## DD2445 Complexity Theory

3 Nov, 2017 (@ KTH)

## 13. Communication complexity of composed functions

Lecturer: Sagnik Mukhopadhyay
Scribe: Sagnik Mukhopadhyay

## Last time

- Funcion composition: We want to show $\mathrm{D}^{\mathrm{cc}}(f \circ g)=\Omega\left(\mathrm{D}^{\mathrm{q}}(f) \times \mathrm{D}^{\mathrm{cc}}(g)\right)$. This is not true for all $g$.
- ( $\delta, h$ )-hitting monochromatic rectangle distribution: We say that $\mathbb{I P}_{m}$ has ( $\left.o(1), m\left(\frac{1}{2}-\varepsilon\right)\right)$-hitting monochromatic rectangle-distributions.


## This lecture

We show the following theorem:
Theorem 13.1 (Generalized simulation). Let $\varepsilon \in(0,1)$ and $\delta \in\left(0, \frac{1}{100}\right)$ be real numbers, and let $h \geq 6 / \varepsilon$ and $1 \leq n \leq 2^{h(1-\varepsilon)}$ be integers. Let $f:\{0,1\}^{n} \rightarrow \mathcal{Z}$ be a function and $g: \mathcal{X} \times \mathcal{Y} \rightarrow\{0,1\}$ be a function. If $g$ has $(\delta, h)$-hitting monochromatic rectangle-distributions then

$$
\mathrm{D}^{\mathrm{q}}(f) \leq \frac{4}{\varepsilon \cdot h} \cdot \mathrm{D}^{\mathrm{cc}}\left(f \circ g^{n}\right) .
$$

For a more complete proof than what we are going to do today, refer to [CKLM17].
명ㅇ Attention: Text like this implies caution! Please be careful.

## A few notations (refer to Figure 1)

- Consider a product set $\mathcal{A}=\mathcal{A}_{1} \times \ldots \times \mathcal{A}_{n}$, for some natural number $n \geq 1$, where each $\mathcal{A}_{i}$ is a subset of $\{0,1\}^{m}$.
- Let $A \subseteq \mathcal{A}$ and $I=\left\{i_{1}<i_{2}<\cdots<i_{k}\right\} \subseteq[n]$, and $J=[n] \backslash I$.
- Projection: For any $a \in\left(\{0,1\}^{m}\right)^{n}$, we let $a_{I}=\left\langle a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}\right\rangle$ be the projection of $a$ onto the coordinates in $I$. Correspondingly, $A_{I}=\left\{a_{I} \mid a \in A\right\}$ is the projection of the entire set $A$ onto $I$.
- For any $a^{\prime} \in\left(\{0,1\}^{m}\right)^{k}$ and $a^{\prime \prime} \in\left(\{0,1\}^{m}\right)^{n-k}$, we denote by $a^{\prime} \times_{I} a^{\prime \prime}$ the $n$-tuple $a$ such that $a_{I}=a^{\prime}$ and $a_{J}=a^{\prime \prime}$.
- For $i \in[n]$ and a $n$-tuple $a, a_{\neq i}$ denotes $a_{[n] \backslash\{i\}}$, and similarly, $A_{\neq i}$ denotes $A_{[n] \backslash\{i\}}$.
- For $a^{\prime} \in\left(\{0,1\}^{m}\right)^{k}$, we define the set of extensions $\operatorname{Ext}_{A}^{J}\left(a^{\prime}\right)=\left\{a^{\prime \prime} \in\left(\{0,1\}^{m}\right)^{n-k} \mid\right.$ $\left.a^{\prime} \times_{I} a^{\prime \prime} \in A\right\}$; we call those $a^{\prime \prime}$ extensions of $a^{\prime}$.


