} such that |Ac| ≥ |A|/2. Set A′′ = Ai. Since A is ϕ-average-thick,
A′′ is ϕ/2-average-thick.

• Using Lemma 13.4 on A′′, we can find a subset A′ of A′′ such that A′ is ϕ
4·n -thick and

|A′| ≥ |A′′|/2. Since ϕ = 4 · 2−εh and n ≤ 2h(1−ε), the set A′I will be 2−h-thick, i.e.
τ -thick. Setting B′ = B, the rectangle A′ ×B′ satisfies properties from lines 6–7.

Bob communicated at node v. A similar argument holds when Bob communicates at
node v.

In the end, they are in a rectangle A× B which is τ -thick. Now we use the following
lemma.

Lemma 13.5. Let n, h ≥ 1 be integers and δ, τ ∈ (0, 1) be reals, where τ ≥ 2−h.

1. Consider a function g : A× B → {0, 1} which has (δ, h)-hitting monochromatic
rectangle-distributions.

2. Let A×B ⊆ An × Bn be a τ -thick non-empty rectangle.

Then for every z ∈ {0, 1}n there is some (a, b) ∈ A×B with gn(a, b) = z.

In particular, there is a pair (a, b) ∈ A×B such that gm(a, b) is the input z. So the protocol
is correct. But it has not queried anything so far. What is wrong then?

13.4 Low average degree

The point is, the high average degree may not be mainatained though out the execution
of Algorithm 1 (The if condition at line 3 may fail from time to time). When it drops, we
have to query z. Consider the following algorithm.
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Figure 2: Projecions lemma

Algorithm 2 Query strategy

1: if davg(AI , j) < ϕ|A| for some j ∈ [|I|] then
2: Query zi, where i is the j-th (smallest) element of I.
3: Let U × V be a zi-monochromatic rectangle of g such that
4: (1) Ai,U

I\{i} ×B
i,V
I\{i} is τ -thick,

5: (2) αi,U
I\{i} ≥ 1

ϕ (1− 3δ)α,

6: (3) βi,V
I\{i} ≥ (1− 3δ)β, . Using Lemma 13.6

7: Update A = Ai,U , B = Bi,V and I = I \ {i}.
8: else if davg(BI , j) < ϕ|B| for some j ∈ [|I|] then
9: Query zi, where i is the j-th (smallest) element of I.

10: Let U × V be a zi-monochromatic rectangle of g such that
11: (1) Ai,U

I\{i} ×B
i,V
I\{i} is τ -thick,

12: (2) αi,U
I\{i} ≥ (1− 3δ)α,

13: (3) βi,V
I\{i} ≥ 1

ϕ (1− 3δ)β, . Using Lemma 13.6

14: Update A = Ai,U , B = Bi,V and I = I \ {i}.

Lemma 13.6. Let h ≥ 1, n ≥ 2 and i ∈ [n] be integers and δ, τ, ϕ ∈ (0, 1) be reals,
where τ ≥ 2−h.

(a1) Consider a function g : A× B → {0, 1} which has (δ, h)-hitting monochromatic
rectangle-distributions.

(a2) Suppose A×B ⊆ An × Bn is a non-empty rectangle which is τ -thick.

(a3) Suppose also that davg(A, i) ≤ ϕ · |A|.
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Then for any c ∈ {0, 1}, there is a c-monochromatic rectangle U × V ⊆ A×B such that

(b1) Ai,U
6=i and Bi,V

6=i is τ -thick,

(b2) αi,U
6=i ≥ 1

ϕ(1− 3δ)α,

(b3) βi,V6=i ≥ (1− 3δ)β,

where α = |A|/|A|n, β = |B|/|B|n, αi,U
6=i = |Ai,U

6=i |/|A|n−1 and β = |Bi,U
6=i |/|B|n−1.

The constant 3 in the statement may be replaced by any value greater than 2, so the
lemma is still meaningful for δ arbitrarily close to 1/2.

13.5 Putting everything together

Algorithm 3 Decision-tree procedure

Require: z ∈ {0, 1}n
Ensure: f(z)
1: Set v to be the root of the protocol tree for Π, I = [n], A = An and B = Bn.
2: while v is not a leaf do
3: if AI and BI are both ϕ-average-thick then
4: Run Algorithm 1.
5: else
6: Run Algorithm 2

7: Output f ◦ g n(A×B).

Correctness.

• The algorithm maintains an invariant that AI×BI is τ -thick. This invariant is trivially
true at the beginning.

• If both AI and BI are ϕ-average-thick, the algorithm finds sets A′ and B′ on line 4
using Lemma 13.4.

• If AI is not ϕ-average-thick, the existence of U × V at line 6 is guaranteed by Lemma
13.6. Similarly in the case when BI is not ϕ-average-thick.