Figure 1: Projecions of set $A$

- For an integer $n$, a set $A \subseteq \mathcal{A}^{n}$ and a subset $S \subseteq \mathcal{A}$, the restriction of $A$ to $S$ at coordinate $i$ is the set $A^{i, S}=\left\{a \in A \mid a_{i} \in S\right\}$.
- We write $A_{I}^{i, S}$ for the set $\left(A^{i, S}\right)_{I}$ (i.e. we first restrict the $i$-th coordinate then project onto the coordinates in $I$ ).


### 13.1 The main idea

- We are given a protocol $\pi$ for $f \circ g$ and input $z$ for $f$. We will simulate a decision tree for $f$ using $\pi$.
- Ideally we want to land on a leaf which has a pair $(a, b)$ such that $g^{n}(a, b)=z$. This means that the label of the leaf is $f \circ g(a, b)=f(z)$.
- To trace such a root-to-leaf path, we will query bits of $z$ from time to time.
- Goal: Devise a strategy to trace such a path.


### 13.2 Notion of the day: Thickness

Definition 13.2 (Aux graph, average and min-degrees). Let $n \geq 2$. For $i \in[n]$ and $A \subseteq \mathcal{A}^{n}$, the aux graph $G(A, i)$ is the bipartite graph with left side vertices $A_{i}$, right side vertices $A_{\neq i}$ and edges corresponding to the set $A$, i.e., $\left(a^{\prime}, a^{\prime \prime}\right)$ is an edge iff $a^{\prime} \times_{\{i\}} a^{\prime \prime} \in A$. (See Figure 1.)

We define the average degree of $G(A, i)$ to be the average right-degree:

$$
d_{\text {avg }}(A, i)=\frac{|A|}{\left|A_{\neq i}\right|},
$$

and the min-degree of $G(A, i)$, to be the minimum right-degree:

$$
d_{\min }(A, i)=\operatorname{mim}_{a^{\prime} \in A_{\neq i}}\left|\operatorname{Ext}\left(a^{\prime}\right)\right| .
$$

Definition 13.3 (Thickness and average-thickness). For $n \geq 2$ and $\tau, \varphi \in(0,1)$, a set $A \subseteq \mathcal{A}^{n}$ is called $\tau$-thick if

$$
d_{\min }(A, i) \geq \tau \cdot|\mathcal{A}|
$$

for all $i \in[n]$. Note, an empty set $A$ is $\tau$-thick.
Similarly, A is called $\varphi$-average-thick if

$$
d_{\text {avg }}(A, i) \geq \varphi \cdot|\mathcal{A}|
$$

for all $i \in[n]$.
For a rectangle $A \times B \subseteq \mathcal{A}^{n} \times \mathcal{B}^{n}$, we say that the rectangle $A \times B$ is $\tau$-thick if both $A$ and $B$ are $\tau$-thick. For $n=1$, set $A \subseteq \mathcal{A}$ is $\tau$-thick if $|A| \geq \tau \cdot|\mathcal{A}|$.

### 13.3 High average degree

> Lemma 13.4 (Average-thickness implies thickness). For any $n \geq 2$, if $A \subseteq \mathcal{A}^{n}$ is $\varphi$ average-thick, then for every $\delta \in(0,1)$ there is a $\frac{\varphi}{2 n}$-thick subset $A^{\prime} \subseteq A$ with $\left|A^{\prime}\right| \geq \frac{|A|}{2}$.

Proof idea. Go over every coordinate and discard vertices (and edges incident on them) which has extensions less than $\frac{\varphi}{2 n} 2^{m}$.

Consider the following algorithm. Set $\varphi=4 \cdot 2^{-\varepsilon h}$ and $\tau=2^{-h}$.

```
Algorithm 1 Decision-tree procedure assuming high average degree
    Set \(v\) to be the root of the protocol tree for \(\Pi, I=[n], A=\mathcal{A}^{n}\) and \(B=\mathcal{B}^{n}\).
    while \(v\) is not a leaf do
        if \(A_{I}\) and \(B_{I}\) are both \(\varphi\)-average-thick then
            Let \(v_{0}, v_{1}\) be the children of \(v\).
            Choose \(c \in\{0,1\}\) for which there is \(A^{\prime} \times B^{\prime} \subseteq(A \times B) \cap R_{v_{c}}\) such
    that
                    (1) \(\left|A_{I}^{\prime} \times B_{I}^{\prime}\right| \geq \frac{1}{4}\left|A_{I} \times B_{I}\right|\)
                    (2) \(A_{I}^{\prime} \times B_{I}^{\prime}\) is \(\tau\)-thick.
                                    \(\triangleright\) Using Lemma 13.4
            Update \(A=A^{\prime}, B=B^{\prime}\) and \(v=v_{c}\).
    Output \(f \circ g(A \times B)\).
```


## Alice communicates at node $v$.

- Let $A_{0}$ be inputs from $A$ on which Alice sends 0 at node $v$ and $A_{1}=A \backslash A_{0}$. We can pick $c \in\{0,1\}$ such that $\left|A_{c}\right| \geq|A| / 2$. Set $A^{\prime \prime}=A_{i}$. Since $A$ is $\varphi$-average-thick, $A^{\prime \prime}$ is $\varphi / 2$-average-thick.
- Using Lemma 13.4 on $A^{\prime \prime}$, we can find a subset $A^{\prime}$ of $A^{\prime \prime}$ such that $A^{\prime}$ is $\frac{\varphi}{4 \cdot n}$-thick and $\left|A^{\prime}\right| \geq\left|A^{\prime \prime}\right| / 2$. Since $\varphi=4 \cdot 2^{-\varepsilon h}$ and $n \leq 2^{h(1-\varepsilon)}$, the set $A_{I}^{\prime}$ will be $2^{-h}$-thick, i.e. $\tau$-thick. Setting $B^{\prime}=B$, the rectangle $A^{\prime} \times B^{\prime}$ satisfies properties from lines 6-7.

Bob communicated at node $v$. A similar argument holds when Bob communicates at node $v$.

In the end, they are in a rectangle $A \times B$ which is $\tau$-thick. Now we use the following lemma.

Lemma 13.5. Let $n, h \geq 1$ be integers and $\delta, \tau \in(0,1)$ be reals, where $\tau \geq 2^{-h}$.

1. Consider a function $g: \mathcal{A} \times \mathcal{B} \rightarrow\{0,1\}$ which has $(\delta, h)$-hitting monochromatic rectangle-distributions.
2. Let $A \times B \subseteq \mathcal{A}^{n} \times \mathcal{B}^{n}$ be a $\tau$-thick non-empty rectangle.

Then for every $z \in\{0,1\}^{n}$ there is some $(a, b) \in A \times B$ with $g^{n}(a, b)=z$.
In particular, there is a pair $(a, b) \in A \times B$ such that $g^{m}(a, b)$ is the input $z$. So the protocol is correct. But it has not queried anything so far. What is wrong then?

### 13.4 Low average degree

The point is, the high average degree may not be mainatained though out the execution of Algorithm 1 (The if condition at line 3 may fail from time to time). When it drops, we have to query $z$. Consider the following algorithm.