We argue that f(A × B) at the termination of Algorithm 3 is the correct output. Given
an input z ∈ {0, 1}n, whenever the algorithm queries any zi, the algorithm makes sure that
all the input pairs (x, y) in the rectangle A × B are such that g(xi, yi) = zi — because
U × V is always a zi-monochromatic rectangle of g. At the termination of the algorithm, I
is the set of i such that zi was not queried by the algorithm. As n > 4C/εh, I is non-empty.
Since AI ×BI is τ -thick, it follows from Lemma 13.5 that A×B contains some input pair
(x, y) such that g|I|(xI , yI) = zI , and so gn(x, y) = z. Since Π is correct, it must follow that
f(z) = f ◦ g n(A×B). This concludes the proof of correctness.

13-6



Number of queries Next we argue that the number of queries made by Algorithm 3 is
at most 5C/εh.

• In the first part of the while loop (line 4), the density of the current AI ×BI drops
by a factor 4 in each iteration. There are at most C such iterations, hence this density
can drop by a factor of at most 4−C = 2−2C .

• For each query that the algorithm makes, the density of the current AI ×BI increases
by a factor of at least (1 − 3δ)2/ϕ ≥ 1

2ϕ ≥ 2εh−3 (here we use the fact that
δ ≤ 1/100).

Since the density can be at most one, the number of queries is upper bounded by

2C

εh− 3
≤ 4C

εh
, when h ≥ 6/ε.
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Appendix: Missed proofs

13.5.1 Proof of Lemma 13.5

Lemma 13.7. Let n ≥ 2 be an integer, i ∈ [n], A ⊆ An be a τ -thick set, and S ⊆ A. The
set Ai,S

6=i is τ -thick. Ai,S
6=i is empty iff S ∩Ai is empty.

Lemma 13.5 follows from repeated use of Lemma 13.7. Fix arbitrary z ∈ {0, 1}n. Set
A(1) = A and B(1) = B. We proceed in rounds i = 1, . . . , n − 1 maintaining a τ -thick
rectangle A(i) × B(i) ⊆ An−i+1 × Bn−i+1. If we pick Ui × Vi from σzi , then the rectangle
(A(i)){i}∩Ui× (B(i)){i}∩Vi will be non-empty with probability ≥ 1− δ > 0 (because σzi is a

(δ, h)-hitting rectangle-distribution and τ ≥ 2−h). Fix such Ui and Vi. Set ai to an arbitrary

string in (A(i)){i}∩Ui, and bi to an arbitrary string in (B(i)){i}∩Bi. Set A(i+1) = (A(i))
i,{ai}
6=i ,

B(i+1) = (B(i))
i,{bi}
6=i , and proceed for the next round. By Lemma 13.7, A(i+1) × B(i+1) is

τ -thick.
Eventually, we are left with a rectangle A(n) ×B(n) ⊆ A× B where both A(n) and B(n)

are τ -thick (and non-empty). Again with probability 1 − δ > 0, the zn-monochromatic
rectangle Un × Vn chosen from σzn will intersect A(n) × B(n). We again set an and bn to
come from the intersection, and set a = 〈a1, a2, . . . , an〉 and b = 〈b1, b2, . . . , bn〉.

13.5.2 Proof of Lemma 13.6

Fix c ∈ {0, 1}. Consider a matrix M where rows correspond to strings a ∈ A 6=i, and columns
correspond to rectangles R = U × V in the support of σc. Set each entry M(a,R) to 1 if

U ∩ Ext
{i}
A (a) 6= ∅, and set it to 0 otherwise.

For each a ∈ A 6=i, |Ext{i}A (a)| ≥ τ |A|, and because σc is a (δ, h)-hitting rectangle-
distribution and τ ≥ 2−h, we know that if we pick a column R according to σc, then
M(a,R) = 1 with probability ≥ 1− δ. So the probability that M(a,R) = 1 over uniform a
and σc-chosen R is ≥ 1− δ.

Call a column of M A-good if M(a,R) = 1 for at least 1− 3δ fraction of the rows a. Now
it must be the case that the A-good columns have strictly more than 1/2 of the σc-mass.
Otherwise the probability that M(a,R) = 1 would be < 1− δ.

A similar argument also holds for Bob’s set B 6=i. Hence, there is a c-monochromatic
rectangle R = U × V whose column is both A-good and B-good in their respective matrices.
This is our desired rectangle R.

We know: |Ai,V
6=i | ≥ (1− 3δ)|A 6=i| and |Bi,V

6=i | ≥ (1− 3δ)|B6=i|. Since |B 6=i| ≥ |B|/|B|, we

obtain |Bi,V
6=i |/|B|n−1 ≥ (1− 3δ)|B 6=i|/|B|n−1 ≥ (1− 3δ)β. Because |A|/|A 6=i| ≤ ϕ|A|, we get

|A6=i|
|A|(n−1) ≥

1

ϕ
· |A||A|n =

α

ϕ
.

Combined with the lower bound on |Ai,V
6=i | we obtain |Ai,U

6=i |/|A|n−1 ≥ (1 − 3δ)α/ϕ. The

thickness of Ai,U
6=i and Bi,V

6=i follows from Lemma 13.7.
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