Figure 2: Projecions lemma

```
Algorithm 2 Query strategy
    if \(d_{\text {avg }}\left(A_{I}, j\right)<\varphi|\mathcal{A}|\) for some \(j \in[|I|]\) then
        Query \(z_{i}\), where \(i\) is the \(j\)-th (smallest) element of \(I\).
        Let \(U \times V\) be a \(z_{i}\)-monochromatic rectangle of \(g\) such that
            (1) \(A_{I \backslash\{i\}}^{i, U} \times B_{I \backslash\{i\}}^{i, V}\) is \(\tau\)-thick,
            (2) \(\alpha_{I \backslash\{i\}}^{i, U} \geq \frac{1}{\varphi}(1-3 \delta) \alpha\),
            (3) \(\beta_{I \backslash\{i\}}^{i, V} \geq(1-3 \delta) \beta, \quad \triangleright\) Using Lemma 13.6
        Update \(A=A^{i, U}, B=B^{i, V}\) and \(I=I \backslash\{i\}\).
    else if \(d_{\mathrm{avg}}\left(B_{I}, j\right)<\varphi|\mathcal{B}|\) for some \(j \in[|I|]\) then
        Query \(z_{i}\), where \(i\) is the \(j\)-th (smallest) element of \(I\).
        Let \(U \times V\) be a \(z_{i}\)-monochromatic rectangle of \(g\) such that
            (1) \(A_{I \backslash\{i\}}^{i, U} \times B_{I \backslash\{i\}}^{i, V}\) is \(\tau\)-thick,
            (2) \(\alpha_{I \backslash\{i\}}^{i, U} \geq(1-3 \delta) \alpha\),
            (3) \(\beta_{I \backslash\{i\}}^{i, V} \geq \frac{1}{\varphi}(1-3 \delta) \beta, \quad \triangleright\) Using Lemma 13.6
        Update \(A=A^{i, U}, B=B^{i, V}\) and \(I=I \backslash\{i\}\).
```

Lemma 13.6. Let $h \geq 1, n \geq 2$ and $i \in[n]$ be integers and $\delta, \tau, \varphi \in(0,1)$ be reals, where $\tau \geq 2^{-h}$.
(a1) Consider a function $g: \mathcal{A} \times \mathcal{B} \rightarrow\{0,1\}$ which has $(\delta, h)$-hitting monochromatic rectangle-distributions.
(a2) Suppose $A \times B \subseteq \mathcal{A}^{n} \times \mathcal{B}^{n}$ is a non-empty rectangle which is $\tau$-thick.
(a3) Suppose also that $d_{\text {avg }}(A, i) \leq \varphi \cdot|\mathcal{A}|$.

Then for any $c \in\{0,1\}$, there is a $c$-monochromatic rectangle $U \times V \subseteq \mathcal{A} \times \mathcal{B}$ such that
(b1) $A_{\neq i}^{i, U}$ and $B_{\neq i}^{i, V}$ is $\tau$-thick,
(b2) $\alpha_{\neq i}^{i, U} \geq \frac{1}{\varphi}(1-3 \delta) \alpha$,
(b3) $\beta_{\neq i}^{i, V} \geq(1-3 \delta) \beta$,
where $\alpha=|A| /|\mathcal{A}|^{n}, \beta=|B| /|\mathcal{B}|^{n}, \alpha_{\neq i}^{i, U}=\left|A_{\neq i}^{i, U}\right| /|\mathcal{A}|^{n-1}$ and $\beta=\left|B_{\neq i}^{i, U}\right| /|\mathcal{B}|^{n-1}$.
The constant 3 in the statement may be replaced by any value greater than 2 , so the lemma is still meaningful for $\delta$ arbitrarily close to $1 / 2$.

### 13.5 Putting everything together

```
Algorithm 3 Decision-tree procedure
Require: \(z \in\{0,1\}^{n}\)
Ensure: \(f(z)\)
    Set \(v\) to be the root of the protocol tree for \(\Pi, I=[n], A=\mathcal{A}^{n}\) and \(B=\mathcal{B}^{n}\).
    while \(v\) is not a leaf do
        if \(A_{I}\) and \(B_{I}\) are both \(\varphi\)-average-thick then
            Run Algorithm 1.
        else
            Run Algorithm 2
    Output \(f \circ g^{n}(A \times B)\).
```


## Correctness.

- The algorithm maintains an invariant that $A_{I} \times B_{I}$ is $\tau$-thick. This invariant is trivially true at the beginning.
- If both $A_{I}$ and $B_{I}$ are $\varphi$-average-thick, the algorithm finds sets $A^{\prime}$ and $B^{\prime}$ on line 4 using Lemma 13.4.
- If $A_{I}$ is not $\varphi$-average-thick, the existence of $U \times V$ at line 6 is guaranteed by Lemma 13.6. Similarly in the case when $B_{I}$ is not $\varphi$-average-thick.

We argue that $f(A \times B)$ at the termination of Algorithm 3 is the correct output. Given an input $z \in\{0,1\}^{n}$, whenever the algorithm queries any $z_{i}$, the algorithm makes sure that all the input pairs $(x, y)$ in the rectangle $A \times B$ are such that $g\left(x_{i}, y_{i}\right)=z_{i}$ - because $U \times V$ is always a $z_{i}$-monochromatic rectangle of $g$. At the termination of the algorithm, $I$ is the set of $i$ such that $z_{i}$ was not queried by the algorithm. As $n>4 C / \varepsilon h, I$ is non-empty. Since $A_{I} \times B_{I}$ is $\tau$-thick, it follows from Lemma 13.5 that $A \times B$ contains some input pair $(x, y)$ such that $g^{|I|}\left(x_{I}, y_{I}\right)=z_{I}$, and so $g^{n}(x, y)=z$. Since $\Pi$ is correct, it must follow that $f(z)=f \circ g^{n}(A \times B)$. This concludes the proof of correctness.

Number of queries Next we argue that the number of queries made by Algorithm 3 is at most $5 C / \varepsilon h$.

- In the first part of the while loop (line 4), the density of the current $A_{I} \times B_{I}$ drops by a factor 4 in each iteration. There are at most $C$ such iterations, hence this density can drop by a factor of at most $4^{-C}=2^{-2 C}$.
- For each query that the algorithm makes, the density of the current $A_{I} \times B_{I}$ increases by a factor of at least $(1-3 \delta)^{2} / \varphi \geq \frac{1}{2 \varphi} \geq 2^{\varepsilon h-3}$ (here we use the fact that $\delta \leq 1 / 100$ ).

Since the density can be at most one, the number of queries is upper bounded by

$$
\frac{2 C}{\varepsilon h-3} \leq \frac{4 C}{\varepsilon h}, \quad \text { when } h \geq 6 / \varepsilon
$$

## References

[CKLM17] Arkadev Chattopadhyay, Michal Koucký, Bruno Loff, and Sagnik Mukhopadhyay. Simulation theorems via pseudorandom properties. CoRR, abs/1704.06807, 2017.

## Appendix: Missed proofs

### 13.5.1 Proof of Lemma 13.5

Lemma 13.7. Let $n \geq 2$ be an integer, $i \in[n], A \subseteq \mathcal{A}^{n}$ be a $\tau$-thick set, and $S \subseteq \mathcal{A}$. The set $A_{\neq i}^{i, S}$ is $\tau$-thick. $A_{\neq i}^{i, \bar{S}}$ is empty iff $S \cap A_{i}$ is empty.

Lemma 13.5 follows from repeated use of Lemma 13.7. Fix arbitrary $z \in\{0,1\}^{n}$. Set $A^{(1)}=A$ and $B^{(1)}=B$. We proceed in rounds $i=1, \ldots, n-1$ maintaining a $\tau$-thick rectangle $A^{(i)} \times B^{(i)} \subseteq \mathcal{A}^{n-i+1} \times \mathcal{B}^{n-i+1}$. If we pick $U_{i} \times V_{i}$ from $\sigma_{z_{i}}$, then the rectangle $\left(A^{(i)}\right)_{\{i\}} \cap U_{i} \times\left(B^{(i)}\right)_{\{i\}} \cap V_{i}$ will be non-empty with probability $\geq 1-\delta>0$ (because $\sigma_{z_{i}}$ is a ( $\delta, h$ )-hitting rectangle-distribution and $\tau \geq 2^{-h}$ ). Fix such $U_{i}$ and $V_{i}$. Set $a_{i}$ to an arbitrary string in $\left(A^{(i)}\right)_{\{i\}} \cap U_{i}$, and $b_{i}$ to an arbitrary string in $\left(B^{(i)}\right)_{\{i\}} \cap B_{i}$. Set $A^{(i+1)}=\left(A^{(i)}\right)_{\neq i}^{i,\left\{a_{i}\right\}}$, $B^{(i+1)}=\left(B^{(i)}\right)_{\neq i}^{i,\left\{b_{i}\right\}}$, and proceed for the next round. By Lemma 13.7, $A^{(i+1)} \times B^{(i+1)}$ is $\tau$-thick.

Eventually, we are left with a rectangle $A^{(n)} \times B^{(n)} \subseteq \mathcal{A} \times \mathcal{B}$ where both $A^{(n)}$ and $B^{(n)}$ are $\tau$-thick (and non-empty). Again with probability $1-\delta>0$, the $z_{n}$-monochromatic rectangle $U_{n} \times V_{n}$ chosen from $\sigma_{z_{n}}$ will intersect $A^{(n)} \times B^{(n)}$. We again set $a_{n}$ and $b_{n}$ to come from the intersection, and set $a=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ and $b=\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$.

### 13.5.2 Proof of Lemma 13.6

Fix $c \in\{0,1\}$. Consider a matrix $M$ where rows correspond to strings $a \in A_{\neq i}$, and columns correspond to rectangles $R=U \times V$ in the support of $\sigma_{c}$. Set each entry $M(a, R)$ to 1 if $U \cap \operatorname{Ext}_{A}^{\{i\}}(a) \neq \emptyset$, and set it to 0 otherwise.

For each $a \in A_{\neq i},\left|\operatorname{Ext}_{A}^{\{i\}}(a)\right| \geq \tau|\mathcal{A}|$, and because $\sigma_{c}$ is a $(\delta, h)$-hitting rectangledistribution and $\tau \geq 2^{-h}$, we know that if we pick a column $R$ according to $\sigma_{c}$, then $M(a, R)=1$ with probability $\geq 1-\delta$. So the probability that $M(a, R)=1$ over uniform $a$ and $\sigma_{c}$-chosen $R$ is $\geq 1-\delta$.

Call a column of $M A$-good if $M(a, R)=1$ for at least $1-3 \delta$ fraction of the rows $a$. Now it must be the case that the $A$-good columns have strictly more than $1 / 2$ of the $\sigma_{c}$-mass. Otherwise the probability that $M(a, R)=1$ would be $<1-\delta$.

A similar argument also holds for Bob's set $B_{\neq i}$. Hence, there is a $c$-monochromatic rectangle $R=U \times V$ whose column is both $A$-good and $B$-good in their respective matrices. This is our desired rectangle $R$.

We know: $\left|A_{\neq i}^{i, V}\right| \geq(1-3 \delta)\left|A_{\neq i}\right|$ and $\left|B_{\neq i}^{i, V}\right| \geq(1-3 \delta)\left|B_{\neq i}\right|$. Since $\left|B_{\neq i}\right| \geq|B| /|\mathcal{B}|$, we obtain $\left|B_{\neq i}^{i, V}\right| /|\mathcal{B}|^{n-1} \geq(1-3 \delta)\left|B_{\neq i}\right| /|\mathcal{B}|^{n-1} \geq(1-3 \delta) \beta$. Because $|A| /\left|A_{\neq i}\right| \leq \varphi|\mathcal{A}|$, we get

$$
\frac{\left|A_{\neq i}\right|}{|\mathcal{A}|^{(n-1)}} \geq \frac{1}{\varphi} \cdot \frac{|A|}{|\mathcal{A}|^{n}}=\frac{\alpha}{\varphi} .
$$

Combined with the lower bound on $\left|A_{\neq i}^{i, V}\right|$ we obtain $\left|A_{\neq i}^{i, U}\right| /|\mathcal{A}|^{n-1} \geq(1-3 \delta) \alpha / \varphi$. The thickness of $A_{\neq i}^{i, U}$ and $B_{\neq i}^{i, V}$ follows from Lemma 13.7.

